
Certified Computer Algebra on top of an

Interactive Theorem Prover

Cezary Kaliszyk and Freek Wiedijk

{cek,freek}@cs.ru.nl
Institute for Computing and Information Sciences,
Radboud University Nijmegen, the Netherlands

Abstract. We present a prototype of a computer algebra system that
is built on top of a proof assistant, HOL Light. This architecture guar-
antees that one can be certain that the system will make no mistakes.
All expressions in the system will have precise semantics, and the proof
assistant will check the correctness of all simplifications according to this
semantics. The system actually proves each simplification performed by
the computer algebra system.

Although our system is built on top of a proof assistant, we designed the
user interface to be very close in spirit to the interface of systems like
Maple and Mathematica. The system, therefore, allows the user to easily
probe the underlying automation of the proof assistant for strengths
and weaknesses with respect to the automation of mainstream computer
algebra systems. The system that we present is a prototype, but can be
straightforwardly scaled up to a practical computer algebra system.

1 Introduction

Computer algebra systems do not always give correct answers. This happens
because those systems do not certify the operations performed. There can be
various reasons for errors in a CAS: assumptions can be lost, types of expressions
can be forgotten [2], the system might get confused between branches of ‘multi-
valued’ functions, and of course the algorithms of the system themselves may
contain implementation errors [23].

As an example of the kind of error that we are talking about here, consider the

following Maple [11] session that tries to compute
∫ ∞

0
e
−(x−1)2

√
x

dx numerically

in two different ways:

> int(exp(-(x-t)^2)/sqrt(x), x=0..infinity);

1

2

e−t
2
(

−
3(t2)

1
4 π

1
2 2

1
2 e

t
2

2 K3
4
(t

2

2)

t2
+ (t2)

1
4 π

1
2 2

1
2 e

t
2

2 K7
4
(t

2

2)
)

π
1
2

> subs(t=1,%);

2 Cezary Kaliszyk and Freek Wiedijk

1

2

e−1
(

−3π
1
2 2

1
2 e

1
2 K3

4
(1
2) + π

1
2 2

1
2 e

1
2 K7

4
(1
2)

)

π
1
2

> evalf(%);

0.4118623312

> evalf(int(exp(-(x-1)^2)/sqrt(x), x=0..infinity));

1.973732150

(We are showing Maple here, but all major computer algebra systems make
errors like this.)

To be sure that results are correct, one may use a proof assistant instead
of a CAS. But in that case even calculating simple things, like adding fractions
or calculating a derivative of a polynomial becomes a non-trivial activity, which
requires significant experience with the system.

Our approach is to implement a computer algebra system on top of a proof
assistant. For our prototype we chose the LCF-style theorem prover HOL Light
[16]. Thanks to this, we obtain a CAS system where the user can be sure of the
correctness of the results. Such a system has strong semantics, that is all variables
have types, all functions have precise definitions in the logic of the prover and
for every simplification there is a theorem that ensures the correctness of this
simplification.1 The interface of our computer algebra system resembles most
CAS systems. It has a simple read-evaluate-print loop. The language of the
formulas typed into the system is as close as possible to the language in which
formulas are generally entered in CAS and to the language in which mathematics
is done on paper. Interaction with the system currently looks like this2:

In1 := (3 + 4 DIV 2) EXP 3 * 5 MOD 3

Out1 := 250

In2 := vector [&2; &2] - vector [&1; &0] + vec 1

Out2 := vector [&2; &3]

In3 := diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x)))

Out3 := λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x)

In4 := N (exp (&1)) 10

Out4 := #2.7182818284 + ... (exp (&1)) 10 F

In5 := 3 divides 6 ∧ EVEN 12

Out5 := T

In6 := Re ((Cx (&3) + Cx (&2) * ii) / (Cx (-- &2) + Cx (&7) * ii))

Out6 := &8 / &53

1 In HOL Light simplification is implemented through what in the LCF world is
called conversions. A conversion is a function that takes a term and returns an
equational theorem. The theorem has the given term on its left side and a simplified
version of the term on the right side.

