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Abstract
In our efforts to formalize C11 (the ISO standard of the C pro-
gramming language) we discovered many unexpected subtleties
that make formalization of that standard difficult. Most of these
difficulties are the result of the C standard giving compilers room
for strong optimizations based on aliasing analysis.

We discuss some of these subtleties and indicate how they may
be addressed in a formal C semantics. Furthermore, we discuss why
the C standard should address the possibility of stack overflow, and
we argue that evaluation of C expressions does not preserve typing
in the presence of variable length array types.

Keywords C programming language, system programming lan-
guages, formal methods, programming language standardization,

1. Introduction
1.1 Problem

Current programming technology is rather fragile: programs reg-
ularly crash, hang, or even allow viruses to have free reign. An
important reason is that a lot of programs are developed using low-
level programming languages. One of the most extreme instances is
the widespread use of the C programming language. In the TIOBE
programming language popularity index [27] C is (fall 2012) in the
top position.

Whereas most modern programming languages require an ex-
ception to be thrown when exceptional behavior occurs (e.g.when
dereferencing aNULL pointer, when accessing an array out of its
bounds, or on integer overflow), C [12, 14] does not impose such
requirements. Instead, it classifies these behaviors asundefinedand
allows a program to do literally anything in such situations [12:
3.4.3]. On the one hand, this allows a compiler to omit runtime
checks and to generate more efficient code, but on the other hand
these undefined behaviors often lead to security vulnerabilities [6,
18, 28].

There are two main approaches for improving this situation:

• Switch to a more modern and higher level programming lan-
guage. This approach reduces the number of programming er-
rors, and if there still is an error, the chance of it being used by
an exploit is much lower. One disadvantage of this approach is
that there will be a thicker layer between the program and the
hardware of the system. This costs performance, both in execu-
tion speed and in memory usage, but it also means a reduction in
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control over the behavior of the system. Especially for embed-
ded systems and operating system kernels this is an undesired
consequence.

• Stick to a low-level programming language like C, but add a
formal methods layer on top of it to establish that programs
do not exhibit undefined behavior. Such a layer might allow
the developer to annotate their programs with invariants and to
prove that these invariants indeed hold. To be practical most
of these invariants should be proven automatically, and the
remaining ones by interactive reasoning.

This approach is an extension ofstatic analysis. But whereas
static analysis tools often yield false-positives, interactive rea-
soning allows the developer to prove that a false-positive is not
an actual error.

For functional correctness, this approach has also been suc-
cessful. For example, there are various projects to prove the C
source code of a microkernel operating system correct [4, 15].

There are many tools for the second approach, like VCC [4], Ver-
ifast [13] and Frama-C [24]. However, these tools do not use an
explicit formal C semantics and only implicitly ‘know’ about the
semantics of C. Therefore the connection between the correctness
proof and the behavior of the program when compiled with a real
world compiler is shallow. The soundness of these tools is thus
questionable [9].

For this reason, we recently started a project to provide a formal
semantics of the C programming language. This semantics was to
be developed for interactive theorem provers, allowing one to base
formal proofs on it. Although there already exist various versions
of a formal semantics of significant fragments of C (see Section 1.3
for an overview), our goal was to formalize the ‘official’ semantics
of C, as written down in the C11 standard. We intended not to
gloss over the more difficult aspects of C and to provide a formal
semantics of the whole language.

Unfortunately, our formalization efforts have turned out to be
much harder than we anticipated because the C11 standard turned
out to be much more difficult to formalize than expected. We
were aware that C11 includes many features, so that we would
need to write a large formalization to include them all. Also, since
the standard is written in English, we knew we had to deal with
inherent ambiguity and incompleteness. But we had not realized
how difficult things were in this respect.

Already, the very basis of our formalization, the memory model,
turned out to be almost impossible to bring into line with the stan-
dard text. The main problem is that C allows bothhigh-level(by
means of typed expressions) andlow-level (by means of bit ma-
nipulation) access to the memory. The C99 and C11 standards have
introduced various restrictions on the interaction between these two
levels to allow compilers to make more effective non-aliasing hy-
potheses based on typing. As also observed in [11, 23] these restric-
tions have lead to unclarities and ambiguities in the standard text.
We claim that such issues are inherent for programming languages
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that wish to combine high-level and low-level memory access while
still allowing strong optimizations.

1.2 Approach

The aim of this paper is to discuss the situation. We describe
various issues by small example programs, and discuss what the
C11 standard says about them, and how a formal semantics may
handle these.

As part of this work, we have developed an (implicit) prototype
of a C11 semantics in the form of a large Haskell program. This
program can be seen as averycritical C interpreter. If the standard
says that a program has undefined behavior, our Haskell interpreter
will terminate in a state that indicates this.

The intention of our prototype was to develop a clear semantics
of the high-level part. To this end, we postponed low-level details
as bytes, object representations, padding and alignment. Due to the
absence of low-level details, we were able to support features that
are commonly left out, or handled incorrectly, in already existing
formal versions of C. In particular, we treat effective types, the
common initial segment rule, indeterminate values, pointers to one
past the last element, variable length arrays, andconst-qualified
objects. But even without the low-level part, we experienced many
other difficulties, that are also described in this paper.

Our prototype is currently being ported to the interactive theo-
rem prover Coq. In the final version of the paper we will give the
URL of the source of the Haskell version, but because of double
blind reviewing it is omitted here.

While working on a formal version of the C11 standard, we had
four rules that guided our thinking:

1. If the standard is absolutely clear about something, our seman-
tics should not deviate from that. That is, if the standard clearly
states that certain programs should not exhibit undefined be-
havior, we are not allowed to take the easy way out and letour
version of the semantics assign undefined behavior to it.

