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Introduction: Planning and Schedulingin AMETIST

Scheduling and planning are not considered to be typical application demiadarmal verification
and fall more into the realm of disciplines such as Al and operations @saarwell as to specific
application domains. The more general term, planning, is viewed within the Adtliter as the pro-
cess of finding a sequence of actions that brings a system from agjatento a desired goal state.
In the Al tradition, unfortunately, the dynamics of the system is defined in & maplicit fashion
using logical methods that sometime does not give a clear view of the dynafrtits system, as
does automaton-based methods. A state of the system is viewed as a collettamtisd in a data
base that describe the current state of affairs. Actions are chazactdry their preconditions and
by their side effects, that is, the facts that they add to or remove from tihendata base. This is
the classical STRIPS approach whose origin is in solving puzzles in theKbvorld”, a virtual
world with facts like “the red block is on the blue block” and actions that putksdoon each other
or remove top blocks. The Al planning community is centered around theahnonference ICAPS
and holds planning competitions on problems coming from different domapeceSapplication are
a popular source for planning problems as the distance between the egéhfitor and the satel-
lites, telescopes, spaceships and robots to be controlled is sometimes tdoddetgoperations and
autonomous solutions are sought.

In the OR tradition, planning refers more to some kind of “strategic” and “t@aktitecision mak-
ing, for example, choosing a machine renewal policy that optimizes amorttdrcan inventory
handling policy. Scheduling can be viewed as a special case of planhiagihe action repertoire
is more restricted and the decisions of the planner are about allocatingdmuesources to tasks
that may compete for them. The OR planning and scheduling problems tend torbeimiform
in structure and hence can be described and solved more naturally w@slditipival tools of applied
mathematics.

When we restrict ourselves to a finite horizon, various planning andlstihg problem can be trans-
formed intoconstrained optimizatioproblems over a finite number of decision variables. The sim-
pler planning and scheduling problems coming from OR translate into a more dtidizeat of con-
straints that can be solved sometimes even using simple linear programmingveiowast problems
have a discrete decision component (for example priority between two jpasmachine in job-shop
scheduling) that renders the solution space highly non convex. Sableprs are solved sometime
using methods such as MILP which are more oriented toward numericat th#imelogical problems.
More complex planning and scheduling problems, including those treate@ B\ tommunity, have
constraints with a more dominant logical part and are typically solved usingtreant propagation
techniques originating from constraint logic programming, or more recentinbiched SAT solvers.
The alternative approach, which is the main approach pursued withinMiEs I8T project, consists
of searching the space of paths in the dynamic transition graph implied bydtersgescription.

Both approaches need to be upgraded in order to treat situations whdtgute outcome does not
depend exclusively on the actions of the planner/scheduler but alsonoa external uncontrolled
actions (the “environment” in the verification jargon. “disturbances” in tietiol sense). In the Al
planning literature this is callegkactive planningand has been, in fact, subject to intense research
in the context of game-playing programs. Problem with uncertainty (“advgt) are solved using
algorithms that search the game graph to find a “winning” strategy. Sinceatlyptbe space of
possible executions grows exponentially with the depth of the game treey; blawdstic methods are

YIn fact, it is a chicken and egg problem, as the availability of mathematicts afieen influences our choice of models
and problems.
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needed to solve large problems. In the case of chess, special paaadleidne was needed to beat the
human world champion. On the OR side, where problem are reduced to §ttiization, it is not
always easy to deal with alternating min-max non-determinism and the untgisadften associated
with probabilities, sometimes for historical reasons.

This report summarizes the progress in understanding, developmeimplednentation of planning
and schedulinglgorithms as well as additional efforts to make connections with other disciplines
and communities that occupy themselves with these issues. To avoid redymdawill notelaborate
here much on the work reported under the case studies as well as mastairthreported in the 2nd-
year deliverable 2.2.1 “control synthesis algorithms” because within thetAs T approach controller
synthesis and planning/scheduling are almost synonyms. Note that thisisgmamarily about new
algorithmsand not about the application of old algorithms to new problems.

The highlights of the AMETIST work on planning and scheduling algorithms can be grouped into the
following sub topics:

1. Priced timed automataAn extension of the timed automaton models to express cost which
turns out to be decidable, including its integration in UppAaal.

2. Scheduling under uncertaintiNew models and algorithms for synthesizing scheduling strate-
gies under uncertainty.

3. Timed automata and constraintS8ombination of idea from optimization and satisfiability with
timed automata.

4. Additional work including stochastic scheduling of batch plants and synthesizing schedule
for embedded systems.

5. Bridge building dissemination and reverse-dissemination toward relevant communities, mostly
the Al planning community.