In this paper ‘simplification’ should not be taken to be a fixed reduction hard-
wired into the logic of the proof assistant, the way it is in type theoretical systems
like Coq [12].

2 The ‘&’, ‘Cx’ and ‘#’ are coercions to real, complex and floating point numbers

Certified Computer Algebra on top of an Interactive Theorem Prover 3

In7 := x + &1 - x / &1 + &7 * (y + x) pow 2

Out7 := &7 * x pow 2 + &14 * x * y + &7 * y pow 2 + &1

In8 := sum (0,5) (λx. &x * &x)

Out8 := &30

One can distinguish three categories of systems that try to fill the gap between
computer algebra and proof assistants:

– Theorem provers inside computer algebra systems:
• Analytica [6],
• Theorema [8],
• RedLog [13],
• logical extension of Axiom [20].

– Frameworks for mathematical information exchange between systems:
• MathML [10],
• OpenMath [15],
• OMSCS [7],
• MathScheme [9],
• Logic Broker [1].

– Bridges between theorem provers and computer algebra systems, also re-
ferred to as ad-hoc information exchange solutions:
• PVS and Maple [14],
• HOL and Maple [17],
• Isabelle and Maple [4],
• NuPrl and Weyl [18],
• Omega and Maple/GAP [21],
• Isabelle and Summit [3].

An important distinction that one can make within the category of bridges is
the degree of trust between the prover and the CAS. In some of these solutions
the prover uses the simplification of the CAS as an axiom, i.e., without checking
its correctness. But in other solutions the prover takes the CAS output and then
builds a verified theorem out of it. In this case there are again two possibilities:
either the result is verified independently of how the CAS obtained it, or the
system takes a trace of the rules that the CAS applied, and then uses that as a
suggestion for what theorems should be used to construct a proof of the result.

In the work that we referred to here either the proof assistant is built inside
the CAS, or the proof assistant and the CAS are next to each other. In our work
however, we have the CAS inside the proof assistant.

Of course in many proof assistants there already is CAS-like functionality,
in particular many proof assistants have arithmetic procedures or even powerful
decision procedures. However, we do not just provide the functionality, but also
build a system that can be used in a similar way as most other computer algebra
systems are used.

In our system it is the first time that anyone pursued the combination of a
CAS inside a proof assistant (in which all simplifications are validated), with an
interface that has the customary CAS look and feel.

4 Cezary Kaliszyk and Freek Wiedijk

Our way of combining theorem proving and computer algebra has advantages
over the ones presented above. All calculations done by our system are certified
by the architecture of our system. All formulas defined inside it have types
assigned, all defined operators have explicit semantics and all simplifications
performed have theorems associated with them. No translation of formulas or
semantics is needed, as the CAS shares the internal data structures of the proof
assistant. There is no need to worry about mistakes in the implementation of
the CAS, since all conversions are certified using the logic of the underlying
prover. There is no verification required after the result is obtained, thanks to
the creation of theorems alongside with the results. All simplifications performed
by our architecture are completely certified, that is if a certificate for a particular
simplification does not exist [5] it can not be performed. All variables used in
HOL Light conversions have to be typed, so working in a proof assistant might
seem less flexible than a traditional CAS implementation, but the abundance of
decision procedures for HOL show that this probably is not a strong limitation.

The paper is organized as follows: in Section 2 we present the architecture of
the system. In Section 3 we talk about the knowledge base. Finally in Section 4
we present a conclusion.

2 Architecture

We present a general architecture for a certified computer algebra system, and
we will describe an implementation prototype. The source for the prototype is
available from http://www.cs.ru.nl/∼cek/holcas/. For the implementation
we chose the proof assistant HOL Light [16]. The factors that influenced our
choice were: the possibility to manipulate terms to create the conversions, prove
theorems and implement the system in the same language3, as well as a good
library of analysis and algebra. The system created is rather a proof of concept
than a real product, which is why the efficiency of the underlying prover was
not a decisive factor. In particular we perform all computations inside the proof
assistant’s logic, sometimes with the help of decision procedures.

