A review of the Curry-Howard-De Bruijn
formulas-as-types interpretation

Herman Geuvers

Foundations group, Intelligent Systems, ICIS
Radboud University Nijmegen
The Netherlands

Mathematical Logic in the Netherlands
May 26,, 2009,
Radboud University Nijmegen

Radboud University Nijmegen {%E
e

What is mathematics about?

Foundations of mathematics:

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

What is mathematics about?

Foundations of mathematics:

» Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A

theory is good if it is consistent. Hilbert

-

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

What is mathematics about?

Foundations of mathematics:

» Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

» Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

What is mathematics about?

Foundations of mathematics:

» Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

» Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

» Platonism: Abstract and infinitary mathematical objects also
“exist” .

Radboud University Nijmegen {%E
e

What is mathematics about?

Foundations of mathematics:

» Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

» Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

» Platonism: Abstract and infinitary mathematical objects also
“exist” .

» Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

What is mathematics about?

Foundations of mathematics:

» Formalism: mathematics is a formal game with formal rules.
Meaning? Only finitary maths has a canonical meaning. A
theory is good if it is consistent. Hilbert

» Realism: But mathematics also has a relation with the real
world! Also infinitary mathematics!

» Platonism: Abstract and infinitary mathematical objects also
“exist” .

» Logicism: Logics is the universal basis; build mathematics out
of logics. Frege, Russell

» Intuitionism / Constructivism: Only the objects that one can
construct (in time) exist. Brouwer

Radboud University Nijmegen {%E
e

Brouwer’s Intuitionism

Mathematics is primary and comes before logic. Logic is
descriptive.

Basic intuition: construction of an object in time: N

A proof (mathematical argument) is also a construction (in time).

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Brouwer’s Intuitionism

Mathematics is primary and comes before logic. Logic is
descriptive.

Basic intuition: construction of an object in time: N

A proof (mathematical argument) is also a construction (in time).

What can we construct? Which mathematical arguments are valid?

Theorem: Jp, q, irrational(p? is rational)
Proof: \@ﬁ is rational OR irrational.
- First case: done; p=q =2
C(J3VPWE o e pati :
- Second case: (v/2¥7)V2 =2 is rational and so we are done:

p=2"7 g=\2

Radboud University Nijmegen {%E
e

The intuitionistic notion of truth

Brouwer: A statement is true if we have a proof for it

Radboud University Nijmegen {%i
& =

WU

The intuitionistic notion of truth

Brouwer: A statement is true if we have a proof for it.

So the real question is:
What is a proof?

Brouwer has never made this formally precise, because Brouwer
wasn't interested in logic. Heyting and Kolmogorov have.

Radboud University Nij '%ﬁ
adboud University Nijmegen i\m}

Brouwer-Heyting-Kolmogorov interpretation (BHK

42 Situng der phys.malb. Klassa v. 16. Januar 1930, — Mitieilung v. 19. Dezember 1929

Die formalen Regeln der intuitionistischen Logik.

Von Dr. A. Hevrine
In Euschods (Niederlande).

(Vorgelegt von Him. Bussunsaex am 19. Dezember 1920 [s. Jabrg. 1020 8. 6861

Einleitung.

ist cine und jede Sprach
anch die formalistische, ist fiir sie nur Hilfsmittel zor Mitteilung. Es ist
prinzipiell unmtglich, ein System von Tormc[n aufzusicllen, dos mit der in-
denn die
Denkens lassen sich nicht auf eine endhche Aahl von im voraus antscellbzuen
Regeln. suxtclfubren. Dor Versuch, die wichtigsten Teile der Muthematik in
, wird deshalb

die grofere Bindiglkeit und Bestimmtheit der letoteren gegeniiber dar gewuhn-
lichen Sprache, Eigenscliaften, welche sie gecignet machen, das Eindringen in
die intuitionistischen Begriffe und ihre Verwendung bei Untersuchungen zu
erleichtern.

