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1 Terms and types

Whereas most other systems with control, for example λC [FF86, Gri90] or
λ∆ [RS94], use ordinary λ-variables to represent continuations, λµ distinguishes
λ-variables from continuation variables. Also, the terms are of a more restricted
shape because the system distinguishes between terms and commands.

Definition 1.1. Simple types are inductively defined over an infinite set of type
variables (α, β, . . .) as follows.

ρ, σ ::= α | ρ→ σ

An environment (Γ,Σ, . . .) is an association list of types indexed by variables.

Definition 1.2. Terms and commands of λµ are mutually inductively defined
over an infinite set of λ-variables (x, y, . . .) and µ-variables (α, β, . . .) as follows.

t, r, s ::= x | λx : ρ.r | ts | µα : ρ.c

c, d ::= [α]t

Remark 1.3. The precedence of [α]t is weaker than sr, so instead of [α](sr),
we write [α]sr.

As usual, we let FV(t) and FCV(t) denote the set of free λ-variables and
µ-variables of a term t, respectively. Moreover, t[x := r] denotes substitution of
r for x in t, which is capture avoiding for both λ- and µ-variables.

Convention 1.4. Although a λ-abstraction is annotated by a type, we omit
these type annotations when they are obvious or not relevant. Furthermore, we
use the Barendregt convention. That is, given an expression, we may assume
that bound variables are distinct from free variables and that all bound variables
are distinct.

Definition 1.5. The typing judgment for terms Γ; ∆ ` t : ρ and the typing
judgment for commands Γ; ∆ ` c : |= are as shown in Figure 1.

A typing judgment Γ; ∆ ` t : ρ is derivable in λµ in case it is the conclusion
of a derivation tree that uses the derivation rules of Definition 1.5. We say that
“the term t has type ρ in the environment of λ-variables Γ and the environment
of µ-variables ∆”.
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x : ρ ∈ Γ

Γ; ∆ ` x : ρ

(a) axiom

Γ, x : ρ; ∆ ` t : σ

Γ; ∆ ` λx : ρ.t : ρ→ σ

(b) lambda

Γ; ∆ ` t : ρ→ σ Γ; ∆ ` s : ρ

Γ; ∆ ` ts : σ

(c) app

Γ; ∆, α : ρ ` c : |=

Γ; ∆ ` µα : ρ.c : ρ

(d) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆

Γ; ∆ ` [α]t : |=

(e) passivate

Figure 1: The typing rules of λµ.

Similarly, a typing judgment Γ; ∆ ` c : |= is derivable in λµ in case it is the
conclusion of a derivation tree that uses the derivation rules of Definition 1.5.
We say that “the command c is typable in the environment of λ-variables Γ and
the environment of µ-variables ∆”.

Since the passivate and activate rule should always be applied consecutively,
it is sometimes convenient to combine these rules into one rule.

Γ; ∆, α : ρ ` t : σ β : σ ∈ (∆, α : ρ)

Γ; ∆ ` µα : ρ.[β]t : ρ

2 The Curry-Howard correspondence

The typing rules of λµ correspond to those of free deduction [Par92]. This
paper does not present free logic but instead considers the relation between
λµ and minimal classical logic. Minimal classical logic is minimal first-order
propositional logic with Peirce’s law.

Γ ` (A→ B)→ A

Γ ` A
One direction of this correspondence is straightforward.

Lemma 2.1. If Γ ` A in minimal classical logic, then there is a term t such
that Γ; ∅ ` t : A.

Proof. Implication introduction corresponds to a λ-abstraction and implication
elimination corresponds to an application. This leaves us to prove that Peirce’s
law is typable in λµ. Assume that we have a term t of type (ρ→ σ)→ ρ, now
we construct a term of type ρ as follows.