Our system is divided in three independent parts (Fig. 1): the user interface
(input-response loop), the abstract algorithm of dealing with a formula (we will
call this the CAS conversion), and the knowledge that is specific to the CAS
system. That architecture allows the user both to use it as a computer algebra
system, as well as making it usable in the context of theorem proving4.

2.1 Input-response loop

The system displays a prompt, where one can write expressions to be simplified
and commands. It is necessary to distinguish expressions to be computed or
simplified from commands that represent actions that do not evaluate anything,
like listing theorems or modifying and printing assumptions.

3 HOL Light is written in OCaml and is provided as an extension of it
4 The CAS conversion can be applied to a goal to be proved using CONV TAC.

Certified Computer Algebra on top of an Interactive Theorem Prover 5

User
interface

Parsing and
type-checking

user input

Replacing
history

Abstract CAS
conversion

Handling of
commands

CAS-like
Knowledge

Traversing
the term

Discrimination
Net

Theorems

Conversions

Handling of
assumptions

Fig. 1. Architecture of a CAS inside a TP system with responsibilities of the parts of
our implementation marked. The prover is not marked on the figure, since all parts
make use of it, by using it’s type of terms and theorems, as well as tactics and conver-
sions to build them.

Every expression that is not recognized as a command is passed to the CAS

conversion, which will try to compute or simplify the expression. The theorem
given back by the CAS conversion is the certificate that the output is correct.
If the CAS conversion is not able to simplify the term, it returns an instance of
reflexivity, and the result is then the same as the input.

In most CASs variables can be used without declaring them, but for certain
algebraic operations one can define a variable to be of a particular type (necessary
for example in Magma). Our system can handle expressions in both ways. The
free variables are typed using HOL Light type inference, but one can also
require a specific type with the assumetype command (described in section 3.4).

Most computer algebra systems allow one to reuse previously typed in ex-
pressions and calculated outputs. One may calculate In1 + Out2. The loop has
to have access to all expressions entered, theorems proved and outputs. In our
framework every expression entered is stored with its type, so when it is reused,
parsing the same expression, even in a different context, gives the same type.

2.2 Abstract CAS conversion

To be able to benefit from the CAS simplification in theorem proving, it is use-
ful to have the CAS functionality available as a single conversion (that we call
here the CAS conversion). Since the underlying prover can be further developed
and new theorems can be proved later, it is useful to separate the CAS con-

version from the knowledge that it uses. For this reason the CAS conversion is
parametrized. The general idea behind the CAS conversion is to try to apply all
sub-conversions from the knowledge base at all positions in the term until it is
saturated (Fig. 2). Applying the same conversions to a modified term is neces-
sary, since some conversions return terms, parts of which can be again simplified.
Particular implementations may include mechanisms to increase efficiency or to
provide termination of simplification.

We are not particularly aiming at completeness for the algorithms in the CAS

conversion, since completeness in practice can only be realized for rather basic
theories. However any mathematically correct algorithm that exists for existing

6 Cezary Kaliszyk and Freek Wiedijk

computer algebra systems can be implemented as a HOL Light conversion too,
that does the calculation while building the correctness proof in parallel. Ex-
amples include conversions that perform algorithms for integration, conversions
that perform splitting and joining for branching calculations, or conversions that
simplify terms involving higher order operations (like summation).

Yes

Yes YesNo No

No

Not
Found

Not
FoundFound

Found

Lookup the
term in cache

Was it
simplifiable

Is it a combination
or an abstraction

Return
the theorem

Fail
Is any subterm

simplifiable

Simplify
and restart

Lookup the term
in discrimination net

Simplify
and restart

Fail

Fig. 2. Our implementation of the CAS conversion first tries to look up the term in
a built-in cache (for efficiency). If the term is an application or an abstraction, then
it tries to simplify subterms recursively (not performed if the term is known not to
be expandable or is a suggestion that should not be expanded, for example NUMERAL

or assuming). Finally it tries to apply all conversions from the knowledge base to the
term.

