
⇐←0→

Mathematics and computers; a revolution!

Herman Geuvers (thanks to Freek Wiedijk)

Radboud University Nijmegen
(Eindhoven University of Technology)

March 7 2017
Lustrum Symposium GEWIS

⇐←1→

overview

some mathematical history

formalized mathematics

reliability of proof assistants

a large mathematical proof: Kepler conjecture

formal proofs in computer science

⇐←2→

some mathematical history

issues in the foundations of mathematics (beginning 20th cent.)

Cantor had developed set theory as a general language/system to
do all mathematics in
various questions came up

I what is mathematical truth?
I when is a mathematical argument/proof correct?
I what is existence?
I do abstract mathematical objects exist in reality?
I can something exist when we cannot construct it?
I can we just define anything we want?
I is mathematics consistent?
I is mathematics decidable?

⇐←3→

example of a non-constructive existence proof

theorem there exist irrational x and y with xy rational

x rational x ∈ Q
x irrational x ∈ R \Q

proof (√
2
√

2)√2
=
√

2
(
√

2·
√

2)
=
√

2
2

= 2

in case
√

2
√

2 rational, take x = y =
√

2

in case
√

2
√

2 irrational, take x =
√

2
√

2 and y =
√

2

QED

constructively, this is not a proof without proving whether
√

2
√

2 is
rational
(but:

√
2
√

2 is irrational)

⇐←4→

the invention of formal logic

Aristoteles Gottlob Frege Begriffsschrift
fourth century nineteenth 1879
before Chr. century

⇐←5→

logic adrift in paradoxes: Russell’s paradox

Bertrand Russell
1901

{x | x 6∈ x} ∈ {x | x 6∈ x} ?
holds by definition exactly in the case that

{x | x 6∈ x} 6∈ {x | x 6∈ x}

is true if and only if (desda) it is false!

Frege’s logic from the Begriffsschrift is inconsistent

read: Apostolos Doxiadis & Christos Papadimitriou, Logicomix

⇐←6→

logic adrift in paradoxes: the hypergame paradox

hypergame:
choose a
finite
game

yy �� �� �� %%
chess checkers go . . .hypergame? . . .

⇐←7→

three schools

David Hilbert Bertrand Russell L.E.J. Brouwer
formalism logicism intuitionism

‘game with ‘boils down ‘constructions
symbols’ to logic’ in the mind’

constructive
mathematics

⇐←8→

Principia Mathematica

Alfred North Bertrand
Whitehead Russell

reconstruction of mathematics
coded in formal logic

three volumes
1910, 1912, 1913

fragment of page 379:

⇐←9→

mathematics and computers

Haskell Curry William Howard

Curry-Howard isomorphism

proofs correspond with computer programs

constructive functional
mathematics programming language

I a proof is an object (term) of a well-defined formal language
I when you prove constructively that something exists, you

have a computer program to compute it.

⇐←10→

formalized mathematics

N.G. de Bruijn

Nicolaas Govert (‘Dick’) de Bruijn
Den Haag 1918 – Nuenen 2012

professor in mathematics at the
Eindhoven University of Technology

I modular forms

I BEST-theorem
(de Bruijn, van Aardenne-Ehrenfest, Smith, Tutte)
formula for the number of Euler-cycles in a graph

I asymptotic analysis

⇐←11→

Penrose-tilings and quasicrystals

Roger Penrose
1974

⇐←12→

AUTOMATH

N.G. de Bruijn:
1967: mathematical language AUTOMATH
use the computer to encode mathematics fully formally

⇐←13→

encoding a complete mathematics book

Edmund Landau
1929

Grundlagen der Analysis
mathematics book of 158 pages

complete precise definition of
N, Z, Q, R, C
plus all operations on these sets

Bert Jutting
1976

Checking Landau’s ‘Grundlagen’
in the AUTOMATH system

PhD. Thesis

compete formal version
approximately 10,000 lines AUTOMATH

⇐←14→

Automath approach to formalising mathematics

I sets are types and formulas are types
a formula is represented as the type of its proofs

I t : A (term t is of type A) can be read as
I t is an object in the set A (if A represents as set)
I t is a proof of formula A (if A represents as formula)

I proof-checking is type-checking:
to verify whether t is a correct proof, we type-check it.

