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1 I N T R O D U C T I O N  

This paper presents a way of extending the paradigm "proofs as programs" to classical 
proofs. The system we use is derived from the general Free Deduction system presented 
in [31. 

Usually when considering proofs as programs, one has only in mind some kind of 
intuitionistic proofs. There is an obvious reason for that restriction: only intuitionistic 
proofs are contructive, in the sense that from the proof of an existential statement, one 
can get a witness of this existential statement. But from the programming point of view, 
constructivity is only needed for E~-statements, for which classical and intuitionistic 
provability coincide. This means that, classical proofs are also candidates for being 
programs. In order to use them as programs, one has two tasks to achieve: 

(i) to find a system in which one can extract directly a program from a classical 
proof (and not by means of a translation to intuitionistic logic), and 

(ii) to understand the algorithmic meaning of classical constructions. 
The system we will consider is a natural deduction system with multiple conclusions, 

we will call it Classical Natural Deduction (the one with the absurdity rule being called 
Usual Natural Deduction). It is a particular subsystem of Free Deduction (FD) with 
inputs fixed to the left, chosen for its simplicity: it can be seen as a simple extension of 
intuitionistic natural deduction, whose algorithmic interpretation is very well known. In 
this context, the contribution of classical constructs to programming appears clearly: 
they correspond to control operators added to functional languages, like call/ce in 
Scheme. In both contexts, the role of the classical constructs is the same: they allow 
to take shorter routes in the construction of a proof~program. 

The link between control operators and classical constructs has first been made 
by T. Griffin in [1], where he proposes to type the C operator of Felleisen, with the 
type -~'-,A --* A. The system he obtains is not satisfactory from the logical point of 
view: the reduction is in fact a reduction strategy and the type assigned to C doesn't 
fit in general the reduction rule for C. C. Murthy further analysed the connections 
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between control operators, classical constructs and translations from classical logic to 
intuitionistic logic (see [4]). 

The difficulties met in trying to use -~--A ~ A (or the classical absurdity rule) as 
a type for control operators is not really due to classical logic, but much nore to the 
deduction system in which it is expressed. It is not easy to find a satisfactory notion of 
reduction in usual natural deduction because of the restriction to one conclusion which 
forbids the most natural transformations of proofs (they often generate proofs with 
more than one conclusion). Of course, as a by-product of our work, we can get possible 
adequate reductions for usual natural deduction, but none of them can be called "the 
" canonical one. 

Classical natural deduction has precisely been chosen in order to avoid these prob- 
lems (it is the simplest subsystem of free deduction which is closed under reduction) 
and the algorithmic calculus extracted from it. As a consequence, it enjoys the theo- 
retical properties of intuitionistic systems such as confluence and strong normalisation. 
The extracted pure calculus, called A#-calculus, is an extension of A-calculus which 
satisfies confluence too, and preserves the type during reduction. As expected it al- 
lows to reproduce control operators, but in a way which is not exactly the usual one. 
Call/cc is simulated in a manner which allows to reduce at any place in the terms 
(independently of a strategy). 

One important  question, which is only sketched at the end of this paper, is the 
one of results. This question appears if one consider the logical system not only as a 
type system but directly as a computational system in which results are also proofs 
(of a data  type). In the intuitionistic case there is a uniqueness property of results. 
In classical logic the uniqueness property fails (uniqueness contradicts, in some sense, 
confluence). But we can show that there is an operator (a typed A/~-term) which allows 
to compute the "intuitionistic" result among the "classical" ones, without additional 
computational cost. This means that,  as far as computation is concerned, classical 
logic works as well as intuitionistic logic and that  intuitionistic logic is only useful to 
communicate results. 

A c k n o w l e d g e m e n t s .  
I thank J.L. Krivine and C. Raffalli for their stimulating and penetrating comments 
on this work. 
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2 C L A S S I C A L  N A T U R A L  D E D U C T I O N  

2.1  R u l e s  o f  c l a s s i c a l  n a t u r a l  d e d u c t i o n  

Formulas are constructed with the logical operators -~ (negation), --* (implication), Y 
(first and second order universal quantifier). The greek letters F, A, H, E denote sets 
of formulas; latin letters denote formulas. Sequents P ~- A are interpreted as usual in 
sequent calculus. The deduction rules are the following (where y (resp. Y) is not free 
in the conclusion of the first order (resp. second order) introduction rule for V). 

