
Analysis & Tools: Tools and Tool Interaction

AAU

Revised version, October 30, 2006

AMETIST DELIVERABLE 2.5.b

2 TOOLS

1 Introduction & Summary

During the three years of AMETIST the performance and usability of the existing tools for
analysing timed automata models have improved enormously. In addition to traditional verifi-
cation of timed models, emphasis has been put into retargeting the technology towards optimal
scheduling and performance analysis and have been pursued in a number of new tools developed
within the consortium (e.g. UPPAAL Cora, ELSE, TAOpt, MOTOR). The following sections
extends the information given in D0.1.5 on “Tools Strategy” (Section 7) with respect to the tools
developed within AMETIST their (final) status and possible interaction.

2 Tools

2.1 UPPAAL

UPPAAL is a tool for modeling, simulation and verification of real-time systems. The tool has
been developed jointly by BRICS at Aalborg University and the Department of Computer Systems
at Uppsala University since 1995.

The current official released version of UPPAAL is 3.4.10 (May 11, 2005) which compared with
the former 3.2 line offers significant improvements in performance, the modeling language as well
as the graphical user interface. UPPAAL 3.4 supports a number of operating systems including
Microsoft Windows 95 or newer, Microsoft Windows NT 4 or newer, Linux on INTEL, SUN Solaris
on UltraSparc as well as MAC OS.

On December 21, 2004 the first version of the 3.5 line of UPPAAL was released and with UPPAAL
3.5.6 (released May 3, 2005) being the latest version in this line. UPPAAL 3.5.x allows the user
to define complex functions using a fully integrated imperative programming language (syntac-
tically this language is very similar to C). This new feature has already now proven to make it
substantially simpler to make natural models of real-time systems containing complicated discrete
data-structures (e.g. routing tables, ready queues, etc.).

Distributed UPPAAL
In [5] the principle behind the distributed version of UPPAAL is described as well as experimental
evaluation. The distributed version currently only supports reachability but scales up linearly with
the number of processes. The ambition which is currently pursued in the context of the ARTIST2
Network of Excellence in Embedded Systems is to connect local PC-cluster into a European
Verification Grid. Experiments on the Nordic Grid, NorduGrid, have already been made.

Dissemination
During the third year of AMETIST the UPPAAL and UPPAAL Cora tools have been presented at
several PhD schools and at tutorials. A new UPPAAL tutorial note fully compatible with version
3.4 has been written as a contribution to a summer school on Formal Methods for Real-Time
Systems (Bertinoro September 2004) [10]:

• Formal Methods for the Design of Computer, Communication and Software Systems: Real
Time, 13-18 September, 2004, Bertionoro University Residential Center, Italy.

• Third international symposium on Formal Methods for Components and Objects (FMCO
2004), Leiden, The Netherlands, November 2-5, 2004.

• PRISE: Principles of Software Engineering, Buenos Aires, Argentina, November 22-27,2004.

• MOVEP’04: Modeling and Verifying Parallel Processes, Brussels, Belgium, 13-17 December
2004.

• GVD’05: German Verification Day, Oldenburg, Germany, March, 2005.

May 23, 2005 AMETIST Deliverable 2.5.b 2

2.2 UPPAAL Cora 2 TOOLS

Finally, on October 23, 2004, Gerd Behrmann received the prestigious Spar Nord Foundation Prize
(35.000 Euro) for his Ph.D. thesis [4] containing numerous contributions to the development of
UPPAAL (see http://www.ciss.dk/ for more information).

2.2 UPPAAL Cora

UPPAAL Cora (former C-UPPAAL) is a branch of UPPAAL with dedicated support for optimal
reachability of PTA, priced timed automata1. That is, timed automata models can be augmented
with a single real-valued cost variable with different growth rates in locations and impulse cost on
edges. The type of reachability problems solvable by UPPAAL Cora is finding the minimum cost
of reaching some goal location.

The search can be guided with respect to two internal meta variables called heur and remaining
that are associated with each state and which, respectively, provide an ordering among states to
be explored and an underestimate on the remaining cost of reaching the goal from a given state.
The search strategies supported by UPPAAL Cora are depth-first, random depth-first, best depth-
first, breadth-first, smallest/largest heur first, and best-first. Pruning is performed with respect
to remaining.

Furthermore, being compatible with UPPAAL 3.5.x, UPPAAL Cora allows the user to define
functions in a C-like language and use these when modelling automata.

Case Study
During the third year of AMETIST, UPPAAL Cora has been extensively and successfully applied
to the Axxom lacquer production case study by the Twente and Nijmegen partners in collaboration
with Aalborg [6, 7]. We refer to deliverable 3.4.3 on the Axxom case-study for more detailed
information and information about performance.

New Scheduling Problems
New optimal scheduling problems in the context of timed automata and priced timed automata
have been considered with prototype implementations.

Firstly, the substantially more difficult problem of synthesizing cost-optimal winning strategies in
the presence of an adversary has been solved in [16]. The method described forms the basis of an
algorithmic method for computing cost-optimal winning strategies. In [17] it is demonstrated how
this method may be implemented in HyTech.

Infinite scheduling calls for strategies which enable a particular process to execute forever. In this
setting optimality may be formulated as a strategy which minimizes the cost-time ratio in the long
run. In [17] it is shown that the minimum limit cost-time ratio problem is in fact computable and
that the optimal strategy (when one exists) is also computable.

More recently, we have considered conditional optimal reachability for multi-priced timed au-
tomata. More precisely, we consider the problem of determining the minimal cost of reaching
a given target state with respect to some primary cost variable while respecting upper bound
constraints on the remaining (secondary) cost variables. We show in [40] that this problem is
computable using a zone-based algorithm.