2. If it is not clear how to read the standard, our semantics should
err on the side of caution. Generally, this means assigning
undefined behavior as we do not want our semantics to allow
one to prove that a program has a certain property, when under
a different reading of the standard this property might not hold.

3. Any C idiom that is heavily used in practice should not be
considered to exhibit undefined behavior, even if the standard
is not completely clear about it.

4. If real-world C compilers like GCC and clang in ISO C mode
exhibit behavior that is in conflict with a straightforward read-
ing of the standard, but that can be explained by a contrived
reading of the standard, our semantics should take the side of
the compilers and allow their behavior.

Of course there is a tension between the second and third rule.
Furthermore, the fourth rule is a special case of the second, but we
included it to stress that compiler behavior can be taken as evidence
of where the standard is unclear.

1.3 Related Work

This related work section consists of three parts: discussion of re-
lated work on unclarities in the C standard, discussions of related
work on undefined behavior, and a brief comparison of other ver-
sions of a formal semantics of C.

An important related document is a post by Maclaren [23]
on the standard committee’s mailing list where he expresses his
concerns about the standard’s notion of anobjectandeffective type,
and discusses their relation to multiprocessing. Like our paper, he
presents various issues by considering example programs. Most

importantly, he describes three directions to a more consistent C
standard. We will treat those in Section 3.

The standard committee’s website contains a list of defect re-
ports. These reports describe issues about the standard, and after
discussion by the standard committee, they may lead to a revision
or clarification of the official standard text. Defect Report #260 [11]
raises similar issues as we do and will be discussed thoroughly
throughout this paper.

There is little related work on undefined behavior and its re-
lation to bugs in both programs and compilers. Wanget al. [28]
classified various kinds of undefined behavior and studied its con-
sequences to real-world systems. They have shown that undefined
behavior is a problem in practice and that various popular open-
source projects (like the Linux kernel and PostgreSQL) use com-
piler workarounds for it. However, they do not treat the memory
model, and non-aliasing specifically, and also do not consider how
to deal with undefined behavior in a formal C semantics.

Yang et al. [29] developed a tool to randomly generate C pro-
grams to find compiler bugs. This tools has discovered a significant
number of previously unknown bugs in state of the art compilers.
In order to do this effectively, they had to minimize the number
of generated programs that exhibit undefined behavior. However,
they do not seem to treat the kinds of undefined behavior that are
considered in this paper.

Lastly, we will briefly compare the most significant already
existing formal versions of a C semantics (there will be a more
extensive discussion of these in Section 3). There are also many
others like [5, 19, 26], but these only cover small fragments of C or
are not recent enough to include the troublesome features of C99
and C11 that are the topic of this paper.

Norrish defined a semantics of a large part of C89 in the inter-
active theorem prover HOL [25]. His main focus was to precisely
capture the non-determinism in evaluation of expressions and the
standard’s notion ofsequence points. However, the problems de-
scribed in our paper are due to more recent features of the standard
than Norrish’s work.

Blazy and Leroy [2] defined a semantics of a large part of
C in the interactive theorem prover Coq to prove the correctness
of the optimizing compiler CompCert. CompCert treats some of
the issues we raise in this paper, but as its main application is
to compile code for embedded systems, its developers are more
interested in giving a semantics to various undefined behaviors
(such as wild pointer casts) and to compile those in a faithful
manner, than to support C’s non-aliasing features to their full extent
(private communication with Leroy).

A project which builds on the CompCert semantics [3], is the
CerCo project [1]. The goal of that project is to prove a compiler to
be complexity preserving.

Ellison and Rosu [7, 8] defined an executable semantics of the
C11 standard in theK-framework, and described various ways to
deal with undefined behavior in a semantics of a C-like language.
Although their semantics is very complete, has been thoroughly
tested, and has some interesting applications, it seems infeasible
to be used for interactive theorem provers. Besides, it is unclear
whether their current memory model conforms to the C standard
with respect to the issues we present.

1.4 Scope

It might seem that this paper is only of interest to those who are
specifically interested in C. However, the issues that we discuss are
not specific to just C. Any programming language that combines
the following two design goals will have to deal with the kind of
problems discussed in this article:
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• It can be used for system programming,i.e., it allows low-level
access to the bit level representation of the data that is stored in
the memory.

• It has pointers, and allows a compiler to perform aggressive
optimizations based on aliasing analysis.

Furthermore, this paper is not just a ‘list of bugs in the standard’.
Given that the standard text does not use a mathematical formalism,
bugs are almost inevitable, but generally not a big problem in
practice and easily fixed. We will argue that the issues we present
are more fundamental than just ‘bugs’ and are not easily resolved.

1.5 Contribution

The contribution of this paper is fourfold:

1. We indicate various subtleties of the C11 memory model and
type system that we discovered while working on our formal
semantics (Section 3, 4, 5 and 7).

2. We argue for some imperfections of C11: absence of (an ab-
stract variant of) stack overflow (Section 6), and lack of preser-
vation of typing (Section 7).

3. We present many small example programs that can be used as
a ‘benchmark’ for comparing different formal versions of a C
semantics.

4. We give some considerations on how to best proceed with
formalizing the C standard, given that the existing standard text
is imprecise and maybe even inconsistent.

2. Undefined behavior
The C standard uses the following notions of under-specification.

• Unspecified behavior [12: 3.4.4]. Constructs for which the
standard provides two or more possibilities,e.g.order of evalu-
ation. The behavior may vary for each use of the construct.

