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1 Overview

These notes comprise the lecture “Introduction to Type Theory” that I gave
at the Alpha Lernet Summer School in Piriapolis, Uruguay in February 2008.
The lecture was meant as an introduction to typed λ-calculus for PhD. students
that have some (but possibly not much) familiarity with logic or functional
programming. The lecture consisted of 5 hours of lecturing, using a beamer
presentation, the slides of which can be found at my homepage1. I also handed
out exercises, which are now integrated into these lecture notes.

In the lecture, I attempted to give an introductory overview of type theory.
The problem is: there are so many type systems and so many ways of defining
them. Type systems are used in programming (languages) for various purposes:
to be able to find simple mistakes (e.g. caused by typing mismatches) at compile
time; to generate information about data to be used at runtime, . . . . But type
systems are also used in theorem proving, in studying the the foundations of
mathematics, in proof theory and in language theory.

In the lecture I have focussed on the use of type theory for compile-time
checking of functional programs and on the use of types in proof assistants
(theorem provers). The latter combines the use of types in the foundations of
mathematics and proof theory. These topics may seem remote, but as a matter
of fact they are not, because they join in the central theme of these lectures:

Curry-Howard isomorphism of formulas-as-types
(and proofs-as-terms )

This isomorphism amounts to two readings of typing judgments

M : A

– M is a term (program, expression) of the data type A
– M is a proof (derivation) of the formula A

The first reading is very much a “programmers” view and the second a “proof
theory” view. They join in the implementation of proof assistants using type
systems, where a term (proof) of a type (formula) is sought for interactively
between the user and the system, and where terms (programs) of a type can also
be used to define and compute with functions (as algorithms).
1 url: http:://www.cs.ru.nl/H.Geuvers/Uruguay2008SummerSchool.html/
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For an extensive introduction into the Curry-Howard isomorphism, we refer
to [39].

The contents of these notes is as follows.

1. Introduction: what are types and why are they not sets?
2. Simply typed λ-calculus (Simple Type Theory) and the Curry Howard iso-

morphism
3. Simple Type Theory: “Curry” type assignment, principle type algorithm and

normalization
4. Polymorphic type theory: full polymorphism and ML style polymorphism
5. Dependent type theory: logical framework and type checking algorithm

In the course, I have also (briefly) treated higher order logic, the λ-cube, Pure
Type Systems and inductive types, but I will not do that here. This is partly
because of space restrictions, but mainly because these notes should be of a very
introductory nature, so I have chosen to treat lesser things in more detail.

2 Introduction

2.1 Types and sets

Types are not sets. Types are a bit like sets, but types give syntactic information,
e.g.

3 + (7 ∗ 8)5 : nat

whereas sets give semantic information, e.g.

3 ∈ {n ∈ IN | ∀x, y, z ∈ IN+(xn + yn 6= zn)}

Of course, the distinction between syntactical and semantical information
can’t always be drawn that clearly, but the example should be clear: 3 + (7 ∗ 8)5

is of type nat simply because 3, 7 and 8 are natural numbers and ∗ and + are
operations on natural numbers. On the other hand, 3 ∈ {n ∈ IN | ∀x, y, z ∈
IN+(xn+yn 6= zn)}, because there are no positive x, y, z such that xn+yn = zn.
This is an instance of ‘Fermat’s last Theorem’, proved by Wiles. To establish
that 3 is an element of that set, we need a proof, we can’t just read it off from
the components of the statement. To establish that 3 + (7 ∗ 8)5 : nat we don’t
need a proof but a computation: our “reading the type of the term” is done by
a simple computation.

One can argue about what can be “just read off”, and what not; a simple
criterion may be whether there is an algorithm that establishes the fact. So then
we draw the line between “is of type” (:) and “is an element of” (∈) as to whether
the relation is decidable or not. A further refinement may be given by arguing
that a type checking algorithm should be of low complexity (or compositional
or syntax directed).

There are very many different type theories and also mathematicians who
base their work on set theory use types as a high level ordering mechanism, usu-
ally in an informal way. As an example consider the notion of monoid, which is
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defined as a tuple 〈A, ·, e〉, where A is a set, · a binary operation on A and e an
element of A, satisfying the monoidic laws. In set theory, such an ordered pair
〈a, b〉 is typically defined as {{a}, {a, b}}, and with that we can define ordered
triples, but one usually doesn’t get into those details, as they are irrelevant rep-
resentation issues: the only thing that is relevant for an ordered pair is that one
has pairing and projection operators, to create a pair and to take it apart. This
is exactly how an ordered pair would be defined in type theory: if A and B are
types, then A×B is a type; if a : A and b : B, then 〈a, b〉 : A×B; if p : A×B, then
π1 p : A, π2 t : B and moreover π1〈a, b〉 = a and π2〈a, b〉 = b. So mathematicians
use a kind of high level typed language, to avoid irrelevant representation issues,
even if they may use set theory as their foundation. However, this high level
language plays a more important role than just a language, as can be seen from
the problems that mathematicians study: whether

√
2 is an element of the set π

is not considered a relevant question. A mathematician would probably not even
considered this as a meaningful question, because the types don’t match: π isn’t
a set but a number. (But in set theory, everything is a set.) Whether

√
2 ∈ π

depends on the actual representation of the real numbers as sets, which is quite
arbitrary, so the question is considered irrelevant.

We now list a number of issues and set side by side how set theory and type
theory deal with them.

Collections Sets are “collections of things”, where the things themselves are
again sets. There are all kinds of ways for putting things together in a set:
basically (ignoring some obvious consistency conditions here) one can just put
all the elements that satisfy a property together in a set. Types are collections
of objects of the same intrinsic nature or the same structure. There are specific
ways of forming new types out of existing ones.

Existence Set theory talks about what things exist. The infinity axiom states
that an infinite set exists and the power set axiom states that the set of subsets
of a set exists. This gives set theory a clear foundational aspect, apart from its
informal use. It also raises issues whether a “choice set” exists (as stated by the
axiom of choice) and whether inaccessible cardinals exist. (A set X such that for
all sets Y with |Y | < |X|, |2Y | < |X|.) Type theory talks about how things can be
constructed (syntax, expressions). Type theory defines a formal language. This
puts type theory somewhere in between the research fields of software technology
and proof theory, but there is more: being a system describing what things can
be constructed, type theory also has something to say about the foundations of
mathematics, as it also – just like set theory – describes what exists (can be
constructed) and what not.

Extensionality versus intensionality Sets are extensional: Two sets are equal if
they contain the same elements. For example {n ∈ IN | ∃x, y, z ∈ IN+(xn + yn =
zn)} = {0, 1, 2}. So set equality is undecidable. In general it requires a proof to
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establish the equality of two sets. Types are intensional2. Two types are equal
if they have the same representation, something that can be verified by simple
syntactic considerations. So, {n | ∃x, y, z : nat+(xn + yn 6= zn)} 6= {n | n =
0 ∨ n = 1 ∨ n = 2} because these two types don’t have the same representation.
Of course, one may wonder what types these are exactly, or put differently, what
an object of such a type is. We’ll come to that below.

Decidability of :, undecidability of ∈ Membership is undecidable in set theory, as
it requires a proof to establish a ∈ A. Typing (and type checking) is decidable3.
Verifying whether M is of type A requires purely syntactic methods, which can
be cast into a typing algorithm. As indicated before, types are about syntax:
3 + (7 ∗ 8)5 : nat, because 3, 7, 8 are of type nat and the operations take objects
of type nat to nat. Similarly, 1

2Σ
∞
n=02−n : IN is not a typing judgment, because

one needs additional information to know that the sum is divisible by 2.

The distinction between syntax and semantics is not always as sharp as it
seems. The more we know about semantics (a model), the more we can formalize
it and “turn it into syntax”. For example, we can turn

{n ∈ IN | ∃x, y, z ∈ IN+(xn + yn = zn)}

into a (syntactic) type , with decidable type checking , if we take as its terms
pairs

〈n, p〉 : {n : nat | ∃x, y, z : nat+(xn + yn = zn)}

where p is a proof of ∃x, y, z ∈ nat+(xn + yn = zn). If we have decidable proof
checking, then it is decidable whether a given pair 〈n, p〉 is typable with the
above type or not.

In these notes, we will study the formulas-as-types and proof-as-terms embed-
ding, which gives syntactic representation of proofs that can be type checked to
see whether they are correct and what formula (their type) they prove. So with
such a representation, proof checking is certainly decidable. We can therefore
summarize the difference between set theory and type theory as the difference
between proof checking (required to check a typing judgment), which is decidable
and proof finding (which is required to check an element-of judgment) which is
not decidable.

2.2 A hierarchy of type theories

In this paper we describe a numbers of type theories. These could be described
in one framework of the λ-cube or Pure Type Systems, but we will not do that
here. For the general framework we refer to [5, 4]. This paper should be seen

2 But the first version of Martin-Löf’s type theory is extensional – and hence has unde-
cidable type checking. This type theory is the basis of the proof assistant Nuprl[10].

3 But there are type systems with undecidable type checking, for example the Curry
variant of system F (see Section 5.2). And there are more exceptions to this rule.
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(and used) as a very introductory paper, that can be used as study material for
researchers interested in type theory, but relatively new to the field.

Historically, untyped λ-calculus was studied in much more depth and de-
tail (see [3]) before the whole proliferation of types and related research took
off. Therefore, in overview papers, one still tends to first introduce untyped λ-
calculus and then the typed variant. However, if one knows nothing about either
subjects, typed λ-calculus is more natural then the untyped system, which – at
first sight – may seem like a pointless token game with unclear semantics. So,
we start off from the simply typed λ- calculus.

The following diagrams give an overview of the lectures I have given at the
Alfa Lernet Summer School. The first diagram describes simple type theory
and polymorphic type theory, which comes in two flavors: à la Church and à la
Curry. Apart from that, I have treated a weakened version of λ2, corresponding
to polymorphism in functional languages like ML. This will also be discussed in
this paper. A main line of thought is the formulas-as-types embedding, so the
corresponding logics are indicated in the left column.

The second diagram deals with the extension with dependent types. In the
lectures I have treated all systems in the diagram, but in these notes, only the
first row will be discussed: first order dependent type theory λP and two ways
of interpreting logic into it: a direct encoding of minimal predicate logic and a
logical framework encoding of many different logics. The first follows the Curry-
Howard version of the formulas-as-types embedding, which we also follow for
λ→ and λ2. The second follows De Bruijn’s version of the formulas-as-types
embedding, where we encode a logic in a context using dependent types. The
rest of the diagram is not treated here, but it is treated on the slides4.

Logic TT a la Also TT a la
Church known as Curry

PROP f−as−t−→ λ→ STT λ→
PROP2 f−as−t−→ λ2 system F λ2

Remarks

PRED f−as−t−→ λP LF f−as−t←− Many logics
HOL f−as−t−→ λHOL language of HOL is STT
HOL f−as−t−→ CC Calc. of Constr.

PTS different PTSs for HOL

3 Simple type theory λ→

In our presentation of the simple type theory, we have just arrow types. This
is the same as the original system of [9], except for the fact that we allow type
variables, whereas Church starts form two base types ι and o. A very natural
4 url: http:://www.cs.ru.nl/H.Geuvers/Uruguay2008SummerSchool.html/
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extension is the one with product types and possibly other type constructions
(like sum types, a unit type, . . . ). A good reference for the simple type theory
extended with product types is [27].

Definition 1. The types of λ→ are

Typ := TVar | (Typ→Typ)

where TVar denotes the countable set of type variables.

Convention 2 – Type variables will be denoted by α, β, γ, . . .. Types will be
denoted by σ, τ, . . ..

– In types we let brackets associate to the right and we omit outside brackets:
(α→β)→(β→γ)→α→γ denotes (α→β)→((β→γ)→(α→γ))

Example 1. The following are types: (α→β)→α, (α→β)→((β→γ)→(α→γ)). Note
the higher order structure of types: we read (α→β)→α as the type of functions
that take functions from α to β to values of type α.

Definition 3. The terms of λ→ are defined as follows

– There are countably many typed variables xσ1 , x
σ
2 , . . ., for every σ.

– Application: if M : σ→τ and N : σ, then (M N) : τ
– Abstraction: if P : τ , then (λxσ.P ) : σ→τ

So the binary application operation is not written. One could write M · N ,
but that is not done in λ-calculus. The λ is meant to bind the variable in the
body: in λxσ.M , xσ is bound in M . We come to that later.

The idea is that λxσ.M is the function x 7→M that takes an input argument
P and produces the output M [x := P ], M with P substituted for x. This will
be made precise by the β-reduction rule, which is the computation rule to deal
with λ-terms. We come to this in Definition 6.

Convention 4 – Term variables will be denoted by x, y, z, . . .. Terms will be
denoted by M,N,P, . . ..

– Type annotations on variables will only be written at the λ-abstraction: we
write λxσ.x instead of λxσ.xσ.

– In term applications we let brackets associate to the left and we omit out-
side brackets and brackets around iterations of abstractions: M N P denotes
((M N)P ) and λxα→β .λyβ→γ .λzα.xz(yz) denotes
(λxα→β .(λyβ→γ .(λzα.((xz)(yz)))))

Examples 2. For every type σ we have the term Iσ := λxσ.x which is of type
σ→σ. This is the identity combinator on σ.
For types σ and τ we have the term Kστ := λxσ.λyτ .x of type σ→τ→σ. This
term, called the K combinator takes two inputs and returns the first.

Here are some more interesting examples of typable terms:
λxα→β .λyβ→γ .λzα.y(xz) : (α→β)→(β→γ)→α→γ,
λxα.λy(β→α)→α.y(λzβ .x) : α→((β→α)→α)→α.
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To show that a term is of a certain type, we have to “build it up” using
the inductive definition of terms (Definition 3). For λxα→β .λyβ→γ .λzα.y(xz),
we find the type as follows:

– If x : α→β, y : β→γ and z : α, then xz : β,
– so y(xz) : γ,
– so λzα.y(xz) : α→γ,
– so λyβ→γ .λzα.y(xz) : (β→γ)→α→γ,
– so λxα→β .λyβ→γ .λzα.y(xz) : (α→β)→(β→γ)→α→γ

In λ-calculus (and type theory) we often take a number of λ-abstractions
together, writing λxσyτ .x for λxσ.λyτ .x. The conventions about types and ap-
plications fit together nicely. If F : σ→τ→ρ, M : σ and P : τ , then

F M : τ→ρ and F M P : ρ

Given the bracket convention for types, every type of λ→ can be written as

σ1→σ2→ . . .→α

with α a type variable.
The lack of product types is largely circumvented by dealing with functions

of multiple arguments by Currying: We don’t have F : σ× τ → ρ but instead we
can use F : σ→τ→ρ, because the latter F is a function that takes two arguments,
of types σ and τ , and produces a term of type ρ.