A ~ - A  

II, A I- B,E 
II F A ~ B , E  --.i 

r p A -* B ,A  P' b A,A'  
F,F' ~- B, A,A '  

II, A b E P P -~A, A P' t- "4, A '  

II F -~A, E -.i P, P' ~- A,  A '  -'~ 

I I b  A[y/x], E P t- VxA,  A 
I I b  VxA,  E vi r b A[t/x], A w 

II F A[Y/X] ,  E P ~- V X A ,  A 
II ~- V X A ,  E vl P ~- A [ T / X ] , A  w 

The formulas explicitely mentionned in the rules are called active. The one which 
bears the connective is called the main formula of the rule. Weakening is managed 
implicitely: non-occuring active formulas are allowed in the premises of the rules. 

C o m m e n t s .  
(i) For simplicity, we deal only with the connectives whose (intuitionistic) algorithmic 
interpretation is done in lambda-calculus, but the system and its algorithmic interpre- 
tation extend to the other connectives. 
(ii) The deduction system is presented with sequents, but can of course be also pre- 
sented as a deduction system of (multiple) formulas; here are for instance the corre- 
sponding rules for ---~: 

[A] 1 

B, E A ~ B, A A, A' 
A --4 B, A 1 B, A, A, 

(iii) Proofs of usual natural deduction are easely translated in this system: one replaces 
each axiom -,A I- "~A which is used in an absurdity rule by the following piece of proof 

A P A  
F -~A, A 
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2 . 2  O n  t h e  c h o i c e  o f  t h e  r u l e s  

Classical natural deduction is a subsystem of free deduction with inputs fixed to the 
left. Here are, for instance, the corresponding rules of free deduction for --* and -, 
where the missing premisses (which are here restricted to axioms) are inside boxes. 

[ A ~ B I - A ~ B ]  II, A F B ,  E P F A - - , B , A  P ' e A ,  A' [-B-VB-] 
II F- A ~ B, E P, F' I- B, A, A' 

I-,AI--,AI II, A b E P b -~A,A F' b A,A' 
II F- -~A, E P, r ,  I- A, A' 

In addition to this choice of inputs, which corresponds to the usual functional 
view of proofs, some simplifications have been done to make the system as close as 
possible to intuitionistic natural deduction and therefore, the classical constructs easier 
to understand: 

(i) The rules for --* are the usual ones, i.e. those of the unified version where the 
introduction rule has two active formulas A and B in the premise; we could instead take 
the decomposed version with two introduction rules, which would generate a decom- 
posed version of fl-reduction (the unified version is in a certain sense an optimisation 
of the decomposed one). 

(ii) The choice of the inputs to the left allows to kill every premise having a 
left active formula. In the present system the ones which are killed are precisely the 
ones which are killed in intuitionistic natural deduction. Other choices could lead to 
interesting new algorithmic properties; a good candidate is the unrestricted elimination 
rule for --*: 

P P A - - * B , A  P ' F A ,  A' P " , B P A "  
F, F', F" P A, A', A" 

The resulting system is a natural deduction system with multiple conclusions. Sev- 
eral such systems have been proposed in the past for proof-theoretic investigations 1 
but, as far as I know, they have never been studied from the algorithmic point of view. 

2 .3  C u t s  a n d  t h e i r  e l i m i n a t i o n  

The algorithmic interpretation of the system will follow the cut-elimination procedure. 
Cuts are understood as "obstacles" to the subformula property. As in free deduction, 
one distinguishes between logical cuts and structural cuts. One has a logical cut when 
the main formula of an elimination rule R i i s  active in the preceding rule R~ and R2 is 
an introduction rule; one has a structural cut when the main formula of an elimination 
rule R1 is not active in the preceding rule R2. 

Logical cuts are nothing else but the usual cuts of intuitionistic natural deduction. 
The specificity of classical natural deduction appears with strutural cuts: because 

1see C. Celluci, Existential Instantiation and Normalisation in Sequent Natural Deduction, Annals 
of Pure and Applied Logic (to appear), for a discussion of these systems and references. 
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conclusions contain more than one formula, the active formula of the conclusion of 
rule is not necessary active as formula of the premise of the next rule. 

Logical and structural cuts have corresponding reduction rules. We give here the 
reduction rules for the connective --% which are the important ones from the computa- 
tional point of view (the rules are analogous for the other logical operators). In these 
rules, d~ are names for proofs indicated by a line of dots. 