In [11] we prove computability of the problem of parameter synthesis for the cost-bounded liveness
problem for PTAs, that is, the problem of synthesizing the maximal cost before a given target
state is guaranteed to be reached. The problem has important applications to worst-case execution
time analysis as demonstrated in the paper on a number of task-graph scheduling problems where
tasks have uncertain execution times.

Finally, in [22] the first on-the-fly algorithm for synthesising (time-optimal) winning strategies for
timed game automata has been given and implemented using the DBM-library of UPPAAL [39].
The prototype tool has been applied to a synthesized version of the well-known Production Cell
case-study.

Dissemination

1UPPAAL Cora may be downloaded from http://www.cs.auc.dk/~behrmann/cora/.

May 23, 2005 AMETIST Deliverable 2.5.b 3

http://www.ciss.dk/
http://www.cs.auc.dk/~behrmann/cora/

2.3 UPPAAL Tron 2 TOOLS

In several studies PTAs have proven to be a very natural formalism for modeling a number of
optimal scheduling and planning problems ranging from cost-optimal task-graph scheduling, air-
craft landing to vehicle routing problems. In [8, 9] we present the methodology of UPPAAL Cora
to two different research communities, namely (a) Performance Analysis and (b) Planning and
Scheduling. In particular, the AMETIST research on applying timing technology to scheduling
and planning has been noticed by the Planning and Scheduling community: in the beginning of
the project Oded Maler gave an invited tutorial on timed automata at ICAPS and at this year’s
ICAPS Kim G. Larsen has been invited to give a key-note lecture on UPPAAL Cora in particular
and the findings of AMETIST in general.

2.3 UPPAAL Tron

A number of contributions of applying the timed automata technology to the planning of real-time
testing has been made. In [38] methods for on-line real-time conformance testing with respect to
a given timed automaton model is provided and implemented in the tool UPPAAL Tron (branch
of UPPAAL). Also, optimal off-line testing of real-time systems with guaranteed coverage of the
specification, is obtained using optimal reachability of timed automata [33, 34].

On May 16, 2004, the version 1.1 of the testing tool UPPAAL Tron was released2 and presented
at FATES’04 [38].

UPPAAL Tron is a testing tool for black-box conformance testing of embedded and real-time
systems. Given a formal timed automata model of the system under test (SUT) and its assumed
operating environment, UPPAAL Tron automatically generates and executes timed test sequences.
UPPAAL Tron is an on-line testing tool which means that it continuously executes test events on
the SUT as they are being generated, and events from the SUT are checked against the model.
The observed behavior is required to be timed trace included in the specification.

The system under test is attached to UPPAAL Tron via a test-adapter (an SUT specific software
layer) and considered as a black-box since its states cannot be directly observed; only commu-
nication events via input/output channels. The user supplies UPPAAL Tron with the closed
timed automata network of SUT model in parallel composition together with assumptions on the
environment.

The explicit environment model is an important feature, as it can be used to generate realistic
test events. It may also be fully-permissible, meaning that the environment (testing tool in this
case) can offer any input at any moment and accept any output at any moment. Finally it can
be used to guide the test (which is randomized) to produce particularly interesting behaviors. In
[37] an application of UPPAAL Tron to an industrial case study (a thermostat) is provided with
promising error detecting capabilities and execution performance.

In addition, off-line methods for real-time testing using the optimal reachability features of UP-
PAAL Cora have been developed and implemented [33, 34].

2.4 S-UPPAAL

In [31], we describe a prototype extension of UPPAAL with symmetry reduction. The symmetric
data type scalarset, which is also used in the Murphi model checker, was added to UPPAAL’s
system description language to support the easy static detection of symmetries. Our prototype
tool uses state swaps, described and proven sound in [30], to reduce the space and memory con-
sumption of UPPAAL. For all examples that we experimented with (both academic toy examples
and industrial cases), we obtained a drastic reduction of both computation time and memory
usage, exponential in the size of the scalar sets used. We aim at integrating symmetry reduction
as implemented in the prototype tool S-UPPAAL in the standard release of UPPAAL.

2See http://www.cs.auc.dk/~marius/tuppaal/

May 23, 2005 AMETIST Deliverable 2.5.b 4

http://www.cs.auc.dk/~marius/tuppaal/

2.5 TAopt: A prototype tool combining TA and MILP 2 TOOLS

2.5 TAopt: A prototype tool combining TA and MILP

Starting from the second year, the work of the Dortmund group has focused on combining two types
of approaches to scheduling: The intention is to take advantage of the simplicity of modeling with
timed automata (including modularity and synchronization), but also of the relaxation techniques
and heuristics that are known from mixed-integer programming (MIP). As a first step in this
direction, the group in Dortmund developed a translation procedure that automatically generates
MIP representations of optimization problems formulated initially for timed automata [47]. The
second step was to develop a specific MIP representation for certain subclasses of scheduling
problems. Such a representation leads to smaller MIP models and therefore increases the efficiency
of the combined approach [46]. As a possible use of this translation, an iterative solution procedure
was developed in the second year of the project, combining cost-optimal search for TA with the
solution of subproblems formulated by MIP. The key idea is to use relaxations in the MIP step to
guide the graph search for TA and prune the reachable state space in a branch-and-bound fashion.
The objective for the third year was to provide a tool that realizes the interaction of MIP and
graph search for TA.