3.1 Computation, free and bound variables, substitution

A λ-term of the form (λxσ.M)P is a β- redex ( reducible expression). A redex
can be contracted:

(λxσ.M)P −→β M [x := P ]

where M [x := P ] denotes M with P substituted for x.
As an example, we have (λxσ.λyτ .x)P −→β λy

τ .P . But what if P = y? then
(λxσ.λyτ .x)y −→β λy

τ .y, which is clearly not what we want, because the free y
has become bound after reduction. The λ is a binder and we have to make sure
that free variables don’t get bound by a substitution. The solution is to rename
bound variables before substitution.

Definition 5. We define the notions of free and bound variables of a term, FV
and BV.

FV(x) = {x} BV(x) = ∅
FV(MN) = FV(M) ∪ FV(N) BV(MN) = BV(M) ∪ BV(N)

FV(λxσ.M) = FV(M) \ {x} BV(λxσ.M) = BV(M) ∪ {x}

M ≡ N or M =α N if M is equal to N modulo renaming of bound variables.
A closed term is a term without free variables; closed terms are sometimes also
called combinators.
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The renaming of bound variable x is done by taking a “fresh” variable (i.e.
one that does not yet occur in the term, either free or bound), say y and replace
all bound occurrences of x by y and λx by λy.

Examples 3. – λxσ.λyτ .x ≡ λxσ.λzτ .x
– λxσ.λyτ .x ≡ λyσ.λxτ .y. This equality can be obtained by first renaming y

to z, then x to y and then z to y.
– NB we also have λxσ.λyτ .y ≡ λxσ.λxτ .x. This equality is obtained by re-

naming the second x to y in the second term.

In the last example, we observe that our description of renaming above is
slightly too informal. It is not symmetric, as we cannot rename y in the first
term to x, and we may at some point not wish to rename with a completely
fresh variable, but just with one that is not “in scope”. We leave it at this
and will not give a completely formal definition, as we think that the reader
will be capable of performing α-conversion in the proper way. Fully spelled out
definitions can be found in [11, 24, 3].

The general idea of (typed) λ-calculus is that we don’t distinguish between
terms that are α convertible: we consider terms modulo α-equality and we don’t
distinguish between λxσ.λyτ .x and λxσ.λzτ .x. This implies that all our opera-
tions and predicates should be defined on α-equivalence classes, a property that
we don’t verify for every operation we define, but that we should be aware of.

When reasoning about λ-terms we use concrete terms (and not α-equivalence
classes). We will avoid terms like λxσ.λxτ .x, because they can be confusing. In
examples we always rename bound variables such that no clashes can arise.
This is known as the Barendregt convention: when talking about a set of λ-terms,
we may always assume that all free variables are different from the bound ones
and that all bound variables are distinct.

Before reduction or substitution, we rename (if necessary):

(λxσ.λyτ .x)y ≡ (λxσ.λzτ .x)y −→β λz
τ .y

Definition 6. The notions of one-step β-reduction, −→β, multiple-step β-reduction,
−→−→β, and β-equality, =β are defined as follows.

(λxσ.M)N −→β M [x := N ]
M −→β N ⇒M P −→β N P

M −→β N ⇒ P M −→β P N

M −→β N ⇒ λxσ.M −→β λx
σ.N

−→−→β is the transitive reflexive closure of −→β. =β is the transitive reflexive
symmetric closure of −→β.

The type (σ→σ)→σ→σ is called the type of numerals over σ, natσ. The way
to encode natural numbers as closed terms of type natσ is as follows.

cn := λfσ→σ.λxσ.fn(x)
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where
fn(x) denotes f(. . . f(f︸ ︷︷ ︸

n times f

x))

So c2 := λfσ→σ.λxσ.f(f x). These are also known as the Church numerals.
(For readability we don’t denote the dependency of cn on the type σ, but leave
it implicit.) A Church numeral cn denotes the n-times iteration: it is a higher
order function that takes a function f : σ→σ and returns the n-times iteration
of f .

Example 4. We show a computation with the Church numeral c2: we apply it to
the identity Iσ.

λzσ.c2 Iσ z ≡ λzσ.(λfσ→σ.λxσ.f(f x))Iσ z
−→β λz

σ.(λxσ.Iσ(Iσ x))z
−→β λz

σ.Iσ(Iσ z)
−→β λz

σ.Iσ z

−→β λz
σ.z ≡ Iσ

In the above example, we see that at a certain point there are several ways
to reduce: we can contract the inner or the outer redex with Iσ. In this case the
result is exactly the same. In general there are many redexes within a term that
can be reduced, and they may all yield a different result. Often we want to fix
a certain method for reducing terms, or we only want to contract redexes of a
certain shape. This can be observed in the following example.

Examples 5. Define the S combinator as follows.

S := λxσ→σ→σ.λyσ→σ.λzσ.x z(y z) : (σ→σ→σ)→(σ→σ)→σ→σ

Then S Kσσ Iσ : σ→σ and

S Kσσ Iσ −→β (λyσ→σ.λzσ.Kσσ z(y z))Iσ

There are several ways of reducing this term further:

(λyσ→σ.λzσ.Kσσ z(y z))Iσ is a redex
Kσσ z is a redex

(λyσ→σ.λzσ.Kσσ z(y z))Iσ −→β λz
σ.Kσσ z(Iσ z)

≡ λzσ.(λpσ qσ.p) z(Iσ z)
−→β λz

σ.(λqσ.z) (Iσ z)
Call by Value −→β λz

σ.(λqσ.z)z
−→β λz

σ.z
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But also

(λyσ→σ.λzσ.Kσσ z(y z))Iσ ≡ (λyσ→σ.λzσ.(λpσ qσ.p) z(y z))Iσ
−→β (λyσ→σ.λzσ.(λqσ.z)(y z))Iσ
−→β λz

σ.(λqσ.z) (Iσ z)
Call by Name −→β λz

σ.z

In the previous example we have seen that the term λzσ.(λqσ.z) (Iσ z) can
be reduced in several ways. Call-by-name is the ordinary β-reduction, where
one can contract any β-redex. In call-by-value, one is only allowed to reduce
(λx.M)N if N is a value, where a value is an abstraction term or a variable
([34]). So to reduce a term of the form (λx.M)((λy.N)P ) “call-by-value”, we first
have to contract (λy.N)P . Call-by-value restricts the number of redexes that is
allowed to be contracted, but it does not prescribe which is the next redex to
contract. More restrictive variations of β-reduction are obtained by defining a
reduction strategy which is a recipe that describes for every term which redex
to contract. Well-known reduction strategies are left-most outermost or right-
most innermost. To understand these notions it should be observed that redexes
can be contained in another, e.g. in (λx.M)((λy.N)P ) or in (λx.(λy.N)P )Q,
but they can also be disjoint, in which case there’s always one to the left of
the other. Other reduction strategies select a set of redexes and contract these
simultaneously (a notion that should be defined first of course). For example, it is
possible to define the simultaneous contraction of all redexes in a term, which is
usually called a complete development. We don’t go into the theory of reduction
strategies or developments here, but refer to the literature [3]. Reduction in
simple type theory enjoys some important properties that we list here. We don’t
give any proofs, as they can be found in the standard literature [5].

Theorem 1. The simple type theory enjoys the following important properties.

– Subject Reduction
If M : σ and M −→β P , then P : σ.

– Church-Rosser
If M is a well-typed term in λ→ and M −→−→β P and M −→−→β N , then there
is a (well-typed) term Q such that P −→−→β Q and N −→−→β Q.

– Strong Normalization
If M is well-typed in λ→, then there is no infinite β-reduction path starting
from M .

Subject reduction states – looking at it from a programmers point of view
– that well-typed programs don’t go wrong: evaluating a program M : σ to
a value indeed returns a value of type σ. Church-Rosser states that it doesn’t
make any difference for the final value how we reduce: we always get the same
value. Strong Normalization states that no matter how one evaluates, one always
obtains a value: there are no infinite computations possible.
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3.2 Simple type theory presented with derivation rules

Our definition of λ→ terms (Definition 3) is given via a standard inductive
definition of the terms. This is very close to Church’ [9] original definition. A
different presentation can be given by presenting the inductive definition of the
terms in rule form:

xσ : σ
M : σ→τ N : σ

MN : τ

P : τ

λxσ.P : σ→τ
The advantage is that now we also have a derivation tree, a proof of the fact

that the term has that type. We can reason over these derivations.
In the above presentations, the set of free variables of a term is a global

notion, that can be computed by the function FV. This is sometimes felt as
being a bit imprecise and then a presentation is given with contexts to explicitly
declare the free variables of a term.

x1 : σ1, x2 : σ2, . . . , xn : σn

is a context, if all the xi are distinct and the σi are all λ→-types. Contexts are
usually denoted by Γ and we write x ∈ Γ if x is one of the variables declared in
Γ .

Definition 7. The derivation rules of λ→ à la Church are as follows.

x:σ ∈ Γ

Γ ` x : σ

Γ `M : σ→τ Γ ` N : σ

Γ `MN : τ

Γ, x:σ ` P : τ

Γ ` λx:σ.P : σ→τ
We write Γ `λ→ M : σ if there is a derivation using these rules with conclusion
Γ `M : σ.

So note that – apart from the context – we now also write the type as a
declaration in the λ-abstraction (and not as a superscript): λx : σ.x instead of
λxσ.x. This presents us with a slightly different view on the base syntax: we
don’t see the variables as being typed (xσ), but we take the view of a countably
infinite collection of untyped variables that we assign a type to in the context
(the free variables) or in the λ-abstraction (the bound variables).

To relate this Definition with the one of 3, we state – without proof – the
following fact, where we ignore the obvious isomorphism that “lifts” the types
in the λ-abstraction to a superscript.

Fact 1. If Γ `M : σ, then M : σ (Definition 3) and FV(M) ⊆ Γ .
If M : σ (Definition 3), then Γ `M : σ, where Γ consists exactly of declarations
of all the x ∈ FV(M) to their corresponding types.

As an example, we give a complete derivation of ` Kστ : σ → τ → σ.

x : σ, y : τ ` x : σ

x : σ ` λy:τ.x : τ → σ

` λx:σ.λy:τ.x : σ → τ → σ
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Derivations of typing judgments tend to get quite broad, because we are
constructing a derivation tree. Moreover, this tree may contain quite a lot of
duplications. So, when we are looking for a term of a certain type, the tree
format may not be the most efficient and easy-to-use. We therefore introduce a
Fitch style representation of typing derivations, named after the logician Fitch,
who has developed a natural deduction system for logic in this format, also called
flag deduction style [16]. We don’t show that these two derivation styles derive
the same set of typable terms, because it should be fairly obvious. (And a precise
proof involves quite some additional notions and notation.)

Definition 8. The Fitch style presentation of the rules of λ→ is as follows.

1 x : σ
2 . . .

3 . . .

4 M : τ
5 λx:σ.M : σ → τ abs, 1, 4

1 . . .

2 . . .

3 M : σ → τ

4 . . .

5 . . .

6 N : σ
7 . . .

8 M N : τ app, 3, 6
abs-rule app-rule

In a Fitch deduction, a hypothesis is introduced by “raising a flag”, e.g. the
x : σ in the left rule. A hypothesis is discharged when we “withdraw the flag”,
which happens at line 5. In a Fitch deduction one usually numbers the lines and
refers to them in the motivation of the lines: the “abs,1, 4” and the “app, 3, 6”
at the end of lines 5 and 7.

Some remarks apply.

– It should be understood that one can raise a flag under an already open flag
(one can nest flags), but the variable x in the newly raised flag should be
fresh: it should not be declared in any of the open flags.

– In the app-rule, the order of the M and N can of course be different. Also
the terms can be in a “smaller scope”, that is: M : σ may be higher in the
deduction under less flags. Basically the M and N should just be “in scope”,
where a flag-ending ends the scope of all terms that are under that flag.

We say that a Fitch deduction derives the judgement Γ ` M : σ if M : σ is
on the last line of the deduction the raised flags together form the context Γ .

Example 6. We show an example of a derivation of a term of type

(α→β→γ)→(α→β)→α→γ
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We show the derivation in two stages, to indicate how one can use the Fitch
deduction rules to incrementally construct a term of a given type.

1 x : α→β→γ
2 y : α→β
3 z : α
4 ??
5 ??
6 ? : γ
7 λz:α.? : α→γ
8 λy:α→β.λz:α.? : (α→β)→α→γ
9 λx:α→β→γ.λy:α→β.λz:α.? : (α→β→γ)→(α→β)→α→γ

1 x : α→β→γ
2 y : α→β
3 z : α
4 x z : β→γ
5 y z : β
6 x z(y z) : γ
7 λz:α.x z(y z) : α→γ
8 λy:α→β.λz:α.x z(y z) : (α→β)→α→γ
9 λx:α→β→γ.λy:α→β.λz:α.x z(y z) : (α→β→γ)→(α→β)→α→γ

Exercises 1. 1. Construct a term of type (δ→δ→α)→(α→β→γ)→(δ→β)→δ→γ
2. Construct two terms of type (δ→δ→α)→(γ→α)→(α→β)→δ→γ→β
3. Construct a term of type ((α→β)→α)→(α→α→β)→α
4. Construct a term of type ((α→β)→α)→(α→α→β)→β (Hint: use the previ-

ous exercise.)