Logical reduct ion:  

reduces to 

A F A  
, . . . . . . . . . .  o o  d 1 

F1, A 1" B, A, 
FIb A --* B, A, 

. . . . . . . . .  ~ d 2 

F2 }- A, A~ 
s }- B,A, ,A2 

. . . . . . . . . .  d 2 

F2 F A, A2 
. . . . . . . . . . . . . . . . .  HI 
F,,F2 F B,A, ,A2 

The resulting proof d is obtained by replacing in dl the occurences of the axiom A b" 
A, by the proof d2 with conclusion F~ F A, A~; the conclusion of d is F1, F2 b B, A1, A2 
up to weakenings. If there are several occurences of A F A in d,, the subproof d2 is 
duplicated; if there is no occurence of A I- A in dl, the subproof d2 is erased. 

S t ruc tu ra l  reduct ion:  

. . . . . . . . . . . . . . .  d l  

F, b A - *  B, A1 

F2 I- A ~ B, A2 
. . . . . . . . . .  d 3  

F3 ~- A, A3 
R 

F2, F3 F B, A2, A3 

reduces to 

�9 ~ 1 7 6 1 7 6  . . . . . .  ~ d 1 

F, 1- A -* B, AI 
. . . . . . . .  ~ ~  d 3 

F3 }- A, A3 
R 

Fx,F3 F B, A1,A3 
. . . . .  , . . . . . . . . . . .  d 2 

P2, F3 F B, A2, A~ 

The resulting proof d is obtained by replacing inductively in d2 each subproof dl 
whose conclusion contains an active occurence of A --* B , by the proof obtained by 
applying R directly to the conclusions of dl and d3; the conclusion of d is F2,Fz I- 
B, A2, A3 up to weakenings. If there are several such subproofs dl, the subproof da is 
duplicated; if there is no such subproof d,, the subproof d3 is erased. 



195 

C o m m e n t s .  The logical reduction given here coincides exactly with the one of free 
deduction. The structural reduction takes into account the particular form of the de- 
ductions in classical natural deduction. 

2.4 Algorithmic interpretation 
The algorithmic interpretation of classical natural deduction is based on the cut- 
elimination procedure, as in the case of intuitionistic natural deduction (where it is 
expressed as a typed lambda-calculus). For that purpose, formulas are replaced by 
indexed formulas. In this way the previous reduction rules become precisely defined 
and, because one deals with sets of indexed formulas, the contraction rule is man- 
aged implicitely (formulas with the same index are automatically contracted). In the 
intuitionistic case the indexes are only needed for the left formulas of the sequents 
(the hypotheses), because the right formula (the conclusion) is unique. In the present 
case indexes are required on both side: left formulas receive indexes x, y, z, ... (called 
A-variables), right formulas receive indexes a, fl,7, ... (called /z-variables), and the 
binding mechanisms of these variables allow to recognize in a sequent which one is 
concerned by the current rule. 

The algorithmic calculus is a little bit simplified (but not changed) if one keeps 
a non-indexed current formula to the right of the sequent, which denotes the active 
formula of a premise. This current formula is managed as in usuM natural deduction, 
i.e. the active formula of a conclusion is the current formula unless otherwise stated: 
the binding mechanism of/z-variables becomes thus the transformation of an indexed 
formula into the current formula. In this way intuitionistic proofs are treated exactly 
as usual in the more general context of classical proofs. Of course, because indexing 
is not systematic, extra rules for indexing are required (we call them naming rules). 
These rules replace classical absurdity rule of usual natural deduction. 

The algorithmic interpretation of classical natural deduction generates a pure cal- 
culus, called A/z-calculus, which extends ).-calculus in a simple manner. 

2.5 U s u a l  natura l  d e d u c t i o n  

Some difficulties for finding a satisfactory reduction notion for usual natural deduction 
(with the classical absurdity rule) appear clearly when it is embedded in Free Deduc- 
tion. The introduction and elimination rules for -~ are restrictions to left inputs of the 
left and right rules of Free Deduction: 

[-~AI-~A] II, A P  Pt--~A r ' t - A  
II I- -,A F, F' b 

Because of the restriction to at most one formula in the conclusion, these rules be- 
come incomplete for classical logic; completeness is achieved with the classical absurdity 
rule, which is another restriction of the left rule of Free Deduction: 

F,-,A I- 

P F A  
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This rule generates cuts of a new kind: instead of having only left rules (intro- 
ductions) directly followed by right rules (eliminations), one can have a right rule 
(elimination) followed by a left rule (absurdity rule), with some other rules between 
the two. 