Implementation of the approach combining MIP with graph search
The main part of the work in year three was thus devoted to the implementation of a corresponding
tool, which is called TAopt. As can be seen from Fig. 1, the embedded LP solution is iteratively
performed in the main loop of the optimization algorithm of TAopt. The tool CPLEX, which
is known to be one of the most efficient tools for solving linear programs, is used for the LP
step. Before running CPLEX the first time, the problem is specified algebraically according to a
formulation investigated in [29, 49, 45]. The algebraic model is used to derive relaxed MIP models
for the nodes generated by the search algorithm: For any node explored within the main loop,
the history stored in the partial trace ending in the current node is used to fix relaxed decision
variables in the embedded MIP model. Thus, the step LP generator iteratively reduces the degrees
of freedom for the algebraic model. The solution obtained from the LP solver corresponds to an
underestimate of the cost-to-go from the root node to the optimal leaf node of the reachability
tree. This, in turn, is useful for pruning non-optimal branches of the tree and in guiding the search
according to a best-lower-bound criterion.

In addition to the computation of lower bounds, different state-space reduction techniques as non-
laziness and the sleep-set method have been implemented in TAopt to reduce the computational
effort.

TAopt performs cost-minimizing reachability analysis for priced TA with costs on transitions and
cost rates on locations. Unlike recent versions of UPPAAL, it does not employ priced zones to
represent symbolic states, but single clock vectors are used instead to represent the dominating
point of time in each symbolic state. Consequently, the symbolic traces potentially considered by
TAopt are restricted to traces which satisfy the property of being immediate as described in [1].
This restriction allows for efficient implementation, but does not guarantee to reach the optimal
solution for general cost functions. However, it is sufficient for the optimization criteria minimal
tardiness, makespan, or storage cost minimization with hard deadlines.

Recent Results
TAopt has been successfully applied in optimizing various benchmark instances of job-shop prob-
lems from the OR community [48, 46]. These results can be summarized as follows: (1) The
non-laziness setting and the sleep set method led to considerable reductions of the state space
and the solution effort. (2) For most of the considered benchmark instances, the combined ap-
proach shows significantly better results than the pure automata-based search without embedded
LP. (3) Pruning the state space with branch-and-bound techniques helps in reducing the mem-
ory consumption of reachability analysis techniques; (4) For the investigated job-shop scheduling
problems, the results obtained by TAopt are competitive with those found in literature for the
tools Kronos and CPLEX, if the latter is used for solving the problem completely by MIP.

Perspectives
Current work aims at developing TAopt to a level of maturity which makes it possible to: (1)

May 23, 2005 AMETIST Deliverable 2.5.b 5

2.6 The ELSE Tool 2 TOOLS

tailor−made LP
for job−shop problems

specification
Job−shop problem

Optimal solution

Current state

LP solver

LP model

LP generator

LP solution

main loop

TA generator

TA model

TA optimizer

Figure 1: Structure of the implementation: the solution of linear programs (LP) with the tool
CPLEX is embedded into TAopt.

easily model more general classes of scheduling problems (e.g. resource task networks with timing
constraints, changeover procedures and various types of costs), and (2) to efficiently synthesize
schedules for different optimization criteria. In addition, it is investigated to which degree TAopt
can be used to convert TA models (created in tools like UPPAAL) into pure algebraic models
for MIP. Following this path, TAopt could play the role of linking the tools developed within
AMETIST to the industrially relevant domain of representing scheduling problems by mixed-
integer formulations.

2.6 The ELSE Tool

Developed during the first two years of AMETIST, the “ELSE”-tool [50] is a new symbolic state
explorer for timed automata. Originally aimed as a prototype for experiments with partial order
semantics of timed automata, it is in the process of becoming a serious exploration engine.

In [41] the suggested approach applied in ELSE for the symbolic exploration of timed automata
is investigated. The approach solves a particular aspect of the combinatorial explosion occurring
in the widely used clock zone automata, the splitting of symbolic states depending on the order
of transition occurrences, even if these transitions concern unrelated components in a parallel
system. The goal is to preserve independence (commutation of transitions) from the original
timed automaton to the symbolic level, thus fully avoiding state splitting, yet avoiding problems of
previous similar approaches with maximal bounds abstraction. This goal is achieved by (1) lifting
the theory of Mazurkiewicz traces to timed words and symbolic state exploration, (2) examining
symbolic path exploration from a formal language point of view, and (3) by splitting the concerns
of (abstraction free) successor computation and zone comparison by a new abstraction related
to maximal bounds. The theory results in data structures and algorithms that experimentally is
found to provide good reductions.

2.7 The DLSAT Solver for Difference Logic

Difference logic, consisting of propositional logic augmented with difference constraints of the form
x− y < c is the natural formalism for expressing timing-related problems. In particular this is the
type of constraints obtained while expressing optimal scheduling as a constrained optimization
problem, as well as the formalism for expressing finite-horizons runs of timed automata and hence
for bounded model-checking of timed automata. Bounded model-checking (BMC) for discrete
systems profited from the impressive progress in the performance of propositional SAT solvers.
Systems that made reachability computation explode, can now be treated in a satisfactory manner

May 23, 2005 AMETIST Deliverable 2.5.b 6

2.8 IF-SCHED 2 TOOLS

using such solvers. In a series of works (collaboration between VERIMAG and LIF) we have tried
to apply these ideas to timed automata via difference logic.

Our first experience with the art (or more appropriately, the black magic) of SAT solvers was
through the MX-Solver developed within the thesis of Moez Mahfoudh [43, 42], during which we
have studied different approaches for enhancing SAT to treat enriched logics. Our approach was
based on a dynamic interaction between the Boolean and numerical parts. Each time a difference
constraint was implied by the current assignment (i.e. became a unit clauses) it was put in a large
difference-bounds matrix (DBM) which was checked for consistency using algorithms for negative
cycle detection. Note that the DBMs used for SAT are several orders of magnitude larger that
those used in TA verification. The performance of this solver on problems coming from BMC for
timed automata was still much inferior than that of standard TA verification tools. It was much
superior, however, to several other solvers developed around the same time (the topic was in the
air) on problems dominated by difference constraints such as job-shop scheduling.