Zum Aufbau- der st die 1l ingilltiger lo-
giseher Gesetzo nicht notwendig; diese Gesetze werden in jedem einzelnen
Fll gleichsam von newem entdeckt als giltig fix dos eben betrachtete mathe-
matische System. Die sprachliche Mitteilung aber, nach den Beddrfnissen
des tiglichen Lebens gebildet, schreitet in der Form der logischen Gesetre,
welche sie als gegeben voraussetzt, fort. Eine Sprache, welche dem Gang
der intuitionistischen Mathematik von Schritt zu Schritt nachgebildet wire,
wiirde so in allen Teilen von der gewolnten Form abweichen, da8 sie die
obengenannten ginstigen Eigenschaften wieder ginalich verlieren mifite. Diese
Uberlegungen haben mich dazu gefiilirt, die Formalisierung der intuitionistischen
Mathematik doch wieder mit einem Aussagenkalkiil anzufangen.

Die Formeln des formalistischen Systems cntstehen aus ciner endlichen
Zshl von Asiomen durch Anwendung einer endlichen Zahl von Operations-
regeln. Sie enthalten auber den »konstantene Zeichen auch Variabele. Das
Verhltnis Aw:scl.\en diesem Sysiem \md der Mathematik ist nun d\eses, dad
el efner dten und unter
Beschrinkungen hinsichlich der]:xsemmg or Variaboln jede Formel einen
richtigen mathematischen Satz darstellt. (Z. B. mitssen die Variabeln im Aus-

i nur durch Aussagen exsetzt worden.)
Ist das System so beschaffen, da es die letztgenannte Forderung erfiillt, so

Disss Abhaadlung bides ine Unarbelinng s et Tels ches von dem - Witkundig

Genootschape in Amsterdam im Aufung 1928 gekronten Preisschri
Radboud University Nijmegen § }
it

a F = = £ DA

Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
AANB is a pair consisting of a proof of A and a proof of B
AV B is a proof of A or a proof of B
A— B is a method for producing a proof of B,
given a proof of A
il doesn't exist

Vx € D(A(x)) is a method for producing a proof of A(d),
given an element d € D,

dx € D(A(x)) is a pair consisting of an element d € D
and a proof of A(d).

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
AANB is a pair consisting of a proof of A and a proof of B
AV B is a proof of A or a proof of B
A— B is a method for producing a proof of B,
given a proof of A
il doesn't exist

Vx € D(A(x)) is a method for producing a proof of A(d),
given an element d € D,
dx € D(A(x)) is a pair consisting of an element d € D
and a proof of A(d).
So: there is no proof of AV —A

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Brouwer-Heyting-Kolmogorov interpretation (BHK)

A proof of
AANB is a pair consisting of a proof of A and a proof of B
AV B is a proof of A or a proof of B
A— B is a method for producing a proof of B,
given a proof of A
il doesn't exist

Vx € D(A(x)) is a method for producing a proof of A(d),
given an element d € D,
dx € D(A(x)) is a pair consisting of an element d € D
and a proof of A(d).
So: there is no proof of AV —A
So: a proof of ¥x € D3y € E(A(x,y)) contains a method for
constructing a e € E for every d € D such that A(d, e) holds.

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Kleene Realisability, Curry-Howard Formules as Types

We can make the BHK interpretation formal in various ways:
Kleene realisability
mrA

“m realises the formula A" (m € N, seen as the code of a Turing
machine)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Kleene Realisability, Curry-Howard Formules as Types

We can make the BHK interpretation formal in various ways:
Kleene realisability
mrA

“m realises the formula A" (m € N, seen as the code of a Turing
machine)
Curry-Howard formulas as types:

M:A
“M has type A" (M an algorithm / functional programma / data
object)

» a formula is seen as a type (or a specification)

> a proof is seen as an algorithm (program)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Formulas as Types, Proofs as Terms

A proof of (term of type)

ANB isaterm (p,g) withp: Aand g: B
AV B is inl p with p: A orinrg with g: B
A— B isaterm f: A— B

L doesn't exist

Vx € D(A(x)) isaterm f:[1,-pA(x)
dx € D(A(x)) is aterm (d.p) with d : D and p: A(d)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Formulas as Types, Proofs as Terms

