
Computer Assisted Mathematical Proofs: using
the computer to verify computers

Herman Geuvers

Radboud University Nijmegen

February 4, 2019
Huygens Colloquium

Science Faculty



What research I do

I Theoretical Computer Science/ Logic in Compuer Science

I Type Theory for programming and verification

I Proof Assistants and Formalizing Mathematics



Can the computer really help us to prove theorems?

Yes it can,
and we will rely more and more on computers for correct proofs

But it’s hard ...



What are Proof Assistants – History

John McCarthy (1927 – 2011)
1961, Computer Programs for Checking Mathematical Proofs

Proof-checking by computer may be as important as
proof generation. It is part of the definition of formal
system that proofs be machine checkable.
. . .
For example, instead of trying out computer programs on
test cases until they are debugged, one should prove that
they have the desired properties.



What are Proof Assistants – History

Around 1970 five new systems / projects / ideas for a

Computer system for interactively writing and
automatically checking proofs

Nowadays: “Proof assistant” or “Interactive Theorem Prover”

I Automath De Bruijn (Eindhoven) now: Coq, Agda

I Nqthm Boyer, Moore (Austin, Texas) now: ACL2, PVS

I LCF Milner (Stanford; Edinburgh) now: HOL, Isabelle

I Mizar Trybulec (Bia lystok, Poland)

I Evidence Algorithm Glushkov (Kiev, Oekrain)



Why not automate this process completely?

Automated Theorem Proving

I For well-understood domains, fully automated theorem
proving is possible (but often unfeasible).

I Any interesting fragment of logic is undecidable. (You can
prove that you cannot write an algorithm that checks the
validity of a statement.)



Proof Assistants: what are they used for

I Verify mathematical theorems
Some mathematical proofs just become too large and
complex: proof of the Kepler conjecture Flyspeck project

I Build up a formal mathematical library
Mizar Mathematical Library

I Verify software and hardware design
Safety critical systems are too complex and vital
Compcert: verified C compiler



Why would we believe a proof assistant?

. . . a proof assistant is just another program . . .

To attain the utmost level of reliability:

I Description of the rules and the logic of the system.

I A small “kernel”. All proofs can be reduced to a small
number of basic proof steps. high level steps are defined in
terms of the small ones.



Why would we believe a proof assistant?

The De Bruijn criterion

⇒ Separate the proof checker (“simple”) from the proof engine
(“powerful”)

Proof Assistant (Interactive Theorem Prover)

Goals

Tactics

Proof assistantUser

Proof Assistant with a small kernel that satisfies the De Bruijn
criterion

Goals

OK

Proof checker

Proof object

Proof Engine

Tactics

User

Proof Assistant



Mathematical users of Proof Assistants

The 4 colour theorem

Kenneth Appel en Wolfgang Haken, 1976
Neil Robertson e.a., 1996
Coq: Georges Gonthier, 2004

Can every map be coloured with only 4 different colours?

• Gonthier has two pages of Coq definitions and notations that are
all that’s needed to fully and precisely understand his statement of
the 4 colour theorem.



Kepler Conjecture (1611)

The most compact way of stacking balls of the same size
is a pyramid.



Kepler Conjecture (1611)

I Hales 1998: proof of the conjecture using computer programs
(300 pages)

I Annals of Mathematics: 99% correct . . . but we can’t verify
the correctness of the computer programs.



Hales’ proof of the Kepler conjecture

Reduce the problem to the verification of inequalities of the shape

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6+
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√√4x2


x2x4(−x2 + x1 + x3 − x4 + x5 + x6)+
x1x5(x2 − x1 + x3 + x4 − x5 + x6)+
x3x6(x2 + x1 − x3 + x4 + x5 − x6)
−x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6


< tan(

π

2
−0.74)

Use computer programs to verify these inequalities.



Flyspeck project: Computer checked proof of the Kepler conjecture

The formal proof of Hales consists of a number of steps where
computer assistance was essential:

a. A program that lists all 19.715 “tame graphs”, that potentially
may produce a counterexample to the Kepler conjecture.
This program was originally written in Java. Now, it is written
and verified in Isabelle.

b. A computer calculation that verifies that a list of 43.078 linear
programs are unsolvable.
Each linear program in this list has about 100 variables and a
similar list of equations.

c. A computer verification that 23.242 non-linear equations with
at most 6 variables hold.
This is the verification where originally interval-arithmetic was
used.



Computer Science users of Proof Assistants

Compcert (Leroy et al.)

Xavier Leroy

I verifying an optimizing compiler from C to
x86/ARM/PowerPC code

I implemented using Coq’s functional language

I verified using using Coq’s proof language

why?

I your high level program may be correct, maybe you’ve proved
it correct ...

I ... but what if it is compiled to wrong code?

I compilers do a lot of optimizations: switch instructions,
remove dead code, re-arrange loops, ...

I for critical software the possibility of miscompilation is an issue



Compcert

C-compilers are generally not correct

Csmith project Finding and Understanding Bugs in C Compilers,
X. Yang, Y. Chen, E. Eide, J. Regehr, University of Utah.

... we have found and reported more than 325 bugs in
mainstream C compilers including GCC, LLVM, and
commercial tools.
Every compiler that we have tested, including several
that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to
silently miscompile valid inputs.

As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to
the task.



other large formalization projects in Computer Science

Robbert Krebbers

I formalization of the C standard in Coq
Krebbers and Wiedijk, Nijmegen 2015.

I the ARM microprocessor
proved correct in HOL4
Anthony Fox University of Cambridge, 2002

I the L4 operating system,
proved correct in Isabelle
Gerwin Klein NICTA, Australia, 2009
200,000 lines of Isabelle
20 person-years for the correctness proof
160 bugs before verification
0 bugs after verification Gerwin Klein

I Conference Interactive Theorem Proving, every paper is
supported by a formalization



Proof Assistants: What needs to be done

Automation

I Formalize all of the Bachelor undergraduate mathematics

I Domain Specific Tactics and Automation

I Combination of Theorem Proving and Machine Learning



AI for Formal Mathematics

Inductive/Deductive AI over Formal Mathematics

I Alan Turing, 1950: Computing machinery and intelligence

I beginning of AI, Turing test

I last section of Turing’s paper: Learning Machines
I Which intellectual fields to use for building AI?

I But which are the best ones [fields] to start [learning on] with?
I ...
I Even this is a difficult decision. Many people think that a very

abstract activity, like the playing of chess, would be best.

I New approach in the last decade:
I Let’s develop AI on large formal mathematical libraries!



Why AI on large formal mathematical libraries?

I Hundreds of thousands of proofs developed over centuries

I Thousands of definitions/theories encoding our abstract
knowledge

I All of it completely understandable to computers (formality)

I solid semantics: set/type theory

I built by safe (conservative) definitional extensions

I unlike in other “semantic” fields, inconsistencies are not an
issue, because in the end every proof is checked



The “Hammer” approach (Urban, Kaliszyk, Blanchette, ...)

Proof Assistant Hammer ATP

Current Goal Lemmas

PA Proof ATP Proof

I Based on current goal G and repository: select set L of
potentially useful lemmas from the repository. Machine
Learning

I Send G and L to an ATP. Automated theorem proving
I Let the ATP check if G follows from L and let it produce an

ATP-proof.
(ATP-proof ' subset M of L that is really used to prove G )

I Let the (weak) automation inside the proof assistant
construct a complete formally checked proof, using M.



Questions?