The second round of work on the topic started with the Master Thesis of Scott Cotton [24].
The first version of his DLSAT solver [23] employed conflict analysis and learning as well as a
variety of techniques that improved the performance results significantly. The second (and still
unreported) version of DLSAT has already obtained some impressive results. To begin with,
for purely-propositional formulae it beats a world-class solver such as zChaff on some instances.
Secondly, for some notorious job-shop scheduling problems such as FT10 it found the optimum (!)
while most solvers would explode much before that. Finally the results on bounded model-checking
for TA are much more encouraging than the previous results (for example it is able to check a
formula obtained from a 25-unfolding of a 64-gate circuit (264 states and 65 clocks) but more work
still needs to be done concerning more efficient translations of BMC to SAT. It might be the case
that like other asynchronous systems, TA are not amenable for efficient BMC. The ongoing work
on the ELSE tool, will eventually produce an automatic translation from timed automata written
in the IF format to optimized difference logic formulae for BMC. Like for untimed systems, the
use of the solver is not restricted to BMC, and it can serve as an alternative computation engine
inside (unbounded) reachability algorithms.

2.8 IF-SCHED

Early experiments with job-shop scheduling using IF convinced us that the classical zone-based
algorithms constitute an overkill for many scheduling problems. Consequently VERIMAG has
developed an independent point-based tool for finding shortest path in timed automata and used
it to solve the job-shop problem, the task-graph problem and the preemtive job-shop problem.
Note that for preemptive scheduling we use stopwatch automata that typically complicate zone-
based algorithms, but cause no problem for our point-based method. In all the abovementioned
problems our tools performance matched that of state-of-the-art tools described in the academic
literature.

Later we have extended the tool in two directions. The first was the treatment of temporal uncer-
tainty in task duration. The approach that we took, dynamic programming for timed automata,
required the use of zones and used the DBM library of IF. Since IF is limited to forward analysis
it could not be used by itself for this problem. The second direction is the introduction of discrete
uncertainty (conditional precedence graph) and the resolution of the associated problem using
search algorithms on game graphs.

All these tools are rather rudimentary in terms of user interface as most of the effort is in improving
the algorithmics. The scheduling problem is specified in a classical way (jobshop, task graph,
conditional precedence graph) and transformed automatically into timed automata. Some of
the results of this work has been transferred to IF: it is now possible to add cost and use search
algorithms for finding optimal runs or runs that satisfy certain cost constraints. Non-lazy schedules
which are the basis of our point-based methods were also implemented in IF, although not in a
direct way. The first results on the Axxom case-study have been obtained using this extension of
IF.

May 23, 2005 AMETIST Deliverable 2.5.b 7

2.9 IF-DC 2 TOOLS

Our strategy for the future is to build a specialized tool for scheduling applications based on all
the abovementioned algorithmic results, with a richer schedule description language that can cover
more complex real-life constraints such as the one manifested in the new Axxom case study. We
hope to have some results within the project lifetime but most of the effort is planned for future
projects.

2.9 IF-DC

An alternative method for coping with state explosion is divide-and-conquer, that is to decompose
the system into components and create a conservative approximation of each components having
a smaller number of states and clocks than the concrete systems. We developed an automatic
abstraction method for acyclic closed systems and now we are working on its extension to open
systems. This work currently focuses on timed automata derived from timed digital circuits
(because of their relative simplicity and regular structure) but it could be extended naturally to
more general types of timed automata. The tool has a front-end that translate digital circuits
expressed in common industrial format (SDF) into IF timed automata, and uses the exploration
and minimizations methods of the latter to generate the abstractions.

If successful, the techniques behind IF-DC can probably be integrated in tools such as IF and
UPPAAL, but this will only happen after Ametist has ended.

2.10 MoDeST and MoToR

The specification language MoDeST (Modelling and Description language for Stochastic and
Timed systems) has been developed at the University of Twente. The language supports the
modular description and analysis of reactive systems while covering both functional and non-
functional system aspects such as hard and soft real-time, and quality-of-service aspects. The
formal semantics of MoDeST is given in terms of Stochastic Timed Automata [25, 13], a formalism
that encompasses a number of well-known formalisms: labelled transitions system, probabilistic
automata, timed automata, probabilistic timed automata, generalised semi-Markov processes, and
Interactive Markov Chains, and more.

Important rationales behind the development of MoDeST have been:

• Orthogonality. Timing and probabilistic aspects can easily be added to (or omitted from) a
specification if these aspects are of (no) relevance.

• Usability. Syntax and language constructs have been designed to be close to some other
commonly used languages. The syntax resembles that of the programming language C and
the modelling language Promela.

• Practical considerations. The design of the language and the development of accompanying
prototypical tool support have taken place hand-in-hand.

• Expressiveness. Several concepts – all well studied and widely accepted in the fields of e.g.,
computer-aided verification and concurrency theory – have been considered:

(1) Action nondeterminism

(2) Probabilistic branching

(3) Clocks

(4) Delay nondeterminism

(5) Random variables

A data-part increases the convenience of the language, and allows communication via shared
variables. Parallelism is expressed by processes, synchronisation is achieved by synchronisation a
la LOTOS, or by means of a test-and-set mechanism inherent to the semantics.

