Proving with Computer Assistance
Lecture 12

Inversion

Herman Geuvers
The natural number type

Recall the definition of natural numbers:

\[\text{Inductive } \text{nat} : \text{Set} := O : \text{nat} \mid S : \text{nat} \to \text{nat}. \]

Meaning of this definition:

- Every number has one of two forms:
 - it is the constructor \(O \) or
 - it is built by applying the constructor \(S \) to another number.
- But there is more to say, which is implicit in the definition:
 - The constructor \(S \) is injective: If \(S \ n = S \ m \), then \(n = m \)
 - The constructors \(O \) and \(S \) are distinct: \(O \) is not equal to \(S \ n \) for any \(n \).
General inductive types

Principles similar to \texttt{nat} apply to all inductively defined types:

\begin{itemize}
 \item \textbf{injectivity}: the constructors are injective
 \item \textbf{no overlap}: the values built from distinct constructors are never equal.
\end{itemize}

For lists:

\begin{itemize}
 \item cons is injective
 \item \texttt{nil} \neq cons \texttt{a} \texttt{l} for every \texttt{a}, \texttt{l}
\end{itemize}

For booleans: \texttt{true} \neq \texttt{false}
Inversion tactic

The inversion tactic is used to exploit injectivity and no overlap.

Suppose

\[H : c \ a_1 \ a_2 \ldots \ a_n = d \ b_1 \ b_2 \ldots \ b_m \]

for constructors \(c \) and \(d \) and arguments \(a_1 a_2 \ldots a_n \) and \(b_1 b_2 \ldots b_m \). Then

\[\text{inversion } H \]

looks at the possible ways that this equation can arise:

- If \(c \) and \(d \) are the same constructor, then (by the injectivity) \(a_1 = b_1, a_2 = b_2, \ldots \). These facts are added to the context, and can be used to rewrite the goal.

- If \(c \) and \(d \) are different constructors, then \(H \) is contradictory (the equality is false). So, the goal is provable! \(\text{inversion } H \) completes the goal.

See the examples in the Coq files.