• Implementation defined behavior[12: 3.4.1]. Unspecified be-
havior, but the implementation has to document its choice,e.g.
size of integer types, endianness.

• Undefined behavior[12: 3.4.3]. constructs for which the stan-
dard imposes no requirements at all,e.g.dereferencing aNULL-
pointer, integer overflow.

Under-specification is used extensively to make C portable, and
to allow compilers to generate fast code. An important feature of
undefined behavior is that it is dynamic, rather than static (many
undefined behaviors are even impossible to detect statically). When
it occurs, a program is allowed to do literally anything, so as
to avoid compilers having to insert (possibly expensive) dynamic
checks to handle corner cases.

C’s excessive use of undefined behavior (it describes more than
200 circumstances in which it occurs [12: J.2]) is quite different
from more modern programming languages. There, most incorrect
programs are ruled out statically by a strong type system (as in
Haskell for example), or a program is required to throw an excep-
tion (as in Java for example).

Undefined behavior is important to allow strong optimizations.
Based on undefined behavior, a compiler may assume that certain
behaviors cannot occur, and optimize accordingly. We give exam-
ples of this in this paper.

In a formal semantics, unspecified behavior corresponds to non-
determinism, and implementation defined behavior corresponds to
parametrization by an environment describing properties of the im-
plementation. Programs exhibiting undefined behavior are incor-
rect, and a formal semantics should therefore exclude those. The
job of a formal semantics is thus not only to describe the mean-
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Figure 1: Adjacent blocks.

ing of correct programs, but also to exclude execution of incorrect
programs.

3. Pointer aliasing versus bit representations
An important feature of C is to allow bothhigh-level(by means of
typed expressions) andlow-level(by means of bit manipulation) ac-
cess to the memory. For low-level access, the standard requires that
each value is represented as a sequence of bytes [12: 3.6, 5.2.4.2.1],
called theobject representation[12: 6.2.6.1p4, 6.5.3.4p2].

In order to allow various compiler optimizations (in particular
strong non-aliasing analysis), the standard has introduced various
restrictions on the interaction between these two levels of access.
Let us consider the following program [11]:

int x = 30, y = 31;
int *p = &x + 1, *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0)
printf("%d\n", *p);

Here we declare two objectsx andy of type int and use the&-
operator to take the address of both (Figure 1a). Increasing the
pointer&x by one moves itsizeof(int) bytes ahead and yields
a pointer to the right edge of thex block. It may seem strange that
such pointers are allowed at all [12: 6.5.6p8] because they cannot
be dereferenced, but their use is common programming practice
when looping through arrays1.

We store these pointers into objectsp andq of type pointer to
int (Figure 1b). The next step is to check whether these pointersp
and q are equal (note: not whether the memory they point to is
equal; that would be checked bymemcmp(p, q, sizeof(*p))
== 0). We do this by using thememcmp function, which checks
whether their object representations are equal. It is important to use
bitwise comparison, instead of the ordinaryp == q, to test whether
additional information is stored. If the object representations of
the two are equal, we can conclude that both pointers point to
the same memory location and do not contain conflicting bounds
information. From this we are allowed to conclude thatx andy are
allocated adjacently (Figure 1c).

Now we have ended up in a situation where the low- and high-
level world are in conflict. On the one hand,p is a pointer to the
right edge of thex block, and thus dereferencing it should lead to
undefined behavior. On the other hand, the object representation
of p is the same as the object representation ofq, and sop andq
should behave identically.

Although the standard itself is very unclear about these prob-
lems, in Defect Report #260 [11] the committee expressed the fol-
lowing judgment:

1 Note that C allows one to use objects that do not have array type as an
array of length one [12: 6.5.6p7].
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Implementations are permitted to track the origins of a bit-
pattern and treat those representing an indeterminate value
as distinct from those representing a determined value. They
may also treat pointers based on different origins as distinct
even though they are bitwise identical.

Apparently a value can contain additional information about its
origin that is not reflected in its object representation. The reason
the committee allows this, is to allow compiler optimizations that
would not be correct otherwise.

To show that this is a real issue, we changed the last example
slightly and compiled it with GCC:2

int x = 30, y = 31;
int *p = &x + 1, *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0) {
*p = 10;
printf("%d %d\n", *p, *q);

}

This does not give any compiler warnings and executing the pro-
gram prints two distinct values ‘10 31’. Despite the fact thatp and
q are identical on the bit level (which follows from the fact that
theprintf is executed at all), they still behave differently on the
object level, as indeed Defect Report #260 allows for.

3.1 More extreme aliasing analysis

Given that Defect Report #260 allows a compiler to take the origin
of a pointer value into account, a natural question is whether that
also holds for non-pointer values. Particularly, does this hold for
the integer typeintptr_t? This integer type has the property that
any pointer of type(void *)can be converted to it, and when such
an integer value is converted back to a pointer of type(void *), it
will compare equal to the original pointer [12: 7.20.1.4]. Consider
the following program (from the GCC bug tracker3):

int x = 30, y = 31;
int *p = &x + 1, *q = &y;
intptr_t i = (intptr_t)p, j = (intptr_t)q;
printf("%ld %ld %d\n", i, j, i == j);

When compiled with GCC, it outputs:

140734814994316 140734814994316 0

This means that although the integer variablesi andj have the
same numerical value140734814994316, they still compare as
different because the origins of their values differ.

In the reactions to the bug report from which this example
was taken, this was unequivocally considered to be a bug. In
other words, although some compiler writers think the license for
optimizations that Defect Report #260 gives them is justified, this
example was too extreme for the GCC community to be taken in
that light.