Priced Timed Automata

One of the major achievements of&TIST is the development of the theoretical results, algorithms
and a tool for reasoning abopticed timed automatfl3, 9, 15, 16, 14, 10, 11]. BeforeMETIST

the only cost that could be associated with a run of the automaton was thecetaps and impulse
costs. Priced timed automata extend timed automata by allowing rate costs, i.e. atedroost as

a function of time. Rate costs are defined for each location of the automadamanvary between
locations. Decidability follows from the fact that, albeit being a hybrid automatansition guards
are not influenced by the cost of a run and a finite quotient property slilsi{although more complex
than for plain timed automata).

During the project, important improvements have been made to priced zaréssa data structures
for the analytical analysis of priced timed automata. A zone is a convex galztions of the clocks
of the timed automaton. A priced zone adds an affine function, which fdr @ack valuation in the

set gives the cost of a run ending in the valuation. The state space ked fimed automaton can
conveniently be represented by a number of priced zones (together foitmation about other state
variables). One particularly time consuming operation is to find the infimum €agiriced zone. The
discovery of a reduction from the problem of finding the infimum cost ai@egd zone to the min-cost
flow problem led to a performance improvement of several orders foninetg for computing the
infimum [34]. This change alone has improved the overall speed of thetypetomplementation of
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UPPAAL CORA by one order of magnitude. Without these and other lestafuental (engineering
type) improvements to the prototype analysis tool UPPAAL CORA, handlingdke studies of the
AMETIST project would not have been possible.

Within the project, a graphical front end for priced timed automata has beataped based on the
UPPAAL graphical front end. This front end has eased the developaie model for the extended
Axxom case studies and has enabled the partners to evaluate varioutingddehniques for the
case study. Furthermore, the tool has matured within the lifetime of the projestateawere it was
releasable to the public. Obviously, UPPAAL CORA does not get close todpelarity of UPPAAL,
but approximately 10 to 15 downloads a month is still respectable for anmt@geototype.

On the theoretical side, the results were extended to the problem of findirgptimal conditional
run for multi-priced timed automata. More precisely, the problem of determinmgiihimal cost of
reaching a given target state, with respect to some primary cost vasdble respecting upper bound
constraints on the remaining (secondary) cost variables [28]. Haoweraotype implementations
could not be me completed before the project was concluded.

Algorithmsfor Scheduling under Uncertainty

Temporal Uncertainty

Zone manipulation penalizes the performance of timed automata significantlyiaigrbt going to
improve with the priced zones used for priced timed automata. The approestreg in [4, 6, 1, 3, 2]
attempts to avoid as much as possible computation with zones by restricting thle 8ear finite
subset of automaton runs, namely the “non lazy” runs. These runsspomd to notions such as
active and semi-active schedules in the scheduling literature and theyananteed to include the
optimum in certain deterministic problems (job-shop and task-graph includéaiipulation ofrn-
dimensional vectors instead ofx n matrices and all the overhead associated with their manipulation
has led to an efficient implementation.

The major justification for this restriction of the search space is due to facinthlae modeling of
deterministic scheduling problems by timed automata, all the non-determinism isridatee the
decisions of the scheduler. However when it comes to scheduling probimmging uncertainty, the
situation is different. The work in [1, 2] explored the first type of suclartainty, namely in task
durations which was considered to bounded within an intéralr this type of problems, focusing on
a discrete subset of the feasible schedules does not make immediateemmszelihese “decisions”
are not taken by the scheduler. Hence, the simplest way to “cover” @iteh of the adversary was
to use a backward dynamic programming algorithm on zones, developednatamented within
AMETIST [1, 2]. The algorithm, implemented using the zone library of IF, is provedddyceoffline

a scheduling strategies which are equivalent to solving a “nominal” detetiipi®blem and then
re-schedulingnlineeach time a deviation from the nominal behavior is observed.

To illustrate the quality of the strategies algorithm, we have compared it with twoaliezs:

1. Static worst-case solution: solve the deterministic problem that corrésponthe worst-case,
i.e. taking the upper bound for each interval;

2. Hole filling: compute the worst-case schedule but allow shifting tasksafarwhen their pre-
decessors terminate earlier, without modifying inter-task priorities.