3.3 The Curry-Howard formulas-as-types correspondence

Using the presentation of λ→ with derivation rules, it is easier to make the
Curry-Howard formulas-as-types correspondence precise. The idea is that there
are two readings of a judgement M : σ:

1. term as algorithm/program, type as specification :
M is a function of type σ

2. type as a proposition, term as its proof :
M is a proof of the proposition σ

More precisely, the Curry-Howard formulas-as-types correspondence states
that there is a natural one-to-one correspondence between typable terms in λ→
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and derivations in minimal proposition logic. Looking at it from the logical point
of view: the judgement x1 : τ1, x2 : τ2, . . . , xn : τn ` M : σ can be read as M is
a proof of σ from the assumptions τ1, τ2, . . . , τn.

Definition 9. The system of minimal proposition logic PROP consists of

– implicational propositions, generated by the following abstract syntax:

prop ::= PropVar|(prop→prop)

– derivation rules (∆ is a set of propositions, σ and τ are propositions)

σ→τ σ
→-E

τ

[σ]j
...
τ

[j]→-I
σ→τ

We write ∆ `PROP σ if there is a derivation using these rules with conclusion
σ and non-discharged assumptions in ∆.

Note the difference between a context, which is basically a list, and a set of
assumptions. Logic (certainly in natural deduction) is usually presented using a
set of assumptions, but there is no special reason for not letting the assumptions
be a list, or a multi-set.

We now give a precise definition of the formulas-as-types correspondence. For
this we take the presentation of PROP with lists (so ∆ is a list in the following
definition). As a matter of fact the formulas-as-types part of the definition is
trivial: a proposition in PROP is just a type in λ→, but the most interesting
part of the correspondence is the proofs-as-terms embedding, maybe best called
the deductions-as-term embedding. For PROP, this part is also quite straight-
forward, but we describe it in detail nevertheless.)

Definition 10. The deductions-as-terms embedding from derivation of PROP
to term of λ→ is defined inductively as follows. We associate to a list of propo-
sitions ∆ a context Γ in the obvious way by replacing σi in ∆ with xi : σi ∈ Γ .
On the left we give the inductive clause for the derivation and on the right we
describe on top of the line the terms we have (by induction) and below the line
the term that the derivation gets mapped to.

σ ∈ ∆
∆ ` σ  x : σ ∈ Γ

Γ ` x : σ

σ→τ σ
→-E

τ
 
Γ1 `M : σ→τ Γ2 ` N : σ

Γ1 ∪ Γ2 `M N : τ

[σ]j
...
τ

[j]→-I
σ→τ

 
Γ, x : σ `M : τ

Γ ` λx:σ.M : σ→τ
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We denote this embedding by −, so if D is a derivation from PROP, D is a
λ→-term.

For a good understanding we give a detailed example.

Example 7. Consider the following natural deduction derivation PROP and the
term in λ→ it gets mapped to.

[α→β→γ]3 [α]1

β→γ

[α→β]2 [α]1

β

γ
1

α→γ
2

(α→β)→α→γ
3

(α→β→γ)→(α→β)→α→γ

7→ λx:α→β→γ.λy:α→β.λz:α.xz(yz)
: (α→β→γ)→(α→β)→α→γ

To create the term on the right, it is best to decorate the deduction tree with
terms, starting from the leaves (decorated by variables) and working downwards,
finally creating a term for the root node that is the λ-term that corresponds to
the whole deduction.

[x : α→β→γ]3 [z : α]1

xz : β→γ

[y : α→β]2 [z : α]1

yz : β

xz(yz) : γ
1

λz:α.xz(yz) : α→γ
2

λy:α→β.λz:α.xz(yz) : (α→β)→α→γ
3

λx:α→β→γ.λy:α→β.λz:α.xz(yz) : (α→β→γ)→(α→β)→α→γ

Theorem 2 (Soundness, Completeness of formulas-as-types).

1. If D is a natural deduction in PROP with conclusion σ and non-discharged
assumption in ∆, then

x : ∆ ` D : σ in λ→.

2. If Γ ` M : σ in λ→, then there is a derivation of σ from the ∆ in PROP,
where ∆ is Γ without the variable-assignments.

We don’t give the proofs, as they are basically by a straightforward induction.
The second part of the Theorem can be strengthened a bit: we can construct
a derivation D out of the term M , as an inverse to the mapping −. So, the
formulas-as-types correspondence constitutes an isomorphism between deriva-
tions in PROP and well-typed terms in λ→.

Exercise 2. Add types to the λ-abstractions and give the derivation that corre-
sponds to the term λx.λy.y(λz.y x) : (γ→ε)→((γ→ε)→ε)→ε.
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In the λ-calculus we have a notion of computation, given by β-reduction:
(λx:σ.M)P −→β M [x := P ]. Apart from that, there is also a notion of η-
reduction: λx:σ.M x −→η M if x /∈ FV(M). The idea of considering these terms
as equal is quite natural, because they behave exactly the same as functions:
(λx:σ.M x)P −→β M P . In a typed setting, it is very natural to consider the
rule in the opposite direction, because then one can make sure that every term of
a function type has a normal form that is a λ-abstraction. Of course this requires
a proviso to prevent an infinite η-reduction of the form x −→η λy:σ.x y −→η

λy:σ.(λz:σ.x z)y . . .
In natural deduction we also have a notion of computation: cut-elimination or

detour-elimination. If one introduces a connective and then immediately elim-
inates it again, this is called a cut or a detour. A cut is actually a rule in
the sequent calculus representation of logic and the cut-elimination theorem in
sequent calculus states that the cut-rule is derivable and thus superfluous. In
natural deduction, we can eliminate detours, which are often also called cuts, a
terminology that we will also use here.

Definition 11. A cut in a deduction in minimal propositional logic is a place
where an →-I is immediately followed by an elimination of that same →. Graph-
ically (D1 and D2 denote deductions):

[σ]1

D1

τ
1

σ→τ

D2

σ

τ

Cut-elimination is defined by replacing the cut in a deduction in the way given
below.

[σ]1

D1

τ
1

σ→τ

D2

σ

τ

−→

D2

σ
D1

τ

So every occurrence of the discharged assumption [σ]1 in D1 is replaced by the
deduction D2.

It is not hard to prove that eliminating a cut yields a well-formed natural
deduction again, with the same conclusion. The set of non-discharged assump-
tions remains the same or shrinks. (In case there is no occurrence of [σ]1 at all;
then D2 is removed and also its assumptions.) That this process terminates is
not obvious: if [σ]1 occurs several times, D2 gets copied, resulting in a larger
deduction.
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Lemma 2. Cut-elimination in PROP corresponds to β-reduction in λ→:
if D1 −→cut D2, then D1 −→β D2

The proof of this Lemma is indicated in the following diagram.

[x : σ]1

D1

M : τ
1

λx:σ.M : σ→τ

D2

P : σ

(λx:σ.M)P : τ

−→β

D2

P : σ
D1

M [x := P ] : τ

To get a better understanding of the relation between cut-elimination and
β-reduction, we now study an example.

Example 8. Consider the following proof of A→A→B, (A→B)→A ` B.

A→A→B [A]1

A→B [A]1

B

A→B

(A→B)→A

A→A→B [A]1

A→B [A]1

B

A→B

A

B

It contains a cut: a →-I directly followed by an →-E. We now present the
same proof after reduction

A→A→B

(A→B)→A

A→A→B [A]1

A→B [A]1

B

A→B

A

A→B

(A→B)→A

A→A→B [A]1

A→B [A]1

B

A→B

A

B

We now present the same derivations of A→A→B, (A→B)→A ` B, now
with term information
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p : A→A→B [x : A]1

p x : A→B [x : A]1

p xx : B

λx:A.p xx : A→B

q : (A→B)→A

p : A→A→B [x : A]1

p x : A→B [x : A]1

p xx : B

λx:A.p xx : A→B

q(λx:A.p xx) : A

(λx:A.p xx)(q(λx:A.p xx)) : B

The term contains a β-redex: (λx:A.p xx) (q(λx:A.p xx)) We now present
the reduced proof of A→A→B, (A→B)→A ` B with term info. For reasons of
page size we summarize the derivation of q(λx:A.p xx) : A as D. So

D

q(λx:A.p xx) : A

:=

q : (A→B)→A

p : A→A→B [x:A]1

p x : A→B [x:A]1

p xx : B

λx:A.p xx : A→B

q(λx:A.p xx) : A

This is the sub-derivation that gets copied under cut-elimination (β-reduction).

p : A→A→B

D

q(λx:A.p xx) : A

p(q(λx:A.p xx)) : A→B

D

q(λx:A.p xx) : A

p(q(λx:A.p xx))(q(λx:A.p xx)) : B

4 Type assignment versus typed terms

4.1 Untyped λ-calculus

Simple Type Theory is not very expressive: one can only represent a limited
number of functions over the natσ (see the paragraph after Definition 6) data
types in λ→. We can allow more functions to be definable by relaxing the type
constraints. The most flexible system is to have no types at all.

Definition 12. The terms of the untyped λ-calculus, Λ, are defined as follows.

Λ ::= Var | (ΛΛ) | (λVar.Λ)
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Examples are the well-known combinators that we have already seen in a
typed fashion: K := λx y.x, S := λx y z.x z(y z). But we can now do more: here
are some well-known untyped λ-terms ω := λx.x x, Ω := ω ω. The notions of
β-reduction and β-equality generalize from the simple typed case, so we don’t
repeat it here. An interesting aspect is that we can now have infinite reduc-
tions. (Which is impossible in λ→, as that system is Strongly Normalizing.) The
simplest infinite reduction is the following loop:

Ω −→β Ω

A term that doesn’t loop but whose reduction path contains infinitely many
different terms is obtained by putting ω3 := λx.x xx, Ω3 := ω3ω3. Then:

Ω3 −→β ω3 ω3 ω3 −→β ω3 ω3 ω3 ω3 −→β . . .

The untyped λ-calculus was defined by Church [9] and proposed as a system
to capture the notion of mechanic computation, for which Turing proposed the
notion of Turing machine. An important property of the untyped λ-calculus is
that it is Turing complete, which was proved by Turing in 1936, see [13]. The
power of Λ lies in the fact that you can solve recursive equations.

A recursive equation is a question of the following kind:

– Is there a term M such that

M x =β xM x?

– Is there a term M such that

M x =β if (Zerox) then 1 else Multx (M (Predx))?

So, we have two expressions on either side of the =β sign, both containing an
unknown M and we want to know whether a solution for M exists.

The answer is: yes, if we can rewrite the equation to one of the form

M =β . . .M . . . (1)

Note that this is possible for the equations written above. For example the first
equation is solved by a term M that satisfies M =β λx.xM x.

That we can solve equation of the form (1) is because every term in the
λ-calculus has a fixed point. Even more: we have a fixed point combinator.

Definition 13. – The term M is a fixed point of the term P if P M =β M .
– The term Y is a fixed point combinator if for every term P , Y P is a fixed

point of P , that is if
P (Y P ) =β Y P.

In the λ-calculus we have various fixed point combinators, of which the Y -
combinator is the most well-known one: Y := λf.(λx.f(xx))(λx.f(xx)).



20

Exercise 3. Verify that the Y as defined above is a fixed point combinator:
P (Y P ) =β Y P for every λ-term P .
Verify that Θ := (λx y.y(xx y))(λx y.y(xx y)) is also a fixed point combinator
that is even reducing: ΘP −→−→β P (ΘP ) for every λ-term P .

The existence of fixed-points is the key to the power of the λ-calculus. But
we also need natural numbers and booleans to be able to write programs. In
Section 3 we have already seen the Church numerals:

cn := λf.λx.fn(x)

where
fn(x) denotes f(. . . f(f︸ ︷︷ ︸

n times f

x))

The successor is easy to define for these numerals: Suc := λn.λf x.f(n f x).
Addition can also be defined quite easily, but if we are lazy we can also use the
fixed-point combinator. We want to solve

Addnm := if(Zeron) thenm else Add (Predn)m)

where Pred is the predecessor function, Zero is a test for zero and if . . . then . . . else
is a case distinction on booleans. The booleans can be defined by

true := λx y.x

false := λx y.y

if b thenP elseQ := b P Q.

Exercise 4. 1. Verify that the booleans behave as expected:
if true thenP elseQ =β P and if false thenP elseQ =β Q.

2. Define a test-for-zero Zero on the Church numerals :Zero c0 =β true and
Zero cn+1 =β false. (Defining the predecessor is remarkably tricky!)

Apart from the natural numbers and booleans, it is not difficult to find
encodings of other data, like lists and trees. Given the expressive power of the
untyped λ-calculus and the limited expressive power of λ→, one may wonder why
we want types. There are various good reasons for that, most of which apply to
the the “typed versus untyped programming languages” issue in general.

Types give a (partial) specification. Types tell the programmer – and a person
reading the program — what a program (λ-term) does, to a certain extent. Types
only give a very partial specification, like f : IN→ IN, but depending on the type
system, this information can be enriched, for example: f : Πn : IN.∃m : IN.m >
n, stating that f is a program that takes a number n and returns an m that
is larger than n. In the Chapter by Bove and Dybjer, one can find examples of
that type and we will also come back to this theme in this Chapter in Section 6.
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“Well-typed programs never go wrong” (Milner). The Subject Reduction property
guarantees that a term of type σ remains to be of type σ under evaluation. So,
if M : nat evaluates to a value v, we can be sure that v is a natural number.

The type checking algorithm detects (simple) mistakes. Types can be checked at
compile time (statically) and this is a simple but very useful method to detect
simple mistakes like typos and applying functions to the wrong arguments. Of
course, in a more refined type system, type checking can also detect more subtle
mistakes.

Typed terms always terminate(?) In typed λ-calculi used for representing proofs
(following the Curry-Howard isomorphism), the terms are always terminating,
and this is seen as an advantage as it helps in proving consistency of logical
theories expressed in these calculi. In general, termination very much depends
on the typing system. In this paper, all type systems only type terminating
(strongly normalizing) λ-terms, which also implies that these systems are not
Turing complete. Type systems for programming languages will obviously al-
low also non-terminating calculations. A simple way to turn λ→ into a Tur-
ing complete language is by adding fixed point combinators (for every type σ)
Yσ : (σ→σ)→σ with the reduction rule Y f → f(Y f). This is basically the
system PCF, first defined and studied by Plotkin [35].

Given that we want types, the situation with a system like λ→ as presented
in Section 3, is still unsatisfactory from a programmers point of view. Why would
the programmer have to write all those types? The compiler should compute the
type information for us!