Regardless of whether optimizations as in the above example
are justified, it it not clear where the border of what is allowed
should be. Specifically, isp == q allowed to evaluate to0 in case
the storage ofp andq are allocated adjacently? And what about the
bitwise comparisonmemcmp(&p, &q, sizeof(p)), could that
also take ‘origin’ into account?

To use the semantics to certify an optimizing compiler, it makes
sense to let these ‘dangerous’ pointer comparisons exhibit unde-
fined behavior. For example, a first pass in the CompCert compiler,
is to remove non-determinism as this significantly eases correct-
ness proofs [20]. However, this means that the phase that removes

2 Using gcc -O2 -std=c99 -pedantic -Wall, version 4.7.1. These
compiler flags are used for all future examples.
3http://gcc.gnu.org/bugzilla/show bug.cgi?id=54945

non-determinism has to fix whether such a comparison is true or
not. This is problematic, as future phases may change the memory
layout, and therefore may change the truth of such comparisons.

3.2 Three directions for improvement

Maclaren describes similar unclarities of the standard with respect
to the size of array objects corresponding to pointer values [23]. He
presents three directions the standard may take:

1. The original Kernighan & Ritchie approach. Pointer values
are simply addresses, and their object representations are all
that matters.

2. Pointers carry their origin. Each pointer value carries itsori-
gin: a history on how it is constructed. Certain operations (e.g.
derefering a pointer) are disallowed if the origin conflicts.

3. Only visible information is relevant. This is a weaker variant
of the previous one where the history is limited to a certain
visibility, for example the current scope.

The first approach is taken by the semantics of Norrish [25] in
HOL. Although this approach is clearly understood, and is conve-
nient to formalize, it implies that pointers with equal object repre-
sentation always have to be treated as equal. Therefore, optimiza-
tions as for example performed by GCC and allowed by Defect
Report #260 are not sound with respect to Norrish’s semantics.

The second approach allows the most compiler optimizations
and is therefore the most appealing one. However, it is unclear
how bit-level operations and library functions likememcpy should
deal with a pointer’s origin. An earlier version of the CompCert
memory model by Leroy and Blazy [22], models bytes as abstract
entities, instead of simple sequences of bits (even on the level of
the assembly), to deal with this issue. This approach ensures that
the abstract information can easily be preserved, even by byte-
level operations. The drawback is of course that many bit-level
operations become undefined. Hence, in a more recent version of
their memory model [21], only bytes that constitute a pointer are
abstract entities, whereas those that constitute integers or floating
point numbers are sequences of bits.

The semantics by Ellison and Rosu [8] in theK-framework use
a similar representation. Symbolic execution is used to model bytes
of pointers as abstract entities.

The third approach requires a careful definition of ‘visibility’.
It is unclear whether such a definition can be given that is both
consistent and that allows sufficient compiler optimizations [23].
This approach therefore seems not very attractive.

The memory model of our prototype semantics takes the sec-
ond approach to its fullest extent. Our memory is a finite map from
indexes to trees that expose the full structure of values, and point-
ers are paths through these trees. Subobjects (subarrays, fields of
structures or unions) correspond to subtrees of the memory.

The origin of pointers in our semantics is much more detailed
than its counterpart in CompCert [21] and in the semantics of
Ellison and Rosu [8]. There, only a pointer’s block and offset into
that block is stored, whereas we store the entire path corresponding
to the history of the construction of the pointer. In particular, since
we do not flatten arrays and structures, we are able to distinguish
subobjects. For example, it allows our semantics to be aware that
something special is happening in the following example:

int a[2][2] = { {13, 21}, {34, 35} };
struct t { int *r, *p, *q; } s;
s.p = &a[0][2]; s.q = &a[1][0];
if (s.p == s.q)
printf("%d\n", *s.p);
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Figure 2: Example contents of the memory.

s1 m f

or

s2 m s

Figure 3: A union containing two structures with a common initial
sequence.

Figure 2 displays the representation of the memory after executing
the first three lines of this code in both a concrete memory and our
abstract memory as trees.

Our semantics imposes special treatment on pointers that point
to elements one past the end of an object. First of all, we do not
allow these pointers to be dereferenced. Secondly, when such a
pointer is used in a comparison with a pointer to another subobject,
we can easily impose undefined or non-deterministic behavior.
For the moment (although this probably does not follow to the C
standard), we use undefined behavior to be as cautious as possible
with respect to questionable situations as described in Section 3.1.

Of course, the drawback of our current memory model is that
bytes are not present at all, whereas the CompCert memory model
at least allows byte-level operations on objects solely consisting of
integers and floating point numbers. But since the intention of our
semantics was to obtain a better understanding of the high-level
part of the C memory, for the moment we postponed accounting
for object representations in our model.

4. The common initial sequence
C supports various data types to build more complex types: in
particular, structure, union, and array types. Structures are like
product types and unions are like sum types. Due to the low-level
nature of C, unions areuntaggedinstead oftagged, which means
that the current variant of the union is not stored. Consider:

union int_or_float { int x; float y; };

Given an object of typeint_or_float, it is not possible to test
whether it contains theint or thefloat variant. This may seem
unnatural, but it is in the spirit of C to let the programmer decide
whether or not to store the tag.

An interesting consequence of untagged unions is the standard’s
common initial sequencerule [12: 6.5.2.3]. Consider:

struct t1 { int m; float f; };
struct t2 { int m; short s; };
union { struct t1 s1; struct t2 s2; } u;

The representation of the objectu might look as pictured in Fig-
ure 3. Although that there may be additional space between the
members (due to alignment), the standard guarantees that the inte-
ger parts always coincide. Even stronger, in this case it guarantees
the following [12: 6.5.2.3p6]:

. . . it is permitted to inspect the common initial part of any
of them anywhere that a declaration of the completed type
of the union is visible.

