REASONING ABOUT PROGRAMS
IN
CONTINUATION-PASSING STYLE

Amr Sabry Matthias Felleisen
Department of Computer Science
Rice University

Houston, TX 77251-1892

Technical Report (Rice TR 92-180).

A preliminary version of this paper appeared in
Lisp and Functional Programming
June 22-24, 1992, San Francisco, California.

Copyright (©1992 by Amr Sabry and Matthias Felleisen

FirsT EDITION: May 28, 1992

Reasoning about Programs in Continuation-Passing Style

Amr Sabry Matthias Felleisen *

Department of Computer Science
Rice University

Houston, TX 77251-1892

Abstract

Plotkin’s A-value calculus is sound but incomplete for reasoning about gn-transfor-
mations on programs in continuation-passing style (CPS). To find a complete extension,
we define a new, compactifying CPS transformation and an “inverse” mapping, un-CPS,
both of which are interesting in their own right. Using the new CPS transformation,
we can determine the precise language of CPS terms closed under gn-transformations.
Using the un-CPS transformation, we can derive a set of axioms such that every equation
between source programs is provable if and only if 85 can prove the corresponding
equation between CPS programs. The extended calculus is equivalent to an untyped
variant of Moggi’s computational A-calculus.

1 Compiling with CPS

Many modern compilers for higher-order functional languages [1, 16, 24, 25] utilize some
variant of the Fischer-Reynolds continuation-passing style (CPS) transformation [10, 23].
Once a program is in continuation-passing style, these compilers usually perform code op-
timizations via local transformations. Typical examples of such optimizations are loop
unrolling, procedure inlining, and partial evaluation.

In the terminology of the A-calculus, optimizations generally correspond to (sequences
of) §- and n-reductions. Hence, a natural question to ask is whether reductions on CPS
programs correspond to known transformations of source programs. If so, optimizations
of CPS programs could be understood and reported in terms of the original program as
opposed to its rather complicated CPS version. In particular, compilers that do not use
the CPS transformation, e.g., Chez Scheme [15] or Zinc [18], could benefit by implementing
transformations of source programs that correspond to transformations of CPS programs.

Technically speaking, we are addressing the following question: which calculus can prove
M = N for by-value expressions M and N, if eps(M) = eps(N) is provable in the (by-value
or by-name) A-calculus? As Plotkin [22] showed in 1974, the A,-calculus does not suffice.
Thus we refine this question as follows:

*Both authors were supported in part by NSF grant CCR 89-17022 and by Texas ATP grant 91-003604014.

2 A. Sabry, M. Felleisen

Is there a set of axioms, A, that extends the call-by-value A-calculus such that:

MAFEM =N iff \onF eps(M) = eps(N).

Such a correspondence theorem would be similar to the correspondence theorems for the
A-calculus and combinatory logic [2: ch 7], and the A,-calculus and by-value combinatory
logic [13]. In analogy to model theory, we call the left-to-right direction soundness and
the right-to-left direction completeness since the CPS transformation is often taken as the
definition of a call-by-value semantics.

To derive A, we proceed in three steps:

1. First, we develop a CPS transformation that produces a canonical form of CPS pro-
grams. The new transformation also produces the smallest possible output of all
known CPS transformations, without reducing any of the original (source) redexes.

2. Second, we develop an un-CPS transformation that maps canonical CPS programs
and their derivations back to the original language. As Danvy and Lawall [3, 6]
convincingly argue, this translation from CPS to direct terms is useful in its own
right.

3. Finally, by studying the connection between the CPS and un-CPS transformations,
we systematically derive A. The extended A-value calculus is equivalent to an untyped
variant of Moggi’s [21] computational A-calculus.

The next section introduces the basic terminology and notation of the A-calculus and
its semantics. The third section is a short history of CPS transformations. In Section 4, we
formalize the problem and outline our approach to the solution. Section 5 is about the CPS
language and its properties. It also contains the definition of our new CPS transformation.
Section 6 presents the “inverse” mapping and its exact relation to the CPS transformation.
Our main results, the extension of the A,-calculus and its completeness, are the subject of
Section 7. The last two sections present corollaries of our result. The first discusses the
typed and untyped versions of the calculi and their soundness with respect to observational
equivalence. The second is a correspondence between the extension of the A -calculus and
the CPS type structure.

2 A: Calculi and Semantics

The language of the pure lambda calculus, A [2], consists of variables, A-abstractions, and
applications. The set of terms, M, is generated inductively over an infinite set of variables,
Vars:

M= V| (MM) (A)
Viou= oz | (Ae.M) (Values)
v € Vars

A term is either a value, V', or an application. Values consist of variables, drawn from the
set Vars, and A-abstractions.

Reasoning about Programs in Continuation-Passing Style 3

We adopt Barendregt’s [2: ch 2, 3] notation and terminology for this syntax. Thus, in
the abstraction (Az.M), the variable z is bound in M. Variables that are not bound by a
A-abstraction are free; the set of free variables in a term M is FV(M). A term is closed if
it has no free variables; the set of closed terms is denoted by A®. We identify terms modulo
bound variables, and we assume that free and bound variables do not interfere in definitions
or theorems. In short, we follow common practice and work with the quotient of A under
a-equivalence. We write M = N for a-equivalent terms M and N.

The expression M[z := N] is the result of the capture-free substitution of all free
occurrences of z in M by N. For example, (Az.z2)[z := (Ay.2)] = (Auw.u(Ay.z)). A conteut,
C, is a term with a “hole”, [], in the place of one subexpression. The operation of filling

the context C' with an expression M yields the term C[M], possibly capturing some free
variables of M in the process. Thus, the result of filling (Az.2[]) with (Ay.2)is (Az.z(Ay.2)).

Calculi: A A-calculus is an equational theory over A with a finite number of axiom schemas
and inference rules. The most familiar axiom schemas are the following notions of reduc-
tions:

(Ae.M)N) — Mz := N] N :arbitrary (5)
(AaM)V) — Mz :=V] V : Value (By)
Az Mz — M r g FV(M) (n)
e Ve — V r g FV(V) (1)

The set of inference rules is identical for all A-calculi. It extends the notions of reductions
to an equivalence relation compatible with syntactic contexts:

M — N = C[M]=C[N] for all contexts C (Compatibility)
M=M (Reflexivity)

M=LL=N = M=N (Transitivity)
M=N = N=M (:Symmetry)

The underlying set of axioms completely identifies a theory. For example, 3 generates
the theory A, 3, generates the theory A,, and the union of 3 and n generates the theory
AfBn. In general, we write AA to refer to the theory generated by a set of axioms A. When
a theory AA proves an equation M = N, we write AA F M = N. If the proof does not
involve the inference rule Symmetry, we write XA+ M — N.

A notion of reduction R is Church-Rosser (CR)if AR = M = N implies that there exists
a term I such that both M and N reduce to L,i.e., ARF M — L and ARF N — L. A
term M is in R-normal form if there are no R-reductions starting with M.

Semantics: The semantics of the language A is a function, eval, from programs to an-
swers. A program is a term with no free variables and, in practical languages, an answer
is a member of the syntactic category of values. Typically, eval is defined via an abstract
machine that manipulates abstract counterparts to machine stacks, stores, registers, etc.
Examples are the SECD machine [17] and the CEK machine [7].

An equivalent method for specifying the semantics is based on the Curry-Feys Standard
Reduction theorem [7, 22]. The Standard Reduction theorem defines a partial function,

4 A. Sabry, M. Felleisen

——, from programs to programs that corresponds to a single evaluation step of an abstract
machine for A.

A standard step (i) decomposes the program into a context E and a leftmost-outermost
redex R (not inside an abstraction), and (ii) fills £ with the contractum of R. The special
contexts, F, are evaluation contexts and have the following definition for the call-by-value
and call-by-name variants of A respectively [7]:

E, == []

(V E,) | (E, M)
E, ==] E

|
| (En M)

Conceptually, the hole of an evaluation context, [|, points to the current instruction, which
must be a f, or § redex. The decomposition of M into E[(V N)] where (V N) is a
redex means that the current instruction is (V' N) and that the rest of the computation
(the continuation [7]!) is K. Since, a call-by-name language never evaluates arguments,
evaluation contexts do not include contexts of the shape (V' E,,).

Given evaluation contexts, the definitions of the standard reduction functions for call-
by-value and call-by-name respectively are as follows:

E,J(Ae. M) V)] —, E,[M[z:=V]]
E.[(Ae.M) N)] ——, E,[M[z := N]]
A complete evaluation applies the single-step functions repeatedly and either reaches an an-

swer or diverges. The notation —* denotes the reflexive, transitive closure of the function
——. The semantics of A is defined as follows:

eval,(M) = Vit M —3V (call-by-value)
eval, (M) = Vit M — V (call-by-name)

For the definition of the semantics, n and 7, do not play any role. Their relevance for
calculi is clarified in the next paragraph.

An important fact for the discussions below is that the syntax of the call-by-value
language A can be redefined as follows:

M ==V | E[(V V)] (A)
Vo= 2 | (Az.M) (Values)
E =[] |(VE)|(EM) (EvCont)

The set of evaluation contexts has also the following equivalent definition:
Eoa= [T TEV D] | ENTT M) (EvCont)

We use all the definitions interchangeably. Moreover, we extend the notions of reductions
to evaluation contexts by treating the hole as a placeholder for an arbitrary expression. For
example, the reduction:

((Az.(zy) [—(Tw)

is a @-reduction; it is not a §,-reduction.

Reasoning about Programs in Continuation-Passing Style 5

Observational Equivalence: Not only do calculi define the semantics of A, but they are
also useful for proving the correctness of some optimizations. Abstractly, an optimization
of a program C[M] is the replacement of M by a “more efficient” expression N such that
a programmer cannot distinguish the observational behavior of the programs C[M] and
C[N]. The observational behavior of a program includes its termination behavior and its
value when it terminates; it does not include execution speed. Formally, two expressions
M and N are observationally equivalent, M =, N (for x = v or & = n), if the following
condition holds:

For all contexts C' such that both C[M] and C[N] are programs, either both
eval,(C[M]) and eval,(C[N]) are defined or both are undefined.