For M an untyped term, we want the type system to assign a type σ to M
(or say that M is not typable). Such a type system is called a type assignment
system, or also typing à la Curry (as opposed to the typing à la Church that we
have seen up to now).

4.2 Simple type theory à la Church and à la Curry

We now set the two systems side-by-side: λ→ à la Church and à la Curry.

Definition 14. In λ→ à la Curry, the terms are

Λ ::= Var | (ΛΛ) | (λVar.Λ)

In λ→ à la Church, the terms are

ΛCh ::= Var | (ΛCh ΛCh) | (λVar:σ.ΛCh)

where σ ranges over the simple types, as defined in Definition 1.

These sets of terms are just the preterms. The typing rules will select the well-
typed terms from each of these sets.
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Definition 15. The typing rules of λ→ à la Church and λ→ à la Curry are as
follows. (The ones for the Church system are the same as the ones in Definition
7.)
λ→ (à la Church):

x:σ ∈ Γ

Γ ` x : σ

Γ `M : σ→τ Γ ` N : σ

Γ `MN : τ

Γ, x:σ ` P : τ

Γ ` λx:σ.P : σ→τ

λ→ (à la Curry):

x:σ ∈ Γ

Γ ` x : σ

Γ `M : σ→τ Γ ` N : σ

Γ `MN : τ

Γ, x:σ ` P : τ

Γ ` λx.P : σ→τ

The rules à la Curry can of course also be given in the Fitch style, which is
the style we use when giving derivations of typings.

Exercise 5. Give a full derivation of

` λx.λy.y(λz.y x) : (γ→ε)→((γ→ε)→ε)→ε

in Curry style λ→

We can summarize the differences between Typed Terms and Type Assign-
ment as follows:

– With typed terms (typing à la Church), we have terms with type information
in the λ-abstraction: λx:α.x : α→α. As a consequence:
• Terms have unique types,
• The type is directly computed from the type info in the variables.

– With type assignment (typing à la Curry), we assign types to untyped λ-
terms: λx.x : α→α. As a consequence:
• Terms do not have unique types,
• A principal type can be computed (using unification).

Examples 9. – Typed Terms:

λx:α.λy:(β→α)→α.y(λz:β.x)

has only the type α→((β→α)→α)→α
– Type Assignment: λx.λy.y(λz.x) can be assigned the types
• α→((β→α)→α)→α
• (α→α)→((β→α→α)→γ)→γ
• . . .

with α→((β→α)→γ)→γ being the principal type, a notion to be defined and
discussed later.

There is an obvious connection between Church and Curry typed λ→, given
by the erasure map.



23

Definition 16. The erasure map | − | from λ→ à la Church to λ→ à la Curry
is defined by erasing all type information:

|x| := x

|M N | := |M | |N |
|λx : σ.M | := λx.|M |

So, e.g. |λx:α.λy:(β→α)→α.y(λz:β.x))| = λx.λy.y(λz.x)).

Theorem 3. If M : σ in λ→ à la Church, then |M | : σ in λ→ à la Curry.
If P : σ in λ→ à la Curry, then there is an M such that |M | ≡ P and M : σ in
λ→ à la Church.

The proof is by an easy induction on the derivation.

4.3 Principal types

We now discuss the notion of a principal type in λ→ à la Curry. We will describe
an algorithm, the principal type algorithm, that, given a closed untyped term
M , computes a type σ if M is typable with type σ in λ→, and “reject” if M is
not typable. Moreover, the computed type σ is “minimal” in the sense that all
possible types for M are substitution instances of σ.

Computing a principal type for M in λ→ à la Curry proceeds as follows:

1. Assign a type variable to every variable x in M .
2. Assign a type variable to every applicative sub-term of M .
3. Generate a (finite) set of equations E between types that need to hold in

order to ensure that M is typable.
4. Compute a “minimal substitution” S, substituting types for type variables,

that makes all equations in E hold. (This is a most general unifier for E.)
5. With S compute the type of M .

The algorithm described above can fail only if their is no unifying substitution
for E. In that case we return “reject” and conclude that M is not typable. An
applicative sub-term is a term that is not a variable and does not start with a λ.
(So it is a sub-term of the form P Q). One could label all sub-terms with a type
variable, but that just adds superfluous overhead. We show how the algorithm
works by elaborating an example.

Example 10. We want to compute the principal type of λx.λy.y(λz.yx).

1. Assign type variables to all term variables: x : α, y : β, z : γ.
2. Assign type variables to all applicative sub-terms: y x : δ, y(λz.y x) : ε. These

two steps yield the following situation, where we indicate the types of the
variables and applicative sub-terms by super- and subscripts.

λxα.λyβ . yβ(λzγ .

δ︷ ︸︸ ︷
yβxα)︸ ︷︷ ︸

ε
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3. Generate equations between types, necessary for the term to be typable:

E = {β = α→δ, β = (γ→δ)→ε}

The equation β = α→δ arises from the sub-term

δ︷ ︸︸ ︷
yβxα, which is of type δ if

β is a function type with domain α and range δ. The equation β = (γ→δ)→ε

arises from the sub-term yβ(λzγ .
δ︷︸︸︷
y x )︸ ︷︷ ︸

ε

, which is of type ε if β is a function

type with domain γ→δ and range ε.
4. Find a most general substitution (a most general unifier) for the type vari-

ables that solves the equations:

S := {α := γ→δ, β := (γ→δ)→ε, δ := ε}

5. The principal type of λx.λy.y(λz.yx) is now

(γ→ε)→((γ→ε)→ε)→ε

Exercise 6. 1. Compute the principal type for S := λx.λy.λz.x z(y z)
2. Which of the following terms is typable? If it is, determine the principal type;

if it isn’t, show that the typing algorithm rejects the term.
(a) λz x.z(x(λy.y x))
(b) λz x.z(x(λy.y z))

3. Compute the principal type for M := λx.λy.x(y(λz.x z z))(y(λz.x z z)).

We now introduce the notions required for the principal types algorithm.

Definition 17. – A type substitution (or just substitution) is a map S from
type variables to types. As a function, we write it after the type, so σS
denotes the result of carrying out substitution S on σ.

– Most substitutions we encounter are the identity on all but a finite number of
type variables, so we often denote a substitution as [α1 := σ1, . . . , αn := σn].
We view a type substitution as a function that is carried out in parallel so
[α := β→β, β := α→γ] applied to α→β results in (β→β)→α→γ.

– We can compose substitutions in the obvious way: S;T is obtained by first
performing S and then T .

– A unifier of the types σ and τ is a substitution that “makes σ and τ equal”,
i.e. an S such that σS = τS.

– A most general unifier (or mgu) of the types σ and τ is the “simplest sub-
stitution” that makes σ and τ equal, i.e. an S such that
• σS = τS

• for all substitutions T such that σT = τT there is a substitution R such
that T = S;R.
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All these notions generalize to lists instead of pairs σ, τ . We say that S unifies
the list of equations σ1 = τ1, . . . , σn = τn if σ1S = τ1S, . . . , σnS = τnS, that is:
S makes all equations true.

The crucial aspect in the principal type algorithm is the computability of a
most general unifier for a set of type equations. The rest of the algorithm should
be clear from the example and we don’t describe it in detail here.

Definition 18. We define the algorithm U that, when given a list of type equa-
tions E = 〈σ1 = τ1, . . . , σn = τn〉 outputs a substitution S or “reject” as follows.
U looks at the first type equation σ1 = τ1 and depending on its form it outputs:

– U(〈α = α, . . . , σn = τn〉) := U(〈σ2 = τ2, . . . , σn = τn〉).
– U(〈α = τ1, . . . , σn = τn〉) := “reject” if α ∈ FV(τ1), τ1 6= α.
– U(〈α = τ1, . . . , σn = τn〉) :=

[α := V (τ1), U(〈σ2[α := τ1] = τ2[α := τ1], . . . , σn[α := τ1] = τn[α := τ1]〉)], if
α /∈ FV(τ1), where V abbreviates U(〈σ2[α := τ1] = τ2[α := τ1], . . . , σn[α :=
τ1] = τn[α := τ1]〉).

– U(〈σ1 = α, . . . , σn = τn〉) := U(〈α = σ1, . . . , σn = τn〉)
– U(〈µ→ν = ρ→ξ, . . . , σn = τn〉) := U(〈µ = ρ, ν = ξ, . . . , σn = τn〉)

Theorem 4. The function U computes the most general unifier of a set of equa-
tions E. That is,

– If U(E) = “reject”, then there is no substitution S that unifies E.
– If U(E) = S, then S unifies E and for all substitutions T that unify E, there

is a substitution R such that T = S;R (S is most general).

Definition 19. The type σ is a principal type for the closed untyped λ-term M
if

– M : σ in λ→ à la Curry
– for all types τ , if M : τ , then τ = σS for some substitution S.

Theorem 5 (Principal Types). There is an algorithm PT that, when given
a closed (untyped) λ-term M , outputs

– A principal type σ such that M : σ in λ→ à la Curry.
– “reject” if M is not typable in λ→ à la Curry.

The algorithm is the one we have described before. We don’t give it in formal
detail, nor the proof of its correctness, but refer to [5] and [40]. This algorithm
goes back to the type inference algorithm for simply typed lambda calculus of
Hindley [23], which was independently developed by Milner [29] and extended
to the weakly polymorphic case (see Section 5.1). Damas [12] has proved it
correct and therefore this algorithm is often referred to as the Hindley-Milner or
Damas-Milner algorithm.

If one wants to type an open term M , i.e. one that contains free variables,
one is actually looking for what is known as a principal pair, consisting of a
context Γ and a type σ such that Γ ` M : σ and if Γ ′ ` M : τ , then there
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is a substitution S such that τ = σS and Γ ′ = ΓS. (A substitution extends
straightforwardly to contexts.) However, there is a simpler way of attacking this
problem: just apply the PT algorithm for closed terms to λx1 . . . λxn.M where
x1, . . . , xn is the list of free variables in M .

The following describes a list of typical decidability problems one would like
to have an algorithm for in a type theory.

Definition 20.

`M : σ? Type Checking Problem TCP
`M : ? Type Synthesis or Type Assginment Problem TSP, TAP
`? : σ Type Inhabitation Problem TIP

Theorem 6. For λ→, all problems defined in Definition 20 are decidable, both
for the Curry style and for the Church style versions of the system.

For Church style, TCP and TSP are trivial, because we can just “read off”
the type from the term that has the variables in the λ-abstractions decorated
with types. For Curry style, TSP is solved by the PT algorithm. This also gives
a way to solve TCP: to verify if M : σ, we just compute the principal type of
M , say τ , and verify if σ is a substitution instance of τ (which is decidable).

In general, one may think that TCP is easier than TSP, but they are (usually)
equivalent: Suppose we need to solve the TCP M N : σ. The only thing we can
do is to solve the TSP N :? and if this gives answer τ , solve the TCP M : τ→σ.
So we see that these problems are tightly linked.

For Curry systems, TCP and TSP soon become undecidable if we go beyond
λ→. In the next section we will present the polymorphic λ-calculus, whose Curry
style variant has an undecidable TCP.

TIP is decidable for λ→, as it corresponds to provability in PROP, which
is known to be decidable. This applies to both the Church and Curry variants,
because they have the same inhabited types (as a consequence of Theorem 3).
TIP is undecidable for most extensions of λ→, because TIP corresponds to
provability in some logic and provability gets easily undecidable (e.g. already in
very weak systems of predicate logic).

As a final remark: if we add a context to the problems in Definition 20, the
decidability issues remain the same. For TIP, the problem is totally equivalent
since

x1 : σ1, . . . , xn : σn `? : σ ⇐⇒ `? : σ1→ . . .→σn→σ

For the Church system, TSP is also totally equivalent:

x1 : σ1, . . . , xn : σn `M :? ⇐⇒ ` λx1:σ1. . . . λxn:σn.M :?

and similarly for TCP.
For the Curry system, the situation is slightly different, because in the TSP

Γ ` M :? the free variables are “forced” to be of specific types, which they are
not in ` λx.M :?. Nevertheless, also if we add a context, TSP and TCP remain
decidable and the principal type technique that we have described still works.
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4.4 Properties of λ→; Normalization

We now list the most important meta-theoretic properties of λ→.

Theorem 7. – For λ→ à la Church: Uniqueness of types
If Γ `M : σ and Γ `M : τ , then σ = τ .

– Subject Reduction
If Γ `M : σ and M −→β N , then Γ ` N : σ.

– Strong Normalization
If Γ `M : σ, then all β-reductions from M terminate.

These are proved using the following more basic properties of λ→.

Proposition 1. – Substitution property
If Γ, x : τ,∆ `M : σ, Γ ` P : τ , then Γ,∆ `M [x := P ] : σ.

– Thinning
If Γ `M : σ and Γ ⊆ ∆, then ∆ `M : σ.

The proof of these properties proceeds by induction on the typing derivation
– where we sometimes first have to prove some auxiliary Lemmas that we haven’t
listed here – except for the proof of Strong Normalization, which was first proved
by Tait [38]. As Strong Normalization is such an interesting property and it has
an interesting proof, we devote the rest of this section to it. We first study the
problem of Weak Normalization, stating that every term has (a reduction path
to) a normal form.

Definition 21. – A λ-term M is weakly normalizing or WN if there is a
reduction sequence starting from M that terminates.

– A λ-term M is strongly normalizing or SN if all reduction sequences starting
from M terminate.
A type system is WN if all well-typed terms are WN, and it is SN if all

well-typed terms are SN.

What is the problem with normalization?

– Terms may get larger under reduction
(λf.λx.f(fx))P −→β λx.P (Px), which blows up if P is large.

– Redexes may get multiplied under reduction.
(λf.λx.f(fx))((λy.M)Q) −→β λx.((λy.M)Q)(((λy.M)Q)x)

– New redexes may be created under reduction.
(λf.λx.f(fx))(λy.N) −→β λx.(λy.N)((λy.N)x)

To prove WN, we would like to have a reduction strategy that does not create
new redexes, or that makes the term shorter in every step. However, this idea
is too naive and impossible to achieve. We can define a more intricate notion of
“size” of a term and a special reduction strategy that decreases the size of a term
at every step, but to do that we have to analyze more carefully what can happen
during a reduction. We give the following Lemma about “redex creation”, the
proof of which is just a syntactic case analysis.
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Lemma 3. There are four ways in which “new” β-redexes can be created in a
β-reduction step.