For example, that means we are allowed to do things like:

int main(void) {
u.s2.m = 20;
printf("%d\n", u.s1.m);

}

So, we set the integer part via the one variant of the union, and
read it out via the other. However, the following program exhibits
undefined behavior as the relation to the union type is not visible in
the body of the functionf.

int f(struct t1 *p1, struct t2 *p2) {
p2->m = 20;
return p1->m;

}
int main(void) {
printf("%d\n", f(&u.s1, &u.s2));

}

This restriction allows compilers to make stronger aliasing assump-
tions aboutp1 andp2 because their types are different. Real com-
pilers, like GCC, happily use this, and indeed this example can be
adapted for GCC such that something different from the naively
expected ‘20’ is printed.

The standard’s definition of ‘visible’ is rather unclear, especially
when a pointer to a common initial segment is passed through
another function. For example, consider:

int *f(int *p) { return p; }
int main(void) {
u.s2.m = 20;
printf("%d\n", *f(&u.s1.m));

}

Does passing the pointer throughf remove the visibility of the
common initial segment?

The GCC manual only allows the common initial segment rule
to be used when an object is accessed directly via the union type,
and therefore gives no guarantees about the previous program, and
even not about simpler cases like the following program:

int main(void) {
u.s2.m = 20;
int *p = &u.s1.m;
printf("%d\n", *p);

}

Our semantics takes the same position as the GCC manual. We have
implemented this by annotating each structure fragment in a path
of a pointer with a flag whether the common initial segment rule
may be used. When a pointer is stored in the memory, this flag is
cleared. As a result, undefined behavior is imposed on the last two
examples.
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Figure 4: struct T { short a; int b; } on a standard 32
bits architecture.

5. Indeterminate values
Uninitialized variables and padding bytes of objects of structure
type take anindeterminate value[12: 6.2.6.1p6]. An indeterminate
value is an object that either describes an unspecified value or is a
trap representation[12: 3.17.2]. A trap representation is an object
representation that does not represent a value of the object type and
reading it leads to undefined behavior [12: 6.2.6.1p5].

5.1 Uninitialized variables

Since an object of typeunsigned char cannot have a trap value,
reading it does not exhibit undefined behavior. Instead it just gives
an unspecified value. This property is important to allow simple
minded bit-wise copying of structures, without having to worry
about padding bytes between members. For example:

struct T { short a; int b; } x = {10, 11}, y;
for (size_t i = 0; i < sizeof(x); i++)
((unsigned char*)&y)[i] =
((unsigned char*)&x)[i];

Figure 4 displays the representation ofx on a standard 32 bits ar-
chitecture with a 4 bytes alignment requirement for integers. This
means that integers should be aligned at addresses that are multiples
of 4, and therefore we have 2 padding bytes between the members.
In case reading indeterminate values of typeunsigned char (and
in particular these padding bytes) would exhibit undefined behav-
ior, this copy would also exhibit undefined behavior.

An interesting property of indeterminate values is that Defect
Report #260 [11] allows them to change arbitrarily, so reading
an indeterminate value twice might yield different results. This is
useful for an optimizing compiler because it may figure out the
actual lifetime of two values to be disjoint and therefore share the
storage location of both. As an example (the mysterious&x will be
explained later),

unsigned char x; &x;
printf("%d\n", x);
printf("%d\n", x);

doesnot exhibit undefined behavior (because an object of type
unsigned char cannot contain a trap value), but Defect Report
#260 allows the two printed values to be different. This is not so
strange: the compiler might do liveness analysis and decide thatx
does not need to be saved on the stack when callingprintf. And
then of courseprintf might clobber the register that containsx.

Unfortunately, the standard is very unclear about the imposed
behavior of various operations on indeterminate values,e.g., what
happens when they are copied or used in expressions. For example,
shouldy be indeterminate after evaluating

unsigned char x, y; &x;
y = x/2;

Surely the most significant bit ofy will be 0 after this? Or is
that not something that the standard guarantees? But ify is not
indeterminate after this, what about:

y = x/1;

We just changed the constant, and therefore after this statementy
also should be determinate? But after:

y = x;

will it still not be indeterminate? This seems almost indistinguish-
able from thex/1 case, but the liveness analysis argument surely
now also will apply toy? A formal C semantics will have to take a
stance on this.

Also, should the following print ‘0’, or may it print a different
value as well, because thex may have changed during the evalua-
tion of the subtraction expression?

unsigned char x; &x;
printf("%d\n", x - x);

Defect Report #338 [11] remarks that on some architectures
(e.g. IA-64) registers may hold trap values that do not exist in
memory. Thus, for such architectures, programs cannot safely
copy uninitialized variables of typeunsigned char because these
might reside in registers. In the C11 standard this problem has been
fixed by including the following workaround [12: 6.3.2.1p2]:

If the lvalue designates an object of automatic storage dura-
tion that could have been declared with the register storage
class (never had its address taken), and that object is unini-
tialized (not declared with an initializer and no assignment
to it has been performed prior to use), the behavior is unde-
fined.

This is the reason we had to take the address of the uninitialized
variables in the preceding examples. Of course even with the&x
present, a compiler can decide to ignore it and still use a register
for x, as this address is never used.

