
A review of the Curry-Howard-De Bruijn
formulas-as-types interpretation

Herman Geuvers

Foundations group, Intelligent Systems, ICIS
Radboud University Nijmegen

The Netherlands

Mathematical Logic in the Netherlands
May 26,, 2009,

Radboud University Nijmegen

What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

What is mathematics about?

Foundations of mathematics:

I Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

I Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

I Platonism: Abstract and infinitary mathematical objects also
“exist”.

I Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

I Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

Brouwer’s Intuitionism

Mathematics is primary and comes before logic. Logic is
descriptive.
Basic intuition: construction of an object in time: N
A proof (mathematical argument) is also a construction (in time).

What can we construct? Which mathematical arguments are valid?

Theorem: ∃p, q, irrational(pq is rational)

Proof:
√

2
√

2
is rational OR irrational.

- First case: done; p = q =
√

2

- Second case: (
√

2
√

2
)
√

2 = 2 is rational and so we are done:

p =
√

2
√

2
, q =

√
2

Brouwer’s Intuitionism

Mathematics is primary and comes before logic. Logic is
descriptive.
Basic intuition: construction of an object in time: N
A proof (mathematical argument) is also a construction (in time).

What can we construct? Which mathematical arguments are valid?

Theorem: ∃p, q, irrational(pq is rational)

Proof:
√

2
√

2
is rational OR irrational.

- First case: done; p = q =
√

2

- Second case: (
√

2
√

2
)
√

2 = 2 is rational and so we are done:

p =
√

2
√

2
, q =

√
2

The intuitionistic notion of truth

Brouwer: A statement is true if we have a proof for it.

So the real question is:

What is a proof?

Brouwer has never made this formally precise, because Brouwer
wasn’t interested in logic. Heyting and Kolmogorov have.

The intuitionistic notion of truth

Brouwer: A statement is true if we have a proof for it.

So the real question is:

What is a proof?

Brouwer has never made this formally precise, because Brouwer
wasn’t interested in logic. Heyting and Kolmogorov have.

Brouwer-Heyting-Kolmogorov interpretation (BHK)

Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
A ∧ B is a pair consisting of a proof of A and a proof of B
A ∨ B is a proof of A or a proof of B
A→ B is a method for producing a proof of B,

given a proof of A
⊥ doesn’t exist

∀x ∈ D(A(x)) is a method for producing a proof of A(d),
given an element d ∈ D,

∃x ∈ D(A(x)) is a pair consisting of an element d ∈ D
and a proof of A(d).

So: there is no proof of A ∨ ¬A
So: a proof of ∀x ∈ D∃y ∈ E (A(x , y)) contains a method for
constructing a e ∈ E for every d ∈ D such that A(d , e) holds.

Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
A ∧ B is a pair consisting of a proof of A and a proof of B
A ∨ B is a proof of A or a proof of B
A→ B is a method for producing a proof of B,

given a proof of A
⊥ doesn’t exist

∀x ∈ D(A(x)) is a method for producing a proof of A(d),
given an element d ∈ D,

∃x ∈ D(A(x)) is a pair consisting of an element d ∈ D
and a proof of A(d).

So: there is no proof of A ∨ ¬A

So: a proof of ∀x ∈ D∃y ∈ E (A(x , y)) contains a method for
constructing a e ∈ E for every d ∈ D such that A(d , e) holds.

Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
A ∧ B is a pair consisting of a proof of A and a proof of B
A ∨ B is a proof of A or a proof of B
A→ B is a method for producing a proof of B,

given a proof of A
⊥ doesn’t exist

∀x ∈ D(A(x)) is a method for producing a proof of A(d),
given an element d ∈ D,

∃x ∈ D(A(x)) is a pair consisting of an element d ∈ D
and a proof of A(d).

So: there is no proof of A ∨ ¬A
So: a proof of ∀x ∈ D∃y ∈ E (A(x , y)) contains a method for
constructing a e ∈ E for every d ∈ D such that A(d , e) holds.