. . . . .  dl 
-~A b -,A F ~ A 

r, -,A l- 

S , ' ~ ) i ' ;  e~ 
A I - A  

The natural way of eliminating this kind of cut would be to compose directly d2 
and dl, but if d2 is not trivial, this creates sequents in dz having two formulas in the 
conclusion (the problem is that usual natural deduction is not closed under structural 
reduction). 

3 X#-CALCULUS 

3.1 P u r e  A/z-calculus 

A/t-calculus has two kinds of variables: the A-variables x, Y, z, ..., and the/t-variables 
a, fl, 7, ... One way of understanding A/t-calculus is to consider it as an extension of 
A-calculus where one has the possibility to name arbitrary subterms by/t-variables and 
to abstract on these names: this means that  an operation can be applied directly to 
subterms of a term, and not only to the whole term as in A-calculus. 

T e r m s  contain n a m e d  and u n n a m e d  terms defined inductively as follows: 
- x  is an unnamed term, if z is a A-variable; 
-Ax .u  is an unnamed term, if x is a A-variable and u is an unnamed term; 
- ( t  u) is an unnamed term, if t and u are unnamed terms; 
- / t a . e  is an unnamed term, if e is a named term and a is a/*-variable; 
-[a]t is a named term, if t is an unnamed term and a is a/t-variable. 
For simplicity, one considers only terms where bounded and free variables are dis- 

tinct and bounded variables are bounded only one time (this means that  one considers 
terms up to renaming of bounded variables). 

The basic r e d u c t i o n  ru les  are the following: 
logical reduction: 

(Az.u v) ~o @,I x] 
structural reduction: 

renaming: 

(/t,a.u v) ,4/[,a],.,,] 

where u[[fl](w v)/[fl]w] is obtained from u by replacing inductively each subterm of the 
form [fl]w by [fl](w v). 
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The one-step reduction relation (denoted c,1) is defined as the compatible closure 
of this basic reduction relation, and the reduction relation (denoted ~,) as the reflexive 
and transitive closure of the one-step reduction relation. 

E x a m p l e .  In A#-calculus (contrary to A-calculus), there are terms which give al- 
ways the same result, independently of the number of arguments they are applied 
to. For instance, the term r = Ax.Ay.lt~.[~](x y) is such that,  for each n E N,  

z) y) zl...z.) y). 

C o m m e n t .  The operator # looks like a A having a potentially infinite number of 
arguments. The effect of the reduction of (...(#fl.u vl).. .v,) is to add the arguments 
vl, ..., v, to the subterms of u named fl, and this independently of the number n of 
arguments #fl.u is applied to. If the number n of arguments would be known in 
advance, one could replace #fl by Ax~...Ax, and [fl]w by (...(w x~)...x,), with the usual 
reduction for A. 

R e m a r k .  There is a reduction for the operator # which is similar to y-reduction in 
A-calculus: 

/Lc~.[c~]u ~,~ u if a has no free occurence in u. 

3.2  C o n f l u e n c e  o f  A p - c a l c u l u s  

T h e o r e m  1 In A#-calculus~ reduction is confluent i.e., if u t, ul and u ~ u2, then there 
exists v such that ul ~" v and u~ t, v. 

Proof .  One proceeds as for A-calculus. One defines a new reduction relation =~'1 such 
that: 

(i) r, is the transitive closure of =~x and 
(ii) =r is confluent. 

From this two facts one deduces as usual that  ~, is confluent. 
The relation =~1 is defined inductively as follows: 
(a) x o l  x; 

(b) if u =~1 u', then Ax.u ~1  Ax.u~; 
(c) if u =~1 u' and v =~1 v', then (u v) ~1  (u' v'); 
(d) if u =~1 u', then #a.u =~1 #a.u'; 
(e) if u =~1 u', then [a]u =~, [a]u'; 
(f) if u =~, u' and v =~, v', then (Ax.u v) =~t u'[v'/x]; 
(g) if u =~1 u' and v =r v', then (tza.u v) =~1 #a.u'[[a](w v')/[a]w]; 
(h) if u =~, u', then [a]gfl.u =~1 u'[a/fl]. 
It is easy to check that t> is the transitive closure of =~1 and one deduces the 

confluence of :=~1 from the following facts: 
(iii) if u =~1 u' and v =~1 v', then u[v/x] ~1  u'[v'/x]; 
(iv) if u :=~1 u' and v =~1 v', then u[[c~](w v)/[a]w] =~1 u't[a](w v')/[a]w]; 
(v) if u ~1  u', then u[a/fl] ~1  u'[a/fl]. 