This workaround again shows that treating uninitialized objects
as indeterminate has its difficulties. In the memory model of our
semantics we keep track of uninitialized (or freed) memory by
specialundef nodes (see Figure 2). Since objects of structure or
union type cannot be indeterminate, we only allow theseundef

nodes on the leaves. Again, we take the most cautious way, and let
operations on these specialundef nodes, like reading them, exhibit
undefined behavior.

5.2 Pointers to freed memory

The standard states that the value of a pointer variable becomes
indeterminate when the object it points to reaches the end of its
lifetime [12: 6.2.4]. In particular this means that whenever some
memory is freed, all pointers to it become indeterminate. For ex-
ample, assuming themallocs do not fail, the following program
can still exhibit undefined behavior

int *p = malloc(sizeof(int));
free(p);
int *q = malloc(sizeof(int));
printf("%d\n", p == q);

because the value of the pointerp has become indeterminate and
now can be a trap value. Of course, we can still compare the bit
patterns of both pointers, and if they are equal, try to usep instead.

int *p = malloc(sizeof(int));
free(p);
int *q = malloc(sizeof(int));
if (memcmp(&p, &q, sizeof(p)) == 0)
*p = 10;

Again, Defect Report #260 [11] states that this program exhibits
undefined behavior.

The fact that a pointer object becomes indeterminate after the
block it points to has been freed means that if we copy pointers
to various places in memory, then all copies should become inde-
terminate and not just the argument offree (which does not even
need to be an lvalue). This means that afree operation will af-
fect the formal memory state globally. And what about individual
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bytes of a pointer that have been copied? Will these also become
indeterminate after freeing that pointer?

5.3 Padding bytes

The standard states that when a value is stored in a member of an
object of structure or union type, padding bytes take an unspecified
value [12: 6.2.6.1p6], and that when a value is stored in a member
of a union type, bytes that do not correspond to that member take
an unspecified value [12: 6.2.6.1p7]. Consider:4

union { int a[1]; int b[2]; } x;
x.b[0] = 10; x.b[1] = 11;
x.a[0] = 12;
printf("%d\n", x.b[1]);

This example can lead to undefined behavior, as assigning tox.a
makes the bytes ofx.b that do not belong tox.a unspecified, and
thusx.b[1] possibly indeterminate. Taking Defect Report #260
into account, it is unclear whether the bytes that belong tox.b[1]
after this may change arbitrarily.

This program also suggests that the representation of pointers
in a formal semantics should contain information describing which
parts of the memory should become indeterminate upon assignment
to them. If instead of assigning tox.a[0] directly we do:

int *p = &x.a[0];
*p = 12;

x.b[1] will still become indeterminate. But the assignment top
might happen anywhere in the program, even in a context where
the union type is not visible at all.

6. Stack overflow
A programming language implementation typically organizes its
storage into two parts: thestackand theheap. On a function call,
the stack is extended with a frame containing the function’s argu-
ments, local variables and return address (the address of the in-
struction to be executed when the function is finished). The heap
contains dynamically allocated storage.

The standard abstracts from implementation details like these,
and thus also allows implementations that do not organize their
memory in this way. We agree that this is the right approach, but we
do believe it should at the least account for (an abstract version of)
the problem ofstack overflow. Unfortunately, the notion of stack
overflow is not mentioned by the standard [12] or the standard’s
rationale [10] at all. This is very troublesome, as for most actual
implementations stack overflow is a real problem. Let us consider
the following function.

/*@ decreases n; ensures \result == n; */

unsigned long f(unsigned long n) {
if (n != 0) return f(n - 1) + 1;
else return 0;

}

With most tools for C verification one can prove that the function
f behaves as the identity function (for example, the Jessie plug-in
for Frama-C [24] allowed us to do so). However, in a real C imple-
mentation, a call likef(10000000) will not return10000000, but
will crash with a message like ‘segmentation fault’.

Stack overflow does not necessarily have to result in a crash with
an error message, but might also overwrite non-stack parts of the
memory (possibly putting the address of virus code there). Also, it
can occur without function calls. For example, the program

4 Adapted from Shao Miller, Bounds Checking as Undefined Behaviour,
comp.std.c newsgroup, July 29, 2010.

int main(void) { int a[10000000]; }

might also crash5.
This all means that a proof of correctness of a program with

respect to the standard only guarantees correctness relative to the
assumption that the stack does not overflow. As we have seen, this
assumption does not hold in general. But worse, it is not even clear
for whichn the program

int main(void) { int a[n]; }

is guaranteed not to overflow the stack. On a microcontroller this
might already happen for rather smalln. All this means that a
correctness proof of a program with respect to the C standard
actually does not guarantee anything.

The obvious way to change the text of the C standard to address
this issue would be to add to [12: 6.5.2.2] something like:

A function call might overflow the stack, in which case the
behavior is undefined. It is implementation defined under
what circumstances this is guaranteed not to happen.

It is important that it is not justunspecifiedwhen these overflows
happen, for then it still would not be possible to formally guarantee
anything about a program from the text of the standard.

A consequence of this addition would be thatstrictly conform-
ing programsno longer exist, as one of their defining properties is
that they ‘shall not produce output dependent on . . . implementa-
tion defined behavior’ [12: 4.5]. Of course, once one takes stack
overflow into account no program has that property anymore. An-
other consequence is that thenall C implementations becomecon-
forming, as that notion is defined by quantification over all strictly
conforming programs [12: 4.6]. Therefore, the definition of con-
forming C implementations should also be adapted.

Section 5.2.4.1 of the standard states that each implementation
‘shall be able to translate and execute at least one program that
[satisfies a list of properties].’ This seems to imply that for each
implementation at leastone program should exist that doesnot
crash with stack overflow. However, this does not imply that there
exists a program thatall implementations will execute correctly
(the program might be different for different implementations), and
hence it still does not imply the existence of any strictly conforming
program. Also, the section really seems to be about lower bounds
for limits of the compilation process: limits on the execution of the
program are not really taken into account.