– Creation
(λx. . . . (xP ) . . .)(λy.Q) −→β . . . (λy.Q)P . . .

Here we really create a new redex, by substituting a λ-abstraction for a vari-
able that is in function position.

– Multiplication

(λx. . . . x . . . x . . .)((λy.Q)R) −→β . . . (λy.Q)R . . . (λy.Q)R . . .

Here we copy (possibly many times) an existing redex, thereby creating new
ones.

– Hidden redex
(λx.λy.Q)RP −→β (λy.Q[x := R])P

Here the redex (λy.Q)P was already present in a hidden form, being “shaded”
by the λx; it is revealed by contracting the outer redex.

– Identity
(λx.x)(λy.Q)R −→β (λy.Q)R

This is a different very special case of a “hidden redex”: by contracting the
identity, the redex (λy.Q)R is revealed.

We now define an appropriate size and an appropriate reduction strategy that
proves weak normalization. The proof is originally due to Turing and was first
written up by Gandy [17].

Definition 22. The height (or order) of a type h(σ) is defined by

– h(α) := 0
– h(σ1→ . . .→σn→α) := max(h(σ1), . . . , h(σn)) + 1.

The idea is that the height of a type σ is at least 1 higher than of any of
the domains types occurring in σ. In the definition, we use the fact that we can
write types in a “standard form” σ1→ . . .→σn→α. But it is equivalent to define
h directly by induction over the definition of types, as is stated in the following
exercise.

Exercise 7. Prove that the definition of h above is equivalent to defining

– h(α) := 0
– h(σ→τ) := max(h(σ) + 1, h(τ)).

Definition 23. The height of a redex (λx:σ.P )Q is the height of the type of
λx:σ.P .
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As an example, we look at the “identity” redex creation case of lemma 3.
Note that the height of the redex in (λx:σ.x)(λy:τ.Q)R is h(σ) + 1 and that
the height of the redex in its reduct, (λy:τ.Q)R, is h(σ). (Note that the type of
λy:τ.Q) is just σ.) So the created redex has lesser height.

This will be the key idea to our reduction strategy: we will select a redex
whose reduction only creates redexes of lesser height.

Definition 24. We assign a measure m to the terms by defining

m(N) := (hr(N),#N)

where

– hr(N) = the maximum height of a redex in N ,
– #N = the number of redexes of maximum height hr(N) in N .

The measures of terms are ordered in the obvious lexicographical way:

(h1, x) <l (h2, y) iff h1 < h2 or (h1 = h2 and x < y).

Theorem 8 (Weak Normalization). If P is a typable term in λ→, then there
is a terminating reduction starting from P .

Proof. Pick a redex of maximum height hr(P ) inside P that does not contain
any other redex of height hr(P ). Note that this is always possible: If R1 and R2

are redexes, R1 is contained in R2 or the other way around. Say we have picked
(λx:σ.M)N .

Reduce this redex, to obtain M [x := N ]. We claim that this does not create
a new redex of height hr(P ) (?). This is the important step and the proof is by
analyzing the four possibilities of redex creation as they are given in Lemma 3.
We leave this as an exercise.

If we write Q for the reduct of P , then, as a consequence of (?), we find that
m(Q) <l m(P ). As there are no infinitely decreasing <l sequences, this process
must terminate and then we have arrived at a normal form.

Exercise 8. Check claim (?) in the proof of Theorem 8. (Hint: Use Lemma 3.)

Strong Normalization for λ→ is proved by constructing a model of λ→. We
give the proof for λ→ à la Curry. The proof is originally due to Tait [38], who
proposed the interpretation of the → types as given below. Recently, combina-
torial proofs have been found, that give a “measure” to a typed λ-term and then
prove that this measure decreases for all reduction steps that are possible. See
[26].

Definition 25. The interpretation of λ→-types is defined as follows.

– [[α]] := SN (the set of strongly normalizing λ-terms).
– [[σ→τ ]] := {M | ∀N ∈ [[σ]](MN ∈ [[τ ]])}.
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Note that the interpretation of a function type is countable: it is not (isomor-
phic to) the full function space, but it contains only the functions from [[σ]] to [[τ ]]
that can be λ-defined, i.e. are representable by a λ-term. This set is obviously
countable. We have the following closure properties for [[σ]].

Lemma 4. 1. [[σ]] ⊆ SN
2. xN1 . . . Nk ∈ [[σ]] for all x, σ and N1, . . . , Nk ∈ SN.
3. If M [x := N ]P ∈ [[σ]], N ∈ SN, then (λx.M)NP ∈ [[σ]].

Proof. All three parts are by induction on the structure of σ. The first two are
proved simultaneously. (NB. In the case of σ = ρ→τ for the proof of (1), we
need that [[ρ]] is non-empty, which is guaranteed by the induction hypothesis for
(2).) For (1) also use the fact that, if M N ∈ SN, then also M ∈ SN.

Exercise 9. Do the details of the proof of Lemma 4.

Proposition 2.

x1:τ1, . . . , xn:τn `M : σ
N1 ∈ [[τ1]], . . . , Nn ∈ [[τn]]

}
⇒M [x1 := N1, . . . , xn := Nn] ∈ [[σ]]

Proof. By induction on the derivation of Γ `M : σ, using (3) of the Lemma 4

Corollary 1 (Strong Normalization for λ→). λ→ is SN

Proof. By taking Ni := xi in Proposition 2. (Note that xi ∈ [[τi]] by Lemma 4.)
Then M ∈ [[σ]] ⊆ SN.

Exercise 10. Verify the details of the Strong Normalization proof. That is, prove
Proposition 2 in detail by checking the inductive cases.

In the Strong Normalization proof, we have constructed a model that has
the special nature that the interpretation of the function space is countable.
If one thinks about semantics in general, one of course can also take the full
set-theoretic function space as interpretation of σ→τ . We elaborate a little bit
on this point, mainly as a reference for a short discussion in the Section on
polymorphic λ-calculus.

We say that λ→ has a simple set-theoretic model. Given sets [[α]] for type
variables α, define

[[σ→τ ]] := [[τ ]][[σ]] ( set theoretic function space [[σ]]→ [[τ ]])

Now, if any of the base sets [[α]] is infinite, then there are higher and higher
infinite cardinalities among the [[σ]], because the cardinality of [[σ→τ ]] is always
strictly larger than that of [[σ]].

There are smaller models, e.g.

[[σ→τ ]] := {f ∈ [[σ]]→ [[τ ]]|f is definable}
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where definability means that it can be constructed in some formal system. This
restricts the collection to a countable set. As an example we have seen in the SN
proof the following interpretation

[[σ→τ ]] := {f ∈ [[σ]]→ [[τ ]]|f is λ-definable}

The most important thing we want to note for now is that in λ→ we have a lot
of freedom in choosing the interpretation of the →-types. In the polymorphic
λ-calculus, this is no longer the case.

5 Polymorphic Type Theory

Simple type theory λ→ is not very expressive: we can only define generalized
polynomials as functions [37] and we don’t have a clear notion of data types. Also,
in simple type theory, we cannot ‘reuse’ a function. For example, λx:α.x : α→α
and λx:β.x : β→β, which is twice the identity in slightly different syntactic form.
Of course, in the Curry version we have λx.x : α→α and λx.x : β→β, but then
still we can’t have the same term λx.x being of type α→α and of type β→β at
the same time. To see what we mean with that, consider the following term that
we can type

(λy.y)(λx.x)

In the Church version, this would read, e.g.

(λy:σ→σ.y)(λx:σ.x)

which shows that we can type this term with type σ→σ. To type the two iden-
tities with the same type at the same time, we would want to type the following
(of which the term above is a one-step reduct):

(λf.f f)(λx.x).

But this term is not typable: f should be of type σ→σ and of type (σ→σ)→σ→σ
at the same time, which we can’t achieve in λ→.

We want to define functions that can treat types polymorphically. We add
types of the form ∀α.σ.

Examples 11. – ∀α.α→α
If M : ∀α.α→α, then M can map any type to itself.

– ∀α.∀β.α→β→α
If M : ∀α.∀β.α→β→α, then M can take two inputs (of arbitrary types) and
return a value of the first input type.

There is a weak and a strong version of polymorphism. The first is present
in most functional programming languages, therefore also called ML style poly-
morphism. The second allows more types and is more immediate if one takes a
logical view on types. We first treat the weak version.
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5.1 Typed λ-calculus with weakly polymorphic types

Definition 26. In weak λ2 (the system with weak polymorphism) we have the
following additional types

Typw := ∀α.Typw|Typ

where Typ is the collection of λ→-types as defined in Definition 1.

So, the weak polymorphic types are obtained by adding ∀α1. . . .∀αn.σ for σ
a λ→-type.

We can formulate polymorphic λ-calculus in Church and in Curry style. As
for λ→, the two systems are different in the type information that occurs in the
terms, but now the difference is larger: in polymorphic λ-calculus we also have
abstractions over types.

Definition 27. The terms of weak λ2 à la Church are defined by

Λch2 ::= Var | (Λch2 Λch2 ) | (λVar:Typ.Λch2 ) | (λTVar.Λch2 ) | Λch2 Typ

The terms of the Curry version of the calculus are of course just Λ. This
means that in the Curry version we will not record the abstractions over type
variables. This is made precise in the following rules.

Definition 28. The Derivation rules for weak λ2 (ML-style polymorphism) in
Church style are as follows

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ
if σ, τ ∈ Typ

Γ ` λx:σ.M : σ→τ

Γ `M : σ→τ Γ ` N : σ

Γ `M N : τ

Γ `M : σ
α /∈ FV(Γ )

Γ ` λα.M : ∀α.σ

Γ `M : ∀α.σ
if τ ∈ Typ

Γ `Mτ : σ[α := τ ]

Definition 29. The derivation rules for weak λ2 (ML-style polymorphism) in
Curry style are as follows.

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ
if σ, τ ∈ Typ

Γ ` λx.M : σ→τ

Γ `M : σ→τ Γ ` N : σ

Γ `M N : τ

Γ `M : σ
α /∈ FV(Γ )

Γ `M : ∀α.σ

Γ `M : ∀α.σ
if τ ∈ Typ

Γ `M : σ[α := τ ]

Examples 12. 1. In λ2 à la Curry: λx.λy.x : ∀α.∀β.α→β→α.
2. In λ2 à la Church we have the following, which is the same term as in the

previous case, but now with type information added: λα.λβ.λx:α.λy:β.x :
∀α.∀β.α→β→α.

3. In λ2 à la Curry: z : ∀α.α→α ` z z : ∀α.α→α.
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4. In λ2 à la Church, we can annotate this term with type information to obtain:
z : ∀α.α→α ` λα.z (α→α) (z α) : ∀α.α→α.

5. We do not have ` λz.z z : . . .

We can make flag deduction rules for this system as follows.

1 x : σ
2 . . .

3 . . .

4 M : τ
5 λx:σ.M : σ → τ

1 . . .

2 . . .

3 M : σ → τ

4 . . .

5 . . .

6 N : σ
7 . . .

8 M N : τ
if σ, τ ∈ Typ

1 α

2 . . .

3 . . .

4 M : σ
5 λα.M : ∀α.σ

1 . . .

2 . . .

3 M : ∀α.σ
4 . . .

5 . . .

6 M τ : σ[α := τ ]
if α fresh

The “freshness” condition in the rule means that α should not occur free
above the flag. In terms of contexts, this means precisely that the type variable
that we intend to abstract over does not occur in the context Γ . The freshness
condition excludes the following wrong flag deduction.

WRONG

1 f : α→β
2 α

3 x : α
4 f x : β
5 λx.f x : α→β
6 λx.f x : ∀α.α→β

Of course, we should not be able to derive

f : α→β ` λx.f x : ∀α.α→β

Examples 13. Here are the first four examples of 12, now with flag deductions.
In the first row we find the derivations in the Church systems, in the second row



34

the ones in the Curry system.

1 α

2 β

3 x : α
4 y : β
5 λy:β.x : β→α
6 λx:α.λy:β.x : α→β→α
7 λβ.λx:α.λy:β.x : ∀β.α→β→α
8 λα.λβ.λx:α.λy:β.x : ∀α.∀β.α→β→α

1 z : ∀α.α→α
2 α

3 z α : α→α
4 z (α→α) : (α→α)→α→α
5 z (α→α)(z α) : α→α
6 λα.z (α→α)(z α) : ∀α.α→α

1 α

2 β

3 x : α
4 y : β
5 λy.x : β→α
6 λx.λy.x : α→β→α
7 λx.λy.x : ∀β.α→β→α
8 λx.λy.x : ∀α.∀β.α→β→α

1 z : ∀α.α→α
2 α

3 z : α→α
4 z : (α→α)→α→α
5 z z : α→α
6 z z : ∀α.α→α

In the types, ∀ only occurs on the outside. Therefore, in programming lan-
guages (that usually follow a Curry style typing discipline) it is usually left out
and all type variables are implicitly universally quantified over. This means that
one doesn’t write the ∀, so the types are restricted to Typ and hence we don’t
have the last two rules. That any type variable can be instantiated with a type,
is then made formal by changing the variable rule into

if τ ⊆ Typ
Γ, x:∀α.σ ` x : σ[α := τ ]

This should be read as that σ doesn’t contain any ∀ anymore. So we have uni-
versal types only in the context (as types of declared variables) and only at this
place we can instantiate the ∀α with types, which must be simple types. It can
be proven that this system is equivalent to λ2 à la Curry in the following sense.
Denote by `v the variant of the weak λ2 rules à la Curry where we don’t have
rules for ∀ and the adapted rule for variables just described. Then

Γ `v M : σ ⇒ Γ `M : σ
Γ `M : ∀α.σ ⇒ Γ `v M : σ[α := τ ]

This is proved by induction on the derivation, using a Substitution Lemma
that holds for all type systems that we have seen so far and that we therefore
state here in general.
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Lemma 5 (Substitution for types). If Γ ` M : σ, then Γ [α := τ ] ` M :
σ[α := τ ], for all systems à la Curry defined so far.
For the Church systems we have types in the terms. Then the Substitution Lemma
states: If Γ `M : σ, then Γ [α := τ ] `M [α := τ ] : σ[α := τ ].

