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What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer
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Brouwer’s Intuitionism

Mathematics is primary and comes before logic. Logic is
descriptive.
Basic intuition: construction of an object in time: N
A proof (mathematical argument) is also a construction (in time).

What can we construct? Which mathematical arguments are valid?

Theorem: ∃p, q, irrational(pq is rational)

Proof:
√

2
√

2
is rational OR irrational.

- First case: done; p = q =
√

2

- Second case: (
√

2
√

2
)
√

2 = 2 is rational and so we are done:

p =
√

2
√

2
, q =

√
2
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The intuitionistic notion of truth

Brouwer: A statement is true if we have a proof for it.

So the real question is:

What is a proof?

Brouwer has never made this formally precise, because Brouwer
wasn’t interested in logic. Heyting and Kolmogorov have.
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Brouwer-Heyting-Kolmogorov interpretation (BHK)



Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
A ∧ B is a pair consisting of a proof of A and a proof of B
A ∨ B is a proof of A or a proof of B
A→ B is a method for producing a proof of B,

given a proof of A
⊥ doesn’t exist

∀x ∈ D(A(x)) is a method for producing a proof of A(d),
given an element d ∈ D,

∃x ∈ D(A(x)) is a pair consisting of an element d ∈ D
and a proof of A(d).

So: there is no proof of A ∨ ¬A
So: a proof of ∀x ∈ D∃y ∈ E (A(x , y)) contains a method for
constructing a e ∈ E for every d ∈ D such that A(d , e) holds.
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Kleene Realisability, Curry-Howard Formules as Types

We can make the BHK interpretation formal in various ways:
Kleene realisability

m r A

“m realises the formula A” (m ∈ N, seen as the code of a Turing
machine)

Curry-Howard formulas as types:

M : A

“M has type A” (M an algorithm / functional programma / data
object)

I a formula is seen as a type (or a specification)

I a proof is seen as an algorithm (program)
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Formulas as Types, Proofs as Terms

A proof of (term of type)
A ∧ B is a term 〈p, q〉 with p : A and q : B
A ∨ B is inl p with p : A or inr q with q : B
A→ B is a term f : A→ B
⊥ doesn’t exist

∀x ∈ D(A(x)) is a term f : Πx∈DA(x)
∃x ∈ D(A(x)) is a term 〈d , p〉 with d : D and p : A(d)

Formulas and sets are both (data)types
Proofs and objects are both terms (data, programs)
Two “readings” of M : A:
- M is a proof of the formula A
- M is data of type A
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The Formulas-as-Types notion of Construction (Howard
1980)

Paper dates back to 1969.
Original ideas go back to Curry (Combinatory Logic):
K := λx λy .x : A→ B → A
S := λx λy λz .x z(y z) : (A→ B → C )→ (A→ B)→ A→ C
I := λx .x : A→ A

Theorem: For (first order) proposition and predicate logic we have
a formulas-as-types isomorphism between proofs and terms.

ϕ1, ϕ2, . . . , ϕn `Π
L σ ⇐⇒ x1 : ϕ1, x2 : ϕ2, . . . , xn : ϕn ` [Π] : σ
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The Formulas-as-Types notion of Construction (Howard
1980)

Contribution of Tait (1965):
Cut-elimination in logic = β-reduction in typed λ-calculus.

[σ]1
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1
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σ
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σ
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D1

M : τ
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λx :σ.M : σ→τ

D2

P : σ

(λx :σ.M)P : τ

−→β

D2

P : σ
D1

M[P/x ] : τ
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Formulas-as-Types: proof theory and type theory

proof theory type theory

termination of cut-elimination ⇔ SN of β-reduction
every proof can be made cut-free ⇔ WN of β-reduction

disjunction property ⇐ CR and WNof β-reduction
existence property ⇐ CR and WN of β-reduction

SN = strong normalization,
WN = weak normalization,
CR = confluence



Formulas-as-Types: Arithmetic

Extend with recursor / induction:

F : P(0) G : ∀n(P(x)→ P(S(x)))

R F G : ∀n(P(x))

R F G 0 →ι F

R F G (S x) →ι G x (R F G x)
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Formulas-as-Types: Inductive Types

Martin-Löf (Scott): take well-founded induction as basic type
forming principle.
⇒ Induction principle
⇒ Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F : P(nil) G : ∀a:A∀l : ListA (P(l)→ P(cons a l))

R F G : ∀l : ListA P(l)

If P(x) is a proposition: “proof by induction”
If P(x) is a set-type: “function def. by well-founded recursion”
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Formulas-as-Types: Impredicativity

Girard has extended the formulas-as-types interpretation to higher
order logic.
Higher order logic: ∀P : A→Prop. ∀x : A.P x → P x
Polymorphic types: ∀A : Set.A→ A

Combining all these ideas: the type theory of the proof assistant
Coq:

I inductive types

I dependent types

I impredicativity (higher order logic)

The SN proof of the type theory of Coq requires strongly
inaccessible cardinals.
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Formulas-as-Types: De Bruijn



The two roles of a proof in mathematics

1. A proof explains: why?
Goal: understanding

2. A proof convinces: is it true?
Goal: verification

For (2) one can use computer support.