2It is worth mentioning that we are talking here about “closed” uncertaintiiénterminology of Deliverable 2.2, and
not about open-ended uncertainty.
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Figure 1: The quality of schedules produced by the hole-filling (H) styategl the optimal strategy
computed using dynamic programming on zones (S). Each instance is dsaavp@int(x,y) on
the plane withz indicating the length of the optimal clairvoyant schedule anré the length of the
schedule produced by the corresponding strategy.

Consider the following uncertain job-shop problem:

JV o (ma,34), (my, [21,54]), (m3, 74), (ms, [6, 26]), (m1, 5)(meg, 43)
J2 (mQ, 4) (m5,[13 28]),(77”&1,53 (m3,8),(m6,[16,23]),(m4,45)
J3 . (ms, [35,75]), (ms, 14 )7(m3,[8, 15]), (m1, 31), (ma, 24), (M4, 6)
J4: (mq, [12,42)), (ms, [25, 32]), (msg, 15), (m4, 42), (ms, 62), (m2, 18)

The static worst-case optimal schedule for this problegtis We generated random examples with
durations drawn uniformly from the intervals and compared both stratedfleshe static worst-case
scheduler and with an optimal clairvoyant scheduler that knows the dosdtidn advance. It turns
out that the static schedule is, in the average, longer than the optimum®4/%. The hole filling
strategy deviates from the optimum By14% while the strategy computed by the new algorithm
produces schedules that are longer than the (clairvoyant) optimumi b%! (see Figure 1). Albeit
these impressive results let us note the question of scaling-up the resuttgetodeoblems remains.
Currently the computation of a strategy for thex 6 example takes around) minutes and there is
not much hope to go significantly beyond this size using exhaustive batkeachability on zones.

An alternative forward algorithm has been proposed in [8] based oniaimed finite-state abstrac-
tion of the automaton. Recently this idea has been improved in [20] to allow satime wiinimization
to be done on-the-fly, without necessarily generating the whole state.spac

Conditional Uncertainty

The next type of uncertainty that has been approached was thatdifiooal (discrete) uncertainty.
The first step was to extend the notion of a precedence graph to incladiticnal dependencies
between tasks, where the the outcome of one task may determine whethardaskhshould be
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Figure 2. A conditional precedence graph. Numbers in square lisickBcate durations. Edge on
labels from Boolean to ordinary tasks denote positive or negative irtfydéor example the activation
condition forp; is bg A —b1.

executed. This is a natural model for scheduling programs ifritien-elsebranches on parallel
machines, or for modeling faults. Thenditional precedence gragi€PG) introduced in [17], uses
a second type of tasks (Boolean tasks) which are preceded by theaasletbrmine their value, and
which participate in thactivation condition®f other tasks. A CPG with tasks an® Boolean tasks
is depicted in Figure 2. In this example, the Boolean tasks evaluated after the termination of
bothps andps (for example a comparison of values computed by these tasks) and paesdipdhe
activation conditions fops, p1 andpg.

The conditional precedence graph is transformed inimad game automatonhere the adversary
chooses the task outcomes, that is, the values for certain Boolean vdhablaay appear in the
activation condition of further tasks. As in the deterministic case, focusingam-lazy runs, the
problem is then reduced to a shortest path problem in discrete weigated graphsThis problem

is, in turn, solved using some variants of heuristic depth-first min-maxIseatic non-chronological

backtracking. In terms of [performance and the results are rather pngmitt is possible to find

optimal solutions for problems with 20 tasks and few conditions, and sub-dgbotayood) solutions

for problems with hundreds of tasks and up to 20 conditions. The optimaiaulun terms of a

branching Gantt chart (produced automatically from the solution) is dejicteigure 3.

Encouraged by the performance of depth-first search variants wdetdri@pply it to the problem of
dense temporal uncertainty previously mentioned. We are exploring aneagbybased on discretizing
the duration uncertainty intervals into finitely many possible durations for &ath This approach
facilitates forward heuristic search but it suffers from two drawbadhsThe estimation of the cost
of a strategy is not based on all possible adversary choices; 2) Likesiigce not all these choices
were taken into account, the system may reach states for which a strateggth@een computed at
all. However using the notion of ampproximate strategyhich takes the same decision as in the
nearest point where a strategy is defined, we can produce sub-opthatgigies, with a significant
increase in performance compared to zone-based methods. Prelimipariments of this idea have
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Figure 3: An optimal worst-case schedule for the conditional precedgraph of Figure 2. Vertical
lines indicate moments in time when the value of Boolean tasks becomes known.

been conducted but no conclusive results have been reported té\dateer approach for restricting
the space of searched trajectories using partial-order methods haspeded in [5].