May 23, 2005 AMETIST Deliverable 2.5.b 8

3 TOOL INTERACTION, FORMATS AND LIBRARIES

The universality of MoDeST makes the languages interesting in two aspects: i) it is ideal as an
intermediate semantical basis for higher-level formalisms like, for example, UML state-charts; ii)
its rich semantical basis makes it possible to employ, with some restrictions, different analysis
approaches to identical or similar MoDeST models. The latter point led to the development of
the MoToR: the MoDeST Tool EnviRonment.

MoToR
In order to facilitate the analysis of MoDeST models, the prototype tool MoToR has been devel-
oped. MoToR aims at supporting a variety of analysis algorithms tailored to the different kinds
of analysable submodels expressible in Stochastic Timed Automata. The idea behind MoToR is
to connect MoDeST to existing tools, rather than re-implementing existing analysis algorithms
anew. MoToR has been connected to the performance evaluation environment Möbius [27], which
is used to conduct stochastic discrete-event simulations of MoDeST models. MoToR is available
for download from http://fmt.cs.utwente.nl/tools/motor/.

Case-studies
Apart from the Axxom case-study (see below), the MoDeST/MoToR/Möbius tandem has been
used for other case-studies. The [36] paper gives a survey. In [14], the modelling and analysis
of a device-absence detection protocol in plug-and-play networks is described. The analysis of
the protocol with MoToR/Möbius reveals a fairness problem inherent to the original protocol
design, and guided by the simulation results, a new protocol is developed which does not show the
problems discovered before.

During the third year of AMETIST, MoDeST and MoToR/Möbius have been successfully used
for the Axxom case study [15]. The effect of faulty behaviour on the hard real-time scheduling
problem from the domain of lacquer production is investigated. The scheduling problem is first
solved using the timed model-checker UPPAAL. The resulting schedules are then embedded in
a MoDeST failure model of the lacquer production line, and analysed with the discrete-event
simulator of Möbius. The results obtained allow to assess the quality of the schedules with respect
to timeliness, utilisation of resources, and sensitivity to different assumptions about the reliability
of the production line.

Future of MoDeST/MoToR
In cooperation with Saarland University, Germany, MoToR is currently extended to allow trans-
lation of MoDeST specifications into UPPAAL models. This step allows also immediately to use
MoDeST/MoToR as in input formalism for the timed testing tool TorX [12], which is developed
and maintained at the University of Twente. In cooperation with the University Aachen, Germany,
MoToR will be extended to connect to the Markov-chain model-checking tool ETMCC [32] and
its successor MRMC. MoToR will form the basis of extensions of Markov-Reward model-checking
to Markov decision processes.

3 Tool Interaction, Formats and Libraries

The tools that have been developed by the AMETIST project are research vehicles, build to
demonstrate and assess the effectiveness of our ideas on modelling and analysis. Translating
models from one tool to another is generally difficult: different tools support a different way of
modelling systems, and if one applies a generic translation to port a model of some system X from
tool A to tool B, analysis results are usually not as good as those obtained for a model of system X

made directly for tool B. Also, since the tools are being improved/extended all the time, a generic
translator from tool A to tool B is typically outdated within months after being developed. In
the hardware industry, where model checking has been and is used very successfully, we see that
major companies such as Intel develop their own tools. They do not use the tools developed by
academics but rather the ideas and algorithms behind those tools. For these reasons, AMETIST
has deliberately decided not to make major investment in automatic translations between tools.

Nevertheless, of course, interaction between tools is necessary/essential in a scientific setting and
in order to stimulate takeup by industry. In Deliverable 3.5.3 [3] it is observed that in 7 out

May 23, 2005 AMETIST Deliverable 2.5.b 9

http://fmt.cs.utwente.nl/tools/motor/

3.1 Tool Interaction 3 TOOL INTERACTION, FORMATS AND LIBRARIES

of the 18 case studies carried out within AMETIST more than one tool has been used. Timed
automata tools are combined with theorem provers, computer algebra tools, finite state model
checkers, tools that support analysis of stochastic models, testing tools, etc. We see this as a very
natural and clear trend. For these case studies, model translations have been written either by
hand or using ad hoc translation programs. Producing these translations typically was a matter
of hours. In order to enable third parties to use different analysis tools in a single verification case,
it is important to provide clearly specified interfaces and the ability to import/export models to
and from a tool. From the AMETIST tools in particular UPPAAL, IF, MoToR and ELSE come
equipped with such interfaces.

Finally, in order to stimulate further takeup by both industry and academia, we believe it is
important to make certain key components from our verification tools seperately available for use
by others.

3.1 Tool Interaction

AMETIST has witnessed numerous examples of interaction between tools, both tools developed
internally by members of the consortium as well externally developed tools. The examples include
the following:

• [15] describes the application of MoDeST, MoToR, UPPAAL and Möbius to the Axxom case-
study. The schedules synthesized by UPPAAL are embedded in a MoDeST failure model,
and analyzed wrt. expected performance with the discrete event simulator of Möbius.

• [26] reports on the automatic verification of timed probabilistic properties of the IEEE 1394
root contention protocol combining two existing tools: the real-time model-checker Kronos
and the probabilistic model-checker Prism.

• [21] presents a layered end-to-end approach for the design and implementation of embedded
software on a distributed platform. The approach comprises a high-level modeling and sim-
ulation layer (Simulink), a middle-level programming and validation layer (SCADE/Lustre)
and a low-level execution layer (TTA). We provide algorithms and tools to pass from one
layer to the next. [20] presents a method of translating discrete-time Simulink models to Lus-
tre programs. The method has been implemented and used to translate part of an industrial
automotive controller provided by Audi.