It is undecidable to determine whether two expressions are observationally equivalent.
However, A, and A are two typical (weak) examples of theories that are sound with respect
to observational equivalence.

Theorem 2.1 (Plotkin) Let M, N € A.
1. If A\, - M =N then M =2, N.
2. IfA\FM =N then M =, N.

The soundness of extensions of A and A, with 5 and 5, respectively, depends on the
circumstances. The axiom 7, is sound with respect to call-by-value observational equiva-
lence for A. If we extend A with constants, 7, may be unsound. For an example, consider
a dynamically typed language with numerals and a predicate integer?. The latter can dis-
tinguish 3 and (Az.3 z), yet, the 5, axiom identifies the two terms. In a typed setting, 7,
is generally sound, independent of the parameter-passing technique.

The axiom 7, on the other hand, fails to be sound with respect to call-by-name obser-
vational equivalence even in a pure language. For example, if © is a diverging term, then
(Az.Qz) reduces to ©Q but the two are clearly observationally distinct terms. Indeed, 7 is
only sound in a typed language that does not permit the observation of the termination
behavior of higher-type expressions.

3 The Origins and Practice of CPS

The idea of transforming programs to “continuation-passing style” appeared in the mid-
sixties. For a few years, the transformation remained part of the folklore of computer science
until Fischer and Reynolds codified it in 1972.

Fischer [10] studied two implementation strategies for A: a heap-based retention strat-
egy, in which all variable bindings are retained until no longer needed, and a stack-based
deletion strategy, in which variable bindings are destroyed when control leaves the procedure
(or block) in which they were created. He concluded that

no real power is lost in restricting oneself to a deletion strategy implementa-
tion, for any program can be translated into an equivalent one which will work
correctly under such an implementation [10: 104].

6 A. Sabry, M. Felleisen

The translation is defined as follows.

Definition 3.1. (Fischer CPS) Let k, m, n € Vars be variables that do not occur in the
argument to F.

F:A — A
FIV] = Ak.k ¥[V]

FIMN] = Xe.F[M] (Am.F[N] An.(m k) n)
U[z] = =

U[Az. M] = M Ae F[M]k

Reynolds [23] investigated definitional interpreters for higher-order languages. One of
his goals was the desire to liberate the definition of a language from the parameter-passing
technique of the defining language. He developed a constructive (but informal) method to
transform an interpreter such that it becomes indifferent to whether the underlying param-
eter passing technique is call-by-value or call-by-name. His transformation is essentially the
same transformation as Fischer’s F.! Plotkin [22] later proved Reynolds’ ideas correct.

Theorem 3.2 (Plotkin [22]) Let M € A.
Simulation: ¥[eval,(M)] = eval,,(F[M] (Az.z))
Indifference: eval,(F[M] (Az.2)) = eval ,(F[M] (Az.z))

The Simulation theorem shows that the evaluation of the CPS program produces correct
outputs. The Indifference theorem establishes that this evaluation yields the same result
under call-by-value and call-by-name.

The main disadvantage of the Fischer CPS transformation is the excessive number of
redexes it introduces in the output. For example,

Fll(Az.z) (y y)] = Ak((Ak.k Ak Xz ((Ak.kz) k)
(Am.((Ak.((Ak.Ey) Am.((Ak.ky) An.(m k) n)))

Although the original term contains one A-abstraction and no f3,-redexes, its CPS coun-
terpart contains a large number of both. Plotkin [22] referred to the new redexes as ad-
ministrative redexes because an evaluator must always reduce them before re-establishing
0b,-redexes that were present in the source term.

From both a theoretical and a practical perspective, the presence of the administra-
tive redexes is undesirable. On the theoretical side, they complicate reasoning about CPS
programs. For example, Plotkin [22] finds it necessary to define an improved CPS trans-
formation exclusively for the proof of Theorem 3.2 above. On the practical side, code
generation phases in compilers favor smaller, i.e., more manageable, programs. Hence,

'In Reynolds’s transformation the continuation is the second argument to a procedure.

Reasoning about Programs in Continuation-Passing Style 7

“practical” CPS transformations [1, 5, 16, 24, 25] use special algorithms to minimize the
size of their outputs.

In essence, all practical CPS transformations are conceptually equivalent to the following

two-pass CPS transformation:?

o First, “mark” the new A-abstractions in the output of the Fischer CPS to identify
administrative redexes, and then

e reduce all administrative redexes.

Source redexes should remain intact because unrestricted reductions could cause non-
termination. The remainder of this section codifies these ideas in a simple manner.

Formally, the first pass of the two-pass CPS is the following modified Fischer CPS
transformation.

Definition 3.3. (Modified Fischer CPS) Let k,m,n € Vars be as in Definition 3.1.

FIV] = M.k V[V]
FIMN] = Me.F[M] (Am.F[N] An.(m k) n)

V[z] = =«
V[z.M] = e da . F[M] k

An overline decorates A-abstractions that were not present in the original term. An admin-
istrative reduction is simply one that involves decorated abstractions:

(Az.M) N) — Mz := N] (
(Az.Mz) — M v g FV(M)

S
S @
N

The complete definition of the two-pass CPS transformation, 72, is the following.

Definition 3.4. (Two-Pass CPS) F2[M] = P iff A3 = F[M] = P where P is in

f7-normal form. s
The following proposition establishes that F2 is well-defined.
Proposition 3.5 F2 is a total function.
Proof. By Lemma 3.6, 37-normal forms are unique. Therefore, the relation F2is a function.

Moreover, by Lemma 3.7, all reduction paths starting at F[M] for M € A terminate. Hence,
F2is a total function. u

2See also the discussion of this idea by Danvy and Filinski [5].

8 A. Sabry, M. Felleisen

Lemma 3.6 Let P and Q be in B7-normal form. If A\f7 = F[M] — P and X7 F
FIM] — Q, then P = Q.

Proof. The proof is a consequence of the Church-Rosser theorem for 37 [2]. »

It remains to establish that all 37-reduction paths terminate.
Lemma 3.7 Let M € A. If A\Gfj+ F[M] = My — My — My - - then:

1. for all M;, the bound variable of a X-abstraction occurs exactly once in the body,
2. for all v >0, M;y1 has one less X-abstraction than M;, and
3. for some finite n, M, is in B7-normal form.

Proof Sketch. The first claim is initially true by construction, and is preserved by [7-
reductions. It implies that reductions cannot eliminate or duplicate subterms. Therefore,
the second claim holds. The last claim follows by induction on the number of A-abstractions

in F[M].n

The output of F2 is extremely compact. For example, applying F2 to (((Az.Ay.z) a) b)
yields the term:

M Z e ((Ae((Ny.kz) b)) a)

For the same example, both Steele’s Rabbit transformation [25] and the Danvy/Filinski
transformation [5] yield the term:?

N Lk (Merz.(ky Meay ko)) (Amomkd) a).
The evaluation of M requires two F-reductions:
M — Mk.((My.ka) b) — Ak.ka,

while the evaluation of N requires three (binary) S-reductions:

N — Ae((Am.mkb) (Akgy.kaa))
— Ak.((Akgy.koa) k D)
— Ak.ka.

Since the extra (administrative) reduction in the evaluation of N is completely predictable
from the source term, the function F2 optimizes it away.

®This is slightly inaccurate. In both Steele’s Rabbit and the Danvy/Filinski CPS transformations, the
continuation is the second parameter to a procedure. Thus, their output is actually:

Ak.(Axky.(k1 Aykz.k2z)) a (Am.mbk)).

Even though this term only contains source redexes, we could still optimize it by equational reasoning as
the following derivation shows:

Ak.(Axky.(k1Ayks . koz)) @ (Am.mbk))
— Ak.((Am.mbk) (Ayks.k2a))
o Ak((Ayka.kaa) b k)
— Ak.ka
— Ak.((Ay.ka) b)
— Ak((Az.((Ay.kz) b)) a).

Indeed, the “net” effect of such transformations is that of performing administrative reductions only.

Reasoning about Programs in Continuation-Passing Style 9

4 Transforming CPS programs

With the elimination of all administrative redexes, we can turn our attention to “interesting”
Bn-transformations on CPS programs.

Plotkin [22] was the first to offer some insights about the relation between reductions
on source terms and CPS terms. In his comparative study of equational theories for call-
by-value languages and call-by-name languages, he proved the following theorem.

Theorem 4.1 (Plotkin [22]) Let M, N € A.
1. Ay b M = N implies XA, = F[M] = F[N];
2. Ay B F[M] = F[N] does not imply A, F M = N;
3. A B F[M] = FIN] iff A+ F[M] = F[N].
In short, S-reductions prove more equations on CPS terms than f,-reductions prove on

source terms. The effect of n-reductions is unknown. Moreover, the induced observational
equivalence relations do not correspond.

Corollary 4.2 (Plotkin [22]) Let M, N € A.

1. F[M] =, F[N] implies M =, N;

2. M =, N does not imply F[M] =, F[N].
In the second part of the corollary, the terms F[M] and F[N] fail to be observationally
equivalent in contexts that manipulate the continuation in “non-standard” ways. We return

to the observational equivalence relations and their correspondence in Section 8.
Our more immediate goal is to derive a set of axioms A such that:

MNAFM =N iff Agpk F2[M] = F2[N].

We illustrate some of the complications that this problem poses with a specific reduction
on CPS terms:

Ae((Ax.((z k) 2)) (AR Ayky)) — Me.((MeAy.ky) k) 2).
By inspection, the left-hand side is:

F2l((Az.zz) (Ay.y))]-

A quick glance at the right hand side reveals that it contains an administrative redex and
hence cannot be F2[M] for any M € A. The right hand side is, however, provably equal
to a number of CPS terms:

Aon FE F2[(Aa.((Az.za) (Ay.y))) 2)] = F2[(Ay.y) 2)] = Ae.((MNkAy.ky) k) 2).

