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Introduction: Planning and Scheduling in AMETIST

Scheduling and planning are not considered to be typical application domains of formal verification
and fall more into the realm of disciplines such as AI and operations research as well as to specific
application domains. The more general term, planning, is viewed within the AI literature as the pro-
cess of finding a sequence of actions that brings a system from a givenstate to a desired goal state.
In the AI tradition, unfortunately, the dynamics of the system is defined in a more implicit fashion
using logical methods that sometime does not give a clear view of the dynamics of the system, as
does automaton-based methods. A state of the system is viewed as a collection of “facts” in a data
base that describe the current state of affairs. Actions are characterized by their preconditions and
by their side effects, that is, the facts that they add to or remove from fromthe data base. This is
the classical STRIPS approach whose origin is in solving puzzles in the “blocks world”, a virtual
world with facts like “the red block is on the blue block” and actions that put blocks on each other
or remove top blocks. The AI planning community is centered around the annual conference ICAPS
and holds planning competitions on problems coming from different domains. Space application are
a popular source for planning problems as the distance between the earthlyoperator and the satel-
lites, telescopes, spaceships and robots to be controlled is sometimes too largefor tele-operations and
autonomous solutions are sought.

In the OR tradition, planning refers more to some kind of “strategic” and “tactical” decision mak-
ing, for example, choosing a machine renewal policy that optimizes amortized cost or an inventory
handling policy. Scheduling can be viewed as a special case of planning where the action repertoire
is more restricted and the decisions of the planner are about allocating bounded resources to tasks
that may compete for them. The OR planning and scheduling problems tend to be more uniform
in structure and hence can be described and solved more naturally using traditional tools of applied
mathematics.1

When we restrict ourselves to a finite horizon, various planning and scheduling problem can be trans-
formed intoconstrained optimizationproblems over a finite number of decision variables. The sim-
pler planning and scheduling problems coming from OR translate into a more stylized format of con-
straints that can be solved sometimes even using simple linear programming. However most problems
have a discrete decision component (for example priority between two jobs on a machine in job-shop
scheduling) that renders the solution space highly non convex. Such problems are solved sometime
using methods such as MILP which are more oriented toward numerical rather than logical problems.
More complex planning and scheduling problems, including those treated by the AI community, have
constraints with a more dominant logical part and are typically solved using constraint propagation
techniques originating from constraint logic programming, or more recently by enriched SAT solvers.
The alternative approach, which is the main approach pursued within the AMETIST project, consists
of searching the space of paths in the dynamic transition graph implied by the system description.

Both approaches need to be upgraded in order to treat situations where the future outcome does not
depend exclusively on the actions of the planner/scheduler but also on some external uncontrolled
actions (the “environment” in the verification jargon. “disturbances” in the control sense). In the AI
planning literature this is calledreactive planning, and has been, in fact, subject to intense research
in the context of game-playing programs. Problem with uncertainty (“adversary”) are solved using
algorithms that search the game graph to find a “winning” strategy. Since typically the space of
possible executions grows exponentially with the depth of the game tree, clever heuristic methods are

1In fact, it is a chicken and egg problem, as the availability of mathematical tools often influences our choice of models
and problems.
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needed to solve large problems. In the case of chess, special parallel hardware was needed to beat the
human world champion. On the OR side, where problem are reduced to static optimization, it is not
always easy to deal with alternating min-max non-determinism and the uncertainty is often associated
with probabilities, sometimes for historical reasons.

This report summarizes the progress in understanding, development andimplementation of planning
and schedulingalgorithms, as well as additional efforts to make connections with other disciplines
and communities that occupy themselves with these issues. To avoid redundancy we will notelaborate
here much on the work reported under the case studies as well as most of the work reported in the 2nd-
year deliverable 2.2.1 “control synthesis algorithms” because within the AMETIST approach controller
synthesis and planning/scheduling are almost synonyms. Note that this report is primarily about new
algorithmsand not about the application of old algorithms to new problems.

The highlights of the AMETIST work on planning and scheduling algorithms can be grouped into the
following sub topics:

1. Priced timed automata: An extension of the timed automaton models to express cost which
turns out to be decidable, including its integration in UppAaal.

2. Scheduling under uncertainty: New models and algorithms for synthesizing scheduling strate-
gies under uncertainty.

3. Timed automata and constraints: Combination of idea from optimization and satisfiability with
timed automata.

4. Additional work: including stochastic scheduling of batch plants and synthesizing schedulers
for embedded systems.

5. Bridge building: dissemination and reverse-dissemination toward relevant communities, mostly
the AI planning community.

