
An intuitionistic logic that proves Markov’s principle

Hugo Herbelin
INRIA - PPS

23 avenue d’Italie
F-75214 Paris Cedex 13
Hugo.Herbelin@inria.fr

Abstract

We design an intuitionistic predicate logic that sup-
ports a limited amount of classical reasoning, just
enough to prove a variant of Markov’s principle suited
for predicate logic (namely ¬¬∃x A(x) → ∃x A(x) for
A(x) an implication-free proposition), while still satis-
fying the core properties of intuitionistic logic, meaning
here the disjunction and existence properties.

At the computational level, the extraction of an ex-
istential witness out of a proof of its double negation
is done by using a form of statically-bound exception
mechanism, what can be seen as a formulation of Fried-
man’s A-translation in direct-style.

Introduction

In arithmetic, Markov’s principle is a weak classical
scheme stating ¬¬∃x A(x) → ∃x A(x) for every decid-
able formula A(x). Though not derivable in Heyting
Arithmetic (i.e. intuitionistic arithmetic), its formulation
as a rule (Markov’s rule) is admissible (see e.g. [12]).

Markov’s principle is realizable in arithmetic by un-
bounded search (ensured terminating by classical rea-
soning) and this is generally the way it is implemented
for program extraction.

A simple method to prove the intuitionistic admissi-
bility of Markov’s rule has been given by Friedman who
introduced for this purpose a notion of A-translation [6].
In fact, Friedman’s proof does not prove ¬¬∃x A(x) →
∃x A(x) for any propositional formula A(x) but only for
those A(x) that do not contain the implication connec-
tive. More generally, Friedman’s method can be inter-
preted from the proof-theoretical point of view as a proof
that ¬¬A → A is admissible in intuitionistic predicate
logic whenever A is a ∀-→-free formula, the case of

∃x A(x) for A →-free being just a prototypical instance
of the scheme.

We concentrate here on predicate logic and refers
to as Markov’s principle for predicate logic (shortly
below Markov’s principle) for the scheme that asserts
¬¬∃~x A(~x) → ∃~x A(~x) whenever A(~x) is an →-free
proposition. Especially, we show that adding classical
reasoning on ∀-→-free formulas proves Markov’s prin-
ciple while still preserving the intuitionistic specificity
of the logic (namely the disjunction and existence prop-
erties).

At the level of computation, the added classical rules
can be seen as a mechanism of (statically-bound) excep-
tion throwing similar to the one introduced by Nakano
in his (intuitionistic) catch and throw calculus [9]1

1 IQCMP: An intuitionistic predicate logic
that proves Markov’s principle

Usual intuitionistic predicate logic (IQC) is defined
from a set of function symbols f , g, . . . , each of a given
arity and a set of predicate symbols P, Q, R, ... each with
an arity too. Functions symbols of arity 0 are called con-
stants and predicate symbols of arity 0 are called atomic
propositions.

Terms are built from a set of variables x, y, ... by

t, u ::= f (~t) | x

where f ranges over function symbols and ~t denotes in
f (~t) a sequence of terms of length the arity of f . For-
mulas are built from the standard connectives and quan-
tifiers by the grammar

A, B ::= P(~t) | > | ⊥ | A→ B | A ∧ B | A ∨ B
| ∀x A | ∃x A

1Ordinary (dynamically bound) exceptions, as found in the ML,
C++ or Java programming languages can actually be used too, this is
part of ongoing work.

1

A ∈ Γ

Γ `∆ A


Γ `∆ A1 Γ `∆ A2

Γ `∆ A1 ∧ A2
∧I

Γ `∆ A1 ∧ A2

Γ `∆ Ai

∧i
E

Γ `∆ Ai

Γ `∆ A1 ∨ A2
∨i

I

Γ `∆ A1 ∨ A2 Γ, A1 `∆ B Γ, A2 `∆ B

Γ `∆ B
∨E

Γ, A `∆ B

Γ `∆ A→ B
→I

Γ `∆ A→ B Γ `∆ A

Γ `∆ B
→E

Γ `∆ A(x) x fresh

Γ `∆ ∀x A(x)
∀I

Γ `∆ ∀x A(x)

Γ `∆ A(t)
∀E

Γ `∆ A(t)

Γ `∆ ∃x A(x)
∃I

Γ `∆ ∃x A(x) Γ, A(x) `∆ B x fresh

Γ `∆ B
∃E

Γ `∆ >
>I

Γ `∆ ⊥

Γ `∆ C
⊥E

Γ `T,∆ T

Γ `∆ T


Γ `∆ T T ∈ ∆

Γ `∆ C


Figure 1. Inference rules of IQCMP

where P ranges over predicate symbols and ~t is a se-
quence of terms whose length is the arity of P. Negation
¬A is defined as A→ ⊥.

