
Reasoning about ProgramsinContinuation-Passing StyleAmr Sabry Matthias FelleisenDepartment of Computer ScienceRice UniversityHouston, TX 77251-1892Technical Report (Rice TR 92-180).
A preliminary version of this paper appeared inLisp and Functional ProgrammingJune 22-24, 1992, San Francisco, California.

Copyright c
1992 by Amr Sabry and Matthias FelleisenFirst Edition: May 28, 1992

Reasoning about Programs in Continuation-Passing StyleAmr Sabry Matthias Felleisen �Department of Computer ScienceRice UniversityHouston, TX 77251-1892AbstractPlotkin's �-value calculus is sound but incomplete for reasoning about ��-transfor-mations on programs in continuation-passing style (CPS). To �nd a complete extension,we de�ne a new, compactifyingCPS transformation and an \inverse" mapping, un-CPS,both of which are interesting in their own right. Using the new CPS transformation,we can determine the precise language of CPS terms closed under ��-transformations.Using the un-CPS transformation, we can derive a set of axioms such that every equationbetween source programs is provable if and only if �� can prove the correspondingequation between CPS programs. The extended calculus is equivalent to an untypedvariant of Moggi's computational �-calculus.1 Compiling with CPSMany modern compilers for higher-order functional languages [1, 16, 24, 25] utilize somevariant of the Fischer-Reynolds continuation-passing style (CPS) transformation [10, 23].Once a program is in continuation-passing style, these compilers usually perform code op-timizations via local transformations. Typical examples of such optimizations are loopunrolling, procedure inlining, and partial evaluation.In the terminology of the �-calculus, optimizations generally correspond to (sequencesof) �- and �-reductions. Hence, a natural question to ask is whether reductions on CPSprograms correspond to known transformations of source programs. If so, optimizationsof CPS programs could be understood and reported in terms of the original program asopposed to its rather complicated CPS version. In particular, compilers that do not usethe CPS transformation, e.g., Chez Scheme [15] or Zinc [18], could bene�t by implementingtransformations of source programs that correspond to transformations of CPS programs.Technically speaking, we are addressing the following question: which calculus can proveM = N for by-value expressions M and N , if cps(M) = cps(N) is provable in the (by-valueor by-name) �-calculus? As Plotkin [22] showed in 1974, the �v-calculus does not su�ce.Thus we re�ne this question as follows:�Both authors were supported in part by NSF grant CCR 89-17022 and by Texas ATP grant 91-003604014.1

2 A. Sabry, M. FelleisenIs there a set of axioms, A, that extends the call-by-value �-calculus such that:�vA `M = N i� ��� ` cps(M) = cps(N):Such a correspondence theorem would be similar to the correspondence theorems for the�-calculus and combinatory logic [2: ch 7], and the �v-calculus and by-value combinatorylogic [13]. In analogy to model theory, we call the left-to-right direction soundness andthe right-to-left direction completeness since the CPS transformation is often taken as thede�nition of a call-by-value semantics.To derive A, we proceed in three steps:1. First, we develop a CPS transformation that produces a canonical form of CPS pro-grams. The new transformation also produces the smallest possible output of allknown CPS transformations, without reducing any of the original (source) redexes.2. Second, we develop an un-CPS transformation that maps canonical CPS programsand their derivations back to the original language. As Danvy and Lawall [3, 6]convincingly argue, this translation from CPS to direct terms is useful in its ownright.3. Finally, by studying the connection between the CPS and un-CPS transformations,we systematically derive A. The extended �-value calculus is equivalent to an untypedvariant of Moggi's [21] computational �-calculus.The next section introduces the basic terminology and notation of the �-calculus andits semantics. The third section is a short history of CPS transformations. In Section 4, weformalize the problem and outline our approach to the solution. Section 5 is about the CPSlanguage and its properties. It also contains the de�nition of our new CPS transformation.Section 6 presents the \inverse" mapping and its exact relation to the CPS transformation.Our main results, the extension of the �v-calculus and its completeness, are the subject ofSection 7. The last two sections present corollaries of our result. The �rst discusses thetyped and untyped versions of the calculi and their soundness with respect to observationalequivalence. The second is a correspondence between the extension of the �v-calculus andthe CPS type structure.2 �: Calculi and SemanticsThe language of the pure lambda calculus, � [2], consists of variables, �-abstractions, andapplications. The set of terms, M , is generated inductively over an in�nite set of variables,Vars : M ::= V j (M M) (�)V ::= x j (�x:M) (Values)x 2 VarsA term is either a value, V , or an application. Values consist of variables, drawn from theset Vars , and �-abstractions.

Reasoning about Programs in Continuation-Passing Style 3We adopt Barendregt's [2: ch 2, 3] notation and terminology for this syntax. Thus, inthe abstraction (�x:M), the variable x is bound in M . Variables that are not bound by a�-abstraction are free; the set of free variables in a term M is FV (M). A term is closed ifit has no free variables; the set of closed terms is denoted by �0. We identify terms modulobound variables, and we assume that free and bound variables do not interfere in de�nitionsor theorems. In short, we follow common practice and work with the quotient of � under�-equivalence. We write M � N for �-equivalent terms M and N .The expression M [x := N] is the result of the capture-free substitution of all freeoccurrences of x in M by N . For example, (�x:xz)[z := (�y:x)] � (�u:u(�y:x)). A context ,C, is a term with a \hole", [], in the place of one subexpression. The operation of �llingthe context C with an expression M yields the term C[M], possibly capturing some freevariables ofM in the process. Thus, the result of �lling (�x:x[]) with (�y:x) is (�x:x(�y:x)).Calculi: A �-calculus is an equational theory over � with a �nite number of axiom schemasand inference rules. The most familiar axiom schemas are the following notions of reduc-tions: ((�x:M) N) �! M [x := N] N : arbitrary (�)((�x:M) V) �! M [x := V] V : Value (�v)�x:Mx �! M x 62 FV (M) (�)�x:V x �! V x 62 FV (V) (�v)The set of inference rules is identical for all �-calculi. It extends the notions of reductionsto an equivalence relation compatible with syntactic contexts:M �! N) C[M] = C[N] for all contexts C (Compatibility)M =M (Re
exivity)M = L; L = N) M = N (Transitivity)M = N) N =M (Symmetry)The underlying set of axioms completely identi�es a theory. For example, � generatesthe theory �, �v generates the theory �v, and the union of � and � generates the theory���. In general, we write �A to refer to the theory generated by a set of axioms A. Whena theory �A proves an equation M = N , we write �A ` M = N . If the proof does notinvolve the inference rule Symmetry , we write �A `M �!�!N .A notion of reduction R is Church-Rosser (CR) if �R `M = N implies that there existsa term L such that both M and N reduce to L, i.e., �R `M �!�!L and �R ` N �!�!L. Aterm M is in R-normal form if there are no R-reductions starting with M .Semantics: The semantics of the language � is a function, eval , from programs to an-swers. A program is a term with no free variables and, in practical languages, an answeris a member of the syntactic category of values. Typically, eval is de�ned via an abstractmachine that manipulates abstract counterparts to machine stacks, stores, registers, etc.Examples are the SECD machine [17] and the CEK machine [7].An equivalent method for specifying the semantics is based on the Curry-Feys StandardReduction theorem [7, 22]. The Standard Reduction theorem de�nes a partial function,

4 A. Sabry, M. Felleisen7�!, from programs to programs that corresponds to a single evaluation step of an abstractmachine for �.A standard step (i) decomposes the program into a context E and a leftmost-outermostredex R (not inside an abstraction), and (ii) �lls E with the contractum of R. The specialcontexts, E, are evaluation contexts and have the following de�nition for the call-by-valueand call-by-name variants of � respectively [7]:Ev ::= [] j (V Ev) j (Ev M)En ::= [] j (En M)Conceptually, the hole of an evaluation context, [], points to the current instruction, whichmust be a �v or � redex. The decomposition of M into E[(V N)] where (V N) is aredex means that the current instruction is (V N) and that the rest of the computation(the continuation [7]!) is E. Since, a call-by-name language never evaluates arguments,evaluation contexts do not include contexts of the shape (V En).Given evaluation contexts, the de�nitions of the standard reduction functions for call-by-value and call-by-name respectively are as follows:Ev[((�x:M) V)] 7�!v Ev[M [x := V]]En[((�x:M) N)] 7�!n En[M [x := N]]A complete evaluation applies the single-step functions repeatedly and either reaches an an-swer or diverges. The notation 7�!� denotes the re
exive, transitive closure of the function7�!. The semantics of � is de�ned as follows:evalv(M) = V i� M 7�!�v V (call-by-value)evaln(M) = V i� M 7�!�n V (call-by-name)For the de�nition of the semantics, � and �v do not play any role. Their relevance forcalculi is clari�ed in the next paragraph.An important fact for the discussions below is that the syntax of the call-by-valuelanguage � can be rede�ned as follows:M ::= V j E[(V V)] (�)V ::= x j (�x:M) (Values)E ::= [] j (V E) j (E M) (EvCont)The set of evaluation contexts has also the following equivalent de�nition:E ::= [] j E[(V [])] j E[([] M)] (EvCont)We use all the de�nitions interchangeably. Moreover, we extend the notions of reductionsto evaluation contexts by treating the hole as a placeholder for an arbitrary expression. Forexample, the reduction: ((�x:(x y)) []) �! ([] y)is a �-reduction; it is not a �v-reduction.