Kleene Realisability, Curry-Howard Formules as Types

We can make the BHK interpretation formal in various ways:
Kleene realisability

m r A

“m realises the formula A” (m ∈ N, seen as the code of a Turing
machine)

Curry-Howard formulas as types:

M : A

“M has type A” (M an algorithm / functional programma / data
object)

I a formula is seen as a type (or a specification)

I a proof is seen as an algorithm (program)

Kleene Realisability, Curry-Howard Formules as Types

We can make the BHK interpretation formal in various ways:
Kleene realisability

m r A

“m realises the formula A” (m ∈ N, seen as the code of a Turing
machine)
Curry-Howard formulas as types:

M : A

“M has type A” (M an algorithm / functional programma / data
object)

I a formula is seen as a type (or a specification)

I a proof is seen as an algorithm (program)

Formulas as Types, Proofs as Terms

A proof of (term of type)
A ∧ B is a term 〈p, q〉 with p : A and q : B
A ∨ B is inl p with p : A or inr q with q : B
A→ B is a term f : A→ B
⊥ doesn’t exist

∀x ∈ D(A(x)) is a term f : Πx∈DA(x)
∃x ∈ D(A(x)) is a term 〈d , p〉 with d : D and p : A(d)

Formulas and sets are both (data)types
Proofs and objects are both terms (data, programs)
Two “readings” of M : A:
- M is a proof of the formula A
- M is data of type A

Formulas as Types, Proofs as Terms

A proof of (term of type)
A ∧ B is a term 〈p, q〉 with p : A and q : B
A ∨ B is inl p with p : A or inr q with q : B
A→ B is a term f : A→ B
⊥ doesn’t exist

∀x ∈ D(A(x)) is a term f : Πx∈DA(x)
∃x ∈ D(A(x)) is a term 〈d , p〉 with d : D and p : A(d)

Formulas and sets are both (data)types
Proofs and objects are both terms (data, programs)

Two “readings” of M : A:
- M is a proof of the formula A
- M is data of type A

Formulas as Types, Proofs as Terms

A proof of (term of type)
A ∧ B is a term 〈p, q〉 with p : A and q : B
A ∨ B is inl p with p : A or inr q with q : B
A→ B is a term f : A→ B
⊥ doesn’t exist

∀x ∈ D(A(x)) is a term f : Πx∈DA(x)
∃x ∈ D(A(x)) is a term 〈d , p〉 with d : D and p : A(d)

Formulas and sets are both (data)types
Proofs and objects are both terms (data, programs)
Two “readings” of M : A:
- M is a proof of the formula A
- M is data of type A

The Formulas-as-Types notion of Construction (Howard
1980)

Paper dates back to 1969.
Original ideas go back to Curry (Combinatory Logic):
K := λx λy .x : A→ B → A
S := λx λy λz .x z(y z) : (A→ B → C)→ (A→ B)→ A→ C
I := λx .x : A→ A

Theorem: For (first order) proposition and predicate logic we have
a formulas-as-types isomorphism between proofs and terms.

ϕ1, ϕ2, . . . , ϕn `Π
L σ ⇐⇒ x1 : ϕ1, x2 : ϕ2, . . . , xn : ϕn ` [Π] : σ

The Formulas-as-Types notion of Construction (Howard
1980)

Paper dates back to 1969.
Original ideas go back to Curry (Combinatory Logic):
K := λx λy .x : A→ B → A
S := λx λy λz .x z(y z) : (A→ B → C)→ (A→ B)→ A→ C
I := λx .x : A→ A

Theorem: For (first order) proposition and predicate logic we have
a formulas-as-types isomorphism between proofs and terms.

ϕ1, ϕ2, . . . , ϕn `Π
L σ ⇐⇒ x1 : ϕ1, x2 : ϕ2, . . . , xn : ϕn ` [Π] : σ

The Formulas-as-Types notion of Construction (Howard
1980)

Contribution of Tait (1965):
Cut-elimination in logic = β-reduction in typed λ-calculus.

[σ]1

D1

τ
1

σ→τ

D2

σ

τ

−→

D2

σ
D1

τ

[x : σ]1

D1

M : τ
1

λx :σ.M : σ→τ

D2

P : σ

(λx :σ.M)P : τ

−→β

D2

P : σ
D1

M[P/x] : τ

The Formulas-as-Types notion of Construction (Howard
1980)

Contribution of Tait (1965):
Cut-elimination in logic = β-reduction in typed λ-calculus.

[σ]1

D1

τ
1

σ→τ

D2

σ

τ

−→

D2

σ
D1

τ

[x : σ]1

D1

M : τ
1

λx :σ.M : σ→τ

D2

P : σ

(λx :σ.M)P : τ

−→β

D2

P : σ
D1

M[P/x] : τ

The Formulas-as-Types notion of Construction (Howard
1980)

Contribution of Tait (1965):
Cut-elimination in logic = β-reduction in typed λ-calculus.