I proof-checking is decidable, proof-finding is not

⇐←15→

Coq

Gérard Thierry Christine
Huet Coquand Paulin

type theory

modern version of
AUTOMATH and
formalized mathematics

pCIC = predicative Calculus of Inductive Constructions

the Coq proof assistant
INRIA, France
system used most at Nijmegen

⇐←16→

the four color theorem

I Francis Guthry, 1852
question

I Percy Heawood, 1890
proof of the five color theorem

I Kenneth Appel & Wolfgang Haken, 1975
proof of the four color theorem

computer computes gigantic set of possible
colorings of a whole catalogue of graphs
complicated computer program
very long computation

computer does not check the proof !

I Neil Robertson, Daniel Sanders, Paul Seymour, Robin
Thomas, 1997
polished version of the proof and the program

⇐←17→

‘mathematical components’ project of INRIA-Microsoft

Georges Gonthier
2005

Coq version of the four color theorem

I formal version of the proof

I program correctness
Coq as functional programming language

new technologies:

Assia Mahboubi

I mathematical language Ssreflect

Feit-Thompson theorem

I hypermaps

⇐←18→

example of a formal Coq proof

Lemma no_minSimple_odd_group (gT : minSimpleOddGroupType) : False.
Proof.
have [/forall_inP | [S [T [_ W W1 W2 defW pairST]]]] := FTtypeP_pair_cases gT.

exact/negP/not_all_FTtype1.
have xdefW: W2 \x W1 = W by rewrite dprodC.
have pairTS := typeP_pair_sym xdefW pairST.
pose p := #|W2|; pose q := #|W1|.
have p’q: q != p.

have [[[ctiW _ _] _ _ _ _] /mulG_sub[sW1W sW2W]] := (pairST, dprodW defW).
have [cycW _ _] := ctiW; apply: contraTneq (cycW) => eq_pq.
rewrite (cyclic_dprod defW) ?(cyclicS _ cycW) // -/q eq_pq.
by rewrite /coprime gcdnn -trivg_card1; have [] := cycTI_nontrivial ctiW.

without loss{p’q} ltqp: S T W1 W2 defW xdefW pairST pairTS @p @q / q < p.
move=> IH_ST; rewrite neq_ltn in p’q.
by case/orP: p’q; [apply: (IH_ST S T) | apply: (IH_ST T S)].

have [[_ maxS maxT] _ _ _ _] := pairST.
have [[U StypeP] [V TtypeP]] := (typeP_pairW pairST, typeP_pairW pairTS).
have Stype2: FTtype S == 2 := FTtypeP_max_typeII maxS StypeP ltqp.
have Ttype2: FTtype T == 2 := FTtypeP_min_typeII maxS maxT StypeP TtypeP ltqp.
have /mmax_exists[L maxNU_L]: ’N(U) \proper setT.

have [[_ ntU _ _] cUU _ _ _] := compl_of_typeII maxS StypeP Stype2.
by rewrite mFT_norm_proper // mFT_sol_proper abelian_sol.

have /mmax_exists[M maxNV_M]: ’N(V) \proper setT.
have [[_ ntV _ _] cVV _ _ _] := compl_of_typeII maxT TtypeP Ttype2.
by rewrite mFT_norm_proper // mFT_sol_proper abelian_sol.

have [[maxL sNU_L] [maxM sNV_M]] := (setIdP maxNU_L, setIdP maxNV_M).
have [frobL sUH _] := FTtypeII_support_facts maxS StypeP Stype2 pairST maxNU_L.
have [frobM _ _] := FTtypeII_support_facts maxT TtypeP Ttype2 pairTS maxNV_M.

etcetera

⇐←19→

HOL Light

LCF tradition (Milner):
LCF → HOL → HOL Light
Stanford, US → Cambridge, UK → Portland, US
Based on: higher order logic

John Harrison
proves correctness of floating point hardware at Intel
formalises mathematics in his spare time

very simple and elegant system
easy to extend (add your own tactics)
not user friendly

⇐←20→

example of a formal HOL Light proof

John Harrison

~w 6= ~0 ∧
~u · ~w = ~v · ~w ⇒

∠(~u× ~w, ~u× ~w) = ∠(~u,~v)

let VECTOR_ANGLE_DOUBLECROSS = prove
(‘!u v w.