Reasoning about Programs in Continuation-Passing Style 5Observational Equivalence: Not only do calculi de�ne the semantics of �, but they arealso useful for proving the correctness of some optimizations . Abstractly, an optimizationof a program C[M] is the replacement of M by a \more e�cient" expression N such thata programmer cannot distinguish the observational behavior of the programs C[M] andC[N]. The observational behavior of a program includes its termination behavior and itsvalue when it terminates; it does not include execution speed. Formally, two expressionsM and N are observationally equivalent, M �=x N (for x = v or x = n), if the followingcondition holds:For all contexts C such that both C[M] and C[N] are programs, either bothevalx(C[M]) and evalx(C[N]) are de�ned or both are unde�ned.It is undecidable to determine whether two expressions are observationally equivalent.However, �v and � are two typical (weak) examples of theories that are sound with respectto observational equivalence.Theorem 2.1 (Plotkin) Let M;N 2 �.1. If �v `M = N then M �=v N .2. If � `M = N then M �=n N .The soundness of extensions of � and �v with � and �v, respectively, depends on thecircumstances. The axiom �v is sound with respect to call-by-value observational equiva-lence for �. If we extend � with constants, �v may be unsound. For an example, considera dynamically typed language with numerals and a predicate integer?. The latter can dis-tinguish 3 and (�x:3 x), yet, the �v axiom identi�es the two terms. In a typed setting, �vis generally sound, independent of the parameter-passing technique.The axiom �, on the other hand, fails to be sound with respect to call-by-name obser-vational equivalence even in a pure language. For example, if
 is a diverging term, then(�x:
x) reduces to
 but the two are clearly observationally distinct terms. Indeed, � isonly sound in a typed language that does not permit the observation of the terminationbehavior of higher-type expressions.3 The Origins and Practice of CPSThe idea of transforming programs to \continuation-passing style" appeared in the mid-sixties. For a few years, the transformation remained part of the folklore of computer scienceuntil Fischer and Reynolds codi�ed it in 1972.Fischer [10] studied two implementation strategies for �: a heap-based retention strat-egy, in which all variable bindings are retained until no longer needed, and a stack-baseddeletion strategy, in which variable bindings are destroyed when control leaves the procedure(or block) in which they were created. He concluded thatno real power is lost in restricting oneself to a deletion strategy implementa-tion, for any program can be translated into an equivalent one which will workcorrectly under such an implementation [10: 104].

6 A. Sabry, M. FelleisenThe translation is de�ned as follows.De�nition 3.1. (Fischer CPS) Let k, m, n 2 Vars be variables that do not occur in theargument to F . F : � ! �F [[V]] = �k:k 	[[V]]F [[MN]] = �k:F [[M]] (�m:F [[N]] �n:(m k) n)	[[x]] = x	[[�x:M]] = �k:�x:F [[M]] kReynolds [23] investigated de�nitional interpreters for higher-order languages. One ofhis goals was the desire to liberate the de�nition of a language from the parameter-passingtechnique of the de�ning language. He developed a constructive (but informal) method totransform an interpreter such that it becomes indi�erent to whether the underlying param-eter passing technique is call-by-value or call-by-name. His transformation is essentially thesame transformation as Fischer's F .1 Plotkin [22] later proved Reynolds' ideas correct.Theorem 3.2 (Plotkin [22]) Let M 2 �.Simulation: 	[[evalv(M)]] = evaln(F [[M]] (�x:x))Indi�erence: evaln(F [[M]] (�x:x)) = evalv(F [[M]] (�x:x))The Simulation theorem shows that the evaluation of the CPS program produces correctoutputs. The Indi�erence theorem establishes that this evaluation yields the same resultunder call-by-value and call-by-name.The main disadvantage of the Fischer CPS transformation is the excessive number ofredexes it introduces in the output. For example,F [[((�x:x) (y y))]] = �k:((�k:k �k:�x:((�k:kx) k))(�m:((�k:((�k:ky) �m:((�k:ky) �n:(m k) n)))(�n:(m k) n)))):Although the original term contains one �-abstraction and no �v-redexes, its CPS coun-terpart contains a large number of both. Plotkin [22] referred to the new redexes as ad-ministrative redexes because an evaluator must always reduce them before re-establishing�v-redexes that were present in the source term.From both a theoretical and a practical perspective, the presence of the administra-tive redexes is undesirable. On the theoretical side, they complicate reasoning about CPSprograms. For example, Plotkin [22] �nds it necessary to de�ne an improved CPS trans-formation exclusively for the proof of Theorem 3.2 above. On the practical side, codegeneration phases in compilers favor smaller, i.e., more manageable, programs. Hence,1In Reynolds's transformation the continuation is the second argument to a procedure.

Reasoning about Programs in Continuation-Passing Style 7\practical" CPS transformations [1, 5, 16, 24, 25] use special algorithms to minimize thesize of their outputs.In essence, all practical CPS transformations are conceptually equivalent to the followingtwo-pass CPS transformation:2� First, \mark" the new �-abstractions in the output of the Fischer CPS to identifyadministrative redexes, and then� reduce all administrative redexes.Source redexes should remain intact because unrestricted reductions could cause non-termination. The remainder of this section codi�es these ideas in a simple manner.Formally, the �rst pass of the two-pass CPS is the following modi�ed Fischer CPStransformation.De�nition 3.3. (Modi�ed Fischer CPS) Let k;m; n 2 Vars be as in De�nition 3.1.F [[V]] = �k:k 	[[V]]F [[MN]] = �k:F [[M]] (�m:F [[N]] �n:(m k) n)	[[x]] = x	[[�x:M]] = �k:�x:F [[M]] kAn overline decorates �-abstractions that were not present in the original term. An admin-istrative reduction is simply one that involves decorated abstractions:((�x:M) N) �! M [x := N] (�)(�x:Mx) �! M x 62 FV (M) (�)The complete de�nition of the two-pass CPS transformation, F2, is the following.De�nition 3.4. (Two-Pass CPS) F2[[M]] = P i� ��� ` F [[M]] = P where P is in��-normal form.The following proposition establishes that F2 is well-de�ned.Proposition 3.5 F2 is a total function.Proof. By Lemma 3.6, ��-normal forms are unique. Therefore, the relation F2 is a function.Moreover, by Lemma 3.7, all reduction paths starting at F [[M]] forM 2 � terminate. Hence,F2 is a total function.2See also the discussion of this idea by Danvy and Filinski [5].

8 A. Sabry, M. FelleisenLemma 3.6 Let P and Q be in ��-normal form. If ��� ` F [[M]] �!�! P and ��� `F [[M]]�!�! Q, then P � Q.Proof. The proof is a consequence of the Church-Rosser theorem for �� [2].It remains to establish that all ��-reduction paths terminate.Lemma 3.7 Let M 2 �. If ��� ` F [[M]] �M0 �!M1 �!M2 � � � then:1. for all Mi, the bound variable of a �-abstraction occurs exactly once in the body,2. for all i � 0, Mi+1 has one less �-abstraction than Mi, and3. for some �nite n, Mn is in ��-normal form.Proof Sketch. The �rst claim is initially true by construction, and is preserved by ��-reductions. It implies that reductions cannot eliminate or duplicate subterms. Therefore,the second claim holds. The last claim follows by induction on the number of �-abstractionsin F [[M]].The output of F2 is extremely compact. For example, applying F2 to (((�x:�y:x) a) b)yields the term: M df= �k:((�x:((�y:kx) b)) a)For the same example, both Steele's Rabbit transformation [25] and the Danvy/Filinskitransformation [5] yield the term:3N df= �k:((�k1x:(k1 �k2y:k2x)) (�m:mkb) a):The evaluation of M requires two �-reductions:M �! �k:((�y:ka) b) �! �k:ka;while the evaluation of N requires three (binary) �-reductions:N �! �k:((�m:mkb) (�k2y:k2a))�! �k:((�k2y:k2a) k b)�! �k:ka:Since the extra (administrative) reduction in the evaluation of N is completely predictablefrom the source term, the function F2 optimizes it away.3This is slightly inaccurate. In both Steele's Rabbit and the Danvy/Filinski CPS transformations, thecontinuation is the second parameter to a procedure. Thus, their output is actually:�k:((�xk1:(k1 �yk2:k2x)) a (�m:mbk)):Even though this term only contains source redexes, we could still optimize it by equational reasoning asthe following derivation shows: �k:((�xk1:(k1�yk2:k2x)) a (�m:mbk))�! �k:((�m:mbk) (�yk2:k2a))�! �k:((�yk2:k2a) b k)�! �k:ka � �k:((�y:ka) b) � �k:((�x:((�y:kx) b)) a):Indeed, the \net" e�ect of such transformations is that of performing administrative reductions only.

Reasoning about Programs in Continuation-Passing Style 94 Transforming CPS programsWith the elimination of all administrative redexes, we can turn our attention to \interesting"��-transformations on CPS programs.Plotkin [22] was the �rst to o�er some insights about the relation between reductionson source terms and CPS terms. In his comparative study of equational theories for call-by-value languages and call-by-name languages, he proved the following theorem.Theorem 4.1 (Plotkin [22]) Let M;N 2 �.1. �v `M = N implies �v ` F [[M]] = F [[N]];2. �v ` F [[M]] = F [[N]] does not imply �v `M = N ;3. �v ` F [[M]] = F [[N]] i� � ` F [[M]] = F [[N]].In short, �-reductions prove more equations on CPS terms than �v-reductions prove onsource terms. The e�ect of �-reductions is unknown. Moreover, the induced observationalequivalence relations do not correspond.Corollary 4.2 (Plotkin [22]) Let M;N 2 �.1. F [[M]] �=n F [[N]] implies M �=v N ;2. M �=v N does not imply F [[M]] �=n F [[N]].In the second part of the corollary, the terms F [[M]] and F [[N]] fail to be observationallyequivalent in contexts that manipulate the continuation in \non-standard" ways. We returnto the observational equivalence relations and their correspondence in Section 8.Our more immediate goal is to derive a set of axioms A such that:�vA `M = N i� ��� ` F2[[M]] = F2[[N]]:We illustrate some of the complications that this problem poses with a speci�c reductionon CPS terms: �k:((�x:((x k) z)) (�k:�y:ky))�! �k:(((�k:�y:ky) k) z):By inspection, the left-hand side is:F2[[((�x:xz) (�y:y))]]:A quick glance at the right hand side reveals that it contains an administrative redex andhence cannot be F2[[M]] for any M 2 �. The right hand side is, however, provably equalto a number of CPS terms:��� ` F2[[((�a:((�x:xa) (�y:y))) z)]] = F2[[((�y:y) z)]] = �k:(((�k:�y:ky) k) z):Assuming we choose ((�y:y) z) as the \inverse" of the right hand side, then the CPSreduction corresponds to the following �v-reduction:((�x:xz) (�y:y)) �! ((�y:y) z)on source terms. The other choice corresponds to a �v-expansion, which is clearly undesir-able.Inspired by the above example, we proceed as follows:

