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automation

program verification versus mathematics




assistant versus word processor




formal proof sketches

textbook proof from Hardy & Wright

Theorem 43 (Pythagoras’ theorem). /2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If
V2 is rational, then the equation

a? = 2b* (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence a? is even, and

therefore a is even. If a = 2¢, then 4¢? = 2b2%, 2¢2 = b%, and b is

also even, contrary to the hypothesis that (a,b) = 1. []




formal proof sketch of the textbook proof

theorem Th43: sqrt 2 is irrational :: Pythagoras’ theorem
proof assume sqrt 2 is rational; consider a, b such that
4_3_1: a'2=2%xb2

and a, b are_relative_prime; a 2 is even; a is even; consider ¢ such
that a = 2xc; 4*xc"2=2%x0"2; 2xc 2 =10"2; b is even; thus
contradiction; end;



full declarative formalization

theorem Th43: sqrt 2 is irrational
proof
assume sqrt 2 is rational;
then consider a, b such that
Al: b <> 0 and
A2: sqrt 2 = a/b and
A3: a, b are_relative_prime by Defl;
A4: b"2 <> 0 by Al, SQUARE_1:73;
2 = (a/b)"2 by A2, sQuARE.1:def 4
.= a"2/b"2 by sQUARE.1:69;
then
4.31: a"2=2%xb"2 by A4, REAL_1:43;
a"2 is even by 4_3_1, ABIAN:def 1;
then
A5: a is even by PYTHTRIP:2;
.. continue in next column

then consider c such that
A6: a = 2 x c by ABIAN:def 1;
AT: 4%c"2 = (2x2)*%c"2
.= 272 %c"2 by SQUARE_1:def 3
.=2xb"2 by A6,4_3_1, SQUARE_1:68;
2% (2%xc"2) = (2% 2) *c"2 by AxIOMS:16
.= 2%xb"2 by AT7;
then 2 xc”2 = b”"2 by ReAL_1:9;
then b”2 is even by ABIAN:def 1;
then b is even by PYTHTRIP:2;
then 2 divides a & 2 divides b by A5, Def2;
then
A8: 2 divides a gcd b by INT_2:33;
agcd b =1 by A3, INT.2:def 4;
hence contradiction by A8, INT_2:17;
end;



first challenge: automate elementary reasoning steps

Larry Wos:
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e experience with formal proof sketches:

computers routinely proving non-trivial steps is far away

e focus should be on making manual math formalization efficient



luxury mathmode

procedural proof using tactics

# g ‘'m. nsum(l..n) (\i. i) = (nx(n + 1)) DIV 2¢;;
val it : goalstack = 1 subgoal (1 total)

‘In. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2¢

# e INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)

O [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2¢]
‘nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2¢
‘nsum (1..0) (\i. i) = (0 * (0O + 1)) DIV 2¢

# e (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;
val it : goalstack = 1 subgoal (2 total)

“(4f 1 = 0 then 0 else 0) = (0 * (O + 1)) DIV 2¢

#
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batch checked declarative proof

In. nsum(1..n) (\i. i) = (n*x(n + 1)) DIV 2
proof
nsum(1..0) (\i. i) = 0 by NSUM_CLAUSES_NUMSEG;
... = (0%x(0 + 1)) DIV 2 [1];
now let n be num;
assume nsum(1l..n) (\i. i) = (nx(n + 1)) DIV 2 [2];
1 <= SUC n;
nsum(1..SUC n) (\i. i) = (n*(n + 1)) DIV 2 + SUC n
by NSUM_CLAUSES_NUMSEG, 2;
thus ... = ((SUC n)*(SUC n + 1)) DIV 2;
end;
qed by INDUCT_TAC,1;



integrating the two worlds

Mizar Light
= ‘luxury mathmode’ (Henk)
= proof language/interface on top of HOL Light

demo



computer algebra with assumptions

two flavors of computer algebra

mathematical computation by computer

N

numerical computation symbolic computation
computer algebra computer calculus
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the Content MathML signature

147 XML elements, like:

P Aol - max min — + -/ ged AV - =V I || - arg
d 0

RS ||| = > < &~ — — V. uUnN C

S =#><2=< |/da;6’a: e C

C \ # x >_ ]I lim In log sin cos tan sec csc cot sinh cosh
tanh coth arcsin arccos arctan g o det 1 @ ZR Q N C e i
T LO07my

MathML ATEX HOL
P =q implies \Rightarrow ==>
AXxX B cartesianproduct \times prod , CROSS
0 cn NUMERAL
D i i sum \'sum nsum, sum
o0 infinity \infty
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sample problem

v 1 1
x#0 A ln($2)>1/\/tdt§1:>——<$<—
‘ ’ 0 Ve Ve

e this is not about first order proof search

first order proof search cannot easily calculate integrals
first order proof search cannot easily do numerical approximations

e this is not about decision procedures

decision procedures generally work over specific small signatures

e this is not about systems like Maple and Mathematica

current computer algebra systems generally do not use assumptions
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second challenge: take next step in mathematics automation

progress:
e automation of formalized primary school math = ‘arithmetic’
e automation of formalized high school math = ‘calculus’

e automation of formalized university math

should run in less than a second

should run without any arguments
should implicitly use:

e assumptions in the goal = local labels in the proof

e theorems from the formal library
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the plan

creating a collection of mathematical problems

Y

take proofs from Proofs from The Book

create formal proof sketches of those proofs

calculate the proof abligations of the steps in ;;u;fsfrom‘prE BOOK

=

those formal proof sketches

select proof obligations in the Content MathML

signature

benchmark for math automation
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the proof obligations for the Hardy & Wright example

V2€Q
beZ A a®=2b
acZ A 2|a®
2| a

a’? =20 N a=2c
4c* = 2b°

beEZ NcEZ N 22 =b°
gcd(a,b) =1 AN2]aAN2]|Db

Content MathML signature

T T 1T T 1T 1T T T

Ja,b € Z(a* = 2b* A ged(a,b) = 1)
2| a*

2| a

dceZ(a=2c)

4c* = 2b*

2c% = b*

2|0

1

only relevant subset of the assumptions shown here

each should be proved automatically in less than a second!