~(w = vec 0) /\ u dot w = &0 /\ v dot w = &0
==> vector_angle (u cross w) (v cross w) = vector_angle u v‘,

REPEAT GEN_TAC THEN ASM_CASES_TAC ‘u:real^3 = vec 0‘ THENL
[ASM_REWRITE_TAC[vector_angle; CROSS_0]; ALL_TAC] THEN

ASM_CASES_TAC ‘v:real^3 = vec 0‘ THENL
[ASM_REWRITE_TAC[vector_angle; CROSS_0]; ALL_TAC] THEN

STRIP_TAC THEN
SUBGOAL_THEN ‘~(u cross w = vec 0) /\ ~(v cross w = vec 0)‘ ASSUME_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC;
ALL_TAC] THEN

ASM_SIMP_TAC[VECTOR_ANGLE_EQ] THEN
SIMP_TAC[vector_norm; GSYM SQRT_MUL; DOT_POS_LE] THEN
ASM_REWRITE_TAC[DOT_CROSS; REAL_MUL_LZERO; REAL_SUB_RZERO] THEN
REWRITE_TAC[REAL_ARITH ‘(x * y) * (z * y):real = (y * y) * x * z‘] THEN
SIMP_TAC[SQRT_MUL; DOT_POS_LE; REAL_LE_SQUARE; REAL_LE_MUL] THEN
SIMP_TAC[SQRT_POW_2; DOT_POS_LE; GSYM REAL_POW_2] THEN REAL_ARITH_TAC);;

⇐←21→

reliability of proof assistants

why would we believe a proof assistant?

. . . a proof assistant is just another program . . .

to attain the utmost level of reliability:
I precise description of the rules and the logic of the system.
I have a small “kernel”: all proofs can be reduced to a small

number of basic proof steps
high level steps are defined in terms of the small basic ones.

Robin Milner

LCF approach [Milner]:
I have an abstract data type of theorems thm
I only constants of type thm are the axioms
I only functions to thm are logical inference rules

⇐←22→

why would we believe a proof assistant?

. . . a proof assistant is just another program . . .

other possibility to increase the reliability of the proof assistant:

De Bruijn criterion

a proof assistant satisfies the De Bruijn criterion if
I it generates proof objects
I that can be checked independently of the system that created

them
I using a simple program that a skeptical user can write

him/herself

⇐←23→

why would we believe a proof assistant?

De Bruijn criterion: separate the proof checker (“simple”) from
the proof engine (“powerful”)

proof assistant (interactive theorem prover)

Goals

Tactics

Proof assistantUser

proof assistant with a small kernel that satisfies the De Bruijn
criterion

Goals

OK

Proof checker

Proof object

Proof Engine

Tactics

User

Proof Assistant

⇐←24→

a large mathematical proof: Kepler conjecture

Kepler conjecture

Johannes Kepler
1611

face-centric cubic ball packing

strena seu de nive sexangula
on the six-angled snowflake

⇐←25→

Kepler conjecture

the most compact way of stacking balls of the same size
is a pyramid.

⇐←26→

the Flyspeck project

Tom Hales

Voronoi cells

I 1996: proof of the Kepler conjecture

book of 334 pages
giga bytes of data and
days of computer calculations

I reviewers of the Mathematische Annalen :
we cannot find mistakes, but
too complicated to verify in full detail
(reviewers did not study the programs)

I 2003: start the Flyspeck project =
create a completely formal version of the proof

HOL Light proof assistant
(+ Isabelle proof assistant)

I 2014: formal proof of the Kepler conjecture completed
impossible that there is still a mistake somewhere

⇐←27→

Essential Computer Assistance in the Flyspeck formal proof

the proof of Hales rests on a number of computer calculations:
a. a program that lists all 19.715 “tame graphs”, that potentially

may produce a counterexample to the Kepler conjecture.
this program was originally written in Java
now, it is written and verified in Isabelle and exported to ML

b. a computer calculation that verifies that a list of 43.078 linear
programs are unsolvable.
each linear program in this list has about 100 variables and a
similar list of equations.

c. a computer verification that 23.242 non-linear equations with
at most 6 variables hold.
this is the verification where originally interval-arithmetic was
used.

⇐←28→

Hales’ proof of the Kepler conjecture

the 23.242 non-linear equations with at most 6 variables typically
look like this, with the variables ranging over specific intervals

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6+
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√√4x2

x2x4(−x2 + x1 + x3 − x4 + x5 + x6)+
x1x5(x2 − x1 + x3 + x4 − x5 + x6)+
x3x6(x2 + x1 − x3 + x4 + x5 − x6)
−x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6

< tan(π2−0.74)

use computer programs to verify these inequalities.

⇐←29→

formal proofs in computer science

Proving programs correct

John McCarthy (1927 – 2011)
1961, Computer Programs for Checking Mathematical Proofs

Proof-checking by computer may be as important as
proof generation. It is part of the definition of formal
system that proofs be machine checkable.
. . .
For example, instead of trying out computer programs on
test cases until they are debugged, one should prove that
they have the desired properties.