3 CAS-like knowledge

The knowledge base is a separate part of the system. The knowledge is kept in
a discrimination net (a structure that allows matching a term to a number of
patterns efficiently). There is an interface on the theorem prover level that allows
introducing knowledge to the knowledge base in the following three forms:

– Rewrite rules, for example:
|- ∀z. abs (norm z) = norm z

– Conditional rewrite rules, for example:
|- ∀x. &0 <= x ==> abs x = x

– Conversions meant to be used with an argument that matches a certain
pattern and return ad-hoc rewrite rules. An ad-hoc rewrite rule is a theorem
that is generated to be used for rewriting the formula, but it is not added

Certified Computer Algebra on top of an Interactive Theorem Prover 7

to the knowledge base (although our implementation keeps all rewritten
theorems in cache, implemented as a hash-table, for efficiency reasons). For
example the HOL Light conversion DIVIDES CONV takes terms that match
the pattern n divides m and then returns ad-hoc rewrite rules for the given
data like |- 33 divides 123453 <=> T.

The CAS conversion has to check whether the given term matches one of
the rewrite rules and ad-hoc rewrite rules in the knowledge base. For efficiency
it keeps all theorems and conversions included in the knowledge base in a dis-
crimination net. To allow matching conversions with even less overhead, optional
patterns for matching associated with conversions can be provided. The discrim-
ination net is not changed, the particular used instances are only added to the
cache.

To resemble a CAS system, the formulas processed by the system should be
in the “evaluation” form and not in “verification” form.

Let us compare the ways in which one writes differentiation in the HOL
Light library and the way it is written in our CAS:

∀x. (f diffl (g x)) x → diff f = g

(f diffl (g x)) x → diff f x = g x

In HOL Light the diffl predicate takes three arguments: the function (on
the left of the predicate), the value of its derivative and the point. To write a
general derivative we need to generalize the point and replace the value with the
derivative function in this point. Even then it is still a binary predicate.

In most computer algebra systems there exists a simple diff operator, that
takes a function and returns its derivative. Using the Hilbert’s choice operator,
we created a such function, defined: diff f = λx. εv. (f diffl v) x. We
also created a conversion that is able to calculate the derivative of a function, if
HOL Light’s DIFF CONV can.

Just like we defined a functional form of differentiation, we also defined a
functional integration operator. Using these we can then compute the following
expressions in the system:

In9 := dint (&1,&2) sin

Out9 := -- &1 * cos (&2) + cos (&1)

In10 := dint (&1,&2) (λx. x pow n)

Out10 := &1 / &(n + 1) * &2 pow (n + 1) +

-- &1 * &1 / &(n + 1) * &1 pow (n + 1)

In11 := diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x))) (&2)

Out11 := exp (exp (&2)) * exp (&2) pow 2 + exp (exp (&2)) * exp (&2) +

-- &12 * sin (&4)

In12 := diff (λx. dint (x,x + &2) (λx. x pow 3))

Out12 := λx. &6 * x pow 2 + &12 * x + &8

Our differentiation and integration definitions do not work well with partial
functions. An approach for defining them in such a way that partial functions
are handled better will be described in Section 4.

8 Cezary Kaliszyk and Freek Wiedijk

3.1 Numerical approximations

In complex calculations computer algebra systems provide users with numerical
approximations. They are usually implemented with an approximation algo-
rithm, which keeps an error bound with every calculation. In a proof assistant
a numerical approximation must have its semantics completely defined, and the
algorithm has to respect the approximation definition and theorems that specify
its properties.

The two main ways of rounding a real number are down to an integer and
towards the nearest integer. Both these operations do not give rise to a com-
putable function (see for example [19]). In [22] it is shown that if one computes
non-deterministically either one of those values then one does get a computable
function. We will use a conversion that calculates the value rounded both down
and to nearest value, that terminates when one of those calculations terminate.

We propose to define the numerical approximation of a given number x to a
precision p as identical to the number itself: N x p = x. It is only a hint for the
system that the number has to be simplified to a decimal fraction plus a rest. It
is the rest, that determines in which form is the number given: rounded down or
rounded to the nearest. For rest defined in this way we provide a theorem, that
states that the approximation can be different from the exact value only on the
last digit, and the difference is less than one.