Assuming we choose ((Ay.y) z) as the “inverse” of the right hand side, then the CPS
reduction corresponds to the following 3,-reduction:

(Az.22) (Ay.y)) — ((Ay.y) 2)

on source terms. The other choice corresponds to a g,-expansion, which is clearly undesir-
able.

Inspired by the above example, we proceed as follows:

10 A. Sabry, M. Felleisen

1. We explicitly define the set of CPS terms. The definition relies on a one-pass CPS
transformation equivalent to F2 (Section 5).

2. We define an “inverse” CPS transformation and formalize its precise relationship to
the CPS transformation (Section 6).

3. We derive the set A. For each notion of reduction P — ¢ on CPS terms, we
apply the inverse transformation to P and ¢ and get the source terms M and N.
If A, F M = N, then we are done. Otherwise, we add appropriate reductions to A
(Section 7).

5 The CPS language

The one-pass CPS transformation should combine the modified Fischer transformation with
the application of 3- and 7-reductions. An informal description of what these reductions
accomplish will clarify the nature of such a function.

The most informative kind of administrative redexes appears in the translation of a
redex ((Az.M) V) in an arbitrary continuation K

kE (A x F[M] k))

(Ak.((Dk. g L
m.((Ak.kE U[V]) (An.(mk)n)))))

A
(X
K).
The expression reduces to:
(N A2 . F[M] k) K) ¥[V])
via a number of F7-reductions. At this point, the following 3-reduction takes place:

(AN A2 F[M] k) K) ¥[V]) — ((Az.F[M] K) ¥[V]),

i.e., the image of the abstraction absorbs the continuation of the application. For the
source terms, this means that the body of an abstraction in application position absorbs the
syntactic representation of the continuation, which is the evaluation context of the redex [7].
Thus, a program of the shape E[((Az.M) V)] where E represents K, must be translated as
if it had been written as ((Az.E[M]) V).

Put differently, our CPS transformation “symbolically” evaluates redexes by lifting them
to the root of the program. For applications of values to values inside of A-abstractions, this
means of course that it takes the evaluation contexts with respect to the closest A\, which will
become the root of the program once the redex is discharged. The resulting transformation,
Cy, is parametrized over a variable k£ that represents the current continuation.

Definition 5.1. (Cy, ®,K;) The CPS transformation uses three mutually recursive func-
tions: Cg to transform terms, ® to transform values, and K to transform evaluation con-

Reasoning about Programs in Continuation-Passing Style 11

texts. Let k,u; € Vars be variables that do not occur in the argument to Cg.*

Ch: A — A
Ce[VI = (k @[V])
Ce[El(z V)T = ((z Ki[E]) @
Ch[E[((Az M) V)] = ((Az.Ci[E[M]

vl

I elvD
Pfz] = =z

®[Az.M] = Me.dx.Cr[M]

Kill
Kil[E[(= [])
Kr[E[((Ax. M) [])

Kr[EN[] M)]

] = &k

I = (= KilED)

[= QaC[E[M]])

| = Quilk[E[(wi M)]])

]
]
]

An informal examination of the above definition reveals that the function is not defined
by structural recursion. Still, it is relatively easy to check that with an appropriate notion
of “size”, the translation of every expression refers to the translation of a smaller expression.
In particular, the size of F[(u; M)] is smaller than the size of E[([] M)] because the empty
context always replaces an application. The formal definition of “size” is as follows.

Definition 5.2. (Size) The size of a term M, |M|, is the number of variables in M
(including binding occurrences). The size of a context F, | F|, is the number of variables in
FE (including binding occurrences) plus 2. u

As expected, the output of Cj is equivalent to the output of F2, which also proves that
Cy, is well-defined.

Proposition 5.3 Let M € A. Then, F2[M] = A\k.Ci[M].

Proof. The essential steps in the proof are:

1. Define a natural extension of the modified Fischer transformation that accepts evalu-
ation contexts: (Definition 5.4). Next, prove that:

A3 F (FIE[M]] k) = (FIM] (FIE] k)) (Lemma 5.5).
2. Using the previous result, prove that:

ABG B (F[M] k) = Ci[M] (Lemma 5.6).

*The CPS transformation Cy is related to the CPS transformation by Friedman, Wand, and Haynes [11:
ch 8], but differs significantly in several technical aspects.

12 A. Sabry, M. Felleisen

3. The result follows because Cx[M] is in #7-normal form (Lemma 5.6) and S7-normal
forms are unique (Lemma 3.6).n

The extension of F that accepts evaluation contexts is as follows.

Definition 5.4. (FExtension of the Fischer CPS) Let k,m,n € Vars as in Definition 3.1:

F o bvCont — A
FIII = M.k
FIV E)] = MF[V] Am.F[E] An.(m k) n
FI(E M) = Me.F[E] Am.F[M] An.(m k) n

The following lemma establishes an important property of evaluation contexts. Intu-
itively, the evaluation of E[M]in a continuation K is identical to the evaluation of M in a
continuation that combines £ and K.

Lemma 5.5 Let M € A, E € EvCont. Then, A3+ (F[E[M]] k) = (F[M] (F[E] k))-
Proof Idea. The proof is by induction on the structure of £.n

It remains to establish that the output of F is provably equal to the output of Cx and
that the latter is in 87-normal form.

Lemma 5.6 Let M € A, I/ € FvCont. Then,
1. AB H(FIM] k) = Ce[M] and X3+ (F[E] k) = Kp[E];
2. Cx[M] and Kr[E] are in B7-normal form.

Proof. The proof is by induction on the size of GG, where G is the argument to Cj or Kj.
We proceed by case analysis on the possible inputs:

1. G =V: then, NS+ (F[G] k) = ((Me.k O[G]) k) = (k $[G]). By cases:

(a) G = a: then (k V[G]) = (k @) = Cx[z]. Moreover, Cx[z] is in B7normal form.

(b) G = Az.M: then (k ¥[G]) = (k Ae.\a.F[M]c). By the inductive hypothesis
ABT E (F[M] ¢) = C[M] and C.[M] is in Bf-normal form. Therefore X375 -
(F[2. M] k) = Cx[Az.M] and Cx[Az.M] is in B5-normal form.

2. G = E[(x V)]: then 37 F (F[G] k) = (F[(z V)] (F[E] k)) by Lemma 5.5. The
latter term is provably equal to ((z F[E]k) ¥[V]). There are two cases:

(a) V ¢ Vars: then |E| < |G]. By the inductive hypothesis, Ag7 = F[E]k =
Kir[E] and Ki[E] is in S7-normal form. By an argument similar to case 1,
ABT E Y[V] = [V] and ®[V] is in S7-normal form. Both results follow since
Ci[G] = ((z K[E]) [V])-

Reasoning about Programs in Continuation-Passing Style 13

(b) V € Vars: then || = |G| and the inductive hypothesis does not apply. By
inlining the arguments in cases 4 to 7, AG7 F (F[E] k) = Kx[F] and Kix[F] is
in #7-normal form. The result follows as in subcase (a).

3. G = E[(Ax.M)V)]: then A8 + F[G]k = (F[(Ax.M) V)] (F[E]k)) by Lemma 5.5.
The latter expression is provably equal to ((Az.F[E[M]]k) ¥[V]). The result follows
by the inductive hypothesis and an argument similar to case 1.

4. G = []: then A3 F (F[G] k) = (Ak.k) k) = k = Ki[G]. Moreover Ki[G] is in

B7-normal form.

5. G = E[(z [))]: then, Af7 F (F[G] k) = (F[(= [])] (F[E]k)) by Lemma 5.5. The
latter expression is provably equal to (z F[F]k). The result follows by the inductive
hypothesis.

6. G = E[((Ax.M) [])): then A\G7 F (F[G] k) = (A\z.F[E[M]]k) and the result follows
by the inductive hypothesis.

7. G = E[([] M)]: then X375 - (F[G] k) = (F[([] M)] (F[E]k)) by Lemma 5.5. The
latter expression is provably equal to (Au.F[M] (u (F[E]k))). By another application
of Lemma 5.5, we get (Au.(F[E[(u M)]] k)). By the inductive hypothesis, A7 I
(FIE[(w M)]] k) = Cx[E[(u M)]] and Cx[E[(u M)]] is in #7-normal form. Therefore,
ABT F (FI[G] k) = Ki[G]. Moreover, by a simple case analysis, Ci[E[(u M)]] is
never of the form (K wu) for some term K. Therefore, no new 7-redex is created in
Au.Cr[E[(u M)]] and the term in S7-normal form. u

With the completion of the analysis of the new CPS algorithms, the decorating overlines
become irrelevant. Therefore, in the remainder of the paper, we ignore the distinction
between A and A.

Besides its pragmatic significance, the new CPS transformation simplifies the definition
of the set of CPS terms. Specifically, our universe of discourse consists only of the terms
that contribute to the proofs of equations of the form:

ABn E Cp[M] = Ci[N].
Since fnis CR [2], it is sufficient to consider equations of the form:
Ay Cy[M] — P.
Hence, the interesting set of CPS terms is:
SY 1P| IM € A N3y F G [M] — P).

The definition of the function Cy provides some insight about an inductive character-
ization of the set of CPS terms. According to the right hand sides of the equations in
Definition 5.1, all terms in the CPS language are an application of a continuation to a
value. Values are either variables or abstractions (continuation transformers). Continua-
tions are either variables, or the result of the application of a value to a continuation, or
a regular lambda abstraction. Therefore, we claim that 5 is generated by the following
grammar.

14 A. Sabry, M. Felleisen

Definition 5.7. (CPS grammar) Let x € Vars\{k}:

P o= (KW) (eps(A))
W o= 2| (M\k.K) (eps(Values))
K == k| (WK)|(Ae.P) (eps(LvCont))

Note: The special status reserved for the variable k ensures that the continuation parameter
occurs exactly once in each abstraction Ak.K. A program in CPS form is a closed term of
the form ((Ak.P) (Az.2)) where k is the special continuation paramter. When working with
the quotient of the language under a-equivalence, the special status of k disappears. End
Note

The following theorem establishes the equivalence of the two definitions of the set of
CPS terms.