Formulas as Types, Proofs as Objects

De Bruijn (re)invented the formulas-as-types principle (+/- 1968),
emphasizing the proofs-as-objects aspect.



Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

Γ `logic ϕ iff Γ `type theory M : T (ϕ)

M codes (as a λ-term) the logical derivation of ϕ.

Γ consists of

I declarations x : A of the free variables

I assumptions, of the form y : T (ψ)

I proven lemmas are definitions, stored as y := p : T (ψ)
(y is a name for the proof p of ψ).

Consequence:

proof checking = type checking
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Automath as a Logical Framework

Automath is a language for dealing with the basic mathematical
linguistic constructions, like substitution, variable binding, creation
and unfolding of definitions etc.

A user is free to add the logical rules that he/she wishes
⇒ Automath is a logical framework, where the user can do his/her
own logic (or any other formal system).
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Logical Framework encoding versus direct encoding

proof formula

direct encoding λx :A.x A→A
LF encoding imp intr A Aλx :T A.x T (A⇒ A)

Needed:

prop : type

⇒ : prop→prop→prop

T : prop→type

imp intr : ΠA,B : prop. (T A→ T B)→ T(A⇒ B)

imp el : ΠA,B : prop.T(A⇒ B)→ T A→ T B.
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Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn’s version of the formulas-as-types principle:

Γ `L ϕ iff ΓL, Γ `type theory M : T (ϕ)

where L is a logic, ΓL is the context in which the constructions of
the logic L have been declared.
Choice and trade-off: Which logical constructions do you put in
the type theory and which constructions do you declare
axiomatically in the context?
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Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, . . . )

but also about the

Metalanguage that you actually formally describe your
formal systems in.

I How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier, . . . .

I De Bruijn index representation: λ 1 (λ 1 2) denotes
λx .x (λy .y x).

I The “higher order” part of f.o.l. is in the logical framework
(meta-language): ∀D : (D → prop)→ prop
(This was already how Church did it in 1940.)
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Extracting Programs from constructive proofs

A proof p of
∀x : A∃y : B R(x , y)

contains an algorithm
f : A→ B

and a proof q of ∀x : A.R(x , f (x)).
The specification ∀x : A.∃y : B.R(x , y), once realised (proven)
produces a program that satisfies the spec.



Programming with constructive proofs

Example: sorting a list of natural numbers

sort : ListN → ListN

More refined spec. (output is sorted):

sort : ListN → ∃y :ListN(Sorted(y))

Even more refined spec. (output is a permutation of the input):

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

The proof sort contains a sorting algorithm.
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Programming with constructive proofs

Extracting the computational content from a proof.

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

Distinguishing data and proofs:

sort :

computation︷ ︸︸ ︷
Πx :ListN Σy :ListN (Sorted(y) ∧ Perm(x , y))︸ ︷︷ ︸

specification



Programming with constructive proofs

Extracting the computational content from a proof.

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

With data-proof distinction and program extraction:

sort : Πx :ListN Σy :ListNSorted(y) ∧ Perm(x , y))

	�
�
�
�
�
�

?

ŝort : ListN → ListN

correct : ∀x :ListN(Sorted(ŝort(x)) ∧ Perm(x , ŝort(x)))



Formulas-as-Types, Proofs-as-Terms in Theorem Proving

Proof checking = Type checking

There is a “type check” algorithm TC:

TC(p) 7→ A if p : A

TC(p) 7→ fail if p not typable

Proof search (Theorem Proving) =
interactive search (construction) of a term p : A.



Some Conclusions

Is type theory necessarily constructive?
“Constructive notion of proof 6= notion of constructive proof”
(De Bruijn)

Notion of constructive proof: Brouwer; content of axioms and rules

Constructive notion of proof: Hilbert; how to manipulate axioms
and rules
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Further refinements of Formulas-as-Types

Extend to classical logic
I ∀x : N ∃y : N R(x , y) (with R(x , y) atomic) is provable

classically iff provable constructively
I transform classical proof to constructive one
I extract computational content from classical proof directly

I computational content of the double negation rule?
cut-elimination is not confluent so: call-by-value vs.
call-by-name
CPS: “jumping out of a loop”:

mult(l) := if empty(l) then 1 else l [0] ∗mult (tail(l))
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Further refinements of Formulas-as-Types

Extend to (classical) sequent calculus

I Replace sequents Γ ` ∆ by Γ ` A|∆ and Γ|A ` ∆.

I Proof terms can distinguish between forward and backward
proofs. (Record the “proof process”.)



Further refinements of Formulas-as-Types and Program
Extraction

Extract programs from proofs in analysis.
I Exact real arithmetic

I Not: determine output precision on the basis of input precision
(interval arithmetic)

I But: Let the requited output precision determiine the required
input precision.