10 A. Sabry, M. Felleisen1. We explicitly de�ne the set of CPS terms. The de�nition relies on a one-pass CPStransformation equivalent to F2 (Section 5).2. We de�ne an \inverse" CPS transformation and formalize its precise relationship tothe CPS transformation (Section 6).3. We derive the set A. For each notion of reduction P �! Q on CPS terms, weapply the inverse transformation to P and Q and get the source terms M and N .If �v ` M = N , then we are done. Otherwise, we add appropriate reductions to A(Section 7).5 The CPS languageThe one-pass CPS transformation should combine the modi�ed Fischer transformation withthe application of �- and �-reductions. An informal description of what these reductionsaccomplish will clarify the nature of such a function.The most informative kind of administrative redexes appears in the translation of aredex ((�x:M) V) in an arbitrary continuation K:((�k:((�k:k (�k:�x:F [[M]] k))(�m:((�k:k 	[[V]]) (�n:(mk)n)))))K).The expression reduces to: (((�k:�x:F [[M]] k) K) 	[[V]])via a number of ��-reductions. At this point, the following �-reduction takes place:(((�k:�x:F [[M]] k) K) 	[[V]]) �! ((�x:F [[M]] K) 	[[V]]);i.e., the image of the abstraction absorbs the continuation of the application. For thesource terms, this means that the body of an abstraction in application position absorbs thesyntactic representation of the continuation, which is the evaluation context of the redex [7].Thus, a program of the shape E[((�x:M) V)] where E represents K, must be translated asif it had been written as ((�x:E[M]) V).Put di�erently, our CPS transformation \symbolically" evaluates redexes by lifting themto the root of the program. For applications of values to values inside of �-abstractions, thismeans of course that it takes the evaluation contexts with respect to the closest �, which willbecome the root of the program once the redex is discharged. The resulting transformation,Ck, is parametrized over a variable k that represents the current continuation.De�nition 5.1. (Ck ;�;Kk) The CPS transformation uses three mutually recursive func-tions: Ck to transform terms, � to transform values, and Kk to transform evaluation con-

Reasoning about Programs in Continuation-Passing Style 11texts. Let k; ui 2 Vars be variables that do not occur in the argument to Ck.4Ck : � ! �Ck [[V]] = (k �[[V]])Ck [[E[(x V)]]] = ((x Kk[[E]]) �[[V]])Ck[[E[((�x:M) V)]]] = ((�x:Ck[[E[M]]]) �[[V]])�[[x]] = x�[[�x:M]] = �k:�x:Ck[[M]]Kk[[[]]] = kKk[[E[(x [])]]] = (x Kk[[E]])Kk[[E[((�x:M) [])]]] = (�x:Ck[[E[M]]])Kk[[E[([] M)]]] = (�ui:Ck[[E[(ui M)]]])An informal examination of the above de�nition reveals that the function is not de�nedby structural recursion. Still, it is relatively easy to check that with an appropriate notionof \size", the translation of every expression refers to the translation of a smaller expression.In particular, the size of E[(ui M)] is smaller than the size of E[([]M)] because the emptycontext always replaces an application. The formal de�nition of \size" is as follows.De�nition 5.2. (Size) The size of a term M , jM j, is the number of variables in M(including binding occurrences). The size of a context E, jEj, is the number of variables inE (including binding occurrences) plus 2.As expected, the output of Ck is equivalent to the output of F2, which also proves thatCk is well-de�ned.Proposition 5.3 Let M 2 �. Then, F2[[M]] � �k:Ck[[M]].Proof. The essential steps in the proof are:1. De�ne a natural extension of the modi�ed Fischer transformation that accepts evalu-ation contexts: (De�nition 5.4). Next, prove that:�� ` (F [[E[M]]] k) = (F [[M]] (F [[E]] k)) (Lemma 5.5):2. Using the previous result, prove that:��� ` (F [[M]] k) = Ck[[M]] (Lemma 5.6):4The CPS transformation Ck is related to the CPS transformation by Friedman, Wand, and Haynes [11:ch 8], but di�ers signi�cantly in several technical aspects.

12 A. Sabry, M. Felleisen3. The result follows because Ck[[M]] is in ��-normal form (Lemma 5.6) and ��-normalforms are unique (Lemma 3.6).The extension of F that accepts evaluation contexts is as follows.De�nition 5.4. (Extension of the Fischer CPS) Let k;m; n 2 Vars as in De�nition 3.1:F : EvCont ! �F [[[]]] = �k:kF [[(V E)]] = �k:F [[V]] �m:F [[E]] �n:(m k) nF [[(E M)]] = �k:F [[E]] �m:F [[M]] �n:(m k) nThe following lemma establishes an important property of evaluation contexts. Intu-itively, the evaluation of E[M] in a continuation K is identical to the evaluation of M in acontinuation that combines E and K.Lemma 5.5 Let M 2 �, E 2 EvCont. Then, �� ` (F [[E[M]]] k) = (F [[M]] (F [[E]] k)):Proof Idea. The proof is by induction on the structure of E.It remains to establish that the output of F is provably equal to the output of Ck andthat the latter is in ��-normal form.Lemma 5.6 Let M 2 �, E 2 EvCont. Then,1. ��� ` (F [[M]] k) = Ck [[M]] and ��� ` (F [[E]] k) = Kk[[E]];2. Ck[[M]] and Kk[[E]] are in ��-normal form.Proof. The proof is by induction on the size of G, where G is the argument to Ck or Kk.We proceed by case analysis on the possible inputs:1. G � V : then, ��� ` (F [[G]] k) = ((�k:k 	[[G]]) k) = (k 	[[G]]). By cases:(a) G � x: then (k 	[[G]]) � (k x) � Ck[[x]]. Moreover, Ck[[x]] is in ��-normal form.(b) G � �x:M : then (k 	[[G]]) � (k �c:�x:F [[M]]c). By the inductive hypothesis��� ` (F [[M]] c) = Cc[[M]] and Cc[[M]] is in ��-normal form. Therefore ��� `(F [[�x:M]] k) = Ck[[�x:M]] and Ck[[�x:M]] is in ��-normal form.2. G � E[(x V)]: then ��� ` (F [[G]] k) = (F [[(x V)]] (F [[E]] k)) by Lemma 5.5. Thelatter term is provably equal to ((x F [[E]]k) 	[[V]]). There are two cases:(a) V 62 Vars: then jEj < jGj. By the inductive hypothesis, ��� ` F [[E]]k =Kk[[E]] and Kk[[E]] is in ��-normal form. By an argument similar to case 1,��� ` 	[[V]] = �[[V]] and �[[V]] is in ��-normal form. Both results follow sinceCk[[G]] � ((x Kk[[E]]) �[[V]]).

Reasoning about Programs in Continuation-Passing Style 13(b) V 2 Vars: then jEj = jGj and the inductive hypothesis does not apply. Byinlining the arguments in cases 4 to 7, ��� ` (F [[E]] k) = Kk[[E]] and Kk[[E]] isin ��-normal form. The result follows as in subcase (a).3. G � E[((�x:M) V)]: then ��� ` F [[G]]k = (F [[((�x:M) V)]] (F [[E]]k)) by Lemma 5.5.The latter expression is provably equal to ((�x:F [[E[M]]]k) 	[[V]]). The result followsby the inductive hypothesis and an argument similar to case 1.4. G � []: then ��� ` (F [[G]] k) = ((�k:k) k) = k = Kk[[G]]. Moreover Kk[[G]] is in��-normal form.5. G � E[(x [])]: then, ��� ` (F [[G]] k) = (F [[(x [])]] (F [[E]]k)) by Lemma 5.5. Thelatter expression is provably equal to (x F [[E]]k). The result follows by the inductivehypothesis.6. G � E[((�x:M) [])]: then ��� ` (F [[G]] k) = (�x:F [[E[M]]]k) and the result followsby the inductive hypothesis.7. G � E[([] M)]: then ��� ` (F [[G]] k) = (F [[([] M)]] (F [[E]]k)) by Lemma 5.5. Thelatter expression is provably equal to (�u:F [[M]] (u (F [[E]]k))). By another applicationof Lemma 5.5, we get (�u:(F [[E[(u M)]]] k)). By the inductive hypothesis, ��� `(F [[E[(u M)]]] k) = Ck[[E[(u M)]]] and Ck[[E[(u M)]]] is in ��-normal form. Therefore,��� ` (F [[G]] k) = Kk[[G]]. Moreover, by a simple case analysis, Ck [[E[(u M)]]] isnever of the form (K u) for some term K. Therefore, no new �-redex is created in�u:Ck[[E[(u M)]]] and the term in ��-normal form.With the completion of the analysis of the new CPS algorithms, the decorating overlinesbecome irrelevant. Therefore, in the remainder of the paper, we ignore the distinctionbetween � and �.Besides its pragmatic signi�cance, the new CPS transformation simpli�es the de�nitionof the set of CPS terms. Speci�cally, our universe of discourse consists only of the termsthat contribute to the proofs of equations of the form:��� ` Ck [[M]] = Ck[[N]]:Since �� is CR [2], it is su�cient to consider equations of the form:��� ` Ck[[M]]�!�! P:Hence, the interesting set of CPS terms is:S df= fP j 9M 2 �: ��� ` Ck[[M]]�!�! Pg:The de�nition of the function Ck provides some insight about an inductive character-ization of the set of CPS terms. According to the right hand sides of the equations inDe�nition 5.1, all terms in the CPS language are an application of a continuation to avalue. Values are either variables or abstractions (continuation transformers). Continua-tions are either variables, or the result of the application of a value to a continuation, ora regular lambda abstraction. Therefore, we claim that S is generated by the followinggrammar.

14 A. Sabry, M. FelleisenDe�nition 5.7. (CPS grammar) Let x 2 Varsnfkg:P ::= (K W) (cps(�))W ::= x j (�k:K) (cps(Values))K ::= k j (W K) j (�x:P) (cps(EvCont))Note: The special status reserved for the variable k ensures that the continuation parameteroccurs exactly once in each abstraction �k:K. A program in CPS form is a closed term ofthe form ((�k:P) (�x:x)) where k is the special continuation paramter. When working withthe quotient of the language under �-equivalence, the special status of k disappears. EndNoteThe following theorem establishes the equivalence of the two de�nitions of the set ofCPS terms.Theorem 5.8 S = cps(�).Proof. The left to right inclusion is the subject of Lemma 5.9. Lemma 5.13 deals with theopposite direction.Lemma 5.9 S � cps(�).Proof. Let P 2 S. From the de�nition of the set S, there exists an M 2 � such that��� ` Ck[[M]]�!�!P in n steps where n � 0. By induction on n, we prove that P 2 cps(�).� n = 0, then P � Ck[[M]]. The result follows by Lemma 5.10.� n = i + 1, then ��� ` Ck [[M]] �!�! Q �! P for some Q. By the inductive hypoth-esis, Q 2 cps(�). Moreover, by Lemma 5.11, ��-reductions preserve the syntacticcategories in the CPS language. Therefore, P 2 cps(�).Lemma 5.10 Let M 2 �, E 2 EvCont. Then, Ck [[M]] 2 cps(�), Kk[[E]] 2 cps(EvCont).Proof Idea. The proof is by induction on the size of the argument to Ck or Kk. It followsthe same strategy as the proof of Lemma 5.6.It remains to establish that ��-reductions preserve the syntactic categories in the gram-mar of De�nition 5.7. By inspection of the CPS grammar, the possible �- and �-reductionson CPS terms are as follows:((�x:P) W) �! P [x := W] (�w)((�k:K1) K2) �! K1[k := K2] (�k)(�k:Wk) �! W (�w)(�x:Kx) �! K x 62 FV (K) (�k)Therefore, for cps(�), � = �w [�k and � = �w [�k.