R e m a r k .  A/~-calculus suggests some more reduction rules which are not required for 
the cut elimination procedure, e.g. the following one, which is symmetrical to the 
structural reduction rule: 
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The addition of such reduction rules allows to have a stronger notion of normal form, 
but  it destroys of course the confluence of the calculus. 

3 . 3  T y p e d  X / z - c a l c u l u s  

Here one deals with sequents such that  (i) formulas to the left of ~- are indexed with 
,~-variables, (ii) formulas to the right of ~- are indexed with it-variables, except at most 
one formula which is not indexed, (iii) distinct formulas never have the same index. To 
each sequent in a proof is associated a term of )~it-calculus. 

In the following rules, F, II are set of formulas indexed by ,~-variables, and A, E are 
set of formulas indexed by it-variables. 

Logica l  ru les  

x : A = P A  

u : II, A~F B , E  t : P P A ~ B , A  u : P ' F A ,  A' 

$x .u  : H ~ - A ~ B , E  ( t u )  : P , F ' ~ - B , A , A '  

u : H I - A [ y / x ] , E  u : P b VxA, A 

u : I I F V x A ,  E u : F b A [ t / x ] , A  

u : H ~ - A [ Y / X ] , E  u : P F V X A ,  A 

u : H F V X A ,  E u : F P A [ T / X ] , A  

N a m i n g  rules  

t : H k A ,  E e : P F A ~ , A  

[a]t : H ~-A%E gc~.e : P I - A , A  

C o m m e n t .  The logical rules are essentially the ones of typed ,~-calculus. The struc- 
tural rules are reproduced implicitely at the level of indexed formulas; the right struc- 
tural rules are thus connected to the naming rules: the first one includes contractions 
(the case where A ~ already appears in A) and the second one, the weakening (the case 
where A ~ does not occur). 

As in typed A-calculus one can define "-A as A ---*2_ and use the previous rules 
with the following special interpretation of naming for 2-: for a a it-variable, 2-~' is not 
mentionned; this gives the following rules (where 6 has no free occurence in e): 

u : H,A" ~-.L,E t : P P -~A,A  u : P' P A,A'  
~x.u : II b - ,A,E (t u) : P,F' b 2 - ,A ,A'  

t : H b 2 - , E  e : P ~ - A  

[7]t : I I b E  #6.c : P P . l . , A  

Of course, one can also write direct rules for -, ( they are derivable from the previous 
ones): 
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u : II, A = F E  t : F F - - , A , A  u : F * F A ,  A I 

Ax. t th .u:  I I k - , A , E  [7](tu) : r,r,  A, x, 

R e m a r k .  The type system for A#-calculus can be seen as a system with at most one 
conclusion, each named formula in the conclusions being replaced by its negation in the 
hypotheses. The operator/ t  becomes thus in a certain sense the algorithmic content of 
the classical absurdity rule. In this intcrpretation, terms corresponds to the case where 
there is exactly one conclusion. 

T h e o r e m  2 The type is preserved during reduction, i.e. if  t : F k- A, Z~ is derivable 
and t ~ t ~, then t : F ~- A, A is derivable. 

R e m a r k .  One can imagine more general notions of structural reduction, for instance 
the following one, where one shifts an arbitrary piece of term instead of an application 
only (in this rule, x is supposed to have exactly one occurence in t, and t unnamed): 

v)/x] 

But such transformations preserve the type (i.e. are logically correct) only under certain 
conditions proofs. 

3 . 4  E x a m p l e s  

In the examples the naming rules are not explicitely mentionned (but easy to recover). 

