
Proving with Computer Assistance
Lecture 12

Inversion

Herman Geuvers



The natural number type

Recall the definition of natural numbers:

Inductive nat : Set := O : nat | S : nat -> nat.

Meaning of this definition:
▶ Every number has one of two forms:

▶ it is the constructor O or
▶ it is built by applying the constructor S to another number.

▶ But there is more to say, which is implicit in the definition:
▶ The constructor S is injective: If S n = S m, then n = m
▶ The constructors O and S are distinct: O is not equal to S n for

any n.



General inductive types

Principles similar to nat apply to all inductively defined types:

▶ injectivity: the constructors are injective

▶ no overlap: the values built from distinct constructors are
never equal.

For lists:

▶ cons is injective

▶ nil ̸= cons a l for every a, l

For booleans: true ̸= false



Inversion tactic

The inversion tactic is used to exploit injectivity and no overlap
Suppose

H : c a1 a2 . . . an = d b1 b2 . . . bm

for constructors c and d and arguments a1a2 . . . an and
b1b2 . . . bm. Then

inversion H

looks at the possible ways that this equation can arise:

▶ If c and d are the same constructor, then (by the injectivity)
a1 = b1, a2 = b2, . . .. These facts are added to the context,
and can be use to rewrite the goal.

▶ If c and d are different constructors, then H is contradictory
(the equality is false). So, the goal is provable! inversion H
completes the goal.

See the examples in the Rocq files.



How inversion works: example of ¬even(1)
Inductive even : nat → Prop :=
| evenO : even O
| evenSS : forall n, even n → even (S (S n)).

even-ind : ∀ P : nat → Prop, P 0 →
(forall n : nat, even n → P n → P (S (S n))) →
forall n : nat, even n → P n