Timed Automata and Constraints

Although optimization techniques differ from timed automata reachability algorittivag,share the

same type of constraints needed for computation, namely difference aatstf the formz — ¢y <

c that specify bounds on distance between events. Such constraintsoar@gnt in the classical

formulation of scheduling, and are also popular in the frameworkatisfaction modulo theories
(SMT) for combining SAT solvers with richer constraints. The advantdgeich constraints is that
checking whether there exist an assignment satisfying the a conjunctgrcbfconstraints can be
resolved by detecting negative cycles in graptasher than full-fledged linear programming.

The work on constraints within ®eTIST has focused on two directions. The work using the tool
TAOPT [32, 31, 33], was based on using the off-the-shelf tool CPE&Xnixed integer-linear pro-
gramming (MILP), and integrate its functionality in timed-automaton based sthgdd he relax-
ations used in MILP were used to obtain bounds on schedule duratioité, wre used as an estima-
tion function to steer depth-first search. This work also took care ofghizeam problem specification
in the form of resource-task networks (RTN). Some of the experimessalts confirm the opinion
that relaxation-based methods, which work quite nicely for problems weriatiger variables have
a numerical significance (e.g. renewal problems) are less succéssfigheduling problems where
one has to deal with “real” Boolean variables. In terms of expressivigy,aslvantage of this approach

3The DBM representation is, in fact, an encoding of such a graph.
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is in the ability to go beyond difference constraints.

The second constraint-related direction was to build dedicated solvediféyence constraints. The
first solver that has been developed also withimexisT was MX-Solver [29] who served as an
entry point to the domain and its problems (interaction between the Booleaanukttie constraints,
handling of huge DBMs). Although its performance for solving the motivapngpblem, namely
bounded horizowverification of arbitrary timed automata was deceiving (much behind stafidard
reachability), it already was the best among several competing tools in ggbbrshop problems.
Two subsequent solvers DL-SAT [21] apét [22] achieved an impressive performance with the
latter being able to find the optimum @6 x 10 problems taken from the job-shop benchmarks, and
beat the best existing tools on these probléms.

Additional Work

We mention briefly other scheduling-related work, already mentioned inquewdeliverables. The
work described in [35, 24, 23, 36], considers the mid-term schedufiagralti-product batch plant,
where due to the long horizon, demands are not known but can bejiistieally represented. A two-
stage stochastic integer programming model for the problem is introducesbbved by a scenario-
decomposition method based on Lagrangian relaxation. Several hewrgdipseprocessing for both
the single- and the multi-scenario models were developed and tested.

The work described in [7, 37] examines with the role of timed automata scHuitylan the context of
embedded software. Optimal scheduling is only one part of the problemsa #pplications, and not
always the most important one. Due to the component-based methodologyehdiody attempts to
achieve for the development of such systems, one has to face there tdiBafication problems
such as the absence of deadlocks and timelocks. As mentioned in ddéverbtimeliness is more
important for these applications than global optimality and, moreover, thanasavailable for the
scheduler both in terms of computing the strategy and observing the stateesEthigion, hence the
working solutions for some instances of embedded systems schedulingsedoipd26, 25, 19, 18]
are more pragmatic and do not use the more costly algorithms and stratedie8]oflhe application
of the behavioral formalism dive sequence char{d.SCs) to the scheduling problem is explored in
[27].

Bridge-building Activities

Members of AMMETIST made efforts encourage diffusion of ideas between the timed automaton com-
munity and other communities which are relevant to these problems, which iritieidd planning
community, operations research, constraint solving, control and erabexidtems. The opening
toward the planning community started with the translation from the planning aicifi language
PDDL to UPPAAL, and continued by the presentation ofi&r1sT results by O. Maler and Y. Abded-
daim in affiliated workshops of ICAPS’02 in Toulouse, and a year latethieyone-day tutorial in
ICAPS’03 in Trento about timed automata and scheduling by O. Maler whopaldiipated in a
Dagstuhl seminar on planning and control synthesis which, unfortungekyplace during the re-
view and K. Larsen gave an invited talk at ICAPS’05 on real-time planninggusined automata.
The work on the NASA K9 Rover case-study [12] has demonstrated thiecability of timed au-
tomata for space application, and led to a discussion with labs such as LA&BuSe about closer

4The problem of bounded-horizon verification for TA, remains unirageel by this tool, and this is considered a general
feature ofasynchronousystems.
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