[σ]1

D1

τ
1

σ→τ

D2

σ

τ

−→

D2

σ
D1

τ

[x : σ]1

D1

M : τ
1

λx :σ.M : σ→τ

D2

P : σ

(λx :σ.M)P : τ

−→β

D2

P : σ
D1

M[P/x] : τ

Formulas-as-Types: proof theory and type theory

proof theory type theory

termination of cut-elimination ⇔ SN of β-reduction
every proof can be made cut-free ⇔ WN of β-reduction

disjunction property ⇐ CR and WNof β-reduction
existence property ⇐ CR and WN of β-reduction

SN = strong normalization,
WN = weak normalization,
CR = confluence

Formulas-as-Types: Arithmetic

Extend with recursor / induction:

F : P(0) G : ∀n(P(x)→ P(S(x)))

R F G : ∀n(P(x))

R F G 0 →ι F

R F G (S x) →ι G x (R F G x)

Formulas-as-Types: Arithmetic

Extend with recursor / induction:

F : P(0) G : ∀n(P(x)→ P(S(x)))

R F G : ∀n(P(x))

R F G 0 →ι F

R F G (S x) →ι G x (R F G x)

Formulas-as-Types: Inductive Types

Martin-Löf (Scott): take well-founded induction as basic type
forming principle.
⇒ Induction principle
⇒ Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F : P(nil) G : ∀a:A∀l : ListA (P(l)→ P(cons a l))

R F G : ∀l : ListA P(l)

If P(x) is a proposition: “proof by induction”
If P(x) is a set-type: “function def. by well-founded recursion”

Formulas-as-Types: Inductive Types

Martin-Löf (Scott): take well-founded induction as basic type
forming principle.
⇒ Induction principle
⇒ Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F : P(nil) G : ∀a:A∀l : ListA (P(l)→ P(cons a l))

R F G : ∀l : ListA P(l)

If P(x) is a proposition: “proof by induction”
If P(x) is a set-type: “function def. by well-founded recursion”

Formulas-as-Types: Inductive Types

Martin-Löf (Scott): take well-founded induction as basic type
forming principle.
⇒ Induction principle
⇒ Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F : P(nil) G : ∀a:A∀l : ListA (P(l)→ P(cons a l))

R F G : ∀l : ListA P(l)

If P(x) is a proposition: “proof by induction”
If P(x) is a set-type: “function def. by well-founded recursion”

Formulas-as-Types: Inductive Types

Martin-Löf (Scott): take well-founded induction as basic type
forming principle.
⇒ Induction principle
⇒ Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F : P(nil) G : ∀a:A∀l : ListA (P(l)→ P(cons a l))

R F G : ∀l : ListA P(l)

If P(x) is a proposition: “proof by induction”
If P(x) is a set-type: “function def. by well-founded recursion”

Formulas-as-Types: Impredicativity

Girard has extended the formulas-as-types interpretation to higher
order logic.
Higher order logic: ∀P : A→Prop. ∀x : A.P x → P x
Polymorphic types: ∀A : Set.A→ A

Combining all these ideas: the type theory of the proof assistant
Coq:

I inductive types

I dependent types

I impredicativity (higher order logic)

The SN proof of the type theory of Coq requires strongly
inaccessible cardinals.

Formulas-as-Types: Impredicativity

Girard has extended the formulas-as-types interpretation to higher
order logic.
Higher order logic: ∀P : A→Prop. ∀x : A.P x → P x
Polymorphic types: ∀A : Set.A→ A
Combining all these ideas: the type theory of the proof assistant
Coq:

I inductive types

I dependent types

I impredicativity (higher order logic)

The SN proof of the type theory of Coq requires strongly
inaccessible cardinals.

Formulas-as-Types: De Bruijn

The two roles of a proof in mathematics

1. A proof explains: why?
Goal: understanding

2. A proof convinces: is it true?
Goal: verification

For (2) one can use computer support.

Formulas as Types, Proofs as Objects

De Bruijn (re)invented the formulas-as-types principle (+/- 1968),
emphasizing the proofs-as-objects aspect.

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

Γ `logic ϕ iff Γ `type theory M : T (ϕ)

M codes (as a λ-term) the logical derivation of ϕ.

Γ consists of

I declarations x : A of the free variables

I assumptions, of the form y : T (ψ)

I proven lemmas are definitions, stored as y := p : T (ψ)
(y is a name for the proof p of ψ).

Consequence:

proof checking = type checking

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

Γ `logic ϕ iff Γ `type theory M : T (ϕ)

M codes (as a λ-term) the logical derivation of ϕ.
Γ consists of

I declarations x : A of the free variables

I assumptions, of the form y : T (ψ)

I proven lemmas are definitions, stored as y := p : T (ψ)
(y is a name for the proof p of ψ).