Reasoning about Programs in Continuation-Passing Style 15Lemma 5.11 Let P1 2 cps(�), W1 2 cps(Values), K1 2 cps(EvCont). Then,1. ��� ` P1 �! P2 implies P2 2 cps(�).2. ��� `W1 �! W2 implies W2 2 cps(Values).3. ��� ` K1 �! K2 implies K2 2 cps(EvCont).Proof. The proof is by induction on the structure of the terms:1. Let P1 2 cps(�) and assume ��� ` P1 �! P2. By de�nition, P1 must be of the form(K1 W1) with K1 2 cps(EvCont) and W1 2 cps(Values). Three kinds of reductionsare possible:� ��� ` (K1 W1) �! (K2 W1) because K1 reduces to K2. By the inductivehypothesis, K2 2 cps(EvCont) and therefore P2 2 cps(�).� ��� ` (K1 W1) �! (K1 W2) because W1 reduces to W2. The result follows alsoby the inductive hypothesis.� ��� ` ((�x:P) W1) �! P [x := W1] because K1 � (�x:P). By Lemma 5.12,P [x := W1] 2 cps(�).2. Let W1 2 cps(Values) and assume ��� `W1 �! W2. There are two cases:� W1 � x which is impossible, and� W1 � �k:K1 where K1 2 cps(EvCont). Then, either:{ ��� ` �k:K1 �! �k:K2 because K1 reduces to K2. The result follows bythe inductive hypothesis.{ ��� ` �k:W3k �! W3 because K1 � (W3 k) and W3 2 cps(Values) byde�nition.3. Let K1 2 cps(EvCont) and assume ��� ` K1 �! K2. Then, either:� K1 � k which is impossible, or� K1 � �x:P1 and there are two cases:{ ��� ` (�x:P1) �! (�x:P2) because P1 reduces P2. The result follows by theinductive hypothesis.{ ��� ` (�x:Kx) �! K because P1 � Kx and K 2 cps(EvCont) by de�ni-tion.� K1 � (W K) and there are three cases:{ ��� ` (W K) �! (W1 K) because W reduces to W1 and the result followsby the inductive hypothesis.{ ��� ` (W K) �! (W K3) because K reduces to K3 and the result followsalso by induction.{ ��� ` ((�k:K3) K) �! K3[k := K] because W � �k:K3. The result followsby Lemma 5.12.

16 A. Sabry, M. FelleisenFinally, the grammar is also closed under the relevant substitutions.Lemma 5.12 Let P 2 cps(�), W 2 cps(Values), K1; K2 2 cps(EvCont). Then,1. P [x := W] 2 cps(�).2. K1[k := K2] 2 cps(EvCont).Proof Idea. By induction on the structure of the terms P and K1.For the opposite implication, i.e., that cps(�) is a subset of S, it su�ces to show thatevery P 2 cps(�) is reachable from � via Ck and ��.Lemma 5.13 For all P 2 cps(�), there exists an M 2 � such ��� ` Ck[[M]]�!�! P . Forall K 2 cps(EvCont), there exists an E 2 EvCont such ��� ` Kk[[E]]�!�!K.Proof. The proof is by lexicographic induction on h ~G; jGji where G is an element P ofcps(�) or an element K of cps(EvCont), ~G is the number of abstractions of the form �k:Kin G, and jGj is the number of variables (including binding occurrences) in G. The proofproceeds by case analysis on the possible elements of cps(�) and cps(EvCont):1. G � (k W), then there are four cases:(a) W � x: take M = x.(b) W � �k:k: take M = �x:x.(c) W � �k:W1K: let P1 � ((W1K) x), then ~P1 < ~G because P1 has one lessabstraction of the form �k:K than G. Therefore, by the inductive hypothesis,there exists an M1 such that ��� ` Ck [[M1]]�!�! P1. Take M = �x:M1.(d) W � �k:�x:P1: by the inductive hypothesis, P1 is reachable from a term M1.Take M = �x:M1.2. G � ((x K) W): by the inductive hypothesis, K is reachable from an evaluationcontext E. By an argument similar to the the �rst case, W is reachable from a valueV . Take M = E[(x V)].3. G � (((�k:K1) K2) W): by the inductive hypothesis, K2 is reachable from an evalu-ation context E2. By repeating the argument for the �rst case, the values �k:K1 andW are reachable from V1 and V respectively. TakeM = ((�x:((�y:E2[(y x)]) V1)) V).Then, Ck[[((�x:((�y:E2[(y x)]) V1)) V)]]� ((�x:((�y:((y Kk[[E2]]) x)) �[[V1]])) �[[V]])�!�! ((�x:((�y:((y K2) x)) �k:K1)) W) (induction)�! ((�x:(((�k:K1) K2) x)) W) (�)�! (((�k:K1) K2) W) (�)

Reasoning about Programs in Continuation-Passing Style 174. G � ((�x:P1) W): by the inductive hypothesis, there exists an M1 that reaches P1.By repeating the argument for the �rst case, there exists also a value V that reachesW . Take M = ((�x:M1) V).5. G � k: take E = [].6. G � (x K1): by the inductive hypothesis, there exists an E1 that reaches K1. TakeE = E1[(x [])].7. G � ((�k:K1) K2): similarly to case 3, take E = ((�x:((�y:E2[(y x)]) V1)) []).8. G � (�x:P1): take E = ((�x:M1) []) where M1 reaches P1 by the inductive hypothe-sis.6 An Inverse CPS TransformationBased on the inductive de�nition of the CPS language, the speci�cation of an \inverse"to the CPS transformation is almost straightforward: the source term corresponding tothe application of a continuation K to a value W is simply E[V] where E is the evaluationcontext that syntactically represents the continuation K and V is the value that correspondstoW . The de�nition of the function C�1 (un-CPS) uses two auxiliary functions to translatecontinuations to evaluation contexts and values in the CPS language to values in the sourcelanguage. Both de�nitions are straightforward.De�nition 6.1. (C�1;��1;K�1)C�1 : cps(�) ! �C�1[[(K W)]] = K�1[[K]][��1[[W]]]��1[[x]] = x��1[[(�k:k)]] = �x:x��1[[(�k:WK)]] = �x:C�1[[(W K) x]]��1[[(�k:�x:P)]] = �x:C�1[[P]]K�1[[k]] = []K�1[[(x K)]] = K�1[[K]][(x [])]K�1[[((�k:K1) K2)]] = K�1[[K1[k := K2]]]K�1[[(�x:P)]] = ((�x:C�1[[P]]) [])Intuitively, C�1, ��1, and K�1 are the \inverses" of C, �, and K respectively. Moreover,C�1, ��1, and K�1 apply to the syntactic categories cps(�), cps(Values), and cps(EvCont)respectively and yield terms in the appropriate syntactic categories in the source language.To facilitate proofs of subsequent theorems, we �rst show that the output of C�1 is a propersubset of �.

18 A. Sabry, M. FelleisenDe�nition 6.2. (Output of C�1)M ::= E[V] (�u)V ::= x j (�x:M) (Valuesu)E ::= [] j ((�x:M) []) j E[(x [])] (EvContu)Lemma 6.3 Let P 2 cps(�), K 2 cps(EvCont). Then, C�1[[P]] 2 �u and K�1[[K]] 2EvContu.Proof. The proof is by lexicogaphic induction on the number of abstractions of the form�k:K and the size of the terms (cpm. the proof of Lemma 5.13). It proceeds by case analysison the possible inputs to C�1 and K�1.� P � (K W), then C�1[[P]] � K�1[[K]][��1[[W]]]. By induction, K�1[[K]] 2 EvContu.It remains to establish that ��1[[W]] 2 Valuesu.{ W � x, then ��1[[W]] � x 2 Valuesu.{ W � �k:k, then ��1[[W]] � �x:x. Since x � [][x], then �x:x 2 Valuesu.{ W � �k:WK, then ��1[[W]] � �x:C�1[[((WK) x)]]. Because the term ((WK) x)has one less abstraction of the form �k:K than W , the inductive hypothesisapplies to it. Therefore, C�1[[((WK) x)]] 2 �u which shows that ��1[[W]] 2Valuesu.{ W � �k:�x:P , then ��1[[W]] � �x:C�1[[P]], then the result follows by induction.� K � k, then K�1[[K]] � [] 2 EvContu.� K � (x K1), then K�1[[K]] � K�1[[K1]][(x [])]. The result is immediate becauseK�1[[K1]] 2 EvContu by induction.� K � ((�k:K1)K2), then K�1[[K]] � K�1[[K1[k := K2]]]. Because k occurs exactly oncein K1, then termK1[k := K2] has one less abstraction of the �k:K than ((�k:K1)K2).Therefore, K�1[[K]] 2 EvContu by the inductive hypothesis.� K � �x:P , then K�1[[K]] � ((�x:C�1[[P]]) []) and the result follows by induction.For two distinct reasons, C�1 cannot be a complete inverse of Ck . First, some CPS termsare the image of more than one source term. Second, some CPS terms are not the image ofany source term. The �rst fact is a property of the function Ck that reduces administrativeredexes on the
y. The second one is due to the closure of the set of CPS terms under��-reductions. We discuss each point in detail below.55Danvy and Lawall [3, 6] de�ne a direct style transformation mapping CPS programs into source terms.The transformation is the inverse of the Danvy-Filinski CPS transformation [5]; it is only applicable toimages of � terms. For example, let M = ((�d:5) ((�x:xx) (�x:xx))):