The fact that the standard does not allow to portably test for
stack overflow is to us one of the main omissions of the language. A
call to malloc will return aNULL pointer when there is no storage
available, which means that a program can test for that situation.
But there is no counterpart to this for function calls, or for entering
a block. Variable length arrays, discussed in Section 7, make this
an even bigger omission.

Nearly all existing formal C semantics seem to ignore stack
overflow entirely. For example CompCert [20] models an infinite
memory and stack, even on the level of the assembly. Although
this is undesirable, it is unclear how to deal with stack overflow

5 In order to make this really happen with an optimizing compiler,one might
need to use the arraya to prevent it from being optimized away. For example
when compiled with GCC or clang (with-O2) the following crashes when
running it with the standard stack size:

int main(void) {
int a[10000000];
for (int i = 0; i < 10000000; i++) a[i] = i;
return a[10];

}
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in a formal semantics such that it still can be used for compiler
correctness proofs. The following approaches are clearly not fully
satisfactory:

• Change the compiler correctness proof to guarantee that a pro-
gram is either compiled to a program that exhibits the correct
behavior, or to a program that runs out of memory/stack. In this
case compilation to a program that always runs out of memory
would be correct.

• Change the compiler correctness proof to guarantee that a pro-
gram is compiled correctly only if the source program have
some upper bound on stack and memory usage. This approach
is non-trivial because a compiler does not necessarily preserve
the stack memory consumption of the program it compiles. For
example, inlining of functions and spilling of variables may in-
crease the stack usage arbitrarily [20].

Verification with stack overflow taken into account is an instance of
verification of the resource consumption of a program. The CerCo
project [1] aims at implementing a formally verified complexity
preserving C compiler, and therefore falls in this class as well.

7. Failure of the subject reduction property
A desired property for a typed programming language issubject re-
duction, which means that evaluation preserves typing. As proven
by Norrish, this property holds for (his small-step expression se-
mantics of) C89 [25]. We will argue that due to the introduction
of variable length arrays in C99, this property no longer holds. Be-
fore pursuing the problem of subject reduction, we briefly introduce
variable length arrays and some other problems of these.

Before C99, arrays were required to have a size that could
be determined at compile-time. To work arround this restriction,
programmers had to use dynamically allocated memory (through
malloc and free) for arrays of dynamic size. To loosen this
restriction, C99 introduced support forvariable length arrays
(VLAs) to the language.

The first shortcoming of VLAs is related to the fact that there
is no portable way to test if there is sufficient storage available
(on the stack) when entering a block (see Section 6). Since most
implementations use the stack to store VLAs, not being able to
perform such a test, makes VLAs dangerous in practice. Consider
the following program.

int main(void) {
int n;
scanf("%d", &n);
int a[n];

}

Since there is no way to test if there is enough space on the stack,
it is impossible to portably ensure that the program does not crash.

Another problem of VLAs is that C allows casts to variable
length types. Since size expressions in such casts may impose
side-effects, this makes the situation rather complex. For example,
consider the following program:6

1 ? (int(*)[f(5)])0 : (int(*)[f(3)])0

wheref is a function returning a positiveint. We were unable
to find anything in the standard on which of the function calls
f(5) andf(3) may (or should) be evaluated. It is reasonable to
allow implementations to evaluate neither of them, as programs can
generally be executed correctly without needing to know the size of
array bounds in pointer casts. But what about:

6 The typeint(*)[f(5)] should be read as ‘pointer to integer array of
lengthf(5)’.

printf("%d\n",
sizeof(*(1 ? 0 : (int(*)[f(3)])0)));

Here an implementation clearly needs to evaluate the function call,
to obtain the value of thesizeof, even though it is in the branch
of the conditional that is not taken. The standard includes the
following related clause [12: 6.7.6.2p5]:

Where a size expression is part of the operand of asizeof
operator and changing the value of the size expression
would not affect the result of the operator, it is unspecified
whether or not the size expression is evaluated.

Consider the fact that the size expression in the ‘not taken’ branch
of this examplehasto be evaluated, one may wonder if the expres-
sion in the ‘not taken’ branch of our earlier example is also allowed
to be evaluated.

It also is unclear how these function calls in casts are evaluated
with respect to sequence points. As they are evaluated in branches
that are not taken, it seems they are exempt from the normal exe-
cution flow of an expression. But if they already can be executed
before the sequence point that starts the subexpression that contains
them, is there a reason they cannot be executed before the evalua-
tion of the statement that contains them starts?

The standard’s (implicit) distinction betweenstaticandrun-time
typing is the reason that subject reduction breaks. This means that
an expression can get a more restricted type during its evaluation.
For example, statically the expression(int(*)[f(5)])0 has type
‘pointer to integer array of variable length’, whereas at run-time it
will become of the more restricted type ‘pointer to integer array of
lengthn’ wheren is the result of evaluatingf(5).

The previous example already indicates that one has to sacrifice
either subject reduction or uniqueness of types (that is, each expres-
sion has a unique type). However, we will argue that the situation
is worse, and that for a reduction semantics whose rules are applied
locally, subject reduction will fail even if expressions are allowed
to have multiple types. Consider:

1 ? (int(*)[f(5)])0 : (int(*)[3])0

In this example the two subexpressions(int(*)[f(5)])0 and
(int(*)[3])0 have (static) typesint(*)[*] and int(*)[3],
respectively, whereT[*] denotes the variable length array type
over T . By typing of the conditional and composite types [12:
6.5.15p6, 6.2.7] the full expression has typeint(*)[3].