IQCMP is an extension of IQC. Its inference rules
are given on Figure 1 (we use natural deduction). The
subclass of ∀-→-free formulas plays a special role and
we use T , U, ... to denote such formulas:

T,U ::= P(~t) | > | ⊥ | T ∧ U | T ∨ U | ∃x T

Contexts of formulas, written Γ, are ordered sequences
of formulas. Contexts of ∀-→-free formulas, written ∆,
are ordered sequences of ∀-→-free formulas. By ¬∆ is
meant the context obtained by distributing ¬ over the
formulas of ∆. Note that IQC can be characterized as the
subset of IQCMP obtained by removing the rules 
and  and keeping ∆ empty.

The main difference between IQCMP and IQC is that
the former supports classical reasoning on ∀-→-free for-
mulas. This is implemented by the rules  and
 which say that to prove a ∀-→-free formula T ,

one is allowed to change its mind during the proof and
to restart a new proof of T at any time.

The main properties of IQCMP is that it proves
Markov’s principle while still retaining the disjunction
and existence properties that are characteristic of intu-
itionistic logic.

Theorem 1 In IQCMP, for T ∀-→-free, and in particu-
lar for Markov’s principle, i.e. for T being ∃~x A(~x) with
A(~x)→-free, we have ` ¬¬T → T.

P: One gets a proof of T `T ⊥ by applying .
By →I and →E we obtain a proof of ¬¬T `T ⊥. By
applying⊥E followed by , we get a proof of ¬¬T `
T from which ¬¬T → T derives (note that we freely
use the lemma that Γ `∆ A implies Γ′ `∆′ A for Γ ⊂ Γ′

and ∆ ⊂ ∆′; this weakening lemma, as expected, indeed
holds in IQCMP).

Let us formally write MP for the scheme
¬¬∃~x A(~x) → ∃~x A(~x) where A(~x) is an →-free
proposition. We have:

2

Theorem 2 Γ ` A in IQCMP iff MP,Γ ` A in IQC.

P: Of course, MP is equivalent to the scheme
¬¬T → T for T a ∀-→ free formula. Then, by The-
orem 1, Γ,MP ` A implies Γ ` A which obviously is a
proof of IQCMP. Conversely, we prove by induction of
a derivation of Γ `∆ A in IQCMP, that Γ,¬∆,MP ` A
holds in IQC. All cases are direct and we use MP for
interpreting the rule .

Theorem 3 (Disjunction property) In IQCMP, if
` A1 ∨ A2 then ` A1 or ` A2.

Theorem 4 (Existence property) In IQCMP, if
` ∃x A(x) then there exists t such that ` A(t).

The proof of these last two theorems is the subject of
the next section.

2 The proof theory of IQCMP

We show that the proofs of IQCMP have a compu-
tational interpretation as programs in a λ-calculus ex-
tended with a mechanism of statically-bound exceptions
implemented with operators named catch and throw.

The language of proofs is defined by the grammar

p, q ::= a | ιi(p) | (p, q) | (t, p) | λa.p | λx.p | ()
| case p of [a1.p1 | a2.p2]
| πi(p) | dest p as (x, a) in q
| p q | p t | efq p
| catchαp | throwαp

where a, b, . . . range over a first set of proof variables.
and α, β, . . . range over another set of proof variables.
The constructions λa.p, case p of [a1.p1 | a2.p2] and
dest p as (x, a) in q bind a, a1 and a2. The construc-
tions λx.p and dest p as (x, a) in q bind x. The con-
struction catchαp binds α. The binders are considered
up to the actual name used to represent the binder (so-
called α-conversion).

The annotation of IQCMP with proof-terms is given
in Figure 2 where the contexts Γ and ∆ are now maps
from variable names to formulas. For instance, the proof
of Markov’s principle in Theorem 1 is

λa.catchα efq (a λb.throwα b)

A subclass of proofs will play a particular role in extract-
ing the intuitionistic content of weakly classical proofs
of IQCMP. These are the values defined by

V ::= a | ιi(V) | (V,V) | (t,V) | λa.p | λx.p | ()

Another class of expressions will be useful to define
the reduction, it is the class of elementary evaluation
contexts defined by

F[] ::= case [] of [a1.p1 | a2.p2]
| πi([]) | dest [] as (x, a) in p
| [] q | (λx.q) []
| [] t | efq [] | throwα []
| ιi([]) | ([], p) | (V, []) | (t, [])

For F[] an elementary evaluation context and p a
proof, we write F[p] for the proof obtained by plugging
p into the hole of F[].