Consequence:

proof checking = type checking

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

Γ `logic ϕ iff Γ `type theory M : T (ϕ)

M codes (as a λ-term) the logical derivation of ϕ.
Γ consists of

I declarations x : A of the free variables

I assumptions, of the form y : T (ψ)

I proven lemmas are definitions, stored as y := p : T (ψ)
(y is a name for the proof p of ψ).

Consequence:

proof checking = type checking

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

Γ `logic ϕ iff Γ `type theory M : T (ϕ)

M codes (as a λ-term) the logical derivation of ϕ.
Γ consists of

I declarations x : A of the free variables

I assumptions, of the form y : T (ψ)

I proven lemmas are definitions, stored as y := p : T (ψ)
(y is a name for the proof p of ψ).

Consequence:

proof checking = type checking

Automath as a Logical Framework

Automath is a language for dealing with the basic mathematical
linguistic constructions, like substitution, variable binding, creation
and unfolding of definitions etc.

A user is free to add the logical rules that he/she wishes
⇒ Automath is a logical framework, where the user can do his/her
own logic (or any other formal system).

Automath as a Logical Framework

Automath is a language for dealing with the basic mathematical
linguistic constructions, like substitution, variable binding, creation
and unfolding of definitions etc.

A user is free to add the logical rules that he/she wishes
⇒ Automath is a logical framework, where the user can do his/her
own logic (or any other formal system).

Logical Framework encoding versus direct encoding

proof formula

direct encoding λx :A.x A→A
LF encoding imp intr A Aλx :T A.x T (A⇒ A)

Needed:

prop : type

⇒ : prop→prop→prop

T : prop→type

imp intr : ΠA,B : prop. (T A→ T B)→ T(A⇒ B)

imp el : ΠA,B : prop.T(A⇒ B)→ T A→ T B.

Logical Framework encoding versus direct encoding

proof formula

direct encoding λx :A.x A→A
LF encoding imp intr A Aλx :T A.x T (A⇒ A)

Needed:

prop : type

⇒ : prop→prop→prop

T : prop→type

imp intr : ΠA,B : prop. (T A→ T B)→ T(A⇒ B)

imp el : ΠA,B : prop.T(A⇒ B)→ T A→ T B.

Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn’s version of the formulas-as-types principle:

Γ `L ϕ iff ΓL, Γ `type theory M : T (ϕ)

where L is a logic, ΓL is the context in which the constructions of
the logic L have been declared.
Choice and trade-off: Which logical constructions do you put in
the type theory and which constructions do you declare
axiomatically in the context?

Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn’s version of the formulas-as-types principle:

Γ `L ϕ iff ΓL, Γ `type theory M : T (ϕ)

where L is a logic, ΓL is the context in which the constructions of
the logic L have been declared.

Choice and trade-off: Which logical constructions do you put in
the type theory and which constructions do you declare
axiomatically in the context?

Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn’s version of the formulas-as-types principle:

Γ `L ϕ iff ΓL, Γ `type theory M : T (ϕ)

where L is a logic, ΓL is the context in which the constructions of
the logic L have been declared.
Choice and trade-off: Which logical constructions do you put in
the type theory and which constructions do you declare
axiomatically in the context?

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, . . .)

but also about the

Metalanguage that you actually formally describe your
formal systems in.

I How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier,

I De Bruijn index representation: λ 1 (λ 1 2) denotes
λx .x (λy .y x).

I The “higher order” part of f.o.l. is in the logical framework
(meta-language): ∀D : (D → prop)→ prop
(This was already how Church did it in 1940.)

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, . . .) but also about the

Metalanguage that you actually formally describe your
formal systems in.

I How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier,

I De Bruijn index representation: λ 1 (λ 1 2) denotes
λx .x (λy .y x).

I The “higher order” part of f.o.l. is in the logical framework
(meta-language): ∀D : (D → prop)→ prop
(This was already how Church did it in 1940.)

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, . . .) but also about the

Metalanguage that you actually formally describe your
formal systems in.

I How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier,

I De Bruijn index representation: λ 1 (λ 1 2) denotes
λx .x (λy .y x).

I The “higher order” part of f.o.l. is in the logical framework
(meta-language): ∀D : (D → prop)→ prop
(This was already how Church did it in 1940.)

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, . . .) but also about the

Metalanguage that you actually formally describe your
formal systems in.