Reasoning about Programs in Continuation-Passing Style 19The e�ect of administrative reductions: The function Ck incorporates the reductionof all administrative redexes from the output of the Fischer CPS. Hence, if F [[M]] andF [[N]] reduce to a common term by administrative reductions only, Ck[[M]] is identical toCk[[N]]. The de�nition of the function Ck shows that, in two cases, di�erent inputs are indeedmapped to the same output.� The �rst equivalence is:Ck[[E[((�x:M) N)]]] � Ck[[((�x:E[M]) N)]]:The equation illustrates how the CPS transformation uses its knowledge about thecontinuation of an application. As indicated in Section 4, it \lifts" the application totop level and merges the continuation with the body of the application.� The second equivalence is:Ck[[E[((z N) L)]]] � Ck [[((�x:E[(x L)]) (z N))]]:This equation captures another essential element of CPS transformations. Accordingto folklore in the functional compiler-building community [4], the �rst aspect of aCPS transformation is to give the value of every application a name. In the aboveequation, the argument to Ck in the right hand side is a \
attened" version of the lefthand side in which the nested application (z N) is factored out and given a name.In summary, we de�ne two reductions on � that capture the e�ect of the administrativereductions performed by Ck:E[((�x:M) N)] �! ((�x:E[M]) N) x 62 FV (E); E 6= [] (�lift)E[((z N) L)] �! ((�x:E[(x L)]) (z N)) x 62 FV (E;L) (�
at)The reductions �lift and �
at de�ne equivalence classes of source terms that map to thesame CPS term. The function C�1 maps this CPS term to a particular representative ofthe equivalence class: the element in �lift�
at -normal form.Lemma 6.4 Let P 2 cps(�). Then, C�1[[P]] is in �lift�
at -normal form.Proof. It su�ces to show that all terms generated by the grammar in De�nition 6.2 are in�lift�
at -normal form. The proof is by induction on the structure of the terms.It follows that C�1 is an inverse of Ck on the subset of source terms in �lift�
at -normalform.Then, according to Danvy/Filinski,CPS (M) = ((�xk:xxk) (�xk:xxk) (��:((�dk:k5) � (�v:kv)))):The latter expression reduces by two meaning-preserving �-reductions to:((�xk:xxk) (�xk:xxk) (��:k5))which is still a diverging term. The direct style transformation cannot be applied to this term because inthe continuation ��:k5, � does not occur exactly once in k5. An extension of the direct style transformationthat handles the above term fails to be an inverse of the Danvy/Filinski CPS transformation.

20 A. Sabry, M. FelleisenTheorem 6.5 Let M 2 �, P 2 cps(�), E 2 EvCont, and K 2 cps(EvCont). Then,1. ��lift�
at `M �!�! (C�1 � Ck)[[M]] and ��lift�
at ` E �!�! (K�1 � Kk)[[E]];2. (C�1 � Ck)[[M]] �M for M = C�1[[P]] and (K�1 � Kk)[[E]] � E for E = K�1[[K]].Proof. We prove the �rst claim by induction on the size of the argument to Ck or Kk. Theproof proceeds by cases on the possible inputs to the two functions:1. M � V : then there are two sub-cases:(a) V � x: then x is identical to C�1[[Ck[[x]]]].(b) V � �x:N : then by the inductive hypothesis �x:N reduces to �x:C�1[[Ck[[N]]]] �C�1[[Ck[[�x:N]]]].2. M � E[(x V)]: then C�1[[Ck[[M]]]] � K�1[[Kk[[E]]]][(x ��1[[�[[V]]]])]. If V is not avariable, then jEj < jE[(x V)]j. Therefore, by the inductive hypothesis, E reduces toK�1[[Kk[[E]]]], and by inlining the arguments for the �rst case, V reduces to ��1[[�[[V]]]].Otherwise, if V is a variable y, there are four cases:(a) M � (x y), then C�1[[Ck[[M]]]] �M .(b) M � E1[(z (x y))], then C�1[[Ck[[M]]]] � K�1[[Kk[[E1]]]][(z (x y))] and the resultfollows by the inductive hypothesis.(c) M � E1[((�z:L) (x y))], then C�1[[Ck[[M]]]] � ((�z:C�1[[Ck[[E1[L]]]]]) (x y)), andE1[((�z:L) (x y))] reduces to ((�z:E1[L]) (x y)) by a �lift -reduction. The latterterm reduces to ((�z:C�1[[Ck[[E1[L]]]]]) (x y)) by induction.(d) M � E1[((x y) L)], then C�1[[Ck[[M]]]] � ((�u:C�1[[Ck[[E1[(u L)]]]]]) (x y)) and bya �
at -reduction, E1[((x y) L)] reduces to ((�u:E1[(u L)]) (x y)), which in turnreduces to ((�u:C�1[[Ck[[E1[(u L)]]]]]) (x y)) by induction.3. M � E[((�x:N) V)]: then C�1[[Ck[[M]]]] � ((�x:C�1[[Ck[[E[N]]]]]) ��1[[�[[V]]]]), andE[((�x:N) V)] �! ((�x:E[N]) V) by �lift , which reduces to ((�x:C�1[[Ck[[E[N]]]]]) V)by the inductive hypothesis. The result follows because V reduces to ��1[[�[[V]]]] asin case 1.4. E = []: then K�1[[Kk[[[]]]]] is identical to [].5. E = E1[(x [])]: then K�1[[Kk[[E]]]] � K�1[[Kk[[E1]]]][(x [])]. The result follows by theinductive hypothesis.6. E = E1[((�x:N) [])]: similar to case 3.7. E = E1[([] N)]: then K�1[[Kk[[E]]]] � ((�u:C�1[[Ck[[E1[(u N)]]]]]) []). By a �
at -reduction, E1[([] N)] �! ((�u:E1[(u N)]) []). By the inductive hypothesis, thelatter term reduces to ((�u:C�1[[Ck[[E1[(u N)]]]]]) []).The proof of the second part di�ers slightly from the above. According to the grammar ofDe�nition 6.2, cases 2d and 7 are impossible. Similarly, in cases 2c, 3 and 6 the surroundingcontext must be empty. Since these changes account for all the reductions from M toC�1[[Ck[[M]]]], M � C�1[[P]].

Reasoning about Programs in Continuation-Passing Style 21The closure of the set of CPS terms under ��-reductions: Because of arbitrary��-reductions, the set of CPS terms includes terms that are not the image of any sourceterm. For example, the following �-reduction generates such a term:Ck[[�x:x]] = �k:�x:kx �! �k:kThe function C�1 (conceptually) coerces �k:k �rst to �k:�x:kx, i.e.,C�1[[�k:k]] = C�1[[�k:�x:kx]] = �x:x:Thus, P is generally not identical to (Ck � C�1)[[P]]. However, Ck is naturally the inverseof C�1 on the subset of CPS terms that are images of source terms.Theorem 6.6 Let P 2 cps(�), M 2 �, K 2 cps(EvCont), and E 2 EvCont. Then,1. ��� ` (Ck � C�1)[[P]] = P and ��� ` (Kk � K�1)[[K]] = K;2. (Ck � C�1)[[P]] � P for P = Ck[[M]] and (Kk � K�1)[[K]] � K for K � Kk[[E]].Proof Sketch. The proof of the �rst claim is similar to the proof of Lemma 5.13. Weproceed by case analysis on the possible elements of cps(�) or cps(Evcont):1. G � (k W), then there are four cases:(a) W � x: Then (Ck � C�1)[[G]] � (k x) � G.(b) W � �k:k: Then (Ck � C�1)[[G]] � (k �k:�x:kx), which reduces to G by an�-reduction.(c) W � �k:W1K: Then (Ck � C�1)[[G]] � (k �k:�x:Ck[[C�1[[((W1 K) x)]]]]) which isprovably equal to (k �k:�x:((W1 K) x)) by the inductive hypothesis. The latterterm reduces to G by an �-reduction.(d) W � �k:�x:P1: Then (Ck � C�1)[[G]] � (k �k:�x:Ck[[C�1[[P1]]]]) and the resultfollows by the inductive hypothesis.2. G � ((x K) W): Then (Ck � C�1)[[G]] = ((x Kk[[K�1[[K]]]]) �[[��1[[W]]]]). By theinductive hypothesis ��� ` Kk[[K�1[[K]]]] = K and by argument similar the �rst case��� ` �[[��1[[W]]]] = W .3. G � (((�k:K1) K2) W): Then (Ck � C�1)[[G]] � (Kk[[K�1[[K1[k := K2]]]]] �[[��1[[W]]]]).Because k occurs exactly once in K1, then K1[k := K2] has one less abstraction ofthe form �k:K than ((�k:K1) K2). Therefore, by the inductive hypothesis, ��� `Kk[[K�1[[K1[k := K2]]]]] = K1[k := K2]. By repeating the argument for the �rst case,�[[��1[[W]]]] and W are also provably equal. It follows that ��� ` (K1[k := K2]W) =Ck[[C�1[[(((�k:K1) K2) W)]]]]. The result follows by a �-reduction.4. G � ((�x:P1) W): Then (Ck � C�1)[[G]] � ((�x:Ck[[C�1[[P1]]]]) �[[��1[[W]]]]). By theinductive hypothesis, ��� ` P1 = Ck[[C�1[[P1]]]]. By the argument in case 1, ��� `W = �[[��1[[W]]]]. Therefore, ��� ` ((�:P1) W) = ((�x:Ck[[C�1[[P1]]]]) �[[��1[[W]]]]).5. G � k: Then (Kk � K�1)[[G]] � G.

22 A. Sabry, M. Felleisen6. G � (x K1): Then (Kk � K�1)[[G]] � (x Kk[[K�1[[K1]]]]) and the result follows by theinductive hypothesis.7. G � ((�k:K1) K2): Then (Kk � K�1)[[G]] � Kk[[K�1[[K1[k := K2]]]]] and this case issimliar to case 3.8. G � (�x:P1): Then (Kk � K�1)[[G]] � (�x:Ck[[C�1[[P1]]]]) and the result follows byinduction.The proof of the second part is identical to the above but it excludes the cases that donot correspond to images of source terms. In particular, it excludes cases 1b and 1c be-cause, in the image of a source term, the body of a �k:K abstraction must be of the form�x:P . Moreover, it excludes cases 3 and 7 because they contain the administrative redex((�k:K1) K2).7 Completeness and SoundnessUsing the partial inverse of the CPS transformation, we can systematically derive a set ofadditional axioms A for �v such that �vA is complete for �� reasoning about CPS programs.Once we have the new axiom set, we prove its soundness in the second subsection. In thelast subsection, we brie
y discuss the connection to Moggi's computational �-calculus.7.1 CompletenessAs speci�ed in Section 5, the possible �- and �-reductions on CPS terms are �w; �k; �w; �k.We �rst outline the derivation of reductions corresponding to �k. Let (�x:Kx) �! K wherex 62 FV (K). Applying K�1 to both sides of the reduction, we get:((�x:C�1[[Kx]]) []) and K�1[[K]]:To understand how the left hand side could reduce to the right hand side, we proceed bycase analysis on K:� K � k: The reduction becomes ((�x:x) []) �! []: Since the empty context generallystands for an arbitrary expression, A should therefore contain the reduction:((�x:x)M) �! M (�id)� K � (y K1): The reduction becomes ((�x:K�1[[K1]][(y x)]) []) �! K�1[[K1]][(y [])]:By a similar argument as above, we must add the following reduction to A:((�x:E[(y x)]) M) �! E[(y M)] (�
)� K � ((�k:K1) K2): The reduction becomes:((�x:C�1[[K1[k := K2] x]]) []) �! K�1[[K1[k := K2]]]:Since the term (K1[k := K2] x) has one less �k:K abstraction than K, the inductivehypothesis provides an appropriate equivalence.