We can now define evaluation in IQCMP as the con-
gruent closure of the following reductions:

(λa.p) V → p[a← V]
(λx.p) t → p[x← t]
case ιi(V) of [a1.p1 | a2.p2] → pi[ai ← V]
dest (t,V) as (x, a) in p → p[x← t][a← V]
πi(V1,V2) → Vi

F[efq p] → efq p
F[throwαp] → throwαp
catchαthrowαp → catchαp
catchαthrowβV → throwβ V (α , β)
catchαV → V

where the substitutions p[a ← V] and p[x ← t] are
capture-free with respect to the three kinds of variables
(x, a and α).

Note that this is a call-by-value reduction semantics
and that we do not consider commutative cuts just be-
cause we are only concerned with the normalization of
closed proofs and commutative cuts are not needed for
that purpose.

The operators catch and throw behave like the sim-
ilarly named operators of Nakano [9] or Crolard [4].
Like in [9], but on the contrary of [4] (or of Parigot’s
λµ-calculus [10] to which the calculus of [4] is equiv-
alent), catch does not capture its surrounding con-
text (i.e. there is no rule of the form F[catchαp] →
catchβ p[throwα [] ← throwβ F[]]). As such, throw
behaves as an exception raiser and catch as an excep-
tion handler but still not as in standard programming
languages like Java or ML, since there exceptions are
dynamically bound (i.e. the substitution is not capture-
free) while in IQCMP they are statically-bound (i.e. the
substitution is capture-free)2. Alternatively, catchαp

2Compare substitution with capture
(λa.catchα(a, throwα1))(throwα2)→ catchα(throwα2, throwα1)

to capture-free substitution
(λa.catchα(a, throwα1))(throwα2)→ catchβ(throwα2, throwβ1) .

3

(a : A) ∈ Γ

Γ `∆ a : A


Γ `∆ p1 : A1 Γ `∆ p2 : A2

Γ `∆ (p1, p2) : A1 ∧ A2
∧I

Γ `∆ p : A1 ∧ A2

Γ `∆ π1 p : Ai

∧o
E

Γ `∆ p : Ai

Γ `∆ ιi(p) : A1 ∨ A2
∨i

I

Γ `∆ p : A1 ∨ A2 Γ, a1 : A1 `∆ p1 : B Γ, a2 : A2 `∆ p2 : B

Γ `∆ case p of [a1.p1 | a2.p2] : B
∨E

Γ, a : A `∆ p : B

Γ `∆ λa.p : A→ B
→I

Γ `∆ p : A→ B Γ `∆ q : A

Γ `∆ p q : B
→E

Γ `∆ p : A(x) x fresh

Γ `∆ λx.p : ∀x A(x)
∀I

Γ `∆ p : ∀x A(x)

Γ `∆ pt : A(t)
∀E

Γ `∆ p : A(t)

Γ `∆ (t, p) : ∃x A(x)
∃I

Γ `∆ p : ∃x A(x) Γ, a : A(x) `∆ q : B x fresh

Γ `∆ dest p as (x, a) in q : B
∃E

Γ `∆ () : >
>I

Γ `∆ p : ⊥

Γ `∆ efq p : C
⊥E

Γ `α:T,∆ p : T

Γ `∆ catchα p : T


Γ `∆ p : T (α : T) ∈ ∆

Γ `∆ throwα p : C


Figure 2. Proof-term annotation of IQCMP

can be seen as a delimited control operator (i.e. as an ex-
pression of the form # callccα p where # is a delimiter
that blocks the interaction of callccα p with its context
and expects it first to evaluate – to a value – before being
observed by its surrounding evaluation context).

We now check that the reduction system is compati-
ble with typing.

Theorem 5 (Strengthening) If Γ `∆ V : T then
Γ `∆ V : T.

P: Obvious since the syntax of V refers to no p
(and hence to no catch or throw) as soon as → and ∀
are excluded.

Theorem 6 (Subject reduction) If Γ `∆ p : A and p→
q then Γ `∆ q : A

P: By checking all cases, using Strengthening for
the last three rules. Note that since catch, on the con-
trary of standard classical operators like callcc, does

not capture its context, its type remains unchanged and
the ∀-→ constraint on the formulas of ∆ is preserved.

We then characterize the set of normal forms in
IQCMP.

