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automation

program verification versus mathematics
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assistant versus word processor
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formal proof sketches

textbook proof from Hardy & Wright

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If√
2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and

therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is

also even, contrary to the hypothesis that (a, b) = 1. �
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formal proof sketch of the textbook proof

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

consider a,b such that

4 3 1: aˆ2 = 2 ∗ bˆ2 and

a,b are relative prime;

aˆ2 is even;

a is even;

consider c such that a = 2 ∗ c;

4 ∗ cˆ2 = 2 ∗ bˆ2;

2 ∗ cˆ2 = bˆ2;

b is even;

thus contradiction;

end;

theorem Th43: sqrt 2 is irrational :: Pythagoras’ theorem

proof assume sqrt 2 is rational; consider a, b such that

4 3 1: aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; â 2 is even; a is even; consider c such

that a = 2 ∗ c; 4 ∗ cˆ2 = 2 ∗ bˆ2; 2 ∗ cˆ2 = bˆ2; b is even; thus

contradiction; end;
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full declarative formalization

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a, b such that

A1: b <> 0 and

A2: sqrt 2 = a/b and

A3: a, b are relative prime by Def1;

A4: bˆ2 <> 0 by A1, SQUARE 1:73;

2 = (a/b)ˆ2 by A2, SQUARE 1:def 4

.= aˆ2/bˆ2 by SQUARE 1:69;

then

4 3 1: aˆ2 = 2 ∗ bˆ2 by A4, REAL 1:43;

aˆ2 is even by 4 3 1, ABIAN:def 1;

then

A5: a is even by PYTHTRIP:2;

:: continue in next column

then consider c such that

A6: a = 2 ∗ c by ABIAN:def 1;

A7: 4 ∗ cˆ2 = (2 ∗ 2) ∗ cˆ2

.= 2ˆ2 ∗ cˆ2 by SQUARE 1:def 3

.= 2 ∗ bˆ2 by A6, 4 3 1, SQUARE 1:68;

2 ∗ (2 ∗ cˆ2) = (2 ∗ 2) ∗ cˆ2 by AXIOMS:16

.= 2 ∗ bˆ2 by A7;

then 2 ∗ cˆ2 = bˆ2 by REAL 1:9;

then bˆ2 is even by ABIAN:def 1;

then b is even by PYTHTRIP:2;

then 2 divides a & 2 divides b by A5, Def2;

then

A8: 2 divides a gcd b by INT 2:33;

a gcd b = 1 by A3, INT 2:def 4;

hence contradiction by A8, INT 2:17;

end;
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first challenge: automate elementary reasoning steps

Larry Wos:

• experience with formal proof sketches:

computers routinely proving non-trivial steps is far away

• focus should be on making manual math formalization efficient
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luxury mathmode

procedural proof using tactics

# g ‘!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2‘;;

val it : goalstack = 1 subgoal (1 total)

‘!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘

# e INDUCT_TAC;;

val it : goalstack = 2 subgoals (2 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2‘

‘nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2‘

# e (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;

val it : goalstack = 1 subgoal (2 total)

‘(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2‘

#
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batch checked declarative proof

!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2

proof

nsum(1..0) (\i. i) = 0 by NSUM_CLAUSES_NUMSEG;

... = (0*(0 + 1)) DIV 2 [1];

now let n be num;

assume nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2 [2];

1 <= SUC n;

nsum(1..SUC n) (\i. i) = (n*(n + 1)) DIV 2 + SUC n

by NSUM_CLAUSES_NUMSEG,2;

thus ... = ((SUC n)*(SUC n + 1)) DIV 2;

end;

qed by INDUCT_TAC,1;
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integrating the two worlds

Mizar Light

= ‘luxury mathmode’ (Henk)

= proof language/interface on top of HOL Light

demo
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computer algebra with assumptions

two flavors of computer algebra

mathematical computation by computer

wwpppppppppppp

''
NNNNNNNNNNNN

numerical computation symbolic computation

wwpppppppppppp

%%
KKKKKKKKKK

computer algebra computer calculus

1

X
∈ C (X) λX.

1

X
∈ C

C 6=0

X

X
= 1 as algebraic objects

X

X
6= 1 when X = 0
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the Content MathML signature

147 XML elements, like:

−1 λ ◦ ! ÷ max min − + ·
√

gcd ∧ ∨ ¬ ⇒ ∀ ∃ | · | · arg

ℜ ℑ ⌊·⌋ ⌈·⌉ = 6= > < ≥ ≤ ⇔ ≈ |
∫

d

dx

∂

∂x
∇ ∪ ∩ ∈ ⊆

⊂ \ # × ∑ ∏

lim ln log sin cos tan sec csc cot sinh cosh

tanh coth arcsin arccos arctan µ σ det T ⊗ Z R Q N C e i

⊤ ⊥ ∅ π γ ∞

MathML LATEX HOL

p ⇒ q implies \Rightarrow ==>

A × B cartesianproduct \times prod , CROSS

0 cn NUMERAL
P

n

i=1
ai sum \sum nsum , sum

∞ infinity \infty
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sample problem

x 6= 0 ∧
∣

∣ ln(x2)
∣

∣ > 1 ∧
∫

x

0

t dt ≤ 1 ⇒ − 1√
e

< x <
1√
e

• this is not about first order proof search

first order proof search cannot easily calculate integrals

first order proof search cannot easily do numerical approximations

• this is not about decision procedures

decision procedures generally work over specific small signatures

• this is not about systems like Maple and Mathematica

current computer algebra systems generally do not use assumptions
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second challenge: take next step in mathematics automation

progress:

• automation of formalized primary school math = ‘arithmetic’

• automation of formalized high school math = ‘calculus’

• automation of formalized university math

should run in less than a second

should run without any arguments

should implicitly use:

• assumptions in the goal = local labels in the proof

• theorems from the formal library
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the plan

creating a collection of mathematical problems

• take proofs from Proofs from The Book -

• create formal proof sketches of those proofs

• calculate the proof obligations of the steps in

those formal proof sketches

• select proof obligations in the Content MathML

signature

benchmark for math automation
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the proof obligations for the Hardy & Wright example

√
2 ∈ Q ⊢ ∃ a, b ∈ Z (a2 = 2b2 ∧ gcd(a, b) = 1)

b ∈ Z ∧ a2 = 2b2 ⊢ 2 | a2

a ∈ Z ∧ 2 | a2 ⊢ 2 | a

2 | a ⊢ ∃ c ∈ Z (a = 2c)

a2 = 2b2 ∧ a = 2c ⊢ 4c2 = 2b2

4c2 = 2b2 ⊢ 2c2 = b2

b ∈ Z ∧ c ∈ Z ∧ 2c2 = b2 ⊢ 2 | b

gcd(a, b) = 1 ∧ 2 | a ∧ 2 | b ⊢ ⊥

Content MathML signature

only relevant subset of the assumptions shown here

each should be proved automatically in less than a second!
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