the Mizar type system

Freek Wiedijk Radboud University Nijmegen

TPHOLs 2007

University of Kaiserslautern

2007 09 12, 10:00

this talk

- Mizar
- Mizar types
- the paper
 - the Mizar type system in the form of typing rules
 - correctness with respect to first order predicate logic

Mizar versus the HOLs

Mizar

HOL

Isabelle

PVS

Coq

.

batch checking

first order logic

readable proofs

untyped set theory

very nice type system

interactive

higher order logic

tactic scripts

typed foundations

Mizar types

features

- dependent types
- subtyping
- 'attributes'
- structure types (records)

Alternative Aggregates in Mizar Gilbert Lee and Piotr Rudnicki MKM 2007, LNAI 4573

attributes

overloading

meaning of an attribute depends on the radix type:

- connected Relation
- connected Graph
- connected TopSpace

example

```
definition let d be | non zero Element of NAT |;
 func cyclotomic_poly d -> | Polynomial of F_Complex
                                                        means
   ex s being | non empty finite Subset of F_Complex
    st s = { y where y is | Element of MultGroup F_Complex | : ord y = d } &
       it = poly_with_roots((s,1)-bag);
end;
                   Primitive Roots of Unity and Cyclotomic Polynomials
       UNIROOTS
                   Broderick Arneson and Piotr Rudnicki
                   3293 lines, 135K
 full Mizar library 985 'articles', 1.97 million lines, 68.9M
```

```
for i being Integer holds i >= 0 iff i is Nat \forall i: \mathbb{Z}.\ i \geq 0 \Leftrightarrow (i:\mathbb{N}) i is Nat \neq i in NAT \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad type \qquad term 'has type' 'is element of' the type system the set theory
```

'coerce' a term to a more informative type by giving a proof

```
then n' - n >= 0 by XREAL_1:50;
then reconsider d = n' - n as Nat by INT_1:16;
...
```

subtyping

```
definition let C be Category;
 mode Subcategory of C -> Category means
:: CAT_2:def 4
end;
                              set
                            Category
                       Subcategory of C
```

supertype may depend on the types of the arguments of the type

clusters

any term with attribute empty automatically also gets attribute finite

typed or untyped logic?

what does it all mean?

foundations of Mizar:

Tarski-Grothendieck set theory

_

ZFC + 'there are arbitrarily large inaccessible cardinals'

set of axioms on top of untyped first order predicate logic

the axioms of Mizar

```
X \subseteq Y \Leftrightarrow (\forall x. \ x \in X \Rightarrow x \in Y)
TARSKI:def 3
TARSKI:def 5
                                                                                                                                                                                                                                                                                                                                                    \langle x, y \rangle = \{ \{x, y\}, \{x\} \}
                                                                                                                                                                                         X \sim Y \Leftrightarrow \exists Z. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. y \in Y \land \langle x, y \rangle \in Z) \land X \sim Y \Leftrightarrow \exists x. (\forall x. x \in X. \Rightarrow \exists y. x \in X. \Rightarrow \exists x \in X. \Rightarrow 
TARSKI:def 6
                                                                                                                                                                                                                                                                                                                                    (\forall y. y \in Y. \Rightarrow \exists x. x \in X \land \langle x, y \rangle \in Z) \land
                                                                                                                                                                                    (\forall x \forall y \forall z \forall u. \langle x, y \rangle \in Z \land \langle z, u \rangle \in Z \Rightarrow (x = z \Leftrightarrow y = u))
                                                                                                                                                                                                                                                                                                                                                                  x \in \{y\} \Leftrightarrow x = y
TARSKI:def 1
                                                                                                                                                                                                                                                                                                                 x \in \{y, z\} \Leftrightarrow x = y \lor x = z
TARSKI:def 2
                                                                                                                                                                                                                                                                                              x \in \bigcup X \Leftrightarrow \exists Y. \ x \in Y \land Y \in X
TARSKI:def 4
                                                                                                                                                                                                                                                                                               (\forall x. \ x \in X \Leftrightarrow x \in Y) \Rightarrow X = Y
TARSKI:2
                                                                                                                                                                                                                                            x \in X \Rightarrow \exists Y. Y \in X \land \neg \exists x. x \in X \land x \in Y
TARSKI:7
                                                                                                                                                                                                                                                                                 (\forall x \, \forall y \, \forall z. \, P[x,y] \land P[x,z] \Rightarrow y = z) \Rightarrow
TARSKI:sch 1
                                                                                                                                                                                                                                                               (\exists X. \ \forall x. \ x \in X \Leftrightarrow \exists y. \ y \in A \land P[y,x])
                                                                                                                                                                                                  \exists M. \ N \in M \land (\forall X \forall Y. \ X \in M \land Y \subseteq X \Rightarrow Y \in M) \land A
TARSKI:9
                                                                                                                                                                                                  (\forall X. \ X \in M \Rightarrow \exists Z. \ Z \in M \land \forall Y. \ Y \subseteq X \Rightarrow Y \in Z) \land 
                                                                                                                                                                                                                                                                                       (\forall X. X \subseteq M \Rightarrow X \sim M \lor X \in M)
```