• [44] presents a technique and a tool for model-checking operational UML models based on a
mapping of object oriented UML models into a framework of communicating extended timed
automata - in the IF format - and the use of the existing model-checking and simulation
tools for this format. UML to Extended Timed Automata

• [2] provides an implementation in Java of a graphical interactive simulator of the SuperSingle
mode of the Cybernetix case-study. The simulator allows to make simple configurations to
experiment with variations of the SuperSingle mode and error handling situations. Moreover,
simulation sequences can be stored to and loaded and loaded from files,allowing the coupling
with the analysis in other tools such as UPPAAL.

• [28] Specifies and validates the SET protocol (Secure Electronic Transaction) for e-commerce
using UPPAAL (for handling of timing constraints) and RAPTURE [35] for dealing with
QoS aspects.

• UPPAAL Cora has been extended with the ability to generate concrete (optimal) traces.
Based on this feature a prototype tool for translating schedules synthesized by UPPAAL Cora
into the Orion tool has been implemented allowing alternative visualization and validation
of the schedules provided. This translator has been applied in the Axxom case study [6, 7].

May 23, 2005 AMETIST Deliverable 2.5.b 10

3.2 Formats 3 TOOL INTERACTION, FORMATS AND LIBRARIES

3.2 Formats

Within the AMETIST project the XML format of UPPAAL has been developed. Also the IF
common modeling language has been developed by research groups of AMETIST member institu-
tions. Both formats are freely available and already now downloaded by several users from outside
the consortium.

The IF (= Intermediate Format) common modeling language is a very expressive modeling lan-
guage3. The IF language [19, 18] allows the description of systems consisting of processes running
in parallel and communicating through message passing via communication buffers, through signal
exchange or through shared variables. Each process may use several clocks to measure time and
transitions may be guarded by timing constraints and decorated with explicit deadlines. The lan-
guage provide several type constructors such as enumeration, range, array, record, abstract as well
as predefined basic types in order to simplify complex data description and manipulation. The lan-
guage includes dynamic creation and destruction of process and signal route (channel) instances.
This makes system configuration to be dynamic, that is, the number of components running (and
in turn, the number of clocks ...) may change during execution. The common language integrates
hierarchical states (to structure automata) and composed transitions basic control statements such
as if-then-else and while-do are provided to structure automata transitions

3.3 Libraries

A number of libraries for third party developers have been released with UPPAAL 4.0:

1. As a service to the research community – and after numerous requests – we have decided
to make the core data structures of UPPAAL publicly available in form of a DBM library
downloadable from UPPAAL’s homepage.

DBMs are efficient data structures to represent clock constraints in timed automata . They
are used in UPPAAL as the core data structure to symbolically represent timing information.
The library features all the common operations such as up (delay, or future), down (past),
general updates, different extrapolation functions, etc. on DBMs and federations. The library
also supports an efficient method for performing subtractions [39].

The DBM library has an extensive test suite with an extra alternative implementation of
the algorithms. This implementation has also been tested on countless case studies.

A DBM library is released under the GPL and contains language bindings for C, C++ and
Ruby.

2. The UPPAAL Timed Automata Parser Library is distributed separately from UPPAAL
under the LGPL licence (libutap4) and is ideal for implementing model transformation
tools or analysis tools. The library supports the following file formats:

• The TA file format is the oldest of the three formats. It is a clear text, human readable
description of a network of timed automata. In this description, an automaton is called
a process. The format does not handle templates.

• The XTA format is very similar to the TA format, except that processes are really
parameterised templates that can be instantiated to form processes.

• The XML format is an XML conforming version of the XTA format. Elements like
templates, locations, transitions and labels are described using tags. The level of ab-
straction in the format is chosen so that the format is independent of the actual syntax
of declarations, invariants, guards, etc. Thus all labels are simply treated as strings
without structure.

3http://www-verimag.imag.fr/PEOPLE/async/IF/index.html
4See http://www.cs.auc.dk/~behrmann/utap/

May 23, 2005 AMETIST Deliverable 2.5.b 11

http://www-verimag.imag.fr/PEOPLE/async/IF/index.html
http://www.cs.auc.dk/~behrmann/utap/

REFERENCES REFERENCES

3. Java parsers and client stubs for the verification backend are distributed with UPPAAL and
may be used by, for instance, domain specific tools (the documentation can be found at the
UPPAAL website).

4. UPPAAL can be used as a compiler for UPPAAL models, translating the model to a byte-
code representation.

References

[1] Y. Abdeddäım, E. Asarin, and O. Maler, Scheduling with timed automata, Theoretical Com-
puter Science (2005), to appear.

[2] M. Agopian, A simulation tool for the SuperSingle mode, 2003, Not a paper, a tool.

[3] AMETIST, Miscellaneous case studies: Final report, 2005, Deliverable 3.5.3 from the IST
project AMETIST.

[4] G. Behrmann, Data-structure analysis for formal verification, Ph.D. thesis, Aalborg Univer-
sity, 2003.

[5] , Distributed reachability analysis in timed automata, Software Tools for Technology
Transfer 7 (2005), no. 1, 19–30.

[6] G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader, Scheduling lacquer production by
reachability analysis – a case study, Proceedings of the 16-th IFAC World Congress, 2005,
Extended abstract, to appear.

[7] , Scheduling lacquer production by reachability analysis – a case study, Workshop on
Parallel and Distributed Real-Time Systems, IEEE Computer Society Press, 2005, To appear.

[8] G. Behrmann, K.G. Larsen, and J.I. Rasmussen, Optimal scheduling using priced timed au-
tomata, Performance Evaluation Review, ACM Sigmetric (2005), To appear.

[9] , Priced timed automata: Algorithms and applications, Proceedings of FMCO’04, Lec-
ture Notes in Computer Science, Springer Verlag, 2005, To appear.