Γ, x : ρ; ∆, α : ρ, β : σ ` t : (ρ→ σ)→ ρ

Γ, x : ρ; ∆, α : ρ, β : σ ` x : ρ

Γ, x : ρ; ∆, α : ρ, β : σ ` [α]x : |=

Γ, x : ρ; ∆, α : ρ ` µβ.[α]x : σ

Γ; ∆, α : ρ ` λx.µβ.[α]x : ρ→ σ

Γ; ∆, α : ρ ` t (λx.µβ.[α]x) : ρ

Γ; ∆, α : ρ ` [α]t (λx.µβ.[α]x) : |=

Γ; ∆ ` µα.[α]t (λx.µβ.[α]x) : ρ
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One should think of the proof term µα : ρ.[α]t(λx : ρ.µβ : σ.[α]x) as follows.
Our goal is ρ, which we label α. Since we have (ρ → σ) → ρ by assumption,
it suffices to prove ρ → σ. Therefore, let us assume ρ, which we label x. Now
our goal is σ, which we label β. However, instead of proving goal β we prove an
earlier goal, namely α, which simply follows from the assumption x.

The converse of Lemma 2.1 is a bit harder, because λµ has two environments
whereas minimal classical logic has just one. This means that both environments
have to be merged into a single environment. If we have Γ; ∆ ` t : ρ in λµ, then
we certainly have Γ,¬∆ ` ρ in classical logic, because activate corresponds to
Reduction Ad Absurdum and passivate to negation elimination. However, this
approach fails to work for proving a correspondence with minimal classical logic,
because negation cannot be expressed there. To this end, we define a suitable
translation of the environment of µ-variables.

Definition 2.2. Given a term t and a µ-variable β, a set of simple types tβ is
defined as follows.

xβ := ∅
(λx.t)β := tβ

(ts)β := tβ ∪ sβ
(µα : ρ.[γ]t)β := tβ provided that β 6= γ

(µα : ρ.[β]t)β := {ρ} ∪ tβ

Moreover, given a term t and an environment of µ-variables ∆, a set of simple
types t∆ is defined as t∆ := {σ → τ | τ ∈ tβ , β : σ ∈ ∆}.

Lemma 2.3. If Γ; ∆ ` t : ρ in λµ, then Γ, t∆ ` ρ in minimal classical logic.

Proof. By induction on the derivation Γ; ∆ ` t : ρ. The only interesting case
is activate/passivate, so let Γ; ∆ ` µα.[γ]t : ρ with Γ; ∆, α : ρ ` t : σ and
γ : σ ∈ (∆, α : ρ). Now we have Γ, t(∆,α:ρ) ` σ by the induction hypothesis.
Furthermore

t(∆,α:ρ) = t∆ ∪ {ρ→ τ | τ ∈ tα}
= t∆ ∪ {ρ→ τ1, . . . , ρ→ τn}

for some simple types τ1, . . . , τn. Now, by using Peirce’s law and implication
introduction n times, we have:

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn ` ρ

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn−1 ` (ρ→ τn)→ ρ

. . . ` . . .
Γ, (µα.[γ]t)∆, ρ→ τ1 ` ρ

Γ, (µα.[γ]t)∆ ` (ρ→ τ1)→ ρ

Γ, (µα.[γ]t)∆ ` ρ

We distinguish the cases α = γ and α 6= γ. In the first case we also have
σ = ρ since α : σ ∈ (∆, α : ρ), and hence Γ, t∆, ρ→ τ1, . . . , ρ→ τn ` ρ using the
induction hypothesis. Moreover we have (µα.[α]t)∆ = t∆ because α /∈ dom(∆),
so by the above derivation we are done.

In the second case we have (µα.[γ]t)∆ = t∆ ∪ {σ → ρ}, so by thinning and
implication elimination we have:
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. . . ` σ → ρ

Γ, t∆, ρ→ τ1, . . . , ρ→ τn ` σ

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn ` σ

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn ` ρ

Corollary 2.4. If Γ; ∅ ` t : ρ in λµ, then Γ ` ρ in minimal classical logic.

Proof. By Lemma 2.3 using the fact that t∅ = ∅.

3 Reduction

In order to present the reduction rules we need to define an extra notion of
substitution: structural substitution. Performing structural substitution of a
µ-variable β and a context E for a µ-variable α, notation t[α := βE], will
recursively replace each command [α]t by [β]E[t′], where t′ ≡ t[α := βE].

Definition 3.1. A λµ-context is defined as follows.

E ::= � | Et

Definition 3.2. Given a λµ-context E and a term s, substitution of s for the
hole in E, notation E[s], is defined as follows.

