Response to the question “what is the basis of
SECDSA security?” posted on

https://crypto.stackexchange.com/questions/110997/

blinding-an-ecdsa-private-key-without-learning-the-private-key

Eric R. Verheul

eric.verheul@keycontrols.nl
13th March 2024

The security of Split-ECDSA (SECDSA) [2,3] is based on the security of raw
ECDSA signing, i.e. not letting the cryptographic hardware compute the hash
value itself but instead but letting it sign only the result, i.e. the hash value. A
hash value is simply a byte array representing a big integer of the size of the hash
output, e.g. 32 bytes in the case of SHA256 use. In the raw signing context, the
hash is computed by the application calling the cryptographic library/hardware.
As cryptographic hardware typically has computational or communicational re-
straints, raw signing is typically used in practice. This is why most (if not all)
cryptographic libraries/hardware including the iOS/Secure Enclave, Android-
/HBK+Strongbox, TPMs, PKCS11 based HSMs support this.

Raw ECDSA signing security means that the following attack is not possible: an
attacker requests the cryptographic hardware to sign a series of chosen hashval-
ues Hy, Hs, ..., H, with the ECDSA private key v (and public key uw-G) and is
then able to generate a signature based on ECDSA private key v on a hashvalue
H that was not requested by the attacker. One can argue that raw ECDSA
signing security is commonly accepted to hold, as raw signing is commonly used
and supported by most (if not all) cryptographic libraries/hardware.

We can base SECDSA raw signing security on raw ECDSA signing security of
the underlying possession key w (with public key w-G). That is, we can show
that if SECDSA allows for an attack as indicated above, one can also find one
for ECDSA itself which we argued is not possible.

We reason as follows. First of all, from the proof of Proposition 3.1 [2] (most
specifically the sequence of equalities appearing in it) one can conclude the fol-
lowing (actually the converse from what is used in Proposition 3.1):

If (r, s) is an ECDSA signature on hash value e with private key u-o (and pub-
lic key o-u-G) then (r,s:071) is an ECDSA signature on hash value e-0~! with
private key wu.

Now suppose that an attacker can break SECDSA security, i.e. the attacker can
call Algorithm 6 of [2] to SECDSA sign specific hashvalues Hi, H, ..., H], leading
to a SECDSA signature (7, s) on a hashvalue H' not requested. From the above


https://crypto.stackexchange.com/questions/110997/blinding-an-ecdsa-private-key-without-learning-the-private-key
https://crypto.stackexchange.com/questions/110997/blinding-an-ecdsa-private-key-without-learning-the-private-key

1. REFERENCES

conclusion it then follows that (r,s-c~1) is signature on hashvalue H'-o~! with
private key u. Also, in Algorithm 6 of [2], the calls for signing with private u are
Hj-o~', Hyo~', ..., H " 0 which are all different from H'-oc~! as H|, H}, ..., H},
and H' are different. We have arrived at an successful attack on raw ECDSA
signing security with the underlying possession key

The use of SECDSA deriving blinded keys from one hardware backed private
key u is not explicitly mentioned in the SECDSA paper [2]. It is explained in
this Linkedin post [4]. In this post it also explained how one can use a Schnorr
Zero-Knowledge Proof (or simply a Schnorr or ECDSA signature) to prove to
verifiers (attestation issuers and relying parties in the EUDI-wallet context) that
blinded keys are based on the same possession key u. It is also indicated that
this technique can be used in the presentation of multiple attribute attestations
whereby proving in a privacy friendly way to a verifier that all the private at-
testation keys are bound to the same hardware and person. This technique is
thereby a more secure and privacy friendly alternative for the “claim-based bind-
ing” technique of OpenID for Verifiable Credentials (OpenID4VC) [5].

The SECDSA paper [2] is from 2021, just at the time the European Digital
Identity (EUDI) Wallet [1] was introduced. Although the SECDSA techniques
can be applied to the EUDI-wallet, the paper focusses on qualified remote sign-
ing with an application to authentication at eIDAS assurance level High. The
user is deployed a mobile application (APP) for (qualified) signing or authentic-
ation which is comparable to the EUDI-wallet avant la lettre. The user signing
keys are managed by a remote signing server whereby the mobile signingapplic-
ation/user sends key management instructions to the server (generate key, sign
with key etc.). One of the big issues of remote signing is that the server can sign
on behalf of the user without the user has instructed the server. SECSA aims to
achieve classical ‘sole control’/non-repudiation on the instructions to the server:
each server key management instruction from the APP /user is equipped with a
APP /user SECDSA signature that achieves ‘sole control’/non-repudiation. This
means that any dispute on a server key management instruction can be conveni-
ently handled by the SECDSA signed instruction. Apart from ‘sole control’ /non-
repudiation, the SECDSA setup also aims that the authentication based on the
SECDSA signed instruction achieves eIDAS assurance level High. This is rather
subtle and requires that the server gets no information enabling him to brute-
force the PIN even with rooted access to the wallet. In [3] a compact explanation
of this SECDSA usage is presented.

1 References

1. European Digital Identity Framework, European Parliament legislative resolution
of 29 February 2024. See https://www.europarl.europa.eu/doceo/document/
TA-9-2024-0117_EN.pdf.

2. https://eprint.iacr.org/2021/910.

3. https://www.cs.ru.nl/E.Verheul/presentations/SECDSAbasedEUDI-wallets.
pdf.

ii


https://www.europarl.europa.eu/doceo/document/TA-9-2024-0117_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0117_EN.pdf
https://eprint.iacr.org/2021/910
https://www.cs.ru.nl/E.Verheul/presentations/SECDSAbasedEUDI-wallets.pdf
https://www.cs.ru.nl/E.Verheul/presentations/SECDSAbasedEUDI-wallets.pdf

1. REFERENCES

4. https://uws.linkedin.con/pulse/cryptographically-1linking-edi-wallet-attribute-mobile-verheul-/

5. https://openid.net/sg/openiddvc/

iii


https://www.linkedin.com/pulse/cryptographically-linking-edi-wallet-attribute-mobile-verheul-/
https://openid.net/sg/openid4vc/

	References