A proof of (term of type)

AANB isaterm (p,g) withp: Aand g: B
AV B is inl p with p: A orinrg with g: B
A— B isaterm f: A— B

L doesn't exist

Vx € D(A(x)) isaterm f:[1,-pA(x)

dx € D(A(x)) is aterm (d.p) with d : D and p: A(d)
Formulas and sets are both (data)types
Proofs and objects are both terms (data, programs)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Formulas as Types, Proofs as Terms

A proof of (term of type)

AANB isaterm (p,g) withp: Aand g: B
AV B is inl p with p: A orinrg with g: B
A— B isaterm f: A— B

L doesn't exist

Vx € D(A(x)) isaterm f:[1,-pA(x)
dx € D(A(x)) is aterm (d.p) with d : D and p: A(d)
Formulas and sets are both (data)types
Proofs and objects are both terms (data, programs)
Two “readings” of M : A:
- M is a proof of the formula A
- M is data of type A

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

The Formulas-as-Types notion of Construction (Howard
1980)

Paper dates back to 1969.

Original ideas go back to Curry (Combinatory Logic):
K=MxMyx:A—-B—-A

S =XMAyAzxz(yz):(A—-B—-C)—(A—=B)—A—=C
l'=Xxx:A— A

Radboud University Nijmegen {5@

%
Ve

The Formulas-as-Types notion of Construction (Howard
1980)

Paper dates back to 1969.

Original ideas go back to Curry (Combinatory Logic):
K=MxMyx:A—-B—-A

S =XMAyAzxz(yz):(A—-B—-C)—(A—=B)—A—=C
l'=Xxx:A— A

Theorem: For (first order) proposition and predicate logic we have
a formulas-as-types isomorphism between proofs and terms.

@1,¢2,...,¢HFTU<:>X1:991,X2:902,...,X,,:<,0,,|—[|_|]:a

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

The Formulas-as-Types notion of Construction (Howard
1980)

Contribution of Tait (1965):
Cut-elimination in logic = (-reduction in typed A-calculus.

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

The Formulas-as-Types notion of Construction (Howard
1980)

Contribution of Tait (1965):
Cut-elimination in logic = (-reduction in typed A-calculus.

[o]*
D D
D, o
T 1 22 SN Dy
oO—T o

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

The Formulas-as-Types notion of Construction (Howard

1980)

Contribution of Tait (1965):

Cut-elimination in logic = (-reduction in typed A-calculus.

[o]!
D,
T D,
1 =
o—T o
T
[x: o]
D,
M:r 1 D,
o.M o—T P:o
(Ax:a.M)P T

D,
- 4
D,
-
D,
P:o
—3 D,
M[P/x] : T

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m}

Formulas-as-Types: proof theory and type theory

proof theory type theory
termination of cut-elimination SN of S-reduction
every proof can be made cut-free WN of (-reduction
disjunction property CR and WNof (-reduction
existence property CR and WN of (-reduction

tTroe

SN = strong normalization,
WN = weak normalization,
CR = confluence

Radboud University Nijmegen {%E
e

Formulas-as-Types: Arithmetic

Extend with recursor / induction:
F:P(0) G :Vn(P(x)— P(5(x)))
RF G :Vn(P(x))

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Formulas-as-Types: Arithmetic

Extend with recursor / induction:

F:P(0) G:¥n(P(x)— P(5(x)))

RF G :Vn(P(x))

RFGO —, F
RFG(Sx) —, Gx(RFGx)

Radboud University Nijmegen i

Formulas-as-Types: Inductive Types

Martin-Lof (Scott): take well-founded induction as basic type
forming principle.

= Induction principle

= Recursion principle (well-founded)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Formulas-as-Types: Inductive Types

Martin-Lof (Scott): take well-founded induction as basic type
forming principle.

= Induction principle

= Recursion principle (well-founded)

Inductive List (A : Set) : Set
nil : List

cons : A -> List -> List

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Formulas-as-Types: Inductive Types

Martin-Lof (Scott): take well-founded induction as basic type
forming principle.