In the following HOL Light definitions, N is the numerical approximation
of a number to a precision (following the convention of Mathematica) and ...

is the rest of a number to the given precision with an additional argument that
specifies the form of the rest. T stands for rounding to nearest and F stands for
rounding down.

... x p F = x - floor (&10 pow p * x) / &10 pow p

... x p T = x - floor (&10 pow p * x + &1 / &2) / &10 pow p

|- abs(... x p v - x) < &1 / &10 pow p

The system is able to compute some numerical approximations with this
scheme:

In13 := N (&1 / &3) 8

Out13 := #0.33333333 + ... (&1 / &3) 8 F

In14 := N (sqrt #5.123456789) 8

Out14 := #2.26350542 + ... (sqrt #5.123456789) 8 F

In15 := N (dint (#0.1,#0.4) exp) 7

Out15 := #0.3866537 + ... (-- &1 * exp #0.1 + exp (&2 / &5)) 7 F

3.2 Assumptions

In most CASs there is a possibility to make type assumptions or binary assump-
tions about variables. Examples include assuming a variable to be greater than
zero, greater than another variable, natural or real. There are various methods
of introducing assumptions in computer algebra systems:

Certified Computer Algebra on top of an Interactive Theorem Prover 9

– Assumptions associated with a simplification
in Mathematica: Simplify[Sin[n Pi], Element[n,Integers]]

– Global list of assumptions
in Maple: assume(x>0); sqrt(x*x);

– Asking the user for conditions on variables (e.g. Maxima)
– Adding assumptions automatically and silently to the prover environment

(e.g. MathXpert)

In our system we keep a global list of assumptions, which are Boolean prop-
erties that may be later used to instantiate assumptions of rewrite rules and
ad-hoc rewrite rules. In a big CAS the number of rules that can be used is so big
that asking the user seems not to be a good choice. Also automated assuming
will probably not behave too well in such a situation.

An assumption can be introduced by the user either using assume, which
takes a Boolean, or assumetype which takes a typed variable. An assumption
associated with a single simplification of a sub-term may be also introduced us-
ing assuming. The latter method temporarily changes the assumptions list to
simplifying the sub-expression. The assumptions will be added to the assump-
tions of the theorem generated by the CAS conversion, which is why changing
the assumptions list is only useful at the top-level of the expression to simplify.

The global list of assumptions is used by the conversions from the knowl-
edge base, therefore we consider is a part of the latter. To ensure the usage of
variables with correct types, type checking has to have access to this list. When
an expression is typed in the system it is type-checked in a particular context.
This context includes types already assigned to all free variables from the as-
sumptions list, as well as all variables for which types have been assumed with
assumetype. To do this, the latter are kept in another global list.

For example,
√

x2 cannot be simplified to x, since we don’t know whether x

is positive or not. Also x

x
cannot be simplified to 1, since it is possible that x = 0.

In16 := sqrt (x * x)

Out16 := abs x

In17 := x / x

Out17 := x * inv x

When an assumption about x is introduced, stating that it is greater then 1,
numeric things about x can be proved, and both of the above formulas can be
simplified:

In18 := assume (x > &1)

Out18 := T

In19 := x > #0.5

Out19 := T

In20 := sqrt (x * x)

Out20 := x

In21 := x / x

Out21 := &1

10 Cezary Kaliszyk and Freek Wiedijk

There are two ways in which assumptions are used: direct and indirect. The
first way is to use an assumption directly in the derivation in unchanged form. It
can be used to a prove a reflexive theorem or to fill the requirement of a certain
conditional rewrite rule (or a conditional ad-hoc rewrite rule). An assumption
may be used as an indirect step in the derivation, for example simplifying abs(x)
to x requires x ≥ 0, and the assumption x > 1 can be used for this.

3.3 Manipulating assumptions

A CAS has to provide a mechanism for adding assumptions and listing defined
assumptions. In our prototype we added the assumptions and about commands,
which resemble their Maple equivalents.