For all systems, this Lemma is proved by a straightforward induction over
the derivation.

With weak polymorphism, type checking is still decidable: the principal types
algorithm can be extended to incorporate type schemes: types of the form ∀α.σ.
We have observed that weak polymorphism allows terms to have many (poly-
morphic) types, but we cannot abstract over variables of these types. This is
allowed with full polymorphism, also called system F style polymorphism.

5.2 Typed λ-calculus with full polymorphism

Definition 30. The types of λ2 with full (system F-style) polymorphism are

Typ2 := TVar | (Typ2→Typ2) | ∀α.Typ2

1. The derivation rules for λ2 with full (system F-style) polymorphism in Curry
style are as follows. (Note that σ and τ range over Typ2.)

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ

Γ ` λx.M : σ→τ

Γ `M : σ→τ Γ ` N : σ

Γ `M N : τ

Γ `M : σ
α /∈ FV(Γ )

Γ `M : ∀α.σ

Γ `M : ∀α.σ

Γ `M : σ[α := τ ]

2. The derivation rules for λ2 with full (system F-style) polymorphism in
Church style are as follows. (Again, note that σ and τ range over Typ2.)

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ

Γ ` λx:σ.M : σ→τ

Γ `M : σ→τ Γ ` N : σ

Γ `M N : τ

Γ `M : σ
α /∈ FV(Γ )

Γ ` λα.M : ∀α.σ

Γ `M : ∀α.σ

Γ `Mτ : σ[α := τ ]

So now, ∀ can also occur deeper in a type. We can write flag deduction
rules for the full λ2 in the obvious way, for both the Curry and the Church
variant of the system. We now give some examples that are only valid with full
polymorphism.

Examples 14. – λ2 à la Curry: λx.λy.x : (∀α.α)→σ→τ .
– λ2 à la Church: λx:(∀α.α).λy:σ.xτ : (∀α.α)→σ→τ .
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Here are the flag deductions that prove the two typings in the Examples.

1 x : ∀α.α
2 y : σ
3 x τ : τ
4 λy:σ.x τ : σ→τ
5 λx:∀α.α.λy:σ.x τ : (∀α.α)→σ→τ

1 x : ∀α.α
2 y : σ
3 x : τ
4 λy.x : σ→τ
5 λx.λy.x : (∀α.α)→σ→τ

In λ2 we use the following abbreviations for types: ⊥ := ∀α.α, > := ∀α.α→α.
The names are derived from the behavior of the types. From a term of type ⊥,
we can create a term of any type: λx:⊥.xσ : ⊥→σ for any type σ. So ⊥ is in
some sense the “smallest type”. Also, ⊥ is empty: there is no closed term of
type ⊥. On the other hand, > is the type with one canonical closed element:
λα.λx:α.x : >. We can now also type a term like λx.x x.

Examples 15. – In Curry λ2: λx.xx : ⊥→⊥, λx.xx : >→>
– In Church λ2: λx:⊥.x(⊥→⊥)x : ⊥→⊥, λx:>.x>x : >→>.
– In Church λ2: λx:⊥.λα.x(α→α)(xα) : ⊥→⊥, λx:>.λα.x(α→α)(xα) : >→>.

We show two typings in the previous example by a flag deduction.

1 x : ⊥
2 α

3 x : α→α
4 x : α
5 xx : α
6 xx : ∀α.α
7 λx:⊥.x x : ⊥→⊥

1 x : >
2 x> : >→>
3 x>x : >
4 λx:>.x>x : >→>

Exercises 11. 1. Verify using a flag deduction that in Church λ2:
λx:>.λα.x(α→α)(xα) : >→>.

2. Verify using a flag deduction that in Curry λ2: λx.xx : >→>
3. Find a type in Curry λ2 for λx.x xx
4. Find a type in Curry λ2 for λx.x x (xx)

With full polymorphism, type checking becomes undecidable [41] for the
Curry version of the system. For the Church version it is clearly still decidable,
as we have all necessary type information in the term.

Definition 31. We define the erasure map from λ2 à la Church to λ2 à la Curry
as follows.

|x| := x
|λx:σ.M | := |λx.M | |λα.M | := |M |
|MN | := |M | |N | |Mσ| := |M |
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We have the following proposition about this erasure map, that relates the
Curry and Church systems to each other.

Proposition 3. If Γ ` M : σ in λ2 à la Church, then Γ ` |M | : σ in λ2 à la
Curry.
If Γ ` P : σ in λ2 à la Curry, then there is an M such that |M | ≡ P and
Γ `M : σ in λ2 à la Church.

The proof is by straightforward induction on the derivations. We don’t give
the details. In the Examples of 12, 14 and 15, we can see the Proposition at
work: an erasure of the Church style derivation gives a Curry style derivation.
The other way around: any Curry style derivation can be “dressed up” with
type information to obtain a Church style derivation. The undecidability of type
checking in λ2 à la Curry can thus be rephrased as: we cannot algorithmically
reconstruct the missing type information in an untyped term. In Example 15 we
have seen two completely different ways to “dress up” the term λx.x x to make it
typable in λ2-Church. This is a general pattern: there are many possible ways to
add typing information to an non-typable term to make it typable in λ2-Church.

We have opposed “weak polymorphism” to “full polymorphism” and we re-
ferred to the first also as ML-style polymorphism. It is the case that polymor-
phism in most functional programming languages is weaker than full polymor-
phism, and if we restrict ourselves to the pure λ-calculus, it is just the weak
polymorphic system that we have described. However, to regain some of the
“full polymorphism”, ML has additional constructs, like let polymorphism.

Γ `M : σ Γ, x : σ ` N : τ
for τ a λ→-type, σ a λ2-type

Γ ` letx = M inN : τ
We can see a term letx = M inN as a β-redex (λx:σ.N)M . So the let-rule

allows the formation of a β-redex (λx:σ.N)M , for σ a polymorphic type, while we
cannot form the abstraction term λx:σ.N : σ→τ . So it is still impossible to have
a universal quantifier deeper inside a type, though we can have a polymorphic
term as a subterm of a well-typed term. For the extension of the principal type
algorithm to include weak polymorphism with lets we refer to [30].

Exercise 12. 1. Type the term (λf.f f)(λx.x) in (full) λ2-Curry.
2. Type the term let f = λx.x in f f in weak λ2-Curry with the let-rule as given

above.

5.3 Meta-theoretic Properties

We now recall the decidability issues of Definition 20 and look into them for λ2.

Theorem 9. Decidability properties of the (weak and full) polymorphic λ-calculus

– TIP is decidable for the weak polymorphic λ-calculus, undecidable for the full
polymorphic λ-calculus.

– TCP and TSP are equivalent.
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–
TCP à la Church à la Curry
ML-style decidable decidable
System F-style decidable undecidable

With full polymorphism (system F), untyped terms contain too little infor-
mation to compute the type [41]. TIP is equivalent to provability in logic. For
full λ2, this is second order intuitionistic proposition logic (to be discussed in the
next Section), which is known to be undecidable. For weak λ2, the logic is just
a very weak extension of PROP which is decidable.

5.4 Formulas-as-types for full λ2

There is a formulas-as-types isomorphism between full system-F style λ2 and
second order proposition logic, PROP2.

Definition 32. Derivation rules of PROP2:

τ1 . . . τn
...
σ

∀-I, if α /∈ FV(τ1, . . . , τn)
∀α.σ

∀α.σ

σ[α := τ ]

NB This is constructive second order proposition logic: Peirce’s law

∀α.∀β.((α→β)→α)→α

is not derivable (so there is no closed term of this type). The logic only has impli-
cation and universal quantification, but the other connectives are now definable.

Definition 33. Definability of the other intuitionistic connectives.

⊥ := ∀α.α
σ∧τ := ∀α.(σ→τ→α)→α
σ∨τ := ∀α.(σ→α)→(τ→α)→α
∃α.σ := ∀β.(∀α.σ→β)→β

Proposition 4. All the standard constructive deduction rules (elimination and
introduction rules) are derivable using the definitions in 33

Example 16. We show the derivability of the ∧-elimination rule by showing how
to derive σ from σ ∧ τ :

∀α.(σ→τ→α)→α

(σ→τ→σ)→σ

[σ]1

τ→σ
1

σ→τ→σ

σ
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There is a formulas-as-types embedding of PROP2 into λ2 that maps deduc-
tions to terms. It can be defined inductively, as we have done for PROP and λ→
in Definition 10. We don’t give the definitions, but illustrate it by an example.

Example 17. The definable ∧-elimination rule in PROP2 under the deductions-
as-terms embedding yields a λ-terms that “witnesses” the construction of an
object of type σ out of an object of type σ ∧ τ .

M : ∀α.(σ→τ→α)→α

Mσ : (σ→τ→σ)→σ

[x : σ]1

λy:τ.x : τ→σ
1

λx:σ.λy:τ.x : σ→τ→σ

Mσ(λx:σ.λy:τ.x) : σ

So the following term is a “witness” for the ∧-elimination.

λz:σ∧τ.z σ (λx:σ.λy:τ.x) : (σ ∧ τ)→σ

Exercise 13. Prove the derivability of some of the other logical rules:

1. Define inl : σ → σ ∨ τ
2. Define pairing : 〈−,−〉 : σ → τ → σ × τ
3. Given f : σ→ρ and g : τ→ρ, construct a term case f g : σ ∨ τ→ρ

5.5 Data types in λ2

In λ→ we can define a type of “natural numbers over a type σ”: (σ→σ)→σ→σ.
In λ2, we can define this type polymorphically.

Nat := ∀α.(α→α)→α→α

This type uses the encoding of natural numbers as Church numerals

n 7→ cn := λf.λx.f(. . . (fx)) n-times f

– 0 := λα.λf :α→α.λx:α.x
– S := λn:Nat.λα.λf :α→α.λx:α.f(nαx f)

Proposition 5. Over the type Nat, functions can be defined by iteration: if c : σ
and g : σ→σ, then there is a function

It c g : Nat→σ

satisfying

It c g 0 = c

It c g (S x) = g(It c g x)

Proof. It c g : Nat→σ is defined as λn:Nat.n σ g c. It is left as a (quite ease)
exercise to see that this satisfies the equations.



40

The function It acts as an iterator: it takes a “begin value” c and a map g
and n times iterates g on c, where n is the natural number input. So It c g n =
g(. . . (g c)), with n times g.

Examples 18. 1. Addition

Plus := λn:Nat.λm:Nat.ItmS n

or if we unfold the definition of It: Plus := λn:Nat.λm:Nat.nNatS m, which
says: iterate the +1 function n times on begin value m.

2. Multiplication

Mult := λn:Nat.λm:Nat.It 0 (λx:Nat.Plusmx)n

The predecessor is notably difficult to define! The easiest way to define it is
by first defining primitive recursion on the natural numbers. This means that
if we have c : σ and f : Nat→σ→σ, we want to define a term Rec c f : Nat→σ
satisfying

Rec c f 0 = c

Rec c f (S x) = f x (Rec c f x)

(Note that if we can define functions by primitive recursion, the predecessor is
just P := Rec 0 (λx y : Nat.x).)

It is known that primitive recursion can be encoded in terms of iteration, so
therefore we can define the predecessor in λ2. However, the complexity (in terms
of the number of reduction steps) of this encoding is very bad. As a consequence:

Pred(n+ 1) −→−→β n

in a number of steps of O(n).

Exercise 14. 1. Complete the details in the proof of Proposition 5
2. Verify in detail that addition and multiplication as defined in Example 18

behave as expected.
3. Define the data type Three := ∀α: ∗ .α→α→α→α.

(a) Give three different closed inhabitants of the type Three in λ2 à la
Church: one, two, three : Three.

(b) Define a function Shift : Three→ Three that does the following

Shift one =β two

Shift two =β three

Shift three =β one

Apart from the natural numbers, many other algebraic data types are defin-
able in λ2. Here is the example of lists over a base type A.

ListA := ∀α.α→(A→α→α)→α
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The representation of lists over A as terms of this type uses the following
encoding

[a1, a2, . . . , an] 7→ λx.λf.fa1(fa2(. . . (fanx))) n-times f

We can now define the constructors Nil (empty list) and Cons (to “cons” an
element to a list) as follows.

– Nil := λα.λx:α.λf :A→α→α.x
– Cons := λa:A.λl:ListA.λα.λx:α.λf :A→α→α.f a(l α x f)

Note that the definition of Cons conforms with the representation of lists given
above.

Proposition 6. Over the type ListA we can define functions by iteration: if c : σ
and g : A→σ→σ, then there is a function

It c g : ListA→σ

satisfying

It c gNil = c

It c g (Cons a l) = g a (It c g l)

Proof. It c g : ListA→σ is defined as λl:ListA.l σ c g. This satisfies the equations in
the proposition. Basically, we have, for l = [a1, . . . , an], It c g l = g a1(. . . (g an c))
(n times g).

Example 19. A standard function one wants to define over lists is the “map”
function, which given a function on the carrier type, extends it to a function on
the lists over this carrier type. Given f : σ→τ , Map f : Listσ→Listτ should apply
f to all elements in a list. It is defined by

Map := λf :σ→τ.It Nil(λx:σ.λl:Listτ .Cons(f x)l).

Then

Map f Nil = Nil

Map f (Cons a k) = It Nil(λx:σ.λl:Listτ .Cons(f x)l) (Cons a k)
= (λx:σ.λl:Listτ .Cons(f x)l)a(Map f k)
= Cons(f a)(Map f k)

This is exactly the recursion equation for Map that we would expect.

Many more data-types can be defined in λ2. The product of two data-types is
defined in the same way as the (logical) conjunction: σ×τ := ∀α.(σ→τ→α)→α.
we have already seen how to define projections and pairing (the ∧-elimination
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and ∧-introduction rules). The disjoint union (or sum) of two data-types is de-
fined in the same way as the logical disjunction: σ+τ := ∀α.(σ→α)→(τ→α)→α.
We can define inl, inr and case . The type of binary trees with nodes in A and
leaves in B can be defined as follows.