Reasoning about Programs in Continuation-Passing Style 23� K � �y:P : By an �v-reduction, the left hand side ((�x:((�y:C�1[[P]]) x)) []) reducesto ((�x:C�1[[P]][y := x]) []), which is identical to the right hand side.The cases for the other reductions on CPS terms are similar. The resulting set of sourcereductions, A, includes all the previously derived reductions and �v: see Figure 1.((�x:M) V) �! M [x := V] (�v)(�x:V x) �! V x 62 FV (V) (�v)E[((�x:M) N)] �! ((�x:E[M]) N) x 62 FV (E); E 6= [] (�lift)E[((z N) L)] �! ((�x:E[(x L)]) (z N)) x 62 FV (E;L) (�
at)((�x:x) M) �! M (�id)((�x:E[(y x)]) M) �! E[(y M)] x 62 FV (E[y]) (�
)Figure 1: Source Reductions: A df= f�v; �lift ; �
at ; �id ; �
gThe Completeness Lemma summarizes the connection between the notions of reductionson cps(�) and the new reductions.Lemma 7.1 (Completeness) Let P 2 cps(�).1: If ��k ` P �! Q then ��v�id�
 ` C�1[[P]] �!�! C�1[[Q]]2: If ��k ` P �! Q then C�1[[P]] � C�1[[Q]]3: If ��w ` P �! Q then ��v ` C�1[[P]] �!�! C�1[[Q]]4: If ��w ` P �! Q then ��v�lift�id�
 ` C�1[[P]] �!�! C�1[[Q]]Proof. The proof of each case is distinct.1. �k-reduction: The proof is outlined at the beginning of the section.2. �k-reduction: By the de�nition of K�1, K�1[[((�k:K1) K2)]] � K�1[[K1[k := K2]]].3. �w-reduction: Applying ��1 to both sides of the reduction, we get ��1[[(�k:Wk)]] �(�x:C�1[[((Wk) x)]]) and ��1[[W]]. The possible cases are:� W � z: then the reduction becomes the �v-reduction: (�x:zx) �! x:� W � �k:k: then both sides of the reduction are identical.� W � �k:W1K: then again both sides of the reduction are identical.� W � �k:�z:P , then �x:((�z:C�1[[P]]) x) �! �z:C�1[[P]] is an �v-reduction.4. �w-reduction: Here, we need to show that:��v�lift�id�
 ` C�1[[((�x:P) W)]]�!�! C�1[[P [x := W]]]:The left hand side of the reduction is equivalent to ((�x:C�1[[P]]) ��1[[W]]), which inturn reduces to C�1[[P]][x := ��1[[W]]] by a �v-reduction. The latter term reduces toC�1[[P [x :=W]]] by the Substitution Lemma below.

24 A. Sabry, M. FelleisenIn the above theorem, the proofs of the �rst three cases are complete. Only claim 4requires the Substitution Lemma, which in turn refers back to Theorem 7.1 (case 1).Lemma 7.2 (Substitution) Let P 2 cps(�), W 2 cps(Values), K 2 cps(EvCont).Then,1. ��v�lift�id�
 ` C�1[[P]][x := ��1[[W]]]�!�! C�1[[P [x :=W]]].2. ��v�lift�id�
 ` K�1[[K]][x := ��1[[W]]]�!�!K�1[[P [x :=W]]].Proof. The proof is by lexicographic induction on h ~G; jGji, i.e., the number of abstractionsof the form �k:K and the size of the terms. The proof proceeds by cases on the argumentsto C�1 and K�1.� P � (K W1): then, C�1[[P]][x := ��1[[W]]] � K�1[[K]][��1[[W1]]] [x := ��1[[W]]], whichby the inductive hypothesis reduces to K�1[[K[x := W]]][��1[[W1]][x := ��1[[W]]]]. Itremains to establish that substitution commutes with ��1 as well. There are �vecases:1. W1 � x: then ��1[[x]][x := ��1[[W]]] � ��1[[x[x := W]]].2. W1 � z and z 6� x: then the result is immediate.3. W1 � �k:k: immediate since x is not free.4. W1 � �k:W2k: then, ��1[[W1]][x := ��1[[W]]] � �z:C�1[[((W2K) z)]][x :=��1[[W]]]. By induction, we get �z:C�1[[(W2K)[x := W] z]]. The latter termis identical to ��1[[(�k:W2K)[x := W]]] as desired.5. W1 � �k:�z:P1 (z 6� x): then, ��1[[W1]][x := ��1[[W]]] � (�z:C�1[[P]])[x :=��1[[W]]]. By induction, we get �z:C�1[[P [x :=W]]] � ��1[[(�k:�z:P)[x :=W]]].� K � k: then the claim is vacuously true because k 6= x.� K � ((�k:K1) K2): here,K�1[[((�k:K1) K2)]][x := ��1[[W]]] � K�1[[K1[k := K2]]][x := ��1[[W]]]:By induction, the latter term reduces to K�1[[K1[k := K2][x := W]]], which is identicalto K�1[[((�k:K1[x := W]) K2[x := W])]].� K � �z:P1 (z 6� x): K�1[[�z:P1]][x := ��1[[W]]] � ((�z:C�1[[P]][x := ��1[[W]]]) []).By induction, ((�z:C�1[[P [x := W]]]) []) � K�1[[�z:P [x := W]]].� K � �x:P1: immediate since x is not free.� K � (z K1) and z 6� x: this is a special case of the next clause.� K � (x K1): then the left hand side is K�1[[K1]][x := ��1[[W]]][(��1[[W]] [])]. Byinduction, the latter term reduces to K�1[[K1[x := W]]] [(��1[[W]] [])]. For readablity,let K 0 � K1[x := W]. The goal is to prove thatK�1[[K 0]][(��1[[W]] [])] reduces to K�1[[(W K 0)]]:We proceed by cases of W :

Reasoning about Programs in Continuation-Passing Style 251. W � y: then K�1[[K 0]][(y [])] � K�1[[(y K 0)]].2. W � �k:k: then, K�1[[K 0]][((�x:x) [])] reduces to K�1[[K 0]] by an �id -reduction.The latter term is identical to K�1[[((�k:k) K 0)]].3. W � �k:W3K: then, the left hand side K�1[[K 0]][((�y:C�1[[((W3K) y)]]) [])] �K�1[[K 0]][K�1[[(�y:((W3K) y))]]]. By the �rst case in Lemma 7.1, this reducesto K�1[[K 0]][K�1[[(W3K)]]]. Moreover, by Lemma 7.3, the latter term reduces toK�1[[(W3K)[k := K 0]]], which is identical to K�1[[((�k:W3K) K 0)]].4. W � �k:�y:P2: then by a �lift -reduction, K�1[[K 0]][((�z:C�1[[P2]]) [])] reducesto ((�z:K�1[[K 0]][C�1[[P2]]]) []). By Lemma 7.3, the latter term reduces to((�z:C�1[[P2[k := K 0]]]) []) � K�1[[�z:P2[k := K 0]]] � K�1[[((�k:�z:P2) K 0)]].Lemma 7.3 (Continuation) Let K;K1; K2 2 cps(EvCont), P 2 cps(�). Then,1. ��lift ` K�1[[K]][C�1[[P]]]�!�! C�1[[P [k := K]]]2. ��lift ` K�1[[K2]][K�1[[K1]]]�!�!K�1[[K1[k := K2]]]Proof. The proof is by induction on the number of abstractions of the �k:K and the size ofP or K1. It proceeds by case analysis on the possible elements of cps(�) and cps(EvCont).� P � (K3 W), then K�1[[K]][C�1[[P]]] � K�1[[K]][K�1[[K3]][��1[[W]]]]. By the inductivehypothesis, ��lift ` K�1[[K]][K�1[[K3]]] �!�! K�1[[K3[k := K]]]. Therefore, ��lift `K�1[[K]][C�1[[P]]] �!�! K�1[[K3[k := K]]][��1[[W]]]. The latter term is identical toK�1[[(K3 W)[k := K]]] since k is never free in W .� K1 � k: then both sides are identical to K�1[[K2]].� K1 � (x K3), then K�1[[K2]][K�1[[K3]][(x [])]] reduces to K�1[[K3[k := K2]]][(x [])] byinduction. The latter term is identical to K�1[[(x K3[k := K2])]].� K1 � ((�k:K3) K4), then K�1[[K2]][K�1[[K3[k := K4]]]] reduces to K�1[[K3[k :=K4][k := K2]]] by induction. This term is identical to K�1[[K3[k := K4[k := K2]]]],which in turn is identical to K�1[[((�k:K3) K4)[k := K2]]].� K1 � �x:P : then, K�1[[K2]][((�x:C�1[[P]]) [])] reduces to ((�x:K�1[[K2]][C�1[[P]]]) [])by a �lift-reduction. By induction, this term reduces to((�x:C�1[[P [k := K2]]]) []) � K�1[[(�x:P)[k := K2]]]:The Completeness Theorem is a direct consequence of the above results.Theorem 7.4 (Completeness) If ��� ` P �!�! Q then �vA ` C�1[[P]]�!�! C�1[[Q]]:Proof. By pasting together the proofs of the Completeness Lemma.