If the function callf(5) gets evaluated, and returns a value dif-
ferent from3, typing breaks,i.e., a well typed expression is evalu-
ated to a non-well typed expression. Luckily, the standard imposes
undefined behavior on this example by means of the following
clause [12: 6.7.6.2p5]:

If the two array types are used in a context which requires
them to be compatible, it is undefined behavior if the two
size specifiers evaluate to unequal values.

Currently, our C semantics deals with this problem by allowing
evaluation of size expressions at any place in a bigger expression.
Only after the conditional gets reduced, we check if both arguments
have compatible types, and if not, assign undefined behavior. This
approach has two obvious drawbacks. First of all, it breaks subject
reduction, and secondly, undefined behavior gets caught at a late
moment, or might not get caught at all. For example, in

g() ? (int(*)[f(5)])0 : (int(*)[3])0

it may happen thatf(5) is evaluated first, and returns a value
unequal to3, in which case typing has already failed, but our
semantics has not yet established this. After that, it may happen
that the call tog() does not return (for example because it invokes
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anexit or loops indefinitely), resulting in the undefined behavior
not getting described by our semantics.

But does this mean that in a formal C semantics each reduction
step has to establish that typing does not break in order to catch
undefined behavior? This would fix some version of subject reduc-
tion, but destroys the locality of a small-step reduction semantics.

8. Conclusion
8.1 Discussion

We will finish our discussion of the subtleties of the C standard by
asking the following questions:

1. Is the interpretation of the C standard that we presented in this
paper a reasonable reading of the standard?

2. Is the C standard itself (under this interpretation) reasonable?

First of all, we claim that the standard is not fully clear. The stan-
dard committee’s response in Defect Report #260 [11] is not obvi-
ous from the text of the standard. Also, Maclaren [23] presents var-
ious issues about which the standard does not have an unambiguous
reading, even when taking Defect Report #260 into account.

However, the relation between Defect Report #260 and the
official standard text is not even completely clear. The reportdoes
include a response by the standard committee and actual compilers
are making use of it, and as such it should not be taken lightly. It
was a clarification of the C99 version of the standard, and hence
it seems obvious that there was some defect in that text. However,
the parts of the text of the standard in the C11 version relevant
for the issues discussed in the report have not changed from their
counterpart in the C99 standard at all.

The standard makes a very clear distinction between ‘norma-
tive’ and ‘informative’ text in the standard, and the explanations of
Defect Report #260 certainly are not part of the ‘normative’ text
of the C11 standard. Therefore, it seems an option to decide to ig-
nore the committee’s response in this report, especially the notion
of the origin of an object, which does not occur in the standard
at all. In that case, one could read the standard in a ‘Kernighan &
Ritchie’ manner. But of course, in that case various optimizations
performed by actual compilerswill be incorrect, and one will get
standard compliant behavior only when compiling using flags like
-fno-strict-aliasing. Many real world programs, like for ex-
ample the Linux kernel, are compiled with such flags anyway [28],
but on the other hand this attitude would mean that for compilers
to be standard compliant, they would have to compile to executa-
bles with less than optimal performance, because they would need
to generate more code to test for changes due to aliasing.

The second question, whether the standard can and should be
improved is even more interesting. It seems very difficult (or maybe
even impossible) to give a mathematically precise version of the
memory model from the standard, which is a sign that one should
aim for a clearer explanation of the issues involved. However, it is
already not clear at all what a mathematically precise clarification
of the standard should look like.

For example, in the memory model of CompCert, bytes (objects
of type unsigned char) that constitute a pointer arenot simple
sequences of bits, but instead are abstract entities [21]. This means
that treating them like numbers – calculating with them, printing
them – will exhibit undefined behavior. This seems not in the spirit
of the language. On the other hand, for actual practical programs,
this restriction on the programs that are considered meaningful
probably is not important at all.

8.2 Future work

We consider two directions for future work. On the one hand we
are porting the prototype semantics that we have developed in

Haskell to the theorem prover Coq. For the moment, this devel-
opment mainly ignores the issues described in this paper and aims
at an elegant semantics for non-local control flow, block scoped
variables, expressions with side effects, and sequence points. It in-
cludes both an operational semantics and an axiomatic semantics,
and proves that the axiomatic semantics is correct with respect to
the operational semantics.

On the other hand we are experimenting with a formal mem-
ory model in which the issues from this paper are taken into ac-
count. We are investigating two approaches. The first is to extend
the memory representation that we described in this paper (where
objects are represented as trees). Instead of having values at the
leaves, we use sequences of bytes at the leaves. These bytes are sim-
ilar as those in CompCert [21]: they are either a concrete sequence
of bits, or an abstract entity constituting a fragment of a pointer.
This approach combines the best of two worlds: it still allows many
byte-wise operations while incorporating the aliasing restrictions.
Also, in this approach, the memory remains executable.

However, this approach still does not allow pointer bytes to
be used as integers. Therefore, we are also experimenting with a
memory whose state consists of a pair of anabstractversion of the
memory (based on our tree representation), and aconcreteversion
of the memory (which consists of sequences of bytes encoding the
data). The puzzle is how to deal with information flow between
these two components. We have not been able to resolve these
issues in a satisfactory way yet.

If we succeed in creating such a ‘Defect Report #260-compliant’
formal memory model, we will incorporate it into the operational
semantics that we already are working on. We then also will be able
to take a guaranteed consistent position on the issues discussed in
this paper.
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