Priced Timed Automata

One of the major achievements of AMETIST is the development of the theoretical results, algorithms
and a tool for reasoning aboutpriced timed automata[13, 9, 15, 16, 14, 10, 11]. Before AMETIST

the only cost that could be associated with a run of the automaton was the elapsed time and impulse
costs. Priced timed automata extend timed automata by allowing rate costs, i.e. accumulated cost as
a function of time. Rate costs are defined for each location of the automaton and may vary between
locations. Decidability follows from the fact that, albeit being a hybrid automaton, transition guards
are not influenced by the cost of a run and a finite quotient property still holds (although more complex
than for plain timed automata).

During the project, important improvements have been made to priced zones, acritical data structures
for the analytical analysis of priced timed automata. A zone is a convex set ofvaluations of the clocks
of the timed automaton. A priced zone adds an affine function, which for each clock valuation in the
set gives the cost of a run ending in the valuation. The state space of a priced timed automaton can
conveniently be represented by a number of priced zones (together with information about other state
variables). One particularly time consuming operation is to find the infimum cost of a priced zone. The
discovery of a reduction from the problem of finding the infimum cost of a priced zone to the min-cost
flow problem led to a performance improvement of several orders for magnitude for computing the
infimum [34]. This change alone has improved the overall speed of the prototype implementation of
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UPPAAL CORA by one order of magnitude. Without these and other less fundamental (engineering
type) improvements to the prototype analysis tool UPPAAL CORA, handling the case studies of the
AMETIST project would not have been possible.

Within the project, a graphical front end for priced timed automata has been developed based on the
UPPAAL graphical front end. This front end has eased the development of a model for the extended
Axxom case studies and has enabled the partners to evaluate various modelling techniques for the
case study. Furthermore, the tool has matured within the lifetime of the project to astate were it was
releasable to the public. Obviously, UPPAAL CORA does not get close to thepopularity of UPPAAL,
but approximately 10 to 15 downloads a month is still respectable for an academic prototype.

On the theoretical side, the results were extended to the problem of finding the optimal conditional
run for multi-priced timed automata. More precisely, the problem of determining the minimal cost of
reaching a given target state, with respect to some primary cost variable,while respecting upper bound
constraints on the remaining (secondary) cost variables [28]. However, prototype implementations
could not be me completed before the project was concluded.

Algorithms for Scheduling under Uncertainty

Temporal Uncertainty

Zone manipulation penalizes the performance of timed automata significantly and this is not going to
improve with the priced zones used for priced timed automata. The approach pursued in [4, 6, 1, 3, 2]
attempts to avoid as much as possible computation with zones by restricting the search to a finite
subset of automaton runs, namely the “non lazy” runs. These runs correspond to notions such as
active and semi-active schedules in the scheduling literature and they are guaranteed to include the
optimum in certain deterministic problems (job-shop and task-graph included).Manipulation ofn-
dimensional vectors instead ofn×n matrices and all the overhead associated with their manipulation
has led to an efficient implementation.

The major justification for this restriction of the search space is due to fact that in the modeling of
deterministic scheduling problems by timed automata, all the non-determinism is related to the the
decisions of the scheduler. However when it comes to scheduling problemsadmitting uncertainty, the
situation is different. The work in [1, 2] explored the first type of such uncertainty, namely in task
durations which was considered to bounded within an interval.2 For this type of problems, focusing on
a discrete subset of the feasible schedules does not make immediate sense because these “decisions”
are not taken by the scheduler. Hence, the simplest way to “cover” all choices of the adversary was
to use a backward dynamic programming algorithm on zones, developed andimplemented within
AMETIST [1, 2]. The algorithm, implemented using the zone library of IF, is proved to produceoffline
a scheduling strategies which are equivalent to solving a “nominal” deterministic problem and then
re-schedulingonlineeach time a deviation from the nominal behavior is observed.

To illustrate the quality of the strategies algorithm, we have compared it with two alternatives:

1. Static worst-case solution: solve the deterministic problem that corresponds to the worst-case,
i.e. taking the upper bound for each interval;

2. Hole filling: compute the worst-case schedule but allow shifting tasks forward when their pre-
decessors terminate earlier, without modifying inter-task priorities.