26 A. Sabry, M. Felleisen7.2 SoundnessThe set of source reductions in Figure 1 is sound with respect to the equational theory overCPS terms. In other words, for a source reduction M �! N , ��� ` Ck[[M]] = Ck[[N]]. Infact, we can prove the stronger results of the following lemma.Lemma 7.5 (Soundness) Let M 2 �.1: If ��v ` M �! N then �� ` Ck [[M]] �!�! Ck [[N]]2: If ��v ` M �! N then ��w�k ` Ck [[M]] �!�! Ck [[N]]3: If ��lift ` M �! N then Ck [[M]] � Ck [[N]]4: If ��
at ` M �! N then Ck [[M]] � Ck [[N]]5: If ��id ` M �! N then ��k ` Ck [[M]] �!�! Ck [[M]]6: If ��
 ` M �! N then ��k ` Ck [[M]] �!�! Ck [[N]]Proof. The cases for �lift and �
at are immediate from the de�nition of the function Ck.We present only the proof for �v-reductions in Lemma 7.6. The other proofs are similar.Lemma 7.6 (�v) �� ` Ck[[((�x:M) V)]]�!�! Ck[[M [x := V]]].Proof. By de�nition of Ck,Ck[[((�x:M) V)]] � ((�x:Ck[[M]]) �[[V]]):The latter term reduces to Ck[[M]][x := �[[V]]]. It remains to establish that substitutioncommutes with Ck, i.e.,1. �� ` Ck [[M]][x := �[[V]]]�!�! Ck[[M [x := V]]].2. �� ` Kk[[E]][x := �[[V]]]�!�!Kk[[E[x := V]]].The proof is by induction on the size of the argument to Ck or Kk. Except for one case, theinductive hypothesis applies immediately. The interesting case occurs when M � E[(x U)]:Ck[[E[(x U)]]][x := �[[V]]] � ((x Kk[[E]]) �[[U]])[x := �[[V]]]�! ((�[[V]] Kk[[E]][x := �[[V]]]) �[[U]][x := �[[V]]])�!�! ((�[[V]] Kk[[E[x := V]]]) �[[U [x := V]]])The last line follows by cases on E if U is a variable. Otherwise, it follows by the inductivehypothesis. For readability, let E 0 � E[x := V] and U 0 � U [x := V]. The goal is to provethat: ((�[[V]] Kk[[E 0]]) �[[U 0]])�!�! Ck[[E 0[(V U 0)]]]We proceed by cases of V :� V � z, then both sides are identical.� V � �z:L, then by a �-reduction,(((�k:�z:Ck[[L]]) Kk[[E 0]]) �[[U 0]]) �! ((�z:Ck[[L]][k := Kk[[E 0]]]) �[[U 0]]):By Lemma 7.7, the latter term reduces to ((�z:Ck[[E 0[L]]]) �[[U 0]]), which is identicalto Ck[[E 0[((�z:L) U 0)]]].

Reasoning about Programs in Continuation-Passing Style 27Lemma 7.7 (Context) Let M 2 �, E;E1 2 EvCont. Then,�� ` Ck [[M]][k := Kk[[E]]]�!�! Ck[[E[M]]] and �� ` Kk[[E1]][k := Kk[[E]]]�!�!Kk[[E[E1]]].Proof Idea. The proof is by induction on the size of M or E1.The Soundness theorem is a direct consequence of these results.Theorem 7.8 (Soundness) If �vA `M �!�!N then ��� ` Ck[[M]]�!�! Ck [[N]]:7.3 CorrespondenceUnfortunately, if Ck [[M]] reduces to Ck[[N]],M does not reduce to N unless N is in �lift�
at -normal form. Figure 2 summarizes the relationship between proofs on either side. Thedotted lines correspond to the application of Ck or C�1. The solid lines represent sequencesof reductions.
- ?6?6 - ��������/SSSSSSSSw ��A �lift�
at�lift�
at
Ck[[N]]Ck[[M]] (C�1 � Ck)[[N]](C�1 � Ck)[[M]] NM

Figure 2: The correspondence Theorem.Although the functions Ck and C�1 do not always preserve reductions, they preserveequality.Theorem 7.9 (Correspondence) The calculi ��� and �vA are equivalent in the follow-ing sense:1. �vA `M = (C�1 � Ck)[[M]].2. ��� ` P = (Ck � C�1)[[P]].

28 A. Sabry, M. Felleisen3. �vA `M = N i� ��� ` Ck[[M]] = Ck [[N]].4. ��� ` P = Q i� �vA ` C�1[[P]] = C�1[[Q]].Note: Other CPS transformations. The correspondence theorem does not depend onany speci�c aspects of Ck or F . Rather the result is valid for any CPS transformation cpsthat satis�es the following condition for M 2 �:��� ` F [[M]] = cps(M):End Note7.4 The computational �-calculusThe calculus �vA is equivalent to an untyped variant of Moggi's computational �-cal-culus �c [21]. Speci�cally, if we ignore the types of expressions, eliminate product andcomputational expressions, re-interpret Moggi's let-expression as the usual abbreviationfor a �-application, and apply his let-axioms to the expanded expressions, then the basicreductions of �c are �v, �v, �id plus the additional reductions of Figure 3.((�x2:M) ((�x1:M2) M1)) �! ((�x1:((�x2:M) M2)) M1) (Comp)((M N) L) �! ((�x:x L) (M N)) (let :1)(V (M N)) �! ((�x:V x) (M N)) (let :2)Figure 3: Additional Reductions for the Computational �-calculusWe prove the equivalence of our calculus and �c by showing how each calculus provesthe reductions of the other. The proof is tedious but straightforward.Based on the above argument, the equivalence of the calculi yields the following refor-mulation of the Correspondence theorem.Theorem 7.90 (Correspondence (Reformulation)) The calculi ��� and �c are equiv-alent in the sense of Theorem 7.9.8 Observational EquivalenceThe interest in calculi is motivated by their soundness with respect to observational equiv-alence (see Section 2). Therefore, the natural question is whether our extension is soundwith respect to the call-by-value observational equivalence relation. Moggi [21] proves theresult for a typed setting.In a dynamically typed language, the soundness of the �c-calculus with respect to thecall-by-value observational equivalence relation depends on the particular language exten-sions. For example, the axiom �v is unsound in languages like Lisp or Scheme as argued inSection 2. It is still possible to prove the soundness of the �c-calculus for pure dynamicallytyped languages, i.e., languages with no constants.

Reasoning about Programs in Continuation-Passing Style 29Theorem 8.1 Let M;N 2 �. If �vA `M = N then M �=v N .Proof. Let C be a context such that C[M]; C[N] 2 �0. Assume �vA ` M = N andevalv(C[M]) is de�ned. The goal is to show that evalv(C[N]) is also de�ned.It follows from the assumptions that �vA ` C[M] = C[N] by Compatiblity . Therefore,��� ` Ck[[C[M]]] = Ck [[C[N]]] (1)by Theorem 7.9. Also by the assumptions and the de�nition of evalv, �v ` C[M] = V forsome value V . Hence, ��� ` Ck[[C[M]]] = Ck [[V]] (2)by Theorem 7.9. From (1) and (2), we deduce that ��� ` Ck[[C[N]]] = Ck [[V]] = (k �[[V]]).The Church-Rosser Theorem implies the existence of a term P such that:��� ` Ck[[C[N]]]�!�! P��� ` (k �[[V]])�!�! PObviously, all the reductions starting from the term (k �[[V]]) must occur inside �[[V]]. Sincereductions preserve the syntactic categories in the CPS language, P must be of the form(k W) for some W . Therefore, ��� ` Ck[[C[N]]]�!�! (k W), and hence��� ` Ck [[C[N]]][k := �x:x]�!�! ((�x:x) W) �! WLemma 8.2 implies that evaln((F [[C[N]]] �x:x)) is de�ned. Thus, evalv(C[N]) is de�ned byTheorem 3.2.Lemma 8.2 Let M 2 �0. If ��� ` Ck [[M]][k := �x:x]�!�!W , then evaln(F [[M]] �x:x) isde�ned.Proof. Assume ��� ` Ck[[M]][k := �x:x]�!�!W , then by Lemma 5.6,��� ` (F [[M]] �x:x)�!�! ((�k:Ck[[M]]) �x:x) �! Ck [[M]][k := �x:x]�!�!WBy the Postponement Lemma [2: 15], we also have:(F [[M]] �x:x)�!�!� L�!�!� W for some term LSince M is a closed term,W cannot be a variable; it must a �-abstraction. Any �-expansionstarting from a �-abstraction will also result in a �-abstraction. Therefore, L is a value:(F [[M]] �x:x)�!�!� W 0By the Standard Reduction theorem [22], if a term reduces to a value, then it standard-reduces to a value. Therefore, evaln(F [[M]] �x:x) is de�ned.

30 A. Sabry, M. FelleisenAs pointed out in Section 4, M �=v N does not imply that Ck [[M]] �=n Ck [[N]]. Forexample, if M df= �y:�x:x (y x)N df= �y:�x:x (y �z:xz)then, M �=v N [22]. On the other hand,Ck[[M]] = (k �k:�y:(k �k:�x:((y (x k)) x)));Ck [[N]] = (k �k:�y:(k �k:�x:((y (x k)) (�k:�z:((x k) z)))));and the context D df= ((�k:[])(�a:((a (�b:((b (�x:x)) �d:
)))(�k:�m:m (�x:x)))))di�erentiates the two expressions. Since the context D includes a term (�k:�m:(m �x:x))that ignores its continuation, there is no context C 2 � such that Ck[[C[M]]] = D[Ck[[M]]].This result prompted Meyer and Riecke [19] to deduce that \continuations may be unrea-sonable". However, a restriction of D to range over contexts in the language cps(�) resultsin a notion of observational equivalence that coincides with the call-by-value observationalequivalence.De�nition 8.3. (�=cps(�): CPS observational equivalence) Two terms P;Q are obser-vationally equivalent, P �=cps(�) Q, i� for all contexts D such that ((�k:D[P]) (�x:x)),((�k:D[Q]) (�x:x)) are programs in CPS form, then either both of evaln((�k:D[P]) �x:x)and evaln((�k:D[Q]) �x:x) are de�ned or both are unde�ned.Theorem 8.4 Let M;N 2 �. Then, M �=v N i� Ck [[M]] �=cps(�) Ck[[N]]Proof. Assume Ck[[M]] 6�=cps(�) Ck [[N]], then there exists a context D such that D[Ck[[M]]],D[Ck[[N]]] 2 cps(�) and the evaluation of one of the programs terminates while the otherdiverges. Without loss of generality, assume evaln((�k:D[Ck[[M]]]) �x:x) is de�ned andevaln((�k:D[Ck[[N]]]) �x:x) is unde�ned. By the de�nition of evaln, we get:�� ` ((�k:D[Ck[[M]]]) �x:x) = W�� 6` ((�k:D[Ck[[N]]]) �x:x) = W 0 for any W 0By Lemma 8.5, there exists a context C 2 � such that:��� ` ((�k:Ck[[C[M]]]) �x:x) =W��� 6` ((�k:Ck[[C[N]]]) �x:x) = W 0 for any W 0By Lemma 8.2 and Theorem 3.2, evalv(C[M]) is de�ned and evalv(C[N]) is unde�ned.Therefore, M 6�=v N . The reverse implication is straightforward.Lemma 8.5 Let M;N 2 �, D[Ck[[M]]]; D[Ck[[N]]] 2 cps(�). Then, there exists a context Csuch that ��� ` Ck[[C[M]]] = D[Ck[[M]]] and ��� ` Ck[[C[N]]] = D[Ck[[N]]].