Theorem 5.8 S = cps(A).

Proof. The left to right inclusion is the subject of Lemma 5.9. Lemma 5.13 deals with the
opposite direction. n

Lemma 5.9 5 C cps(A).

Proof. Let P € 5. From the definition of the set S, there exists an M € A such that
ABn F Ci[M] — P in n steps where n > 0. By induction on n, we prove that P € cps(A).

e n =0, then P =C;[M]. The result follows by Lemma 5.10.

e n =1+ 1, then Agn F Cx,[M] — Q — P for some (). By the inductive hypoth-
esis, @ € cps(A). Moreover, by Lemma 5.11, fgn-reductions preserve the syntactic
categories in the CPS language. Therefore, P € cps(A). n

Lemma 5.10 Let M € A, £ € FvCont. Then, Cy[M] € cps(A), Ki[E] € cps(FvCont).

Proof Idea. The proof is by induction on the size of the argument to Cx or Kj. It follows
the same strategy as the proof of Lemma 5.6. »

It remains to establish that gn-reductions preserve the syntactic categories in the gram-
mar of Definition 5.7. By inspection of the CPS grammar, the possible 3- and n-reductions
on CPS terms are as follows:

(Az.P)W) — Plz:=W] (B
((Ak.Kq) Kg) — Ki[k := K]
(ANEWE) — W
(Ae.Kz) — K r ¢ FV(K) (1k

Therefore, for eps(A), 5 = B, U B and n = 0y, U .

Reasoning about Programs in Continuation-Passing Style 15

Lemma 5.11 Let Py € cps(A), Wy € eps(Values), Ky € cps(EvCont). Then,
1. ABntE Py — P, implies P> € cps(A).
2. ABn E Wy — Wy implies Wy € cps(Values).
3. ABnE Ky — Ky implies Ky € cps(FEvCont).

Proof. The proof is by induction on the structure of the terms:

1. Let Py € eps(A) and assume AGn F Py — P5. By definition, P; must be of the form
(K7 Wy) with Ky € cps(EvCont) and Wy € cps(Values). Three kinds of reductions
are possible:

o \on + (K1 Wi) — (K3 W) because Ky reduces to K3. By the inductive
hypothesis, Ky € eps(FvCont) and therefore P € cps(A).

o A\Onk (Ky Wp) — (K1 W3) because Wy reduces to Wy. The result follows also
by the inductive hypothesis.

o Oy F ((Az.P) Wy) — Plz := Wq] because K7 = (Az.P). By Lemma 5.12,
Plz := W] € eps(A).

2. Let Wy € cps(Values) and assume Afn = Wy, — W,. There are two cases:

e W, = z which is impossible, and
o Wy = Ae.Ky where Ky € eps(FvCont). Then, either:
— ABn F Ak Ky — Ak.K;5 because Ky reduces to K5. The result follows by
the inductive hypothesis.
— A B Ak.Wsk — W5 because Ky = (W3 k) and W3 € cps(Values) by
definition.

3. Let Ky € cps(FvCont) and assume A3y F Ky — K;. Then, either:

e K| = k which is impossible, or
o K = Ax.P; and there are two cases:
— At (Ax.Py) — (Axz.P;) because Py reduces Pp. The result follows by the
inductive hypothesis.
— AonF (Az.Kz) — K because P = Kz and K € cps(EvCont) by defini-
tion.
o {1 = (W K) and there are three cases:
— A8y B (W K) — (W; K) because W reduces to Wy and the result follows
by the inductive hypothesis.

— Ao B (W K) — (W K3) because K reduces to K3 and the result follows
also by induction.

— A8 E((Me.K3) K) — K3k := K] because W = Ak.K3. The result follows
by Lemma 5.12. »

16

A. Sabry, M. Felleisen

Finally, the grammar is also closed under the relevant substitutions.

Lemma 5.12 Let P € cps(A), W € cps(Values), K1, Ky € cps(FvCont). Then,

1. Pz := W] e eps(A).

2. Kq[k := K3] € eps(EvCont).

Proof Idea. By induction on the structure of the terms P and Ky.n

For the opposite implication, i.e., that ¢ps(A) is a subset of 5, it suffices to show that

every P € cps(A) is reachable from A via Cy and 7.

Lemma 5.13 For all P € cps(A), there exists an M € A such Apn = C,[M] — P. For
all K € cps(EvCont), there exists an E € EvCont such Apn+ Ki[EF] — K.

Proof. The proof is by lexicographic induction on (G, |G|) where ¢ is an element P of
eps(A) or an element K of eps(EvCont), G is the number of abstractions of the form M. K
in GG, and |G| is the number of variables (including binding occurrences) in G. The proof
proceeds by case analysis on the possible elements of ¢ps(A) and eps(EvCont):

1. G = (k W), then there are four cases:

(a) W =a: take M = z.
(b) W = Ak.k: take M = Az.z.

(¢) W = Me W, K: let P = (WiK) 2), then P, < G because P; has one less
abstraction of the form Ak.K than . Therefore, by the inductive hypothesis,
there exists an My such that Agn F C[M] — Py. Take M = Az. M.

(d) W = Ak.Az.Pi: by the inductive hypothesis, P is reachable from a term Mj.
Take M = Ax.M;.

2. G = ((¢« K) W): by the inductive hypothesis, K is reachable from an evaluation

context . By an argument similar to the the first case, W is reachable from a value

V. Take M = E[(z V)].

. G = (((Me.Kq) K3) W): by the inductive hypothesis, K5 is reachable from an evalu-

ation context Fy. By repeating the argument for the first case, the values Ak.K; and
W are reachable from V; and V respectively. Take M = ((Az.((Ay.E2[(y z)]) V1)) V).
Then,

Cel((Az.((Ay.Eof(y x)]) V1)) V)]
= ((A((Ay-((y KplE2]) @) [VA])) @[V])
— ((Az.((Ay.((y K2) 2)) Ae.Kq1)) W) (induction)
— (A2 (((Ak.Ky) Ko) x)) W) (3)
— (((Ak.Ky) K3) W) (3)

Reasoning about Programs in Continuation-Passing Style 17

4. G = ((Az.Py) W): by the inductive hypothesis, there exists an M; that reaches P;.
By repeating the argument for the first case, there exists also a value V' that reaches

W. Take M = ((Az.Mq) V).
5. G = k: take £ =[].

6. G = (¢ K1): by the inductive hypothesis, there exists an F; that reaches K. Take
E = E(x [D]
7. G = ((Ak.Kq) Ky): similarly to case 3, take £/ = ((Az.((Ay.L2l(y «)]) V1)) []).

8. G = (Aa.Py): take £ = ((Az.My) []) where M; reaches Py by the inductive hypothe-
sis. n

6 An Inverse CPS Transformation

Based on the inductive definition of the CPS language, the specification of an “inverse”
to the CPS transformation is almost straightforward: the source term corresponding to
the application of a continuation K to a value W is simply E[V] where E is the evaluation
context that syntactically represents the continuation K and V is the value that corresponds
to W. The definition of the function C™* (un-CPS) uses two auxiliary functions to translate
continuations to evaluation contexts and values in the CPS language to values in the source
language. Both definitions are straightforward.

Definition 6.1. (C!, &1, IC_l)

Feps(A) —
W] = 1[[R]][~

2] = 2
O [(AkR)] = Az
(N WEK)] = AL (W K) 2]
7 [(AeAz.P)] = Aa.CTU[P]
KR = 1)

K™ (e K)] = KT[K][(x [])]
KAk K Ko)] = KB [E = K2]]

K= P)] = ((AeCTPT) (D)

Intuitively, C~!, @71, and K~! are the “inverses” of C, ®, and K respectively. Moreover,
C~1, =1 and K~! apply to the syntactic categories cps(A), cps(Values), and cps(EvCont)
respectively and yield terms in the appropriate syntactic categories in the source language.
To facilitate proofs of subsequent theorems, we first show that the output of C~! is a proper

subset of A.

18 A. Sabry, M. Felleisen

Definition 6.2. (OQutput of C~1)

M == E[V] (Ay)
Vo= oz | (AxM) (Values,,)
Foam (1] (QeM) ()]l)] (EoCont,)

Lemma 6.3 Let P € cps(A), K € cps(EvCont). Then, C™'[P] € A, and K~'[K] €
EvCont,.

Proof. The proof is by lexicogaphic induction on the number of abstractions of the form
Ak.K and the size of the terms (cpm. the proof of Lemma 5.13). It proceeds by case analysis
on the possible inputs to C~! and K1,

e P = (K W), then CI[P] = K7 [K][®~![W]]. By induction, K~[K] € EvCont,.
It remains to establish that ®~[W] € Values,,.
— W =z, then ®~1[W] = z € Values,.
W = Ak.k, then ®71[W] = Az.2. Since 2 = [][], then Az.z € Values,.

— W = Ak.WK, then @' [W] = Aa.C'[((WK) 2)]. Because the term (WK) z)
has one less abstraction of the form Ak.K than W, the inductive hypothesis
applies to it. Therefore, CT'[((WK))] € A, which shows that ®~'[W] €
Values,, .

— W = M2 P, then @71 [W] = Aa.C7I[P], then the result follows by induction.

o K =k, then K~![K] =[] € FvCont,.

e K = (z K;), then K7[K] = K7 K;][(z [])]. The result is immediate because
K= K,] € EvCont, by induction.

o K = ((A\k.Ky) K3),then K~[K] = K~[K1[k := K;]]. Because k occurs exactly once
in Ky, then term K4[k := K;] has one less abstraction of the Ak. K than ((Ak. K1) K3).
Therefore, K~1[K] € FvCont, by the inductive hypothesis.

e K =)z.P, then K7[K] = ((Az.C7[P]) []) and the result follows by induction. s

For two distinct reasons, C~! cannot be a complete inverse of C;. First, some CPS terms
are the image of more than one source term. Second, some CPS terms are not the image of
any source term. The first fact is a property of the function C; that reduces administrative
redexes on the fly. The second one is due to the closure of the set of CPS terms under
fn-reductions. We discuss each point in detail below.?