Command: about Argument: x

‘x > &1‘

An issue that is hard to handle in any approach are errors that may be
caused by incorrect parsing and printing. We try to be as close as possible to
the original HOL Light’s parsing and printing mechanism. In fact, the system
currently uses HOL’s term printing (with special output for errors) but, when
parsing, the system has to add typing information and distinguish commands
from terms. Special output is added, so that the user always knows when a given
string has been interpreted as a command.

To further lower the risk of parsing and printing problems, we add the
theorems command. It allows printing all theorems defined in a session. The
standard HOL Light theorem printing function is used for this. It is espe-
cially useful for conversions that use assumptions, because in that it case the
assumptions that have been actually used will be shown. Below are the first five
theorems proved by the examples from this document:

Command: theorems

|- (3 + 4 DIV 2) EXP 3 * 5 MOD 3 = 250

|- vector [&2; &2] - vector [&1; &0] + vec 1 = vector [&2; &3]

|- diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x))) =

(λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x))

|- N (exp (&1)) 10 = #2.7182818284 + ... (exp (&1)) 10 F

|- 3 divides 6 ∧ EVEN 12 <=> T

4 Conclusion

Our work integrates computer algebra and proof assistant technology. We will
now look at how our architecture compares with what one gets by just having a
CAS or a proof assistant.

Developing a system according to our architecture (i.e., where the algorithms
not only generate the results, but also generate certificates of the correctness of

Certified Computer Algebra on top of an Interactive Theorem Prover 11

those results) will be slower than the development of traditional CAS systems
(because that only has to generate the results). As far as the performance of the
system is concerned, our architecture will be somewhat slower than a traditional
CAS as well. This is mostly because generating the certificates for all simplifica-
tions also takes time. However, we expect this slow-down over traditional CAS
to only multiply the running time by a constant factor. Our expectation is not
experiment based, but based on the architecture, we trace what a traditional
CAS does and provide proofs for every step.

When we compare our architecture to the way that one normally does CAS-
like manipulations in an interactive theorem prover, the main difference is the
interaction model. Our CAS system does not interactively work on propositions
that are to be proved, but instead takes an expression and automatically sim-
plifies it.

Our primary focus is to extend the knowledge base with a formalization of
multivalued functions, to be able to handle more complicated expressions, like
the Maple example of a complex function with multiple branches given in the
introduction.

Another important feature that we plan to investigate are the coercions that
many proof assistants use, like the embedding of the integers in the real numbers
or the real numbers in the complex numbers. Currently a user of our prototype
needs to use the ‘&’ and ‘Cx’ symbols for this (as is customary in the HOL Light
library). A small improvement to the current situation might be to overload the
‘&’ operator, but we would rather not make the user write these functions at all.

An issue that our approach does not cover is completeness of the conversions.
In the case of rewrite rules the completeness is clear. But in the case of arbitrary
algorithms, it is not guaranteed by our architecture that a given conversion will
always terminate and never fail.

We believe that both computer algebra systems and proof assistants cur-
rently have a problem. In computer algebra the lack of explicit semantics and
the lack of verification of the results inside the system makes the systems less
reliable than one would like them to be. In proof assistants the powerful symbolic
manipulations that are taken for granted in computer algebra often are missing
and, even when present, it takes work and expertise to make use of it.

We claim that the architecture that we present here can solve both problems
simultaneously. The computer algebra systems will get explicit semantics and
certification. And the proof assistants will get CAS-like functionality that will
make them more powerful and easier to use than they are today.

References

1. A. Armando and D. Zini. Towards interoperable mechanized reasoning systems:
the logic broker architecture. In A. Corradi, A. Omicini, and A. Poggi, editors,
WOA, pages 70–75. Pitagora Editrice Bologna, 2000.

2. H. Aslaksen. Multiple-valued complex functions and computer algebra. SIGSAM
Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation),
30(2):12–20, June 1996.