2It is worth mentioning that we are talking here about “closed” uncertainty inthe terminology of Deliverable 2.2, and
not about open-ended uncertainty.
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Figure 1: The quality of schedules produced by the hole-filling (H) strategy and the optimal strategy
computed using dynamic programming on zones (S). Each instance is drawn as a point(x, y) on
the plane withx indicating the length of the optimal clairvoyant schedule andy — the length of the
schedule produced by the corresponding strategy.

Consider the following uncertain job-shop problem:

J1 : (m2, 34), (m4, [21, 54]), (m3, 74), (m5, [6, 26]), (m1, 5)(m6, 43)
J2 : (m2, 24), (m5, [13, 28]), (m1, 53), (m3, 8), (m6, [16, 23]), (m4, 45)
J3 : (m6, [35, 75]), (m5, 14), (m3, [ 8, 15]), (m1, 31), (m2, 24), (m4, 6)
J4 : (m1, [12, 42]), (m3, [25, 32]), (m6, 15), (m4, 42), (m5, 62), (m2, 18)

The static worst-case optimal schedule for this problem is268. We generated random examples with
durations drawn uniformly from the intervals and compared both strategies with the static worst-case
scheduler and with an optimal clairvoyant scheduler that knows the durations in in advance. It turns
out that the static schedule is, in the average, longer than the optimum by12.54%. The hole filling
strategy deviates from the optimum by4.44% while the strategy computed by the new algorithm
produces schedules that are longer than the (clairvoyant) optimum by1.14%! (see Figure 1). Albeit
these impressive results let us note the question of scaling-up the results to larger problems remains.
Currently the computation of a strategy for the4 × 6 example takes around10 minutes and there is
not much hope to go significantly beyond this size using exhaustive backward reachability on zones.

An alternative forward algorithm has been proposed in [8] based on a minimized finite-state abstrac-
tion of the automaton. Recently this idea has been improved in [20] to allow some ofthe minimization
to be done on-the-fly, without necessarily generating the whole state space.

Conditional Uncertainty

The next type of uncertainty that has been approached was that of conditional (discrete) uncertainty.
The first step was to extend the notion of a precedence graph to include conditional dependencies
between tasks, where the the outcome of one task may determine whether another task should be
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Figure 2: A conditional precedence graph. Numbers in square brackets indicate durations. Edge on
labels from Boolean to ordinary tasks denote positive or negative influence, for example the activation
condition forp1 is b0 ∧ ¬b1.

executed. This is a natural model for scheduling programs withif-then-elsebranches on parallel
machines, or for modeling faults. Theconditional precedence graph(CPG) introduced in [17], uses
a second type of tasks (Boolean tasks) which are preceded by the task that determine their value, and
which participate in theactivation conditionsof other tasks. A CPG with8 tasks and2 Boolean tasks
is depicted in Figure 2. In this example, the Boolean taskb1 is evaluated after the termination of
bothp3 andp5 (for example a comparison of values computed by these tasks) and participates in the
activation conditions forp2, p1 andp6.

The conditional precedence graph is transformed into atimed game automatonwhere the adversary
chooses the task outcomes, that is, the values for certain Boolean variablethat may appear in the
activation condition of further tasks. As in the deterministic case, focusing on non-lazy runs, the
problem is then reduced to a shortest path problem in discrete weightedgame graphs. This problem
is, in turn, solved using some variants of heuristic depth-first min-max search with non-chronological
backtracking. In terms of [performance and the results are rather promising. It is possible to find
optimal solutions for problems with 20 tasks and few conditions, and sub-optimal (but good) solutions
for problems with hundreds of tasks and up to 20 conditions. The optimal solution, in terms of a
branching Gantt chart (produced automatically from the solution) is depicted in Figure 3.

Encouraged by the performance of depth-first search variants we tried to apply it to the problem of
dense temporal uncertainty previously mentioned. We are exploring an approach based on discretizing
the duration uncertainty intervals into finitely many possible durations for eachtask. This approach
facilitates forward heuristic search but it suffers from two drawbacks: 1) The estimation of the cost
of a strategy is not based on all possible adversary choices; 2) Likewise, since not all these choices
were taken into account, the system may reach states for which a strategy has not been computed at
all. However using the notion of anapproximate strategywhich takes the same decision as in the
nearest point where a strategy is defined, we can produce sub-optimalstrategies, with a significant
increase in performance compared to zone-based methods. Preliminary experiments of this idea have
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Figure 3: An optimal worst-case schedule for the conditional precedence graph of Figure 2. Vertical
lines indicate moments in time when the value of Boolean tasks becomes known.

been conducted but no conclusive results have been reported to date.Another approach for restricting
the space of searched trajectories using partial-order methods has beenreported in [5].