*Danvy and Lawall [3, 6] define a direct style transformation mapping CPS programs into source terms.
The transformation is the inverse of the Danvy-Filinski CPS transformation [5]; it is only applicable to
images of A terms. For example, let

M = ((Ad.5) (Az.zz) (Az.z2))).

Reasoning about Programs in Continuation-Passing Style 19

The effect of administrative reductions: The function Cy incorporates the reduction
of all administrative redexes from the output of the Fischer CPS. Hence, if F[M] and
F[N] reduce to a common term by administrative reductions only, Cx[M] is identical to
Cr[N]. The definition of the function Cj shows that, in two cases, different inputs are indeed
mapped to the same output.

e The first equivalence is:
Ce[E[((Az. M) N)]] = Crl(Az. E[M]) N)].

The equation illustrates how the CPS transformation uses its knowledge about the
continuation of an application. As indicated in Section 4, it “lifts” the application to
top level and merges the continuation with the body of the application.

e The second equivalence is:

CRIE[((z N) D] = Chl((Az.E[(x L)]) (= N))]-

This equation captures another essential element of CPS transformations. According
to folklore in the functional compiler-building community [4], the first aspect of a
CPS transformation is to give the value of every application a name. In the above
equation, the argument to Cx in the right hand side is a “flattened” version of the left
hand side in which the nested application (z N) is factored out and given a name.

In summary, we define two reductions on A that capture the effect of the administrative
reductions performed by Cg:

El((Az. M) N)] — ((Az.E[M]) N) v & FV(E), E#[] (Biige)
El((z N) L)] — ((Ae.E[(z L)]) (= N)) z ¢ FV(E, L) (Bfiat)

The reductions By and B4 define equivalence classes of source terms that map to the
same CPS term. The function C~' maps this CPS term to a particular representative of
the equivalence class: the element in 3y /37.-normal form.

Lemma 6.4 Let P € cps(A). Then, C™1[P] is in BupSBaat-normal form.

Proof. It suffices to show that all terms generated by the grammar in Definition 6.2 are in
BiiptBaee-normal form. The proof is by induction on the structure of the terms. »

It follows that C~! is an inverse of Cj on the subset of source terms in BiiftBa-normal
form.

Then, according to Danvy/Filinski,
CPS(M) = ((Azk.zak) (Azk.cck) (Av.((Adk.k5) v (Av.kv)))).
The latter expression reduces by two meaning-preserving f-reductions to:

((Azk.zzk) (Azk.zzk) (Av.k5))

which 1s still a diverging term. The direct style transformation cannot be applied to this term because in
the continuation Av.k5, v does not occur exactly once in k5. An extension of the direct style transformation
that handles the above term fails to be an inverse of the Danvy/Filinski CPS transformation.

20 A. Sabry, M. Felleisen

Theorem 6.5 Let M € A, P € cps(A), £ € FvCont, and K € cps(EvCont). Then,
1. }\ﬁliftﬁﬂat FM— (C_l o Ck)[[M]] and }\ﬁliftﬁﬂat FE— (/C_l o /Ck)[[E]],
2. (CloC)[M] =M for M = C7[P] and (K™ o Ki)[E] = E for E = K7[K].

Proof. We prove the first claim by induction on the size of the argument to Cx or Ki. The
proof proceeds by cases on the possible inputs to the two functions:

1. M = V: then there are two sub-cases:

(a) V = a: then x is identical to CT1[Ci[2]].

(b) V = Az.N: then by the inductive hypothesis Az.N reduces to Az.C™!'[Ck[N]] =
CCk [Nz . NT].

2. M = E[(z V)]: then CTCi[M]] = KKL[E]][(z ®~L[@[V]])]. If V is not a
variable, then |E| < |E[(z V)]|. Therefore, by the inductive hypothesis, F reduces to
K=YKL[E]], and by inlining the arguments for the first case, V reduces to ®~1[®[V]].
Otherwise, if V' is a variable y, there are four cases:

(a) M = (z y), then CT[C,[M]] = M.

(b) M = Fi[(z (z y))], then CTH[C,[M]] = K~HKk[E1]][(z (z y))] and the result
follows by the inductive hypothesis.

(6) M = Eif((A=.L) (&)], then ¢ M) = (A= [GIE(LITD) (@ y)), and
Eq[((Az.L) (z y))] reduces to ((Az.E4[L]) (2 y)) by a fuu-reduction. The latter
term reduces to ((Az.C™'[Cr[E1[L]]]) (= y)) by induction.

(@) M = Bil(x y) D)), then ¢ [CIM]] = ((Aw.C™[ChLEx[(w LD (2)) and by
a fBag-reduction, Eq[((z y) L)] reduces to ((Au.L4[(w L)]) (z y)), which in turn
reduces to ((Au.CTHCr[E1[(v I)]]]) (= y)) by induction.

3. M = E[((Ax.N) V)]: then CLCL[M]] = ((Aa.C7YCL[E[N]]]) @~ t[@[V]]), and
E[(Az.N) V)] — ((Ax.E[N]) V) by Bus, which reduces to ((Az.CT[C,[E[NT) V)
by the inductive hypothesis. The result follows because V reduces to ®~[®[V]] as
in case 1.

4. F =1[]: then K71]]] is identical to [].

5. E = Fyi[(z [])]: then K~HKL[E]] = KHK[E1]][(z [])]- The result follows by the
inductive hypothesis.

6. £ = E[((Az.N)[])]: similar to case 3.

7. E = E[[] N)]: then KTKLE]] = (AuwCT'C[E[(w NID [])- By a Bpar-
reduction, Eq1[([] N)] — ((Au.E1[(w N)]) []). By the inductive hypothesis, the
latter term reduces to ((Aw.C Ck[E1[(u NI [])-

The proof of the second part differs slightly from the above. According to the grammar of
Definition 6.2, cases 2d and 7 are impossible. Similarly, in cases 2¢, 3 and 6 the surrounding
context must be empty. Since these changes account for all the reductions from M to

CUCe[M]], M =C[P]. »

Reasoning about Programs in Continuation-Passing Style 21

The closure of the set of CPS terms under fn-reductions: Because of arbitrary
fn-reductions, the set of CPS terms includes terms that are not the image of any source
term. For example, the following n-reduction generates such a term:

Cr[Ax.x] = Ak Aw. ke — Ak.k
The function C™! (conceptually) coerces Ak.k first to Ak.Az.ka, i.e.,
CTUAkE] = CT Ak Aa ka] = vz

Thus, P is generally not identical to (Cx o C™1)[P]. However, Cy, is naturally the inverse
of C~1 on the subset of CPS terms that are images of source terms.

Theorem 6.6 Let P € cps(A), M € A, K € cps(FvCont), and E € FvCont. Then,
1Ay (CroCH[P] = P and Ayt (Ko KH[K] = K;
2. (CroC™H[P] = P for P =Cx[M] and (Ky o K"H[K] = K for K = K[E].

Proof Sketch. The proof of the first claim is similar to the proof of Lemma 5.13. We
proceed by case analysis on the possible elements of cps(A) or eps(Evcont):

1. G = (k W), then there are four cases:

(a) W = a: Then (Cr o C™H[G] = (k @)

(b) W = Mk.k: Then (Cr o C™H[G] =
n-reduction.

(c) W = Me.WiK: Then (Cr o C™H[G] = (k Ak Az Ci[CH((W1 K) 2)]]) which is
provably equal to (k Ak.Az.((Wy K) z)) by the inductive hypothesis. The latter
term reduces to GG by an n-reduction.

(d) W = Ak A2 Pi: Then (C o CTH[G] = (K Mk A2.Ci[CT[P]]) and the result
follows by the inductive hypothesis.

(Ak Az .kz), which reduces to G by an

2. G = ((z K) W): Then (Cp o C"H[G] = (v Ki[K7'KT]) @[~ [W]]). By the
inductive hypothesis A3y = Kx[K~[K]] = K and by argument similar the first case
Ay e[~ W] =W

3. G = (((Me.Ky) K3) W): Then (Cp o C™H[G] = (Ke[K K[k := K]]] @[[W]]).
Because k occurs exactly once in Ky, then K [k := K3] has one less abstraction of
the form Ak.K than ((Ak.Ky) Kz). Therefore, by the inductive hypothesis, Agn
Ke[KK [k := K5]]] = K1[k := K3]. By repeating the argument for the first case,
®[®~[W]] and W are also provably equal. It follows that ABn F (K4[k := Ko] W) =
Ce[CT(((Ak. K1) Kqg) W)]]. The result follows by a 3-reduction.

4. G = ((Ax.Py) W): Then (Cx o CTH[GE] = ((Ma.Ce[CT[A]]) @[@~[W]]). By the
inductive hypothesis, A3n = P, = Cx[C™'[P1]]. By the argument in case 1, A37n F
W = ®[®~[W]]. Therefore, ABn F (A.P1) W) = ((Aa.CL[CTHP]]) @[L[W]]).

5. G =k: Then (Kpo K™ H[G] =

22 A. Sabry, M. Felleisen

6. G = (z K1): Then (Ky o K™H[G] = (x Kx[K~[K1]]) and the result follows by the
inductive hypothesis.

7. G = ((Mk.Ky) K3): Then (K o K~YH[G] = Ki[K7[K1[k := K3]]] and this case is

simliar to case 3.

8. G = (Ax.P): Then (Ko K™H[G] = (M\a.Ci[CT[P1]]) and the result follows by

induction.