12 Cezary Kaliszyk and Freek Wiedijk

3. C. Ballarin and L. C. Paulson. A pragmatic approach to extending provers by
computer algebra - with applications to coding theory. Fundam. Inf., 39(1-2):1–
20, 1999.

4. Clemens Ballarin, Karsten Homann, and Jacques Calmet. Theorems and algo-
rithms: an interface between Isabelle and Maple. In ISSAC ’95: Proceedings of
the 1995 international symposium on Symbolic and algebraic computation, pages
150–157, New York, NY, USA, 1995. ACM Press.

5. H. Barendregt and A. M. Cohen. Electronic communication of mathematics and the
interaction of computer algebra systems and proof assistants. J. Symb. Comput.,
32(1/2):3–22, 2001.

6. A. Bauer, E. M. Clarke, and X. Zhao. Analytica - an experiment in combining
theorem proving and symbolic computation. Journal of Automated Reasoning,
21(3):295–325, 1998.

7. P. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and integration
of theorem provers and computer algebra systems. Fundam. Inform., 39(1-2):39–
57, 1999.

8. B. et al Buchberger. The Theorema Project: A Progress Report. In M. Ker-
ber and M. Kohlhase, editors, Symbolic Computation and Automated Reasoning
(Proceedings of CALCULEMUS 2000), Natick, Massachusetts, 2000. A.K. Peters.

9. J. Carette, W. Farmer, and J. Wajs. Trustable communication between mathe-
matics systems. In CALCULEMUS 2003, pages 55–68, Rome, Italy, 2003. Aracne.

10. David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier. Mathematical
Markup Language (MathML) Version 2.0 (Second Edition), 2003.

11. B.W. Char, K.O. Geddes, W.M. Gentleman, and G.H. Gonnet. The design of
Maple: A compact, portable and powerful computer algebra system. Springer-Verlag
London, UK, 1983.

12. Coq Development Team. The Coq Proof Assistant Reference Manual Version 8.0.
INRIA-Rocquencourt, January 2005.

13. A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic.
ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

14. A. Adams et al. Computer algebra meets automated theorem proving: Integrating
Maple and PVS. In R. J. Boulton and P. B. Jackson, editors, Proceedings of
the 14th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2001), volume 2152 of Lecture Notes in Computer Science, pages 27–42,
Edinburgh, Scotland, UK, September 2001. Springer-Verlag.

15. S. Buswell et al. The OpenMath Standard, version 2.0, 2002.
16. J. Harrison. HOL light: A tutorial introduction. In M. Srivas and A. Camilleri,

editors, Proceedings of FMCAD’96, volume 1166 of LNCS, pages 265–269. Springer-
Verlag, 1996.

17. John Harrison and Laurent Théry. A skeptic’s approach to combining HOL and
Maple. Journal of Automated Reasoning, 21:279–294, 1998.

18. P. B. Jackson. Enhancing the Nuprl Proof Development System and Applying it
to Computational Abstract Algebra. PhD thesis, Cornell University, Ithaca, NY,
USA, January 1995.

19. D.R. Lester. Effective continued fractions. In Proceedings 15th IEEE Symposium on
Computer Arithmetic, pages 163–170. IEEE Computer Society Press, June 2001.

20. E. Poll and S. Thompson. Adding the axioms to Axiom: Towards a system of
automated reasoning in Aldor. In Calculemus and Types ’98, July 1998.

21. V. Sorge. Non-trivial symbolic computations in proof planning. In FroCoS ’00:
Proceedings of the Third International Workshop on Frontiers of Combining Sys-
tems, pages 121–135, London, UK, 2000. Springer-Verlag.

Certified Computer Algebra on top of an Interactive Theorem Prover 13

22. J. Vuillemin. Exact real computer arithmetic with continued fractions. In LFP
’88: Proceedings of the 1988 ACM conference on LISP and functional programming,
pages 14–27, New York, NY, USA, 1988. ACM Press.

23. M. J. Wester, editor. Contents of Computer Algebra Systems: A Practical Guide,
chapter A Critique of the Mathematical Abilities of CA Systems. John Wiley &
Sons, Chichester, United Kingdom, 1999.