⇐←30→

computer science uses of proof assistants

E. Dijkstra T. Hoare

I we have techniques to prove
high level programs correct
(Dijkstra, Hoare)

{pre} program {post}

I that a program satisfies a specification is a formal
mathematical statement that we can prove using a proof
assistant

I first formalize the programming and specification language
and their semantics

I similar techniques can be applied to hardware design

⇐←31→

proof assistants for software verification

Holy Grail

‘Things like even software verification, this has been the
Holy Grail of computer science for many decades but
now in some very key areas, for example, driver
verification we’re building tools that can do actual proof
about the software and how it works in order to
guarantee the reliability.’

Bill Gates, 18 april 2002

⇐←32→

Compcert

Xavier Leroy

I verifying an optimizing compiler from C to
x86/ARM/PowerPC code

I implemented using Coq’s functional language
I verified using using Coq’s proof language

why?
I your high level program may be correct, maybe you’ve proved

it correct ...
I ... but what if it is compiled to wrong code?
I compilers do a lot of optimizations: switch instructions,

remove dead code, re-arrange loops, ...
I for critical software the possibility of miscompilation is an

issue

⇐←33→

correctness of C compilers

C-compilers are generally not correct
Csmith project Finding and Understanding Bugs in C Compilers,
X. Yang, Y. Chen, E. Eide, J. Regehr, University of Utah.

... we have found and reported more than 325 bugs in
mainstream C compilers including GCC, LLVM, and
commercial tools.
Every compiler that we have tested, including several
that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to
silently miscompile valid inputs.

As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to
the task.

⇐←34→

some other large formalization projects in Computer Science

Robbert Krebbers

I formalization of the C standard in Coq
Krebbers and Wiedijk Nijmegen 2015.

I the ARM microprocessor
proved correct in HOL4
Anthony Fox University of Cambridge, 2002

I the L4 operating system,
proved correct in Isabelle
Gerwin Klein NICTA, Australia, 2009
200,000 lines of Isabelle
20 person-years for the correctness proof
160 bugs before verification
0 bugs after verification Gerwin Klein

I Conference Interactive Theorem Proving, every paper is
supported by a formalization

⇐←35→

proof assistants: what needs to be done

create large comprehensive reusable formal libraries
I formalize all of the bachelor undergraduate mathematics

automation
I combination of automated theorem proving and machine

learning
use machine learning to produce a hint database that can be
fed to an automated theorem prover: the Hammer approach

I domain specific tactics and domain specific automation

⇐←36→

Summarizing

I proof assistants for formal verification is becoming standard
technology in computer science

I in mathematics there are more and more fields where the
computer is indispensable for checking large proofs
NB. one can prove that

there will always be short formulas with large proofs

further reading:
Freek Wiedijk, Herman Geuvers, Josef Urban,
Een wiskundig bewijs correct bewezen: De meest efficiënte manier
om bollen op te stapelen (in Dutch),
Nieuw Archief voor Wiskunde (NAW) 5/17 nr 3, september 2016,
pp. 177-183.

⇐←37→

	Mathematics and computers; a revolution!
	1. overview
	some mathematical history
	2. issues in the foundations of mathematics (beginning 20th cent.)
	3. example of a non-constructive existence proof
	4. the invention of formal logic
	5. logic adrift in paradoxes: Russell's paradox
	6. logic adrift in paradoxes: the hypergame paradox
	7. three schools
	8. Principia Mathematica
	9. mathematics and computers

	formalized mathematics
	10. N.G. de Bruijn
	11. Penrose-tilings and quasicrystals
	12. AUTOMATH
	13. encoding a complete mathematics book
	14. Automath approach to formalising mathematics
	15. Coq
	16. the four color theorem
	17. "mathematical components" project of INRIA-Microsoft
	18. example of a formal Coq proof
	19. HOL Light
	20. example of a formal HOL Light proof

	reliability of proof assistants
	21. why would we believe a proof assistant?
	22. why would we believe a proof assistant?
	23. why would we believe a proof assistant?

	a large mathematical proof: Kepler conjecture
	24. Kepler conjecture
	25. Kepler conjecture
	26. the Flyspeck project
	27. Essential Computer Assistance in the Flyspeck formal proof
	28. Hales' proof of the Kepler conjecture

	formal proofs in computer science
	29. Proving programs correct
	30. computer science uses of proof assistants
	31. proof assistants for software verification
	32. Compcert
	33. correctness of C compilers
	34. some other large formalization projects in Computer Science
	35. proof assistants: what needs to be done
	36. Summarizing