The proof of the second part is identical to the above but it excludes the cases that do
not correspond to images of source terms. In particular, it excludes cases 1b and lc be-
cause, in the image of a source term, the body of a Ak.K abstraction must be of the form
Az.P. Moreover, it excludes cases 3 and 7 because they contain the administrative redex

((Ak.](l)](2). 1

7 Completeness and Soundness

Using the partial inverse of the CPS transformation, we can systematically derive a set of
additional axioms A for A, such that A, A is complete for 35 reasoning about CPS programs.
Once we have the new axiom set, we prove its soundness in the second subsection. In the
last subsection, we briefly discuss the connection to Moggi’s computational A-calculus.

7.1 Completeness

As specified in Section 5, the possible - and 5-reductions on CPS terms are Sy, Bi, N, Mk-
We first outline the derivation of reductions corresponding to 7. Let (Az.K2) — K where
x & FV(K). Applying K1 to both sides of the reduction, we get:

(Ae.CTUK2]) [] and KK].

To understand how the left hand side could reduce to the right hand side, we proceed by
case analysis on K:

o K = k: The reduction becomes ((Az.z)[]) — []. Since the empty context generally
stands for an arbitrary expression, A should therefore contain the reduction:

(Az.x) M) — M (Bia)

e K = (y Ky): The reduction becomes ((Ax.X71[K{][(yv 2)]) []) — KK]y [])]-

By a similar argument as above, we must add the following reduction to A:
((Az.El(y 2)]) M) — E[(y M)] (Ba)
o K =((Ak.K1) K3): The reduction becomes:
(Ae.CTU K [k = Kq] 2]) []) — K[K[k := K.

Since the term (K4[k := K3] 2) has one less Ak. K abstraction than K, the inductive
hypothesis provides an appropriate equivalence.

Reasoning about Programs in Continuation-Passing Style

23

e K = \y.P: By an f,-reduction, the left hand side ((Az.((Ay.C~1[P]) x)) []) reduces
to (Az.C7Y[P][y := z]) []), which is identical to the right hand side.

The cases for the other reductions on CPS terms are similar. The resulting set of source
reductions, A, includes all the previously derived reductions and 7,: see Figure 1.

— M[l‘ = V] (60)
v v g FV(V) (10)
— ((Az.E[M]) N) e g FV(E), E#[] (Bure)
— ((Aw.E[(x L)]) (z N)) g FV(E, L) (Bfat)
M (Bia)
— El(y M)] v & FV(E[]) (Ba)

Figure 1: Source Reductions: A 4 {nv, Biits Baat, Bia» Pa}

The Completeness Lemma summarizes the connection between the notions of reductions

on cps(A) and the new reductions.

Lemma 7.1 (Completeness) Let P € cps(A).

Proof. The proof of each case is distinct.
1.
2.
3.

1 If Ay
2. If ABg
3.0f Any
4. If APy

l_

l_
l_
l_

P—Q
P—Q
P—Q
P—Q

then
then
then
then

AByBiaBa -

A1y F
ABuBunBiaBa F

cirl
CTH[P]
cirl
CH[P]

— C7YQ]
= Q]
— C7YQ]
— Q]

ni-reduction: The proof is outlined at the beginning of the section.

Br-reduction: By the definition of K1, K7I[((Ak. K1) Kq)] = K[K[k := KJ]].

n,-reduction: Applying ®~! to both sides of the reduction, we get ®~[(Ak.WE)] =
(Ax.C7[((Wk) z)]) and ®~'[W]. The possible cases are:

o W = z: then the reduction becomes the n,-reduction: (Az.zz) — =z.
o W = Ak.k: then both sides of the reduction are identical.
o W = Ak.W1K: then again both sides of the reduction are identical.

o W = Ak.Az.P, then Aa.((A\2.CT'[P])) — A2.C™'[P] is an n,-reduction.

. By-reduction: Here, we need to show that:

AByBipBiaBo b C ((Aw.P) W)] — C'[Pla := W]].

The left hand side of the reduction is equivalent to ((Az.C~'[P]) @ '[W]), which in
turn reduces to C~[P][z := ®~1[W]] by a B,-reduction. The latter term reduces to
C71[P[z := W]] by the Substitution Lemma below.

24 A. Sabry, M. Felleisen

In the above theorem, the proofs of the first three cases are complete. Only claim 4
requires the Substitution Lemma, which in turn refers back to Theorem 7.1 (case 1).

Lemma 7.2 (Substitution) Let P € cps(A), W € cps(Values), K € cps(EvCont).
Then,

1. ABuBupBiafa - CTH Pz == @ [W]] —= C [Pz := W]].
2. ABuBusiafa - K K]z := &~ [W]] — K~ '[Pz := W]].

Proof. The proof is by lexicographic induction on (G, |G]), i.e., the number of abstractions
of the form Ak.K and the size of the terms. The proof proceeds by cases on the arguments

to C~1 and K1,

o P = (K Wyp): then, CT[P][z := @7 [W]] = K HK][@Wi]] [z := @~ [W]], which
by the inductive hypothesis reduces to K~[K[z := W]][®~L[W1][z := @~ [W]]]. Tt
remains to establish that substitution commutes with ®~! as well. There are five
cases:

. W1 = a: then &7 1[2][z := &~ [W]] = &~ ![z[a := W]].
. Wi =z and z # x: then the result is immediate.

1

2

3. Wy = Ak.k: immediate since z is not free.

4. Wy = MeWok: then, @71 [Wi][z = &7 W]] = Az.L I [(W2K) 2)][z =
&~ '[W]]. By induction, we get Az.CT[(WoK)[z := W] 2]. The latter term
is identical to @~ [(Ak.WLK)[z := W]] as desired.

5. Wy = Mk Az Py (2 # 2): then, @7 [W][z := &~ 1[W]]
®~1[W]]. By induction, we get Az.C7![P[z := W]] = &1

= (AzC7PD[x =
[(AkAz.P)[z := W]].

e K = k: then the claim is vacuously true because k # z.
o K =((Ak.K1) K3): here,
KMk Ky) Ky)][z := @7 W] = K™K [k := Ko]][z := &7 H[W]).

By induction, the latter term reduces to K~[K1[k := K;][z := W]], which is identical
to KT[((Me.Ky[z := W) Kq[z := W])].

o K =)2.P (2 £ 2): K™ [Az.P][z := @7 [W]] = (M2.C7YP][z := @ W] []-
By induction, ((Az.C7Y[Plz := W]]) []) = K~ [Az.P[z := W]].

o K = Az.P;: immediate since z is not free.

o K =(z K1) and z # z: this is a special case of the next clause.

e K = (2 Ki): then the left hand side is K™'[K][z := ¢~ [W]][(@~[W] [])]. By
induction, the latter term reduces to K[Ky[z := W]] [(®~[W] [])]. For readablity,
let K = Ky[x := W]. The goal is to prove that

KK(@~ W] [])] reduces to K™[(W K')].

We proceed by cases of W:

Reasoning about Programs in Continuation-Passing Style 25

1. W=y then KUK [(y [)] = K~ (y K')]-

2. W = Ak.k: then, K~ K'][((Az.z) [])] reduces to K~1[K'] by an ;4-reduction.
The latter term is identical to K~ '[((Ak.k) K')].

3. W = Ak.W5K: then, the left hand side K K'][(Ay.CTH(WsK) »)]) [)] =
KKK (Ay.(WsK) y))]]. By the first case in Lemma 7.1, this reduces
to K K'J[K~[(W3K)]]. Moreover, by Lemma 7.3, the latter term reduces to
K=N(W5K)[k :== K']], which is identical to K™'[((Ak.W3K) K")].

4. W = Ay Py then by a Syp-reduction, K™'[KT[((Az.C7[F=]) [])] reduces
to (Az.K7YK'][C[]]) [])- By Lemma 7.3, the latter term reduces to
(AzC7 Pk = K] []) = K7 [A2. Pk := K']] = KH((Ak A2.Py) K')]- n

Lemma 7.3 (Continuation) Let K, K1, K3 € cps(EvCont), P € cps(A). Then,
1. XBug B KTHK]CTH P — C [Pk := K]

2. ABiigt B KKK KL]] — KT K[k = K]

Proof. The proof is by induction on the number of abstractions of the Ak.K and the size of
P or K. It proceeds by case analysis on the possible elements of eps(A) and eps(EvCont).

o P= (K3 W), then KTK][C[P]] = KKK K:][@[W]]]- By the inductive
hypothesis, A3y b KKK Ks]] — K~ K3k := K]]. Therefore, ABun +
KHKJCTHP] — K7 K3[k = K]J[® Y [W]]. The latter term is identical to
K=(K3 W)[k := K]] since k is never free in W.

Ky = k: then both sides are identical to K~1[K,].

K = (z K3), then KKK K3][(= [])]] reduces to K[K[k := K3]][(z [])] by
induction. The latter term is identical to K™1[(z K3k := K3])]-

Ky, = ((Me.K3) Ky), then KKK K3k = K4]]] reduces to K[K3k =
K4)[k := K,]] by induction. This term is identical to K~ [K3[k := K4k := K]]],
which in turn is identical to K™'[((Ak.K3) K4)[k := K,]].

K; = Aa.P: then, K7 K][(Ax.C7[P]) [])] reduces to (Ax. KHEJCHPI) [])

by a Byp-reduction. By induction, this term reduces to

(Ae.C7[Plk := K] []) = K~ [(Ae.P)[k := K] n

The Completeness Theorem is a direct consequence of the above results.
Theorem 7.4 (Completeness) If Ay P — Q then A\, A+ C7[P] — C7[Q].

Proof. By pasting together the proofs of the Completeness Lemma. u

26 A. Sabry, M. Felleisen

7.2 Soundness

The set of source reductions in Figure 1 is sound with respect to the equational theory over
CPS terms. In other words, for a source reduction M — N, Afn = C,[M] = Cx[N]. In
fact, we can prove the stronger results of the following lemma.