Theorem 7 (Characterization of normal forms) The
set of normal forms for→ corresponds to the entry r of
the following grammar:

r ::= W | s | efq H[I[a]] | throwα s
W ::= a | ιi(W) | (W,W) | (t,W) | λx.r | λa.r | ()
s ::= H[I[a]] | ιi(s) | (s, s) | (W, s) | (s,W) | (t, s)
G[] ::= case [] of [a1.r1 | a2.r2]

| πi([]) | dest [] as (x, a) in r
| [] r | [] t | catchαefq []

H[] ::= G[] | J[G[]]
I[] ::= [] | H[I[]]
J[] ::= [] | catchαthrowβ J[] | catchα J[]

P: By inspection of the form of proofs that are not
reducible.

4

We then check that the reduction system is not too
simple and that it at least produces head-normal form on
closed proofs.

Theorem 8 (Progress) If `∆ p : A and p is not a
(closed) value then p is reducible

P: According to Theorem 7, closed normal forms
are necessarily in the set W. But this set is a subset of
the set of values.

Theorem 9 (Normalization) If Γ `∆ p : A then p is
normalizable

P: By mapping IQCMP into the sequent cal-
culus LK∨a∧a→∀∃>⊥

µµ̃ [8]. The strong normalization
of LK∨a∧a→∀∃>⊥

µµ̃ is obtained by canonically extend-
ing the proof of strong normalization for LK→µµ̃ of
Polonovoski [11] with connectives (additive) ∨, (addi-
tive) ∧, ∀, ∃, >, ⊥ as in [1].

We are now ready to prove Theorems 3 and 4. Given
a proof of ` p : A1 ∨ A2, we know by progress and nor-
malization that p eventually reduces to a value V which,
by subject reduction, satisfies ` V : A1 ∨ A2. By inspec-
tion of the possible forms of V , we know that we have
either a proof of ` A1 or a proof of ` A2. Similarly, from
` p : ∃x A(x) we know ` V : ∃x A(x) for some V and
hence ` A(t) for some term t.

3 Discussion and relation to other works

The codereliction of differential proof nets In terms
of polarity in linear logic [7], the ∀-→-free constraint
characterizes the formulas can be interpreted as purely
positive formulas (positive formulas of which no sub-
formula is negative). In the framework of polarized lin-
ear logic, Markov’s principle expresses then that from a
purely positive formula P possibly proved using weak-
ening or contraction, i.e. a proof of Q differs from P by
the insertion at some places of the “why not” exponen-
tial connective of linear logic, a linear proof of P can be
extracted. Interestingly, this corresponds to applying the
codereliction rule of differential proof nets [5].

Nakano and Crolard’s catch and throw calculi
Our calculus is very similar to the one proposed by
Nakano [9]. However, in [9], the rule of introduction of
implication requires ∆ to be empty what prevents from
deriving Markov’s principle. Actually, as expressed in
Theorem 5 of [9], the logical expressiveness Nakano’s
calculus is the one of LJ.

Another variant of intuitionistic logic with control
operators that does not increase the logical expressive-
ness can also be found in Crolard [3].

Friedman’s A-translation Expressed in our calculus,
Friedman’s A-translation [6] maps a proof of Γ `∆ A in
IQCMP to a proof of Γ∆ ` A∆ in IQC, where B∆ is ob-
tained by replacing each atom of B by the disjunction of
the formulas in ∆. Through this translation, the 
rule (assuming w.l.o.g that it is used with atomic conclu-
sions) is interpretable as an injection. Also, for B ∀-→-
free, we have B∆ → B ∨

∨
∆ from what we see that the

 rule is interpretable (the proof of B∆ → B ∨
∨

∆

can be logically seen as the property that a purely posi-
tive formula B can be purified from all its calls to throw
by following a call-by-value reduction strategy; espe-
cially, when, B is a conjunction, there are two asymmet-
rical proofs of C∆∧D∆ → (C∧D)∨

∨
∆ which match the

two asymmetrical ways to evaluate a pair along call-by-
value reduction). Henceforth, our calculus can be seen
as a direct-style representation of A-translation in the
same way as callcc provides with a direct-style rep-
resentation of continuation-passing-style translation.

Independence of premises The principle of indepen-
dence of premises (IP) goes from Γ ` ¬B → ∃x A(x)
to Γ ` ∃x (¬B → A(x)). This principle is not ad-
missible in IQCMP because if it were, taking Γ empty
and A(x) an arbitrary atomic formula, one would ob-
tain from MP that ∃x (¬¬∃y A(y) → A(x)), from The-
orem 1 that ∃x (∃y A(y) → A(x)) and from Theorem 4
that ∃y A(y) → A(t) for some term t. However, using
Theorem 7, one sees that no normal proof can have this
type (the same reasoning holds in Heyting Arithmetic
taking for A a formula such that neither ` ¬¬A nor ` ¬A
holds).