�[s] := s

(Et)[s] := E[s]t

Definition 3.3. Structural substitution t[α := βE] of a µ-variable β and a
λµ-context E for a µ-variable α is defined as follows.

x[α := βE] := x

(λx.r)[α := βE] := λx.r[α := βE]

(ts)[α := βE] := t[α := βE]s[α := βE]

(µγ.c)[α := βE] := µγ.c[α := βE]

([α]t)[α := βE] := [β]E[t[α := βE]]

([γ]t)[α := βE] := [γ]t[α := βE] provided that γ 6= α

Structural substitution is capture avoiding for both λ- and µ-variables.

Example 3.4. Consider the following examples.

1. ([α]x (µβ.[α]r))[α := α (� s t)] ≡ [α]x (µβ.[α]r s t) s t

2. ([α]λx.µβ.[α]x)[α := γ (� x)] ≡ [γ](λz.µβ.[γ]z x) x

This paper uses a notion of structural substitution that is more general than
Parigot’s original presentation [Par92]. In Parigot’s original presentation one
has t[β := α], which renames each µ-variable β into α, and t[α := s], which
replaces each command [α]t by [α]t′s, where t′ ≡ t[α := s]. Of course, Parigot’s
notions are just instances of our definition, namely, the former corresponds to
t[β := α �] and the latter to t[α := α (�s)]. Although Parigot’s presentation
suffices for the definition of his reduction rules, our presentation turns out to
be better suited for extensions and proofs. For example, Geuvers, Krebbers
and McKinna [GKM11] use it in a presentation of λµ with naturals numbers
and primitive recursion for which they prove meta theoretical properties as
confluence for untyped terms and strong normalization.
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Definition 3.5. Reduction t → t′ on λµ-terms t and t′ is defined as the com-
patible closure of the following rules.

(λx.t)r →β t[x := r]

(µα.c)s →µR µα.c[α := α (�s)]

µα.[α]t →µη t provided that α /∈ FCV(t)

[α]µβ.c →µi c[β := α �]

As usual, �+ denotes the transitive closure, � denotes the reflexive/transitive
closure and = denotes the reflexive/symmetric/transitive closure.

From a computational point of view one should think of µα.[β]t as a com-
bined catch and throw clause: it catches exceptions labeled α in t and finally
throws the results of t to µβ.c.

Notation 3.6. Θc := µγ : ρ.c provided that γ /∈ FCV(c).

Definition 3.7. The terms catch α t and throw β s are defined as follows.

catch α t := µα.[α]t

throw β s := Θ[β]s

Lemma 3.8. We have the following reductions for catch and throw.

1. E[throw α t] � throw α t

2. catch α (throw α t) � catch α t

3. catch α t� t provided that α /∈ FCV(t)

4. throw β (throw α s)→ throw α s

Proof. These reductions follow directly from the reduction rules of λµ, except
for the first one, where an induction on the structure of E is needed.

Notice that our notion of catch and throw is not the same as try and
raise in OCaml or catch and throw in Lisp. In those languages exceptions are
dynamically bound, which means that substitution is not capture avoiding for
exception names, while ours are statically bound.

Example 3.9. Consider the following term:

catch α S((λf : N→ N . catch α (f 0)) λx : N . throw α x).

Here, both occurrences of catch bind different occurrences α. So after two
β-reduction steps we obtain catch α S(catch β (throw α 0)) and hence its nor-
mal form is 0. In systems with dynamically bound exceptions this term would
reduce to S0 because the throw would get caught by the innermost catch.
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4 Some meta theoretical properties

Just like the simply typed λ-calculus, λµ satisfies the main meta theoretical
properties. We treat these properties now.

Lemma 4.1. λµ is confluent. That is, if t1 � t2 and t1 � t3, then there exists
a term t4 such that t2 � t4 and t3 � t4.

Parigot’s original proof sketch [Par92], which is based on the notion of par-
allel reduction by Tait and Martin-Löf, is wrong (this was first noticed by Fujita
in [Fuj97]). As observed in [Fuj97, BHF01], the usual notion of parallel reduc-
tion does not extend well to λµ: it only allows to prove weak confluence. But
since λµ is strongly normalizing (Lemma 4.6) we have confluence for well-typed
terms by Newman’s lemma. However, since confluence is a property that also
holds for untyped terms, this result is unsatisfactory. Confluence for untyped
λµ-terms can be proven by analogy to the proof in [GKM11].