TreeA,B := ∀α.(B→α)→(A→α→α→α)→α

and we define leaf : B→TreeA,B by leaf := λb:B.λα.λl:B→α.λj:A→α→α→α.l b.

Exercises 15. – Define a function of type ListA→Nat that computes the length
of a list.

– Define join : TreeA,B → TreeA,B → A → TreeA,B that takes two trees and a
node label and builds a tree.

– Define a function TreeSum : TreeNat,Nat→Nat that computes the sum of all
leaves and nodes in a binary tree.

– Give the iteration scheme over binary trees and show that it is definable in
λ2.

5.6 Meta-theory of λ2; Strong Normalization

Theorem 10. – For λ2 à la Church: Uniqueness of types
If Γ `M : σ and Γ `M : τ , then σ = τ .

– Subject Reduction
If Γ `M : σ and M −→βη N , then Γ ` N : σ.

– Strong Normalization
If Γ `M : σ, then all β-reductions from M terminate.

The third property is remarkably complicated and we address it in detail
below. The first two are proved by induction on the derivation, using some other
meta-theoretic properties, that one also proves by induction over the derivation
(the Substitution Property we have already seen for types; this is the same
property for terms):

Proposition 7. – Substitution property
If Γ, x : τ,∆ `M : σ, Γ ` P : τ , then Γ,∆ `M [x := P ] : σ.

– Thinning
If Γ `M : σ and Γ ⊆ ∆, then ∆ `M : σ.

We now elaborate on the proof of Strong Normalization of β-reduction for
λ2. The proof is an extension of the Tait proof of SN for λ→, but it needs some
crucial extra ingredients that have been developed by Girard [21]. We motivate
these additional notions below.

In λ2 à la Church there are two kinds of β-reductions:

– Kind 1, term-applied-to-term: (λx:σ.M)P −→β M [x := P ]
– Kind 2, term-applied-to-type: (λα.M)τ −→β M [α := τ ]
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The second kind of reductions does no harm: (i) there are no infinite β-
reduction paths with solely reductions of kind 2; (ii) if M −→β N with a re-
duction of kind 2, then |M | ≡ |N |. So, if there is an infinite β-reduction in
λ2-Church, then there is one in λ2-Curry and we are done if we prove SN for λ2
à la Curry.

Recall the model construction in the proof for λ→:

– [[α]] := SN.
– [[σ→τ ]] := {M | ∀N ∈ [[σ]](MN ∈ [[τ ]])}.

So, now the question is: How to define [[∀α.σ]]? A natural guess would be
to define [[∀α.σ]] := ΠX∈U [[σ]]α:=X , where U is some set capturing all possible
interpretations of types. This Π-set is a set of functions that take an element X
of U (an interpretation of a type) and yield an element of the interpretation of
σ where we assign X to α.

But now the problem is that ΠX∈U [[σ]]α:=X gets too big: if there is any type
with more than one element (something we would require for a model), then
card(ΠX∈U [[σ]]α:=X) > card(U). The cardinality of the interpretation of ∀α.σ
would be larger than the set it is a member of and that’s impossible. So we
cannot interpret the ∀ as a Π-set (or a union for the same reason).

Girard has given the solution to this problem: [[∀α.σ]] should be very small:

[[∀α.σ]] :=
⋂
X∈U

[[σ]]α:=X

This conforms with the idea that ∀α.σ is the type of terms that act parametrically
on a type. A lot of literature has been devoted to the nature of polymorphism,
for which the terminology parametricity has been introduced, intuitively saying
that a function operates on types without looking into them. So a parametric
function cannot act differently on Nat and Bool. This implies, e.g. that there
is only one parametric function from α to α: the identity. See [1] for more on
parametricity.

The second important novelty of Girard is the actual definition of U , the
collection of all possible interpretations of types. U will be defined as SAT, the
collection of saturated sets of (untyped) λ-terms.

Definition 34. X ⊂ Λ is saturated if

– xP1 . . . Pn ∈ X (for all x ∈ Var, P1, . . . , Pn ∈ SN)
– X ⊆ SN
– If M [x := N ]P ∈ X and N ∈ SN, then (λx.M)NP ∈ X.

The definition of saturated sets basically arises by taking the closure prop-
erties that we proved for the interpretation of λ→-types as a definition of the
collection of possible interpretation of λ2-types.

Definition 35. Let ρ : TVar → SAT be a valuation of type variables. Define
[[σ]]ρ by:
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– [[α]]ρ := ρ(α)
– [[σ→τ ]]ρ := {M |∀N ∈ [[σ]]ρ(MN ∈ [[τ ]]ρ)}
– [[∀α.σ]]ρ := ∩X∈SAT[[σ]]ρ,α:=X

Proposition 8.

x1 : τ1, . . . , xn : τn `M : σ ⇒M [x1 := P1, . . . , xn : Pn] ∈ [[σ]]ρ

for all valuations ρ and P1 ∈ [[τ1]]ρ, . . . , Pn ∈ [[τn]]ρ

The proof is by induction on the derivation of Γ `M : σ.

Corollary 2. λ2 is SN

Proof. Take P1 to be x1, . . . , Pn to be xn.

Exercise 16. Verify the details of the proof of the Proposition.

We end this section with some remarks on semantics. In the section on λ→
we have seen that the SN proof consists of the construction of a model, where the
interpretation of the function type is “small” (not the full function space). But
for λ→, there are also models where the function type is the full set-theoretic
function space. These are often referred to as set-theoretical models of type the-
ory.

Theorem 11 (Reynolds[36]). λ2 does not have a non-trivial set-theoretic
model.

This is a remarkable theorem, also because there are no requirements for
the interpretation of the other constructs, only that the model is sound. The
proof proceeds by showing that if [[σ→τ ]] := [[τ ]][[σ]] (the set theoretic function
space), then [[σ]] is a singleton set for every σ. We call such a model trivial, as
all types are interpreted as the empty set or the singleton set. This is a sound
interpretation, corresponding with the interpretation of the formulas of PROP2
in a classical way (suing a truth table semantics). It is also called the proof
irrelevance semantics as all proofs of propositions are identified. As said, it is
a sound model, but not a very interesting one, certainly from a programmers
point of view, because all natural numbers are identified.

So we can rephrase Reynolds result as: in an interesting λ2-model, [[σ→τ ]]
must be small.

6 Dependent Type Theory

In the paper by Bove and Dybjer, we can see “Dependent Types at Work” and
that paper also gives some of the history and intuitions behind it. In this Section
I will present the rules. The problem with dependent types is that “everything
depends on everything”, so we can’t first define the types and then the terms.
We will have two “universes”: type and kind. Dybjer and Bove used “Set” for
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what I call type: the universe of types. (We can’t have type : type, so to type
type we need to have another universe: type : kind.)

we define first order dependent type theory, λP. This system is also known
as LF (Logical Framework, [22]) The judgements of the system are of the form

Γ `M : B

where

– Γ is a context
– M and B are terms taken from the set of pseudo-terms.

Definition 36. The set of pseudo-terms is defined by

T ::= Var | type |kind | (TT) | (λx:T.T) |Πx:T.T,

Furthermore, there is an auxiliary judgement

Γ `

to denote that Γ is a correct context.

Definition 37. The derivation rules of λP are (s ranges over {type,kind}):

(base) ∅ ` (ctxt)
Γ ` A : s

Γ, x:A `
if x not in Γ (ax)

Γ `

Γ ` type : kind

(proj)
Γ `

Γ ` x : A
if x:A ∈ Γ (Π)

Γ, x:A ` B : s Γ ` A : type

Γ ` Πx:A.B : s

(λ)
Γ, x:A `M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B
(app)

Γ `M : Πx:A.B Γ ` N : A

Γ `MN : B[x := N ]

(conv)
Γ `M : B Γ ` A : s

Γ `M : A
A =βη B

In this type theory, we have a new phenomenon, which is the Π-type:

Πx:A.B(x) ' the type of functions f such that
f a : B(a) for all a:A

The Π-type is a generalization of the well-known function type: if x /∈ FV(B),
then Πx:A.B is just A→B. So, we will use the arrow notation A→B as an
abbreviation for Πx:A.B in case x /∈ FV(B). The Π rule allows to form two
forms of function types in λP

(Π)
Γ ` A : type Γ, x:A ` B : s

Γ ` Πx:A.B : s

– With s = kind, we can form A→A→type and A→type.
– With s = type and P : A→type, we can form A→A and Πx:A.P x→P x.
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6.1 Formulas-as-types: minimal predicate logic into λP

Following the methods for λ→ and λ2, we can embed logic into first order de-
pendent type theory following the Curry-Howard formulas-as-types embedding.
For λP, we can embed minimal first order predicate logic, the predicate logic
with just implication and universal quantification and the intuitionistic rules for
these connectives. The idea is to represent both the domains and the formulas
of the logic as types. In predicate logic we need to interpret a signature for the
logic, that tells us which constants, functions and relations there are (and, in
case of many-sortedness, which are the domains). This is not difficult but it in-
volves some overhead when giving a precise formal definition. So, we don’t give
a completely formal definition but just an example.

Example 20. Minimal first order predicate logic over one domain with one con-
stant, one unary function and two unary and one binary relation is embedded
into λP by considering the context

Γ := A : type, a : A, f : A→A,P : A→type, Q : A→type, R : A→A→type.

Implication is represented as → and ∀ is represented as Π:

∀x:A.P x 7→ Πx:A.P x
∀x:A.Rxx→P x 7→ Πx:A.Rxx→P x

the intro and elim rules are just λ-abstraction and application, both for impli-
cation and universal quantification.

The terms of type A act as the first order terms of the language: a, f a, f(f a)
etc. The formulas are encoded as terms of type type: P a, Raa are the closed
atomic formulas and with →, Π and variables we build the first order formulas
from that.

In λP, we can give a precise derivation that the context Γ is correct: Γ `.
These derivations are quite lengthy, because in a derivation tree the same judg-
ment is derived several times in different branches of the tree. Therefore such
derivations are best given in flag style. It should be clear by now how we turn
a set of derivations rules into a flag format. We will usually omit derivations of
the correctness of a context, but for completeness we here give one example, in
flag format. We give a precise derivation of the judgment

A : type, P : A→type, a : A ` P a→type : kind

NB. we use the →-formation rule as a degenerate case of the Π-formation rule
(if x /∈ FV(B)).

Γ ` A : type Γ ` B : s
→-form

Γ ` A→ B : s
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1 type : kind

2 A : type ctxt-proj, 1
3 A→ type : kind →-form, 2, 1
4 P : A→ type ctxt-proj, 3
5 a : A ctxt-proj, 2
6 P a : type app, 4, 5
7 P a→ type : kind →-form, 6, 1

Example 21. We illustrate the use of application and abstraction to encode elim-
ination and introduction rules of the logic. take Γ to be the context of Example
20.

Γ ` λz:A.λh:(Πx, y:A.Rx y).h z z : Πz:A.(Πx, y:A.Rx y)→Rz z

This term is a proof of ∀z:A.(∀x, y:A.R(x, y))→R(z, z). The first λ encodes a
∀-introduction, the second λ an implication-introduction.

Example 22. We now show how to construct a term of type
(Πx:A.P x→Qx)→(Πx:A.P x)→Πx:A.Qx in the context Γ . We do this by giv-
ing a derivation in “flag style”, where we omit derivations of the well-formedness
of types and contexts. We write σ for (Πx:A.P x→Qx)→(Πx:A.P x)→Πx:A.Qx.

1 A : type

2 P : A→ type

3 Q : A→ type

4 h : Πx:A.P x→Qx
5 g : Πx:A.P x
6 x : A
7 hx : P x→ Qx app, 4, 6
8 g x : P x app, 5, 6
9 hx(g x) : Qx app, 7, 8
10 λx:A.hx(g x) : Πx:A.Qx λ-rule, 6, 9
11 λg:Πx:A.P x.λx:A.hx(g x) : (Πx:A.P x)→ Πx:A.Qx λ-rule, 5, 10
12 λh:Πx:A.P x→Qx.λg:Πx:A.P x.λx:A.hx(g x) : σ λ-rule, 4, 11

So:
Γ ` λh:Πx:A.P x→Qx.λg:Πx:A.P x.λx:A.hx(g x) : σ

Exercise 17. 1. Find terms of the following types (NB → binds strongest)

(Πx:A.P x→Qx)→(Πx:A.P x)→Πx:A.Qx
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and
(Πx:A.P x→Πz.R z z)→(Πx:A.P x)→Πz:A.R z z).

2. Find a term of the following type and write down the context in which this
term is typed.

(Πx:A.P x→Q)→(Πx:A.P x)→Q

What is special about your context? (It should somehow explicitly state that
the type A is not empty.)

The representation that we have just described is called the direct encoding
of logic in type theory. This is the formulas-as-types embedding originally due to
Curry and Howard and described first in formal detail in [25]. Apart from this,
there is the LF encoding of logic in type theory. This is the formulas-as-types
embedding as it was invented by De Bruijn in his Automath project [31]. We
describe it now.

6.2 LF embedding of logic in type theory

For λ→, λ2 and λP we have seen direct representations of logic in type theory.
Characteristics of such an encoding are:

– Connectives each have a counterpart in the type theory:

implication ∼ →-type
universal quantification ∼ ∀-type

– Logical rules have their direct counterpart in type theory:

→-introduction ∼ λ-abstraction
→- elimination ∼ application
∀-introduction ∼ λ-abstraction
∀-elimination ∼ application

– the context declares a signature, local variables and assumptions.

There is another way of interpreting logic in type theory, due to De Bruijn,
which we call the logical framework representation of logic in type theory. The
idea is to use type theory as a framework in which various logics can be encoded
by choosing an appropriate context. Characteristics of the LF encoding are:

– Type theory is used as a meta system for encoding ones own logic.
– The context is used as a signature for the logic: one chooses an appropriate

context ΓL in which the logic L (including its proof rules) is declared.
– The type system is a meta-calculus for dealing with substitution and binding.

We can put these two embeddings side by side by looking at the trivial proof
of A implies A.

proof formula
direct embedding λx:A.x A→A
LF embedding imp intrAAλx:T A.x T (A⇒ A)
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For the LF embedding of minimal proposition logic into λP, we need the
following context.