Reasoning about Programs in Continuation-Passing Style 31Proof. Since D[Ck[[M]]]; D[Ck[[N]]] 2 cps(�), they are valid arguments to C�1. It su�cesto show that the function C�1 is a homomorphism when restricted to inputs of the formCk[[M]] for some M 2 �. By cases:1. C�1[[(K W)]] = K�1[[K]][��1[[W]]].2. ��1[[x]] = x.3. ��1[[(�k:k)]] = �x:x.4. ��1[[(�k:WK)]] = �x:C�1[[(W K) x]].5. ��1[[(�k:�x:P)]] = �x:C�1[[P]].6. K�1[[k]] = [].7. K�1[[(x K)]] = K�1[[K]][(x [])].8. K�1[[((�k:K1) K2)]] = K�1[[K1[k := K2]]].9. K�1[[(�x:P)]] = ((�x:C�1[[P]]) []).The function is homomorphic is all cases except cases 4 and 8. Both are impossible if theinput is of the form Ck [[M]] for some M 2 �.9 Typed CPS ModelsFriedman [12] investigates the connection between the typed ��-calculus and the functionalsof �nite type. Two convertible �-terms de�ne the same functional of �nite type, and twonon-convertible �-terms de�ne di�erent functionals. Technically, ��� is sound and completewith respect to the full type structure.The Correspondence Theorem suggests the existence of a similar completeness theoremfor the �c-calculus and the CPS type structure [20, 14]. We prove this theorem after brie
yreviewing the full type structure and the CPS type structure as denotational models for thecall-by-value �-calculus.Full Type StructureThe set of types for the simply typed �-calculus ist ::= o j t! twhere o denotes the observable base type. The denotations of types are as follows. Let Bbe an in�nite set of elements of type o. Then, the full type pre-structure over B consists ofa nonempty set Dt for each type t: Do = BDt1!t2 = Dt1) Dt2The term language of the simply typed �-calculus is the subset of � to which we canassign simple types as follows. Every variable has a �xed type t. If M is of type t ! sand N is of type t, then (M N) is of type s. Finally, if x is of type t and M is of type

32 A. Sabry, M. Felleisens, then �x:M has type t ! s. The full type structure, PB, over B consists of a full typepre-structure and a meaning function P such that:Env : Vars) [tDt such that for � 2 Env ; �(xt) 2 DtP [[x]]� = �(x)P [[�x:M]]� = �a:P [[M]]�[x=a]P [[MN]]� = P [[M]]�(P [[N]]�)The notation A) B represents the set of functions from A to B and �a: � � � denotes thefunction f such that f(a) = � � �. Also, PB j= M = N means that for all environments �,P [[M]]� = P [[N]]�. Based on this de�nition, we can formulate the completeness theorem.Theorem 9.1 (Friedman [12]) Let M;N 2 �. Then, ��� `M = N i� PB j=M = N .Since F [[M]] 2 �, the theorem implies the following corollary.Corollary 9.2 Let M;N 2 �. Then �c ` M = N i� ��� ` F [[M]] = F [[N]] i� PB j=F [[M]] = F [[N]].CPS Type StructureMeyer and Wand [20] establish that the type of a � term may be related in a straightforwardmanner to the type of its CPS transform. The set of types becomes:6s ::= o j (s! a)! (s! a)where a denotes a distinguished type of answers . The CPS type structure, SB, over somein�nite base set B and an in�nite set of answers A, consists of a nonempty set Ds for eachtype and a meaning function such that:Do = BD(s1!a)!s2!a = (Ds1) A)) Ds2) Aand S : �� Env � Continuation) AEnv : Vars) [sDs such that for � 2 Env ; �(xs) 2 DsContinuation : [sDs) AS[[x]]�� = �(�(x))S[[�x:M]]�� = � �c:�a:S[[M]]�[x=a]cS[[MN]]�� = S[[M]]�(�a:S[[N]]�(�b:((a �) b)))Not surprisingly, the meaning of a term M in the CPS model is directly related to themeaning of F [[M]] in the direct model.6Meyer and Wand assume that the continuation is the second argument to a procedure. This means thattheir set of types is actually: s ::= o j s! (s! a)! a:

Reasoning about Programs in Continuation-Passing Style 33Lemma 9.3 Let M 2 �. (P [[F [[M]]]]� �) = S[[M]]��.Proof Idea. The proof is by induction on M .This lemma implies that SB and PB satisfy theorems that are related via the Fischer-cpstransformation.Lemma 9.4 Let M;N 2 �. Then, PB j= F [[M]] = F [[N]] i� SB j=M = N .Proof. The proposition follows from Lemma 9.3.It follows that the �c-calculus is sound and complete with respect to the CPS typestructure.Theorem 9.5 Let M;N 2 �. Then, �c `M = N i� SB j=M = N .Proof. The theorem is a direct consequence of Lemma 9.4 and Corollary 9.2.10 Conclusion and Future ResearchIn summary, our extensions of the �v-calculus result in an equational theory over � that issound with respect to the call-by-value observational equivalence, and corresponds to ���over CPS terms. Thus far, we have also determined that the result extends to languageswith ground constants and primitive functions and languages with imperative assignmentprocedures for data structures.For languages with Scheme-like control operators, our extension of �v-calculus is stillsound with respect to observational equivalence. However, the correspondence theoremfails since operators like call/cc manipulate their continuation in non-standard ways. Tore-establish the correspondence theorem for such languages, we need to �nd an extensionfor the �-control calculus [8, 9] that corresponds to ��� on CPS terms.References1. Appel, A. and T. Jim. Continuation-passing, closure-passing style. In Proc. 16thACM Symposium on Principles of Programming Languages, 1982, 293{302.2. Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics. Revised Edition.Studies in Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam,1984.3. Danvy, O. Back to direct style. In 4th Proc. European Symposium on Programming.Springer Lecture Notes in Computer Science, 582. Springer Verlag, Berlin, 1992, 130{150.4. Danvy, O. Three steps for the CPS transformation. Tech. Rep. CIS-92-2. KansasState University, 1992.5. Danvy, O. and A. Filinski. Representing control: A study of the CPS transforma-tion. Tech. Rpt. CIS-91-2. Kansas State University, 1991.

34 A. Sabry, M. Felleisen6. Danvy, O. and J. L. Lawall. Back to direct style II: First-class continuations. InProc. 1992 ACM Conference on Lisp and Functional Programming, 1992, this volume.7. Felleisen, M. and D.P. Friedman. Control operators, the SECD-machine, and the�-calculus. In Formal Description of Programming Concepts III , edited by M. Wirsing.Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986, 193{217.8. Felleisen, M. and R. Hieb. The revised report on the syntactic theories of sequentialcontrol and state. Technical Report 100, Rice University, June 1989. Theor. Comput.Sci., 1992, to appear.9. Felleisen, M., D.P. Friedman, E. Kohlbecker, and B. Duba. A syntactictheory of sequential control. Theor. Comput. Sci. 52(3), 1987, 205{237. Preliminaryversion in: Proc. Symposium on Logic in Computer Science, 1986, 131{141.10. Fischer, M.J. Lambda calculus schemata. In Proc. ACM Conference on ProvingAssertions About Programs, SIGPLAN Notices 7(1), 1972, 104{109.11. Friedman, D.P., M. Wand, and C.T. Haynes. Essentials of Programming Lan-guages . The MIT Press, Cambridge, Mass., 1992.12. Friedman, H. Equality between functionals. In Logic Colloquium'73, Rohit Parikh(Ed.), Lecture Notes in Mathematics 453, Springer Verlag, Berlin, 1973, 22{37.13. Gateley, J. and B.F. Duba. Call-by-value combinatory logic and the lambda-value calculus. In Proc. 1991 Workshop on Mathematical Foundations of ProgrammingSemantics. Lecture Notes in Computer Science 517, to appear.14. Harper, R. and M. Lillibridge. Polymorphic type assignment and cps conversion.Tech. Rpt. CMU-CS-92-122. Carnegie Mellon University. 1992. Preliminary versionin: Proc. Workshop on Continuations: CW92 . Technical Report CS-92-1426. StanfordUniversity, 1992, 13{22.15. Hieb R., R. K. Dybvig, and C. Bruggeman. Representing control in the pres-ence of �rst-class continuations. In Proceedings of the SIGPLAN '90 Conference onProgramming Language Design and Implementation, June 1990, 66{77.16. Kranz, D., et al. ORBIT: An optimizing compiler for Scheme. In Proc. SIGPLAN1986 Symposium on Compiler Construction. SIGPLAN Notices 21(7), 1986, 219{233.17. Landin, P.J. The mechanical evaluation of expressions. Comput. J. 6(4), 1964, 308{320.18. Leroy, X. The Zinc experiment. Technical Report 117. INRIA, 1990.19. Meyer, A.R. and J.R. Riecke. Continuations may be unreasonable. In Proc. 1988Conference on Lisp and Functional Programming, 1988, 63{71.20. Meyer, A.R. and M. Wand. Continuation semantics in typed lambda-calculi. Proc.Workshop Logics of Programs , Lecture Notes in Computer Science 193, Springer-Verlag,Heidelberg, 1985, 219{224.21. Moggi, E. Computational lambda-calculus and monads. In Proc. Symposium on Logicin Computer Science, 1989, 14{23. Also appeared as: LFCS Report ECS-LFCS-88-66,University of Edinburgh, 1988.22. Plotkin, G.D. Call-by-name, call-by-value, and the �-calculus. Theor. Comput. Sci.1, 1975, 125{159.

Reasoning about Programs in Continuation-Passing Style 3523. Reynolds, J.C. De�nitional interpreters for higher-order programming languages. InProc. ACM Annual Conference, 1972, 717{740.24. Shivers, O. Control-
ow Analysis of Higher-Order Languages or Taming Lambda.Ph.D. dissertation, Carnegie-Mellon University, 1991.25. Steele, G.L., Jr. RABBIT: A compiler for SCHEME. Memo 474, MIT AI Lab, 1978.