Lemma 7.5 (Soundness) Let M € A.
L.IfAB, F M — N then A3 FC[M] — Ci[N]

2. If An, M — N then Anem B Ci[M] — Ci[N]
3. If}\ﬁhﬂ F M — N then Ck[[M]] = Ck[[N]]
4. If NBpoy = M — N then Cr[M] = Cg[N]
5. If ABig F M — N then A F Ck[[M]] — Ck[[M]]
6. If ABq F M — N then A F Ck[[M]] — Ck[[N]]

Proof. The cases for 85 and (g, are immediate from the definition of the function Cy.
We present only the proof for 8,-reductions in Lemma 7.6. The other proofs are similar. n

Lemma 7.6 (3,) ASF Ci[(Aa.M) V)] — Cx[M[z := V]].
Proof. By definition of Cg,
Crl[((Az. M) V)] = (Az.Ci[M]) [V]).

The latter term reduces to Cx[M][z := ®[V]]. It remains to establish that substitution
commutes with Cy, i.e.,

1. A FCi[M][x := @[V]] — Cx[M]z := V]].
2. A8 F K[E][x == @[V]] — Ki[E[z := V]].

The proof is by induction on the size of the argument to Cy or K. Except for one case, the
inductive hypothesis applies immediately. The interesting case occurs when M = E[(x U)]:

CelE[(z U)l[z == o[V]] = ((z Ki[£]) @[UD]x == @[V]]
— (e[V] Ki[£][z := @[V]]) @[U][x := @[V]])
— (e[V] Ki[Elz := V]]) @[U[z := V]])

The last line follows by cases on F if U is a variable. Otherwise, it follows by the inductive
hypothesis. For readability, let £/ = Elz := V] and U’ = Ulx := V]. The goal is to prove
that:

([V] Ki[E]) @[U']) — Cx[E'[(V U]

We proceed by cases of V:
e VV =z, then both sides are identical.
e VV = Az.L, then by a #-reduction,
(A A2.CR[L]) Ke[E']) ®[U']) — ((A2.Cr[L][k := Kr[E]]) ®[U']).

By Lemma 7.7, the latter term reduces to ((Az.Cx[F'[L]]) ®[U’]), which is identical
to Ck[E'[(Az.L) UN]]. n

Reasoning about Programs in Continuation-Passing Style 27

Lemma 7.7 (Context) Let M € A, E, Ey € FvCont. Then,

AB = Cp[M][k := Ki[E]] — Cr[E[M]] and AB = Ki[EA][k := K[E]] — Ki[E[E1]]

Proof Idea. The proof is by induction on the size of M or Fq.n

The Soundness theorem is a direct consequence of these results.

Theorem 7.8 (Soundness) If A\,AF M — N then Apnt Cx[M] — Cr[N].

7.3 Correspondence

Unfortunately, if Cx[M] reduces to Cx[N], M does not reduce to N unless N is in B B4¢-
normal form. Figure 2 summarizes the relationship between proofs on either side. The
dotted lines correspond to the application of Cj, or C~!. The solid lines represent sequences
of reductions.

M N
Buift Briat Buift Briat
(C~YoCr)[M] A > (C™'oCy)[NV]
A 4
: Bn :
\ -1
LM Cr[N]

Figure 2: The correspondence Theorem.

Although the functions Cp and C~! do not always preserve reductions, they preserve
equality.

Theorem 7.9 (Correspondence) The calculi A1 and A, A are equivalent in the follow-
ing Sense:

1 XAAF M =(C o C)[M].
2. A8t P = (CpoC~Y)[P].

28 A. Sabry, M. Felleisen

3. AyAF M = N iff \By - Cu[M] = Ci[N].
4. ABp P =Q iff \,AFC-[P] = C[Q].

Note: Other CPS transformations. The correspondence theorem does not depend on
any specific aspects of Cy, or F. Rather the result is valid for any CPS transformation cps
that satisfies the following condition for M € A:

Abn B FIM] = cps(M).

End Note

7.4 The computational A-calculus

The calculus A A is equivalent to an untyped variant of Moggi’s computational A-cal-
culus A, [21]. Specifically, if we ignore the types of expressions, eliminate product and
computational expressions, re-interpret Moggi’s let-expression as the usual abbreviation
for a A-application, and apply his let-axioms to the expanded expressions, then the basic
reductions of A. are 3,, n,, B;4 plus the additional reductions of Figure 3.

((Awa. M) (Az1.M2) My)) — ((Az1.((Az2. M) Ms)) M) (Comp)
(M N)L) — ((Ax.xz L) (M N)) (let.1)
(V(M N)) — ((Az.V z) (M N)) (let.2)

Figure 3: Additional Reductions for the Computational A-calculus

We prove the equivalence of our calculus and A. by showing how each calculus proves
the reductions of the other. The proof is tedious but straightforward.

Based on the above argument, the equivalence of the calculi yields the following refor-
mulation of the Correspondence theorem.

Theorem 7.9’ (Correspondence (Reformulation)) The calculi AGn and X, are equiv-
alent in the sense of Theorem 7.9.

8 Observational Equivalence

The interest in calculi is motivated by their soundness with respect to observational equiv-
alence (see Section 2). Therefore, the natural question is whether our extension is sound
with respect to the call-by-value observational equivalence relation. Moggi [21] proves the
result for a typed setting.

In a dynamically typed language, the soundness of the A.-calculus with respect to the
call-by-value observational equivalence relation depends on the particular language exten-
sions. For example, the axiom n, is unsound in languages like Lisp or Scheme as argued in
Section 2. It is still possible to prove the soundness of the A.-calculus for pure dynamically
typed languages, i.e., languages with no constants.

Reasoning about Programs in Continuation-Passing Style 29

Theorem 8.1 Let M,N € A. If \,AFM =N then M =, N.

Proof. Let C be a context such that C[M],C[N] € A° Assume A\,A - M = N and
eval,(C[M]) is defined. The goal is to show that eval,(C[N]) is also defined.
It follows from the assumptions that A,A F C[M] = C[N] by Compatiblity. Therefore,

ABn = C[CIM]] = CR[CIN]] (1)

by Theorem 7.9. Also by the assumptions and the definition of eval,, A, F C[M] =V for
some value V. Hence,

Abn B CCM]] = GV (2)

by Theorem 7.9. From (1) and (2), we deduce that Agn F C,[C[N]] = Cx[V] = (k ®[V]).

The Church-Rosser Theorem implies the existence of a term P such that:

Ay F Cy[CIN]] — P
A F (B ®[V]) — P

Obviously, all the reductions starting from the term (k ®[V]) must occur inside ®[V]. Since
reductions preserve the syntactic categories in the CPS language, P must be of the form

(k W) for some W. Therefore, Apn F Ci[C[N]] — (k W), and hence
Ay E CR[CIN]k = Aez] — (Aza) W) — W

Lemma 8.2 implies that eval,,((F[C[N]] Az.z))is defined. Thus, eval,(C[N]) is defined by
Theorem 3.2. n

Lemma 8.2 Let M € A°. If A\t Cx[M][k := A\av.x] — W, then eval,(F[M] Az.x) is
defined.

Proof. Assume AGn F Ci[M][k := Az.2] — W, then by Lemma 5.6,
A (FIM] Ax.x) — (AECL[M]) Az.x) — Ci[M][k := Az.a] — W
By the Postponement Lemma [2: 15], we also have:
(FIM] Az.z) —=p L —, W for some term L

Since M is a closed term, W cannot be a variable; it must a A-abstraction. Any »n-expansion
starting from a A-abstraction will also result in a A-abstraction. Therefore, L is a value:

(FIM] Aav.x) —5 W'

By the Standard Reduction theorem [22], if a term reduces to a value, then it standard-
reduces to a value. Therefore, eval, (F[M] Az.z) is defined. u

30 A. Sabry, M. Felleisen

As pointed out in Section 4, M 2, N does not imply that Cx[M] =, Cix[N]. For
example, if

MY

N

Ay ez (y @)

4 Ay ez (y Az.az)

then, M 2, N [22]. On the other hand,

Cr[M] = (k Ak Ay.(k Aedz.((y (z k)) 2))),
Cr[N] = (k A Ay.(k Ak Az ((y (z k) (A Az((z k) 2))))),

and the context

(Aa((a (Ab((b (M) Ad0))
(A Am.m (Az.2)))))

differentiates the two expressions. Since the context D includes a term (Ak.Am.(m Az.z))
that ignores its continuation, there is no context C' € A such that C,[C[M]] = D[Cr[M]].

This result prompted Meyer and Riecke [19] to deduce that “continuations may be unrea-
sonable”. However, a restriction of D to range over contexts in the language cps(A) results
in a notion of observational equivalence that coincides with the call-by-value observational
equivalence.

Definition 8.3. (=,,,(n); CPS observational equivalence) Two terms P, () are obser-
vationally equivalent, P =, .y @, iff for all contexts D such that ((Ak.D[P]) (Az.z)),
((Ak.D[Q)]) (Az.z)) are programs in CPS form, then either both of eval,((Ak.D[P]) Az.z)
and eval,((Ak.D[Q]) Az.x) are defined or both are undefined. n

Theorem 8.4 Let M, N € A. Then, M =, N iff Ck[M] =.,5a) Ck[N]

Proof. Assume Cy[M] #.,5p) Ck[N], then there exists a context D such that D[Ci[M]],
DI[Ck[N]] € eps(A) and the evaluation of one of the programs terminates while the other
diverges. Without loss of generality, assume eval,((Ak.D[Cr[M]]) Az.z) is defined and
eval,, (Ak.D[C,[N]]) Az.z) is undefined. By the definition of eval,,, we get:

AGE((AED[CL[M]]) Aex) =W

AB W ((Ak.D[CL[N])) Az.x) = W' for any W’
By Lemma 8.5, there exists a context €' € A such that:

A E (AR C[CIM]])) Azx) =W

ABn (AEC[CINT]) Az.z) = W' for any W'

By Lemma 8.2 and Theorem 3.2, eval,(C[M]) is defined and eval,(C[N]) is undefined.
Therefore, M %, N. The reverse implication is straightforward. s

Lemma 8.5 Let M, N € A, D[C,[M]], D[Ck[N]] € cps(A). Then, there exists a context C
such that Xgn = Cx[C[M]] = D[Cx[M]] and X3n F CL[C[N]] = D[Ck[N]].