⇒ : prop→prop→prop

T : prop→type

imp intr : (A,B : prop)(TA→ TB)→ T(A⇒ B)
imp el : (A,B : prop)T(A⇒ B)→ TA→ TB.

The idea is that prop is the type of names of propositions and that T “lifts”
a name ϕ to the type of its proofs T ϕ. The terms imp intr and imp el encode
the introduction and elimination for implication.

Exercise 18. Verify that imp intrAAλx:T A.x : T (A ⇒ A) in the context just
described.

In the following table we summarize the difference between the two encodings

Direct embedding LF embedding
One type system : One logic One type system : Many logics
Logical rules ∼ type theoretic rules Logical rules ∼ context declarations

Apart from this, a direct embedding aims at describing a formulas–as-types iso-
morphism between the logic and the type theory, whereas the LF idea is to
provide a system for enabling a formulas–as–types embedding for many differ-
ent logics. For λ→ and λ2 there is indeed a one-one correspondence between
deductions in logic and typable terms in the type theory. For the case of λP
and minimal predicate logic, this is not so obvious, as we have identified the do-
mains and the formulas completely: they are all of type type. This gives rise to
types of the form Πx:A.P x→A and allows to form predicates over formulas, like
B : (Πx:A.Rxx)→type, that don’t have a correspondence in the logic. It can
nevertheless be shown that the direct embedding of PRED into λP is complete,
but that requires some effort. See [18] for details.

Now, we show some examples of logics in the logical framework LF – which
is just λP. Then we exhibit the properties of LF that make this work.

Minimal propositional logic in λP Fix the signature (context) of minimal propo-
sitional logic.

prop : type

imp : prop→prop→prop

As a notation we introduce

A⇒ B for impAB

The type prop is the type of ‘names’ of propositions. A term of type prop can
not be inhabited (proved), as it is not a type. We ‘lift’ a name p : prop to the
type of its proofs by introducing the following map:

T : prop→type.
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The intended meaning of Tp is ‘the type of proofs of p’. We interpret ‘p is valid’
by ‘Tp is inhabited’. To derive Tp we also encode the logical derivation rules by
adding to the context

imp intr : Πp, q : prop.(Tp→Tq)→T(p⇒ q),
imp el : Πp, q : prop.T(p⇒ q)→Tp→Tq.

imp intr takes two (names of) propositions p and q and a term f : T p→T q and re-
turns a term of type T(p⇒ q) IndeedA⇒ A is now valid: imp intrAA(λx:TA.x) :
T(A⇒ A)

Exercise 19. Construct a term of type T(A ⇒ (B ⇒ A)) in the context with
A,B : prop.

Definition 38. Define ΣPROP to be the signature for minimal proposition
logic, PROP, as just constructed.

Now, why would this be a “good” encoding? Are all derivations represented as
terms in λP? And if a type is inhabited, is the associated formula then provable?
We have the following desired properties of the encoding.

Definition 39. – Soundness of the encoding states that

`PROP A⇒ ΣPROP, a1:prop, . . . , an:prop ` p : TA for some p.

where {a, . . . , an} is the set of proposition variables in A.
– Adequacy (or completeness) states the converse:

ΣPROP, a1:prop, . . . , an:prop ` p : TA⇒ `PROP A

Proposition 9. The LF encoding of PROP in λP is sound and adequate.

The proof of soundness is by induction on the derivation of `PROP A. Ade-
quacy also holds, but it is more involved to prove. One needs to define a canonical
form of terms of type TA (the so called long βη-normal-form) and show that
these are in one-one correspondence with proofs. See [22] for details.

Minimal predicate logic over one domain A in λP Signature:

prop : type,

A : type,

T : prop→type

f : A→A,
R : A→A→prop,

⇒ : prop→prop→prop,

imp intr : Πp, q : prop.(Tp→Tq)→T(p⇒ q),
imp el : Πp, q : prop.T(p⇒ q)→Tp→Tq.
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Now we encode ∀ by observing that ∀ takes a P : A→prop and returns a
proposition, so:

∀ : (A→prop)→prop

Universal quantification ∀x:A.(Px) is then translated by ∀(λx:A.(Px))

Definition 40. The signature: ΣPRED is defined by adding to the above the
following intro and elim rules for ∀.

∀ : (A→prop)→prop,

∀ intr : ΠP :A→prop.(Πx:A.T(Px))→T(∀P ),
∀ elim : ΠP :A→prop.T(∀P )→Πx:A.T(Px).

The proof of
∀z:A(∀x, y:A.Rxy)⇒ Rzz

is now mirrored by the proof-term

∀ intr[ ]( λz:A.imp intr[ ][ ](λh:T(∀x, y:A.Rxy).
∀ elim[ ](∀ elim[ ]hz)z) )

For readability, we have replaced the instantiations of the Π-type by [ ].
This term is of type

T(∀(λz:A.imp(∀(λx:A.(∀(λy:A.Rxy))))(Rzz)))

Exercise 20. Construct a proof-term that mirrors the (obvious) proof of ∀x(P x⇒
Qx)⇒ ∀x.P x⇒ ∀x.Qx

Proposition 10. We have soundness and adequacy for minimal predicate logic:

`PRED ϕ⇒ ΣPRED, x1:A, . . . , xn:A ` p : Tϕ, for some p,

where {x1, . . . , xn} is the set of free variables in ϕ.

ΣPRED, x1:A, . . . , xn:A ` p : Tϕ⇒ `PRED ϕ

6.3 Meta-theory of λP

Proposition 11. – Uniqueness of types
If Γ `M : σ and Γ `M : τ , then σ=βτ .

– Subject Reduction
If Γ `M : σ and M −→β N , then Γ ` N : σ.

– Strong Normalization
If Γ `M : σ, then all β-reductions from M terminate.

The proofs are by induction on the derivation, by first proving auxiliary
lemmas like Substitution and Thinning. SN can be proved by defining a reduction
preserving map from λP to λ→. Then, an infinite reduction path in λP would
give rise to an infinite reduction path in λ→, so SN for λP follows from SN
for λ→. See [22] for details. We now come back to the decidability questions of
Definition 20.
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Proposition 12. For λP:

– TIP is undecidable
– TCP/TSP is decidable

The undecidability of TIP follows from the fact that provability in minimal
predicate logic is undecidable. A more straightforward proof is given in [7], by
interpreting the halting problem for register machines as a typing problem (in a
specific context) in λP.

We will expand on the decidability of TCP below. It is shown by defining
two algorithms simultaneously: one that does type synthesis Γ ` M :? and one
that does context checking: Γ `?. This is to mirror the two forms of judgment
in λP.

Remark 1. One can also introduce a Curry variant of λP. This is done in [2]. A
related issue is whether one can type an untyped λ-term in λP. So, given an M ,
is there a context Γ , a type A and a term P such that Γ ` P : A and |P | ≡M .
Here, | − | is the erasure map defined by

|x| := x
|λx:σ.M | := |λx.M | |MN | := |M | |N |

The answer to this question is yes, because an untyped term is λP-typable iff it
is typable in λ→. But there is a little snag: if we fix the context Γ , the problem
becomes undecidable, as was shown in [14], where Dowek gives a context Γ and
a term M such that ∃P,A(Γ ` P : A ∧ |P | = M) is equivalent to the Post
correspondence problem.

6.4 Type Checking for λP

We define algorithms Ok(−) and Type (−) simultaneously:

– Ok(−) takes a context and returns ‘accept’ or ‘reject’
– Type (−) takes a context and a term and returns a term or ‘reject’.

Definition 41. The type synthesis algorithm Type (−) is sound if

TypeΓ (M) = A ⇒ Γ `M : A (for all Γ and M)

The type synthesis algorithm Type (−) is complete if

Γ `M : A ⇒ TypeΓ (M) =β A (for all Γ and M)

Completeness only makes sense if we have uniqueness of types: only then it
makes sense to check if the type that is given to us is convertible to the type
computed by Type. In case we don’t have uniqueness of types, one would let
Type (−) compute a set of possible types, one for each β-equivalence class.
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Definition 42.

Ok(<>) = ‘accept’
Ok(Γ, x:A) = if TypeΓ (A) ∈ {type,kind} then TypeΓ (A) else ‘reject’,
TypeΓ (x) = if Ok(Γ ) and x:A ∈ Γ then A else ‘reject’,

TypeΓ (type) = if Ok(Γ ) then kind else ‘reject’,
TypeΓ (MN) = if TypeΓ (M) = C and TypeΓ (N) = D

then if C −→−→β Πx:A.B and A =β D
then B[x := N ] else ‘reject’

else ‘reject’,
TypeΓ (λx:A.M) = if TypeΓ,x:A(M) = B

then if TypeΓ (Πx:A.B) ∈ {type,kind}
then Πx:A.B else ‘reject’

else ‘reject’,
TypeΓ (Πx:A.B) = if TypeΓ (A) = type and TypeΓ,x:A(B) = s

then s else ‘reject’

Proposition 13. The type checking algorithm is sound:

TypeΓ (M) = A⇒ Γ `M : A
Ok(Γ ) = ‘accept’⇒ Γ `

The proof is by simultaneous induction on the computation of Type and Ok.
For completeness, we need to prove the following simultaneously, which we

would prove by induction on the derivation.

Γ ` A : s⇒ TypeΓ (A) = s

Γ `M : A⇒ TypeΓ (M) =β A

Γ ` ⇒ Ok(Γ ) = ‘accept’

The first slight strengthening of completeness is not a problem: in case the type
of A is type or kind, TypeΓ (A) returns exactly type or kind (and not a
term =β-equal to it). The problem is the λ-rule, where TypeΓ,x:A(M) = C and
C =β B and we know that TypeΓ (Πx:A.B) = s, but we need to know that
TypeΓ (Πx:A.C) = s, because that is the side condition in the Type algorithm
for the λx:A.M case.

The solution is to change the definition of Type a little bit. This is motivated
by the following Lemma, which is specific to the type theory λP.

Lemma 6. The derivable judgements of λP remain exactly the same if we re-
place the λ-rule by

(λ′)
Γ, x:A `M : B Γ ` A : type

Γ ` λx:A.M : Πx:A.B
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The proof is by induction on the derivation. Now we can in the λ-case of the
definition of Type replace the side condition

if TypeΓ (Πx:A.B) ∈ {type,kind}

by
if TypeΓ (A) ∈ {type}

Definition 43. We adapt the definition of Type in Definition 42 by replacing
the λ-abstraction case by

TypeΓ (λx:A.M) = if TypeΓ,x:A(M) = B

then if TypeΓ (A) = type
then Πx:A.B else ‘reject’

else ‘reject’,

Then soundness still holds and we have the following.

Proposition 14.

Γ ` A : s⇒ TypeΓ (A) = s

Γ `M : A⇒ TypeΓ (M) =β A

Γ ` ⇒ Ok(Γ ) = ‘accept’

As a consequence of soundness and completeness we find that

TypeΓ (M) = ‘reject’ ⇒ M is not typable in Γ

Completeness implies that Type terminates correctly on all well-typed terms.
But we want that Type terminates on all pseudo terms: we want to assure that on
a non-typable term, Type returns ‘reject’, which is not guaranteed by Soundness
and Completeness.

To prove that Type (−) terminates on all inputs, we need to make sure that
TypeΓ (M) and Ok(Γ ) are called on arguments of lesser size. As “size” we take
the sum of the lengths of the context Γ and the term M , and then all cases
are decreasing, apart from λ-abstraction and application. In the λ-abstraction
case, Type is called on a pseudo-term Πx:A.B that is not necessarily smaller.
But our replacement of the side condition in Type for the λ-abstraction case in
Definition 43 solves this problem.

In the case of application, the function Type is called on smaller inputs, but
the algorithms requires β-equality and β-reduction checking:

TypeΓ (MN) = if TypeΓ (M) = C and TypeΓ (N) = D

then if C −→−→β Πx:A.B and A =β D
then B[x := N ] else ‘reject’

else ‘reject’,

So, we need to decide β-reduction and β-equality, which, for pseudo-terms is
undecidable. The solution is that Type will only check β-equality (and reduction)
for well-typed terms, and we know that λP is SN and CR, so this is decidable.
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Proposition 15. Termination of Type and Ok: For all pseudo-terms M and
pseudo-contexts Γ , TypeΓ (M) terminates (in either a pseudo-term A or ‘reject’)
and Ok(Γ ) terminates (in either ‘accept’ or ‘reject’).

The proof is by induction on the size of the inputs, using the Soundness
(Proposition 13) and decidability of β-equality for well-typed terms in the ap-
plication case.

7 Conclusion and further reading

In this paper we have introduced various type theories by focussing on the Curry-
Howard formulas-as-types embedding and by highlighting some of the program-
ming aspects related to type theory. As stated in the Introduction, we could have
presented the type systems à la Church in a unified framework of the “λ-cube”
or “Pure Type Systems”, but for expository reasons we have refrained from do-
ing so. In the PTS framework, one can study the systems Fω, a higher order
extension of system F , λHOL, a type systems for higher order (predicate) logic,
and the Calculus of Constructions, a higher order extension of λP. Also one can
generalize these systems to the logically inconsistent systems λU and λ? where
type is itself a type. (These systems are computationally not inconsistent so
still interesting to study.) We refer to [4, 5] and the references in those papers
for further reading.

In another direction, there are various typing constructs that can be added
to make the theories more powerful. The most prominent one is the addition of
a scheme for inductive types, which also adds an induction and a well-founded
recursion principle for every inductive type. Examples are the Calculus of Induc-
tive Constructions (CIC) and Martin-Löf type theory. The latter is introduced
in the paper by Bove and Dybjer and a good reference is [32]. CIC is the type
theory implemented in the proof assistant Coq and a good reference for both
the theory and the tool is [6].

In the direction of programming, there is a world of literature and a good
starting point is [33]. We have already mentioned PCF [35], which is the simplest
way to turn λ→ into a Turing complete language. The next thing to add are
algebraic data types, which are the programmer’s analogue to inductive types.
Using these one can define and compute with data types of lists, trees etc. as a
primitive in the language (as opposed to coding them in λ2 as we have done in
Section 5.5). Other important concepts to add, especially to the type systems à
la Curry, are overloading and subtyping. A good reference for further reading is
[33].
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