Test exercises Semantics, (Course Fall 2007)

Herman Geuvers

1. Which of the following are ccpos?
2. $\{X \subset \mathbb{R} \mid X$ is countable or finite $\}$, ordered by inclusion.
3. $\mathbb{N} \rightarrow\{0,1\}$, where $f \sqsubset g$ iff $\forall x \in \mathbb{N}(f(x) \leq g(x))$.
4. $\mathbb{N} \rightarrow \mathbb{N}$, where $f \sqsubset g$ iff $\forall x \in \mathbb{N}(f(x) \leq g(x))$.
5. Let $\left(D_{1},<1\right),\left(D_{2},<_{2}\right)$ and $(E,<)$ be ccpos. For $F: D_{1} \times D_{2} \rightarrow E$, define

$$
\begin{aligned}
F_{a}(y) & :=F(a, y), \text { for every } a \in D_{1} \\
F^{b}(x) & :=F(x, b), \text { for every } b \in D_{2}
\end{aligned}
$$

Prove that F is continuous iff both F_{a} and F^{b} are continuous for every $a \in D_{1}$ and $b \in D_{2}$.
3. Which of the following maps $F: \mathcal{P}(A) \times \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ is continuous? (Hint: Use the previous exercise.)

1. $F(X, Y):=X \cap Y$.
2. $F(X, Y):=X \cup Y$.
3. $F(X, Y):=X \backslash Y$.
4. Consider the extension of the flat ccpo of booleans with an "undefined" value u. So u is an undefined boolean value that we can compute, e.g. $\mathcal{B}\left[\frac{1}{0}=\frac{1}{0}\right]=u$. The ordering is now $\perp \sqsubset u \sqsubset \mathbf{t t}$, ff.
Give a "sensible" (at least monotone) definition of the \vee function on these booleans:
5. as a strict function.
6. as a function that first evaluates its left argument.
7. Let $f \in \mathbb{N} \rightarrow \mathbb{N}_{\perp}$ satisfy

$$
\begin{aligned}
f(0) & =1 \\
f(1) & =f(3) \\
f(k) & =f(k-2) \text { otherwise }
\end{aligned}
$$

Prove that each of the following is a solution of this equation.

1. $k \mapsto 1$
2. $k \mapsto k(\bmod 2)+1$
3. $k \mapsto 1$ if k is even and $k \mapsto \perp$ otherwise

Determine the least solution to the above equation.
6. We define the program

$$
S:=\text { while } x>y \text { do }(x:=x-1 ; y:=y+1)
$$

1. Determine the functional F that we need in order to compute the denotational semantics of S.
2. Determine a general form for $F^{n}(\perp)$ and prove it.

It should be something like

$$
F^{n}(\perp)(s)= \begin{cases}\text { id } & \text { if } s(x) \leq s(y) \\ s\left[x \mapsto\left\lfloor\frac{s(x)+s(y)}{2}\right\rfloor, y \mapsto\left\lceil\frac{s(x)+s(y)}{2}\right\rceil\right] & \text { if } s(y)<s(x) \leq s(y)+n \\ \perp & \text { if } s(x)>s(y)+n\end{cases}
$$

3. Determine the least fixed oint of F.
4. Determine the denotational semantics of S.
5. Determine the denotational semantics of the program construct

while b_{1} do S until b_{2}

which operates as follows: Check b_{1}; if false, then terminate, if true then execute S, then check b_{2}; if true, terminate, if false return to the begin of the program.
8. Determine the denotational semantics of the following functional program.
$f(3)$ where $f(x)=g(f(x-1))$ where $g(y)=g(y-1)+g(y-1)$.
(Hint: first determine the semantics of $g(f(x-1))$.)
9. Define the following extension of Combinatory Logic, CL^{+}. The terms are built from application and the constants $\mathbf{I}, \mathbf{K}, \mathbf{S}, \mathbf{B}$ and \mathbf{C}. Prove that CL^{+}is combinatory complete by using the followiing (adapted) abstraction function:

$$
\begin{aligned}
\lambda^{*} x . x & :=\mathbf{I} \\
\lambda^{*} x . P & :=\mathbf{K} P \text { if } x \notin \mathrm{FV}(P) \\
\lambda^{*} x \cdot P Q & :=\mathbf{B}\left(\lambda^{*} x \cdot P\right) Q \text { if } x \notin \mathrm{FV}(Q) \\
\lambda^{*} x \cdot P Q & :=\mathbf{C} P\left(\lambda^{*} x \cdot Q\right) \text { if } x \notin \mathrm{FV}(P) \\
\lambda^{*} x \cdot P Q & :=\mathbf{S}\left(\lambda^{*} x \cdot P\right)\left(\lambda^{*} x \cdot Q\right) \text { else. }
\end{aligned}
$$

10. For an arbitrary set A, compute the interpreations of $\omega:=\lambda x . x x, \omega \omega$ and of $\omega \omega \mathbf{I}$ in the model D_{A}. Show that $\omega \omega \mathbf{I}$ and $\omega \omega$ have the same interpretation.