Reasoning about Programs in Continuation-Passing Style 31

Proof. Since D[Ci[M]], D[CK[N]] € eps(A), they are valid arguments to C~1. Tt suffices
to show that the function C~! is a homomorphism when restricted to inputs of the form
Cr[M] for some M € A. By cases:

e W) = KK W)

O~ 1z] = 2.

[AE.E)] = A\w.x.

O~ AEWEK)] = Xa.C (W K) z].

Ok Az . P)] = Aa.CTI[P].

KR = [

K (e B)] = KK (D)

IC_I[[((AIC.](l) 1(2)]] = K_l[[lfl[k =](2]]].

K1) = ((e.c[PD) [)

O 00 ~ Oy Ot s W N =

The function is homomorphic is all cases except cases 4 and 8. Both are impossible if the
input is of the form C,[M] for some M € A.»

9 Typed CPS Models

Friedman [12] investigates the connection between the typed gn-calculus and the functionals
of finite type. Two convertible A-terms define the same functional of finite type, and two
non-convertible A-terms define different functionals. Technically, A7 is sound and complete
with respect to the full type structure.

The Correspondence Theorem suggests the existence of a similar completeness theorem
for the A.-calculus and the CPS type structure [20, 14]. We prove this theorem after briefly
reviewing the full type structure and the CPS type structure as denotational models for the
call-by-value A-calculus.

Full Type Structure
The set of types for the simply typed A-calculus is

tu=ol|t—t

where o denotes the observable base type. The denotations of types are as follows. Let B
be an infinite set of elements of type o. Then, the full type pre-structure over B consists of
a nonempty set D! for each type t:

D° =B
Dt1—>t2 — Dtl = Dtg

The term language of the simply typed A-calculus is the subset of A to which we can
assign simple types as follows. Every variable has a fixed type t. If M is of type t — s
and N is of type ¢, then (M N) is of type s. Finally, if is of type ¢t and M is of type

32 A. Sabry, M. Felleisen

s, then Az.M has type t — s. The full type structure, Pg, over B consists of a full type
pre-structure and a meaning function P such that:

Env: Vars = UgD' such that for p € Env, p(a*) € D'

Plzlp = p(2)
PlAz.M]p = Aa.P[M]plz/a]
PIMN]p = P[M]p(P[N]p)
The notation A = B represents the set of functions from A to B and Aa.--- denotes the
function f such that f(a) = ---. Also, P |E M = N means that for all environments p,

P[M]p = P[N]p. Based on this definition, we can formulate the completeness theorem.
Theorem 9.1 (Friedman [12]) Let M, N € A. Then, \pn+- M =N iff P =M = N.
Since F[M] € A, the theorem implies the following corollary.

Corollary 9.2 Let M,N € A. Then A. - M = N iff X\gn = F[M] = F[N] iff Ps |=
FIM] = F[N].

CPS Type Structure

Meyer and Wand [20] establish that the type of a A term may be related in a straightforward
manner to the type of its CPS transform. The set of types becomes:®

su=o|(s—a)—(s—a)

where a denotes a distinguished type of answers. The CPS type structure, Sp, over some
infinite base set B and an infinite set of answers A, consists of a nonempty set D? for each
type and a meaning function such that:

D° = B
D(51—>a)—>52—>a _ (D51 :>A):>DS2 = A

and
S A X Env x Continuation = A
Env: Vars = U,D? such that for p € Env, p(2°) € D*
Continuation : U;D® = A
Slzlpr = w(p(2))
S[re.M]pr = r Ac.Aa.S[M]plz/alc
SIMNTps = S[Mp(2a.S[Np(Xb.((a) b))

Not surprisingly, the meaning of a term M in the CPS model is directly related to the

meaning of F[M] in the direct model.

SMeyer and Wand assume that the continuation is the second argument to a procedure. This means that

their set of types is actually:

su=o0|s—(s—a)—a

Reasoning about Programs in Continuation-Passing Style 33

Lemma 9.3 Let M € A. (P[F[M]]p k) = S[M]pk.
Proof Idea. The proof is by induction on M.«

This lemma implies that Sg and Ppg satisfy theorems that are related via the Fischer-cps
transformation.

Lemma 9.4 Let M,N € A. Then, Pp |= F[M] = F[N] iff S EM = N.
Proof. The proposition follows from Lemma 9.3. 1

It follows that the A.-calculus is sound and complete with respect to the CPS type
structure.

Theorem 9.5 Let M, N € A. Then, \.- M =N iff S =M = N.

Proof. The theorem is a direct consequence of Lemma 9.4 and Corollary 9.2. 1

10 Conclusion and Future Research

In summary, our extensions of the A, -calculus result in an equational theory over A that is
sound with respect to the call-by-value observational equivalence, and corresponds to Afn
over CPS terms. Thus far, we have also determined that the result extends to languages
with ground constants and primitive functions and languages with imperative assignment
procedures for data structures.

For languages with Scheme-like control operators, our extension of A,-calculus is still
sound with respect to observational equivalence. However, the correspondence theorem
fails since operators like call/cc manipulate their continuation in non-standard ways. To
re-establish the correspondence theorem for such languages, we need to find an extension
for the A-control calculus [8, 9] that corresponds to Afn on CPS terms.

References

1. AppeL, A. AND T. Jim. Continuation-passing, closure-passing style. In Proc. 16th
ACM Symposium on Principles of Programming Languages, 1982, 293-302.

2. BARENDREGT, H.P. The Lambda Calculus: Its Syntax and Semantics. Revised Edition.
Studies in Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam,
1984.

3. Danvy, O. Back to direct style. In 4th Proc. Furopean Symposium on Programming.
Springer Lecture Notes in Computer Science, 582. Springer Verlag, Berlin, 1992, 130-
150.

4. Danvy, O. Three steps for the CPS transformation. Tech. Rep. CIS-92-2. Kansas
State University, 1992.

5. DaNvy, O. AND A. FiLINSKI. Representing control: A study of the CPS transforma-
tion. Tech. Rpt. CIS-91-2. Kansas State University, 1991.

34

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

A. Sabry, M. Felleisen

. Danvy, O. anD J. L. LawaLr. Back to direct style II: First-class continuations. In

Proc. 1992 ACM Conference on Lisp and Functional Programming, 1992, this volume.

. FELLEISEN, M. AND D.P. FriIEDMAN. Control operators, the SECD-machine, and the

A-calculus. In Formal Description of Programming Concepts 111, edited by M. Wirsing.
Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986, 193-217.

. FELLEISEN, M. AND R. HieB. The revised report on the syntactic theories of sequential

control and state. Technical Report 100, Rice University, June 1989. Theor. Comput.
Sci., 1992, to appear.

. FELLEISEN, M., D.P. FriEDMAN, E. KOHLBECKER, AND B. DuBA. A syntactic

theory of sequential control. Theor. Comput. Sci. 52(3), 1987, 205-237. Preliminary
version in: Proc. Symposium on Logic in Computer Science, 1986, 131-141.

Fiscuer, M.J. Lambda calculus schemata. In Proc. ACM Conference on Proving
Assertions About Programs, SIGPLAN Notices 7(1), 1972, 104-1009.

FriepMman, D.P., M. WanD, anD C.T. HAYNES. FEssentials of Programming Lan-
guages. The MIT Press, Cambridge, Mass., 1992.

FriepMaNn, H. Equality between functionals. In Logic Colloguium’73, Rohit Parikh
(Ed.), Lecture Notes in Mathematics 453, Springer Verlag, Berlin, 1973, 22-37.

GaTeLEY, J. AND B.F. DuBa. Call-by-value combinatory logic and the lambda-
value calculus. In Proc. 1991 Workshop on Mathematical Foundations of Programming
Semantics. Lecture Notes in Computer Science 517, to appear.

HarPER, R. AND M. LILLIBRIDGE. Polymorphic type assignment and cps conversion.
Tech. Rpt. CMU-CS-92-122. Carnegie Mellon University. 1992. Preliminary version
in: Proc. Workshop on Continuations: CW92. Technical Report CS-92-1426. Stanford
University, 1992, 13-22.

Hies R., R. K. DyBvia, aND C. BRUGGEMAN. Representing control in the pres-
ence of first-class continuations. In Proceedings of the SIGPLAN 90 Conference on
Programming Language Design and Implementation, June 1990, 66-77.

Kranz, D.; et al. ORBIT: An optimizing compiler for Scheme. In Proc. SIGPLAN
1986 Symposium on Compiler Construction. SIGPLAN Notices 21(7), 1986, 219-233.

LanpiN, P.J. The mechanical evaluation of expressions. Comput. J. 6(4), 1964, 308
320.

Leroy, X. The Zinc experiment. Technical Report 117. INRIA, 1990.
MEYER, A.R. AND J.R. RIECKE. Continuations may be unreasonable. In Proc. 1988
Conference on Lisp and Functional Programming, 1988, 63-71.

MEYER, A.R. AND M. WaND. Continuation semantics in typed lambda-calculi. Proc.

Workshop Logics of Programs, Lecture Notes in Computer Science 193, Springer-Verlag,
Heidelberg, 1985, 219-224.

Mogcgat, E. Computational lambda-calculus and monads. In Proc. Symposium on Logic
in Computer Science, 1989, 14-23. Also appeared as: LFCS Report ECS-LFCS-88-66,
University of Edinburgh, 1988.

Prorkin, G.D. Call-by-name, call-by-value, and the A-calculus. Theor. Comput. Sci.
1, 1975, 125-159.

Reasoning about Programs in Continuation-Passing Style 35

23. REYNOLDS, J.C. Definitional interpreters for higher-order programming languages. In
Proc. ACM Annual Conference, 1972, 717-740.

24. SHIVERS, O. Control-flow Analysis of Higher-Order Languages or Taming Lambda.
Ph.D. dissertation, Carnegie-Mellon University, 1991.

25. STEELE, G.L., JR. RABBIT: A compiler for SCHEME. Memo 474, MIT AI Lab, 1978.

