the Mizar type system

Freek Wiedijk
Radboud University Nijmegen

TPHOLs 2007
University of Kaiserslautern

2007 09 12, 10:00

this talk

o Mizar
e Mizar types

e the paper

— the Mizar type system in the form of typing rules

— correctness with respect to first order predicate logic

Mizar versus the HOLs

Mizar

batch checking
first order logic
readable proofs
untyped set theory

very nice type system

HOL
Isabelle
PVS
Coq

Interactive
higher order logic
tactic scripts

typed foundations

Mizar types

features

e dependent types

e no types built from types

no function types A — B for types A and B
(‘Ordinal — Ordinal’?)

e subtyping
e ‘attributes’

e structure types (records) Alternative Aggregates in Mizar

Gilbert Lee and Piotr Rudnicki
MKM 2007, LNAI 4573

attributes

non empty finite Subset of NAT

T 1
adjectives radix type
attributes mode

overloading

meaning of an attribute depends on the radix type:

— connected Relation
— connected Graph

— connected TopSpace

example

definition let d be non zero Element of NAT |;

func cyclotomic_poly d ->

ex s being |non empty finite Subset of F_Complex

Polynomial of F_Complex | means

st s = { y where y is

Element of MultGroup F_Complex

it = poly_with_roots((s,1)-bag);

end;

cordy =d } &

UNIROOTS Primitive Roots of Unity and Cyclotomic Polynomials
Broderick Arneson and Piotr Rudnicki

3293 lines, 135K

full Mizar library 985 ‘articles’, 1.97 million lines, 68.9M

typings also are formulas

for i being Integer holds i1 >= 0 iff i is Nat
Vi:Z.i>0<% (1:N)

i is Nat # i in NAT

1 T
type term
‘has type’ ‘Iis element of’
the type system the set theory

‘coerce’ a term to a more informative type by giving a proof

then n’ - n >= 0 by XREAL_1:50;
then reconsider d = n’ - n as Nat by INT_1:16;

subtyping

definition let C be Category;
mode Subcategory of C -> Category means
:: CAT_2:def 4

end;

set

.

Category

I
Subcategory of C

supertype may depend on the types of the arguments of the type

clusters

for X being set holds X is empty implies X 1is finite

l

cluster empty -> finite set

any term with attribute empty automatically also gets attribute finite

typed or untyped logic?

what does it all mean?

foundations of Mizar:

Tarski-Grothendieck set theory

/FC + ‘there are arbitrarily large inaccessible cardinals’

set of axioms on top of untyped first order predicate logic

the axioms of Mizar

TARSKI:def XCY & (Vz.xeX = x€Y)
TARSKI:def (z,y) = {{z,y}, {x}}
TARSKI:def X~Y & Z Ve.xeX.=y.yeY ANlz,y) € Z)A
Vy.yeY.=3dz.x € X ANx,y) € Z) A

(VaVyVzVu. (r,y) € ZN{z,u) € Z = (x =2z & y=u))
TARSKI :def re{yt S x=y
TARSKI:def re{y,z} & rx=yVar=z
TARSKI:def relUX & Y zeY ANYeEX
TARSKI:2 Ve.zeX&saxeY)= X=Y
TARSKI:7 zeX = dY.YeXAN-de.ze XNxeY
TARSKI:sch (VxVyVz. Plz,y| A Plx,z]| =y =2) =

(FAX. Ve.x € X & Jy.y € A N Ply,x])

TARSKI:9 AM. N e MANNVXVYY.XeMAY CX=YecM)A

VX.XEM=32.ZE MAVY.Y CX =Y € Z)A
VX.XCM=X~MVXE€EDM)

10

translation to untyped logic

for 1 being Integer holds i >= 0 iff i is Nat

Vi : Integer. 1 >0 < (7:Nat)

l

Vi. Integer (i) = [i >0 < Nat (i) |

types are just predicates that the system manages automatically

dependent types with n arguments are predicates with n + 1 arguments

11

the type system as typing rules

symbolic notation

= D> O w N o mwgzx&

Nt:T|T<T|3T | /T
T

X
13
[

|(J)
T;A ¢ J

term variables
function symbols
mode symbols
attribute symbols

terms

radix types
adjectives

types

judgment elements
declarations

judgments

12

rules

twenty-two typing rules

three examples:

-

mode definition:

M¢T

I
)

T =37
T, [Z:T)(M(Z),

<T), [#: T)3M(T)); -

conditional cluster:
DARGT <T' ThARGT <T
L, [Al(@aT < a'T'); F -

13

correctness

translating judgments

type judgment — first order sequent

int < x, Jint, pos/int, Iposint; x : posint - x: %
H

(Vx.int(z) = T), (3z.int(x)), T, (3z.pos(z) Aint(x)), (pos(x) Aint(z)) F T

main theorem

‘the type system is correct’

derivable judgment — provable sequent

14

outlook

system in the paper is an idealization

definition let n be Nat;
redefine mode Element of n -> Element of n + 1;

end;

according to the rules from the paper we have

Element of n — Element of n + 1 — Element of n + 2 — ...

in the actual Mizar system we just have

Element of n — Element of n + 1

15

why not have something like the Mizar type system yourself?

e the Mizar proof language is well-known to be nice
e the Mizar type system is less known, but very nice too

e every system can have the Mizar type system as a layer on top

16