Markov’s principle in arithmetic Since any decid-
able formula can be expressed in terms of bounded ex-
istential quantification, conjunction and disjunction over
decidable atoms, and hence as a ∀-→-free formula, we
believe that by using an axiom-free presentation of Heyt-
ing Arithmetic, one could directly extend IQCMP to the
arithmetic case. We would then get a constructive con-
tent of ¬¬∃x A(x) → ∃x A(x) for A(x) decidable much
direct that the commonly accepted realizer that succes-
sively checks the truth of each instance of A(n). Espe-
cially, our constructivization of Markov’s principle not
only contains its own proof of termination but it also
directly evaluates to the witness of the existential quan-
tification.

5

Completeness proofs Gödel and Kreisel proved that
completeness for classical predicate logic implies
Markov’s principle. More precisely, Berardi and Valen-
tini [2] showed that Markov’s principle is necessary as
soon as ⊥ in the syntax is interpreted as ⊥ in the model
(a similar phenomenon happens for the completeness of
intuitionistic logic for which the interpretation of ⊥ has
to be weakened so as to obtain intuitionistic proofs; con-
sider e.g. Veldman [13] or Friedman proofs). We be-
lieve that both completeness for classical logic and for
intuitionistic logic could be carried out in an extension
of IQCMP to second-order arithmetic without having to
weaken the interpretation of ⊥.

4 Conclusion

We showed that adding classical reasoning on ∀-→-
free formulas to intuitionistic logic preserves the in-
tuitionistic character of the logic, as witnessed by the
preservation of the disjunction and existence properties,
while providing with an effective intuitionistic proof of
Markov’s principle. To compute with Markov’s princi-
ple, we used a form of statically-bound exception mech-
anism.

5 Acknowledgments

I thank Andreas Abel, Tristan Crolard, Danko Ilik,
Guillaume Munch–Maccagnoni and Noam Zeilberger
for fruitful discussions on this topic.

References

[1] F. Barbanera and S. Berardi. A symmetric λ-calculus for
classical program extraction. Information and Compu-
tation, 125(2):103–117, 1996.

[2] S. Berardi and S. Valentini. Krivine’s intuitionistic proof
of classical completeness (for countable languages).
Ann. Pure Appl. Logic, 129(1-3):93–106, 2004.

[3] T. Crolard. Extension de l’isomorphisme de Curry-
Howard au traitement des exceptions. Ph.D. thesis, Uni-
versity Paris 7, Dec. 1996.

[4] T. Crolard. A confluent lambda-calculus with a
catch/throw mechanism. J. Funct. Program., 9(6):625–
647, 1999.

[5] T. Ehrhard and L. Regnier. Differential interaction nets.
Electr. Notes Theor. Comput. Sci., 123:35–74, 2005.

[6] H. Friedman. Classically and intuitionistically provably
recursive functions. In D. S. Scott and G. H. Muller, edi-
tors, Higher Set Theory, volume 669 of Lecture Notes in
Mathematics, pages 21–27. Springer, Berlin/Heidelberg,
1978.

[7] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–
102, 1987.

[8] H. Herbelin. C’est maintenant qu’on calcule: au cœur
de la dualité. Habilitation thesis, University Paris 11,
Dec. 2005.

[9] H. Nakano. A constructive formalization of the catch
and throw mechanism. In Proceedings, Seventh Annual
IEEE Symposium on Logic in Computer Science, 22-25
June 1992, Santa Cruz, California, USA, pages 82–89.
IEEE Computer Society, 1992.

[10] M. Parigot. Lambda-mu-calculus: An algorithmic in-
terpretation of classical natural deduction. In Logic
Programming and Automated Reasoning: International
Conference LPAR ’92 Proceedings, St. Petersburg, Rus-
sia, pages 190–201. Springer-Verlag, 1992.

[11] E. Polonovski. Subsitutions explicites, logique et nor-
malisation. Ph.D. thesis, University Paris 7, June 2003.

[12] A. S. Troelstra. Mathematical Investigation of Intuition-
istic Arithmetic and Analysis, volume 344 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1973.

[13] W. Veldman. An intuitionistic completeness theorem for
intuitionistic predicate logic. J. Symb. Log., 41(1):159–
166, 1976.

6