translation to untyped logic

for i being Integer holds i >= 0 iff i is Nat
$$\forall\,i: \texttt{Integer}\,.\,\,i\geq 0 \,\Leftrightarrow\, (\,i:\texttt{Nat}\,)$$

$$\downarrow$$

$$\forall\,i\,.\,\, \texttt{Integer}\,(i) \Rightarrow \big\lceil\,i\geq 0 \,\Leftrightarrow\, \texttt{Nat}\,(i)\,\big\rceil$$

types are just predicates that the system manages automatically

dependent types with n arguments are predicates with n+1 arguments

the type system as typing rules

symbolic notation

$x \ f \ M \ lpha$			term variables function symbols mode symbols attribute symbols
$R \\ a$::=	$x \mid f(\vec{t})$ $\star \mid M(\vec{t})$ $\alpha \mid \bar{\alpha}$ $\vec{a} R$	terms radix types adjectives types
$D \ \Delta$		$\overline{[\Delta](J)}$	judgment elements declarations
		$\Gamma; \Delta \vdash J$	judgments

rules

twenty-two typing rules

three examples:

$$\overline{\;\;;\;\vdash\cdot\;\;}$$

mode definition:

$$\frac{\Gamma;\,\vec{x}:\vec{T}\vdash\exists\,T'}{\Gamma,\,[\vec{x}:\vec{T}](M(\vec{x})\leq T'),\,[\vec{x}:\vec{T}](\exists\,M(\vec{x}));\vdash\cdot}\,\,M\not\in\Gamma$$

conditional cluster:

$$\frac{\Gamma; \Delta \vdash \vec{a} \, T' \leq T' \quad \Gamma; \Delta \vdash \vec{a}' \, T' \leq T'}{\Gamma, \, [\Delta](\vec{a} \, T' \leq \vec{a}' \, T'); \, \vdash \cdot}$$

correctness

translating judgments

type judgment \rightarrow first order sequent

$$\mathsf{int} \leq \star, \ \exists \ \mathsf{int}, \ \mathsf{pos/int}, \ \exists \ \mathsf{pos} \ \mathsf{int} \ ; \ x : \mathsf{pos} \ \mathsf{int} \ \vdash \ x : \star \\ \rightarrow \\ (\forall x . \ \mathsf{int}(x) \Rightarrow \top) \, , \ (\exists x . \ \mathsf{int}(x)) \, , \ \top, \ (\exists x . \ \mathsf{pos}(x) \wedge \mathsf{int}(x)) \, , \ (\mathsf{pos}(x) \wedge \mathsf{int}(x)) \ \vdash \ \top$$

main theorem

'the type system is correct'

derivable judgment → provable sequent

outlook

system in the paper is an idealization

```
definition let n be Nat;  \mbox{redefine mode Element of } n \rightarrow \mbox{Element of } n+1; \\ \mbox{end}; \\ \mbox{according to the rules from the paper we have} \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \rightarrow \mbox{Element of } n+2 \rightarrow \dots \\ \mbox{in the actual Mizar system we just have} \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Element of } n+1 \\ \mbox{Element of } n \rightarrow \mbox{Ele
```

why not have something like the Mizar type system yourself?

- the Mizar proof language is well-known to be nice
- the Mizar type system is less known, but very nice too
- every system can have the Mizar type system as a layer on top