Timed Automata and Constraints

Although optimization techniques differ from timed automata reachability algorithms,they share the
same type of constraints needed for computation, namely difference constraints of the formx − y <

c that specify bounds on distance between events. Such constraints are prominent in the classical
formulation of scheduling, and are also popular in the framework ofsatisfaction modulo theories
(SMT) for combining SAT solvers with richer constraints. The advantage of such constraints is that
checking whether there exist an assignment satisfying the a conjunction ofsuch constraints can be
resolved by detecting negative cycles in graphs3 rather than full-fledged linear programming.

The work on constraints within AMETIST has focused on two directions. The work using the tool
TAOPT [32, 31, 33], was based on using the off-the-shelf tool CPLEXfor mixed integer-linear pro-
gramming (MILP), and integrate its functionality in timed-automaton based scheduling. The relax-
ations used in MILP were used to obtain bounds on schedule durations, which were used as an estima-
tion function to steer depth-first search. This work also took care of the upstream problem specification
in the form of resource-task networks (RTN). Some of the experimental results confirm the opinion
that relaxation-based methods, which work quite nicely for problems were the integer variables have
a numerical significance (e.g. renewal problems) are less successfulfor scheduling problems where
one has to deal with “real” Boolean variables. In terms of expressivity, one advantage of this approach

3The DBM representation is, in fact, an encoding of such a graph.
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is in the ability to go beyond difference constraints.

The second constraint-related direction was to build dedicated solvers fordifference constraints. The
first solver that has been developed also within AMETIST was MX-Solver [29] who served as an
entry point to the domain and its problems (interaction between the Boolean partand the constraints,
handling of huge DBMs). Although its performance for solving the motivatingproblem, namely
bounded horizonverification of arbitrary timed automata was deceiving (much behind standardTA
reachability), it already was the best among several competing tools in solving job-shop problems.
Two subsequent solvers DL-SAT [21] andjat [22] achieved an impressive performance with the
latter being able to find the optimum for20 × 10 problems taken from the job-shop benchmarks, and
beat the best existing tools on these problems.4

Additional Work

We mention briefly other scheduling-related work, already mentioned in previous deliverables. The
work described in [35, 24, 23, 36], considers the mid-term scheduling of a multi-product batch plant,
where due to the long horizon, demands are not known but can be probabilistically represented. A two-
stage stochastic integer programming model for the problem is introduced andsolved by a scenario-
decomposition method based on Lagrangian relaxation. Several heuristicsand preprocessing for both
the single- and the multi-scenario models were developed and tested.

The work described in [7, 37] examines with the role of timed automata schedulability in the context of
embedded software. Optimal scheduling is only one part of the problem in these applications, and not
always the most important one. Due to the component-based methodology thateverybody attempts to
achieve for the development of such systems, one has to face there traditional verification problems
such as the absence of deadlocks and timelocks. As mentioned in deliverable 1.1, timeliness is more
important for these applications than global optimality and, moreover, the resources available for the
scheduler both in terms of computing the strategy and observing the state of theexecution, hence the
working solutions for some instances of embedded systems scheduling proposed in [26, 25, 19, 18]
are more pragmatic and do not use the more costly algorithms and strategies of [1, 3]. The application
of the behavioral formalism oflive sequence charts(LSCs) to the scheduling problem is explored in
[27].

Bridge-building Activities

Members of AMETIST made efforts encourage diffusion of ideas between the timed automaton com-
munity and other communities which are relevant to these problems, which includethe AI planning
community, operations research, constraint solving, control and embedded systems. The opening
toward the planning community started with the translation from the planning specification language
PDDL to UPPAAL, and continued by the presentation of AMETIST results by O. Maler and Y. Abded-
daim in affiliated workshops of ICAPS’02 in Toulouse, and a year later bythe one-day tutorial in
ICAPS’03 in Trento about timed automata and scheduling by O. Maler who alsoparticipated in a
Dagstuhl seminar on planning and control synthesis which, unfortunatelytook place during the re-
view and K. Larsen gave an invited talk at ICAPS’05 on real-time planning using timed automata.
The work on the NASA K9 Rover case-study [12] has demonstrated the applicability of timed au-
tomata for space application, and led to a discussion with labs such as LAAS, Toulouse about closer

4The problem of bounded-horizon verification for TA, remains unimpressed by this tool, and this is considered a general
feature ofasynchronoussystems.
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