E x a m p l e .  - ,A ~ (A ~ V X X )  

-~A t- -,A A ~- A 

-~A, A F 

-,A b A --* V X X  

F ~ A  ---+ (A .-, V X X )  

This proof produces the term r = Ax.)~y.#5.[~o](x y) of the w 3.1 . 

x : -~A ~F-~A y : A v b A  

[~](x y) : -~A ~, A v F 

Ay.lth.[9~](x y) : -,A F A --* V X X  

Ax.Ay.tth.[~o](x y) : ~- -,m -* (A --* V X X )  

One can remark that r is also of type "~A ~ -,A, but (...(((r x) y) z,).., z , )  is typable 
with I" of type -,A --+ (A ~ V X X )  but not with ~" of type "-,A --* -,A (the typable term 
is in this context (...(tth.[qo]((r x) y) z,)...z~). I n  this context, 2_ hand V X X  do not have 
exactly the same behaviour. 

Example.  -,--,A --* A 
A F A  

"-,-',A F -~-,A F -,A, A 

. - , - ,AI-A 

F - - , - - , A ~ A  
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This proof produces a A/t-term as follows: 

x : A = ~ A  

y : "~'-,A y t - ' , " ,A  Ax./th.[a]x :P " , A , A "  

[ l(y : e A ~ 

A y . , , . [ v ] ( y  : A 

Let R be Ay.#a.[fll(y Ax.#&[a]x). When applied to arguments u, v,, ..., v,, it reduces 
in the following way: 

(...((Ay./ta.[~l(y Ax.Vh.[alx) u) v~)...v,) 
~(...(/t~.[Z](~ A=.~.[~]~) ~,)...~,) 

~,~.[/~1(~ A~./t~.[~l(...(~ v,)...~,)) 
The term R has a behaviour close to the one of the C operator of Felleisen. 

Example .  ((A ~ B) -+ A) ~ A 

(A -~ B)  ---+ A ~- (A ~ B)  .--+ A 

( A - - ,  B ) ~  A F  A 

~- ((A ~ B)  ---, A) ---+ A 

This proof produces a A/t-term as follows: 

y : 

A k - A  

~" A.--+ B , A  

x : A " F A  

(A -+ B)  ~ A ~ k" (A ---+ B)  ---, A Ax./t&[a]x : ~- A ---* B ,  A '~ 

(Y Ax./t&[a]x) : (A ---+ B)  --+ A N F A, A" 

Ay./t~.Ial(y Ax.#5.[a]x) : k- ((A .--+ B)  --.+ A)  -+ A 

Let ~ be Ay./ta.[a](y Ax.#5.[a]x). When applied to arguments u, vl, ..., v,, it reduces 
in the following way: 

(...((Ay.#~.[a](y Ax.#~.[alx ) u) vl),..v,) 

The term ~ has a behaviour close to the one of the call/cc operator of the Scheme 
programming language. 

3 . 5  F u r t h e r  p r o p e r t i e s  o f  A / t - c a l c u l u s  

We briefly sketch two important topics, that we cannot develop here. 

3.5.1 D a t a  t y p e s  

In intuitionistic natural deduction one has a uniqueness property of results. Suppose 
for instance that natural numbers are defined by the following second order formula 

N= := VX(X0 -~ (Vu(Xy -+ X s y )  - ,  X x ) )  

which means semanticMly that x is a natural number if and only if x belongs to each 
set X containing 0 and closed under the successor function s. For each n, there is a 
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unique intuitionistic cut-free proof of Ns"O, and the corresponding term of lambda- 
calculus can be considered as an adequate represention of the natural number n (see 
[5]). In classical natural deduction, the uniqueness property fails (for each n > 0, there 
is an infinite number of cut-free proofs of Ns"O) and classical proofs generates "false" 
natural numbers: Ax.Af.(f/zS.[~]z) is for instance a false representation of 1. ' 

But one can show that there is an "output" operator CJv which allows to recover 
the intuitionistic cut-free proof among the classical ones. Instead of reducing a proof d 
of Nx, one reduces CN applied to d (of course, using the rules of reduction of classical 
logic). For each data type, one can find an output operator which works for the proofs 
of this data type. Output operators are strongly connected with the memorization 
operators of Krivine [3]. 

3.5.2 An abstract A/z-machine 

A#-calculus can be executed by an abstract machine in the same way as A-calculus. 
In the case of an environnement based machine (for left-most reduction), with an 
environnement and a stack, one has only to add two instructions to the ones for A- 
calculus: to save the current stack in o~ (when the code is/~a) and to restore the stack 
c~ (when the code is [a]). 
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