In order to prove that λµ satisfies subject reduction we have to prove that
each reduction rules preserves typing. Because some of the reduction rules in-
volve structural substitution it is convenient to prove an auxiliary result that
structural substitution preserves typing first. To express this property we in-
troduce the notion of a contextual typing judgment, notation Γ; ∆ ` E : ρ⇐ σ,
which expresses that Γ; ∆ ` t : σ implies Γ; ∆ ` E[t] : ρ.

Definition 4.2. The derivation rules for the contextual typing judgment Γ; ∆ `
E : ρ⇐ σ are as shown in Figure 2.

Γ; ∆ ` � : ρ⇐ ρ

(a) hole

Γ; ∆ ` E : σ → τ ⇐ ρ Γ; ∆ ` t : σ

Γ; ∆ ` Et : τ ⇐ ρ

(b) app

Figure 2: The rules for contextual typing judgments in λTµ .

Fact 4.3. Contextual typing judgments do indeed enjoy the intended behavior.
That is, if Γ; ∆ ` E : ρ⇐ σ and Γ; ∆ ` t : σ, then Γ; ∆ ` E[t] : ρ.

Fact 4.4. Typing is preserved under (structural) substitution.

1. If Γ, x : ρ; ∆ ` t : τ and Γ; ∆ ` r : ρ, then Γ; ∆ ` t[x := r] : τ .

2. If Γ; ∆, α : ρ ` t : τ and Γ; ∆ ` E : σ ⇐ ρ, then Γ; ∆, β : σ ` t[α := βE] : τ .

Proof. The first property is proven by a standard induction on the derivation of
Γ, x : ρ; ∆ ` t : τ . The second property is proven by induction on the derivation
of Γ; ∆, α : ρ ` t : τ . Most cases are straightforward, so we only consider the pas-
sivate case. Let Γ; ∆, α : ρ ` [α]t : |= with Γ; ∆, α : ρ ` t : ρ. By the induction
hypothesis we have Γ; ∆, β : σ ` t[α := βE] : ρ, which leaves us to prove that
Γ; ∆, β : σ ` ([α]t)[α := βE] : |= . Since ([α]t)[α := βE] ≡ [α]E[t[α := βE]], the
result follows from Fact 4.3 and the induction hypothesis.

Lemma 4.5. λµ satisfies subject reduction. That is, if Γ; ∆ ` t : ρ and t→ t′,
then Γ; ∆ ` t′ : ρ.
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Proof. We have to prove that all reduction rules and the compatible closure
preserve typing. We treat some interesting cases.

1. The →µR-rule:

Γ; ∆, α : ρ→ τ ` c : |=

Γ; ∆ ` µα.c : ρ→ τ Γ; ∆ ` s : ρ

Γ; ∆ ` (µα.c)s : τ

→µR

Γ; ∆, β : τ ` c[α := β (�s)] : |=

Γ; ∆ ` µβ.c[α := β (�s)] : τ

Here we have Γ; ∆, β : τ ` c[α := α (�s)] : |= by Fact 4.4 and the fact
that Γ; ∆ ` �s : ρ→ τ ⇐ τ

2. The →µη-rule:

Γ; ∆, α : ρ ` t : ρ

Γ; ∆ ` [α]t : |=
Γ; ∆ ` µα.[α]t : ρ

→µη Γ; ∆ ` t : ρ

Here we have Γ; ∆ ` t : ρ by strengthening because α /∈ FV(t).

3. The →µi-rule:

Γ; ∆, α : ρ, β : ρ ` c : |=

Γ; ∆, α : ρ ` µβ.c : ρ

Γ; ∆, α : ρ ` [α]µβ.c : |=

→µi Γ; ∆, α : ρ ` c[β := α �] : |=
Here we have Γ; ∆, α : ρ, α : ρ ` c[β := α �] : |= by Fact 4.4 and the fact
that Γ; ∆, α : ρ ` � : ρ⇐ ρ

Lemma 4.6. λµ is strongly normalizing. That is, for all terms t such that
∆; Γ ` t : ρ, all reduction sequences starting from t are finite.

Proof. This is proven in [Par97].
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