[10] Gerd Behrmann, Alexandre David, and Kim G. Larsen, A tutorial on uppaal, Formal Methods
for the Design of Real-Time Systems, Lecture Notes in Computer Science, no. 3185, Springer
Verlag, 2004, pp. 200–236.

[11] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen, Beyond liveness: Efficient param-
eter synthesis for time bounded liveness, To appear, 2004.

[12] H. Bohnenkamp and A. Belinfante, Timed testing with TorX, Formal Methods 2005 (John
Fitzgerald, Ian Hayes, and Andrzej Tarlecki, eds.), LNCS, vol. 3582, Springer-Verlag, 2005.

[13] H. C. Bohnenkamp, P.R. d’Argenio, H. Hermanns, and J.-P. Katoen, Modest: A composi-
tional modeling formalism for real-time and stochastic systems, Tech. Report TR-CTIT-04-46,
Centre for Telematics and Information Technology, University of Twente, November 2004.

[14] H. C. Bohnenkamp, J. Gorter, J. Guidi, and J.-P. Katoen, Are you still there? A lightweight
algorithm to monitor node presence in self-configuring networks, Proceedings of the 2005
International Conference on Dependable Systems and Networks (DSN 2005), IEEE Computer
Society, June 2005.

[15] H.C. Bohnenkamp, H. Hermanns, R. Klaren, A. Mader, and Y.S. Usenko, Synthesis and
stochastic assessment of schedules for lacquer production, Proc. QEST’04, LNCS, September
2004.

May 23, 2005 AMETIST Deliverable 2.5.b 12

REFERENCES REFERENCES

[16] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen, Optimal strategies
in priced timed game automata, Proceedings of the 24th Conference on Fundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’04) (Chennai, India) (Kamal
Lodaya and Meena Mahajan, eds.), Lecture Notes in Computer Science, vol. 3328, Springer,
December 2004, pp. 148–160.

[17] , Synthesis of optimal strategies using HyTech, Proceedings of the Workshop on Games
in Design and Verification (GDV’04) (Boston, Massachusetts, USA) (Luca De Alfaro, ed.),
vol. 119, Electronic Notes in Theoretical Computer Science, no. 1, Elsevier Science Publishers,
February 2005, pp. 11–31.

[18] M. Bozga, S. Graf, and L. Mounier, If-2.0: A validation environment for component-
based real-time systems, Proceedings of CAV’02 (Copenhagen, Denmark) (K.G. Larsen
Ed Brinksma, ed.), LNCS, vol. 2404, Springer, July 2002, pp. 343–348.

[19] M. Bozga, S. Graf, L. Mounier, and I. Ober, IF tutorial, SPIN’04 Workshop on Model-
Checking of Software, Barcelona, Spain, April 2004.

[20] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis, Translating discrete-time
Simulink to Lustre, Embedded Software (EMSOFT’03), LNCS, vol. 2855, Springer, 2003.

[21] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert, From Simulink to
SCADE/Lustre to TTA: a layered approach for distributed embedded applications, Languages,
Compilers, and Tools for Embedded Systems (LCTES’03), ACM, 2003.

[22] F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime, Efficient on-the-fly algorithms for
the analysis of timed games, To appear in Proceedings of CONCUR 2005 (Luca de Alfaro
Martin Abadi, ed.), Lecture Notes in Computer Science, Springer Verlag, 2005.

[23] S. Cotton, E. Asarin, O. Maler, and P. Niebert, Some progress in satisfiabilty checking for
difference logic, FORMATS/FTRTFT’04, LNCS, no. 3253, Springer, 2004, pp. 263–276.

[24] Scott Cotton, DPLL and difference constraints, Master’s thesis, Max-Planck Doctoral School
Saarbrucken, June 2005, Verimag.

[25] Pedro R. D’Argenio, Holger Hermanns, Joost Pieter Katoen, and Ric Klaren, MoDeST – a
modelling and description language for stochastic timed systems, Process Algebra and Proba-
bilistic Methods (PAPM-ProbmiV 2001) (Luca de Alfaro and Stephen Gilmore, eds.), Lecture
Notes in Computer Science, vol. 2165, Springer Verlag, September 2001, pp. 87–104.

[26] C. Daws, M.Z. Kwiatkowska, and G. Norman, Automatic verification of the IEEE 1394 root
contention protocol with KRONOS and PRISM, STTT 5 (2004), no. 2-3, 221–236.

[27] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derasavi, J. Doyle, W.H. Sanders, and
P. Webster, The Möbius framework and its implementation, IEEE Tr. on Softw. Eng. 28

(2002), no. 10, 956–970.

[28] G. Diaz, K. Larsen, J. Pardo, F. Cuartero, and V. Valero, An approach to handle real time
and probabilistic behaviors in e-commerce: validating the set protocol, SAC ’05: Proceedings
of the 2005 ACM symposium on Applied computing (New York, NY, USA), ACM Press,
2005, pp. 815–820.

[29] Sebastian Engell and Sebastian Panek, Mathematical model formulation for the axxom case
study, Tech. report, University of Dortmund, May 2003.

[30] M. Hendriks, Enhancing Uppaal by exploiting symmetry, Report NIII-R0208, Nijmegen Insti-
tute for Computing and Information Sciences, University of Nijmegen, October 2002.

May 23, 2005 AMETIST Deliverable 2.5.b 13

REFERENCES REFERENCES

[31] M. Hendriks, G. Behrmann, K.G. Larsen, P. Niebert, and F.W. Vaandrager, Adding symme-
try reduction to Uppaal, Proceedings First International Workshop on Formal Modeling and
Analysis of Timed Systems (FORMATS 2003), September 6-7 2003, Marseille, France, LNCS,
vol. 2791, Springer Verlag, 2004, Full version available as Technical Report NIII-R0407, NIII,
University of Nijmegen, February 2004.