I How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier,

I De Bruijn index representation: λ 1 (λ 1 2) denotes
λx .x (λy .y x).

I The “higher order” part of f.o.l. is in the logical framework
(meta-language): ∀D : (D → prop)→ prop
(This was already how Church did it in 1940.)

Extracting Programs from constructive proofs

A proof p of
∀x : A∃y : B R(x , y)

contains an algorithm
f : A→ B

and a proof q of ∀x : A.R(x , f (x)).
The specification ∀x : A.∃y : B.R(x , y), once realised (proven)
produces a program that satisfies the spec.

Programming with constructive proofs

Example: sorting a list of natural numbers

sort : ListN → ListN

More refined spec. (output is sorted):

sort : ListN → ∃y :ListN(Sorted(y))

Even more refined spec. (output is a permutation of the input):

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

The proof sort contains a sorting algorithm.

Programming with constructive proofs

Example: sorting a list of natural numbers

sort : ListN → ListN

More refined spec. (output is sorted):

sort : ListN → ∃y :ListN(Sorted(y))

Even more refined spec. (output is a permutation of the input):

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

The proof sort contains a sorting algorithm.

Programming with constructive proofs

Example: sorting a list of natural numbers

sort : ListN → ListN

More refined spec. (output is sorted):

sort : ListN → ∃y :ListN(Sorted(y))

Even more refined spec. (output is a permutation of the input):

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

The proof sort contains a sorting algorithm.

Programming with constructive proofs

Extracting the computational content from a proof.

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

Distinguishing data and proofs:

sort :

computation︷ ︸︸ ︷
Πx :ListN Σy :ListN (Sorted(y) ∧ Perm(x , y))︸ ︷︷ ︸

specification

Programming with constructive proofs

Extracting the computational content from a proof.

sort : ∀x :ListN ∃y :ListN(Sorted(y) ∧ Perm(x , y))

With data-proof distinction and program extraction:

sort : Πx :ListN Σy :ListNSorted(y) ∧ Perm(x , y))

	�
�
�
�
�
�

?

ŝort : ListN → ListN

correct : ∀x :ListN(Sorted(ŝort(x)) ∧ Perm(x , ŝort(x)))

Formulas-as-Types, Proofs-as-Terms in Theorem Proving

Proof checking = Type checking

There is a “type check” algorithm TC:

TC(p) 7→ A if p : A

TC(p) 7→ fail if p not typable

Proof search (Theorem Proving) =
interactive search (construction) of a term p : A.

Some Conclusions

Is type theory necessarily constructive?
“Constructive notion of proof 6= notion of constructive proof”
(De Bruijn)

Notion of constructive proof: Brouwer; content of axioms and rules

Constructive notion of proof: Hilbert; how to manipulate axioms
and rules

Some Conclusions

Is type theory necessarily constructive?
“Constructive notion of proof 6= notion of constructive proof”
(De Bruijn)

Notion of constructive proof: Brouwer; content of axioms and rules

Constructive notion of proof: Hilbert; how to manipulate axioms
and rules

Further refinements of Formulas-as-Types

Extend to classical logic
I ∀x : N ∃y : N R(x , y) (with R(x , y) atomic) is provable

classically iff provable constructively
I transform classical proof to constructive one
I extract computational content from classical proof directly

I computational content of the double negation rule?
cut-elimination is not confluent so: call-by-value vs.
call-by-name
CPS: “jumping out of a loop”:

mult(l) := if empty(l) then 1 else l [0] ∗mult (tail(l))

Further refinements of Formulas-as-Types

Extend to classical logic
I ∀x : N ∃y : N R(x , y) (with R(x , y) atomic) is provable

classically iff provable constructively
I transform classical proof to constructive one
I extract computational content from classical proof directly

I computational content of the double negation rule?
cut-elimination is not confluent so: call-by-value vs.
call-by-name
CPS: “jumping out of a loop”:

mult(l) := if empty(l) then 1 else l [0] ∗mult (tail(l))

Further refinements of Formulas-as-Types

Extend to (classical) sequent calculus

I Replace sequents Γ ` ∆ by Γ ` A|∆ and Γ|A ` ∆.

I Proof terms can distinguish between forward and backward
proofs. (Record the “proof process”.)

Further refinements of Formulas-as-Types and Program
Extraction

Extract programs from proofs in analysis.
I Exact real arithmetic

I Not: determine output precision on the basis of input precision
(interval arithmetic)

I But: Let the requited output precision determiine the required
input precision.