[32] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, A markov chain model checker,
Tools and Algorithms for the Construction and Analysis of Systems, 6th International Con-
ference, TACAS 2000 (S. Graf and M. Schwartzbach, eds.), LNCS, vol. 1785, Springer-Verlag,
2000, pp. 347–362.

[33] Anders Hessel, Kim G. Larsen, Brian Nielsen, Paul Pettersson, and Arne Skou, Time-Optimal
Test Cases for Real-Time Systems, 3rd International Workshop on FORMAL APPROACHES
TO TESTING OF SOFTWARE (FATES 2003) (Montral, Qubec, Canada), October 2003,
In affiliation with the 18th IEEE International Conference on AUTOMATED SOFTWARE
ENGINEERING (ASE 2003).

[34] , Time-Optimal Test Cases for Real-Time Systems–extended abstract, 1st Interna-
tional Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS), Septem-
ber 2003, Invited Talk by Paul Pettersson.

[35] B. Jeannet, P.R. D’Argenio, and K.G. Larsen, Rapture: A tool for verifying Markov Deci-
sion Processes, Tools Day’02, Brno, Czech Republic (I. Cerna, ed.), Technical Report, Faculty
of Informatics, Masaryk University Brno, 2002.

[36] J.-P. Katoen, Henrik Bohnenkamp, H. Hermanns, and J. Klaren, Embedded software analysis
with motor, LNCS, pp. 268–294, Springer, Bertinoro, Italy, 2004.

[37] K.G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, Testing real-time embedded software
using UPPAAL-Tron: An inudstrial case study, to appear in Proceedings of EMSOFT 2005,
Lecture Notes in Computer Science, Springer Verlag, 2005.

[38] Kim Larsen, Marius Mikucionis, and Brian Nielsen, Online Testing of Real-time Systems using
Uppaal, International workshop on Formal Approaches to Testing of Software (Co-located with
IEEE Conference on Automates Software Engineering 2004, Linz, Austria.) (Jens Grabowski
and Brian Nielsen, eds.), September 2004.

[39] Kim G. Larsen, Alexandre David, John Haakansson, and Paul Pettersson, Minimal dbm
substraction, Proceedings of 16th Nordic Workshop on Programming Theory (Paul Pettersson
and Wang Yi, eds.), Uppsala technical report, no. 2004-041, Uppsala University, October 2004,
pp. 17–21.

[40] Kim G. Larsen and Jacob I. Rasmussen, Optimal conditional reachability for multi-priced
timed automata, In Proceedings of FoSSACS 2005, Lecture Notes in Computer Science, no.
3441, 2005, pp. 234–249.

[41] Denis Lugiez, Peter Niebert, and Sarah Zennou, A partial order semantics approach to the
clock explosion problem of timed automata, Tools and Algorithms for the Construction and
Analysis of Systems: 10th International Conference, TACAS 2004 (Kurt Jensen and Andreas
Podelski, eds.), LNCS, vol. 2988, Springer-Verlag, 2004, pp. 296–311.

[42] Moez Mahfoudh, On satisfaiblity checking for difference logic, Ph.D. thesis, UJF Grenoble,
May 2003.

[43] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and O. Maler, Verification of timed
automata via satisfiability checking, FTRTFT (W. Damm and E-R Olderog, eds.), LNCS,
vol. 2469, Springer, 2002, pp. 225–244.

May 23, 2005 AMETIST Deliverable 2.5.b 14

REFERENCES REFERENCES

[44] Iulian Ober, Susanne Graf, and Ileana Ober, Model checking of UML models via a mapping to
communicating extended timed automata, SPIN’04 Workshop on Model Checking of Software,
2004, vol. LNCS 2989, 2004.

[45] S. Panek, S. Engell, and C. Lessner, Scheduling of a pipeless multi-product batch plant using
mixed-integer programming combined with heuristics, Proc. European Symposium on Com-
puter Aided Process Engineering, ESCAPE 15, 2005, accepted.

[46] S. Panek, O. Stursberg, and S. Engell, Job-shop scheduling by combining reachability analysis
with linear programming, Proc. 7th Int. Workshop on Discrete Event Systems, 2004, pp. 199–
204.

[47] , Optimization of timed automata models using mixed-integer programming, Formal
Modeling And Analysis of Timed Systems, LNCS, vol. 2791, Springer, 2004, pp. 73–87.

[48] S. Panek, O. Stursberg, and S. Engell, Efficient synthesis of production schedules by opti-
mization of timed automata, Control Engineering Practice (2005), submitted.

[49] Sebastian Panek and Sebastian Engell, Value chain optimisation / improvements in the so-
lution by mathematical programming, internal report ametist, University of Dortmund, May
2004, Case study 4, deliverable 3.4.3.

[50] Sarah Zennou, Manuel Yguel, and Peter Niebert, ELSE: A new symbolic state generator
for timed automata, Proceedings of the 1st International Workshop on Formal Modelling and
Analysis of Timed Systems, FORMATS 2003 (Kim G. Larsen and Peter Niebert, eds.), LNCS,
vol. 2791, Springer-Verlag, 2003, pp. 263–270.

May 23, 2005 AMETIST Deliverable 2.5.b 15

	Introduction & Summary
	Tools
	UPPAAL
	UPPAAL Cora
	UPPAAL Tron
	S-UPPAAL
	TAopt: A prototype tool combining TA and MILP
	The ELSE Tool
	The DLSAT Solver for Difference Logic
	IF-SCHED
	IF-DC
	MoDeST and MoToR

	Tool Interaction, Formats and Libraries
	Tool Interaction
	Formats
	Libraries