= Induction principle

= Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F: P(nil) G:Va:AVI:Lista(P(/) — P(consal))
RF G :VI:Lista P(/)

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Formulas-as-Types: Inductive Types

Martin-Lof (Scott): take well-founded induction as basic type
forming principle.

= Induction principle

= Recursion principle (well-founded)

Inductive List (A : Set) : Set

nil : List

cons : A -> List -> List

F: P(nil) G:Va:AVI:Lista(P(/) — P(consal))
RF G :VI:Lista P(/)

If P(x) is a proposition: “proof by induction”
If P(x) is a set-type: “function def. by well-founded recursion” %

Radboud University Nijmegen {\ H

2

Formulas-as-Types: Impredicativity

Girard has extended the formulas-as-types interpretation to higher
order logic.

Higher order logic: VP : A—Prop.Vx: A.Px — Px

Polymorphic types: VA : Set.A — A

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Formulas-as-Types: Impredicativity

Girard has extended the formulas-as-types interpretation to higher
order logic.
Higher order logic: VP : A—Prop.Vx: A.Px — Px
Polymorphic types: VA : Set.A — A
Combining all these ideas: the type theory of the proof assistant
Coq:

» inductive types

» dependent types

» impredicativity (higher order logic)
The SN proof of the type theory of Coq requires strongly
inaccessible cardinals.

Radboud University Nijmegen {%E
e

Formulas-as-Types: De Bruijn

the desirability of mechanical verification. In a short paper by E.W. Dijkstra on
a number of processes that might sometimes block one another, the correctness
of the algorithm was explained in a paragraph that ended with the remarkable
sentence: “And this, the author believes, completes the proof”. Indeed, the
argument was a bit intuitive. I took it as a challenge and tried to build a
proof that would be acceptable for mathematicians. What I achieved was long
and very ugly. It might have been improved by developing efficient lemmas for
avoiding the many repetitions in my argument, but I left it as it stood. Instead
of improving the proof I got the idea that one should be able to instruct a
machine to verify such long and tedious proofs. But of course I have to admit
that it will be often more elegant and more efficient to try to streamline such
an ugly proof before giving it to a machine.

Radboud University Nijmegen {%
W

The two roles of a proof in mathematics

1. A proof explains: why?
Goal: understanding

2. A proof convinces: is it true?
Goal: verification

For (2) one can use computer support.

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Formulas as Types, Proofs as Objects

De Bruijn (re)invented the formulas-as-types principle (4/- 1968),
emphasizing the proofs-as-objects aspect.
An irnpoﬂ;a,rit thing I got from Heyting is the interpretation of a proof of an
implication A — B as a kind of mapping of proofs of A to proofs of B. Later
this became one of the motives to treat proof classes as types.

Radboud University Nij '%ﬁ
adboud University Nijmegen i

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

r '_Iogic p iff T '_type theory M T(¥)

M codes (as a A-term) the logical derivation of (.

Radboud University Nij '@5
adboud University Nijmegen i\‘m}

Formulas as Types, Proofs as Objects

Automath
Isomorphism T between (names of) formulas and the types of

their proofs:

r '_Iogic p iff T '_type theory M T(¥)
M codes (as a A-term) the logical derivation of .
I" consists of

» declarations x : A of the free variables

» assumptions, of the form y : T(¢))

Radboud University Nij '%ﬁ
adboud University Nijmegen i\m}

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

r '_Iogic p iff T '_type theory M T(¥)

M codes (as a A-term) the logical derivation of .
" consists of

» declarations x : A of the free variables

» assumptions, of the form y : T(4))

» proven lemmas are definitions, stored as y := p: T ()
(y is a name for the proof p of 7).

Radboud University Nij '@5
adboud University Nijmegen i\m}

Formulas as Types, Proofs as Objects

Automath

Isomorphism T between (names of) formulas and the types of
their proofs:

r '_Iogic p iff T '_type theory M T(¥)

M codes (as a A-term) the logical derivation of .
I" consists of
» declarations x : A of the free variables
» assumptions, of the form y : T (1))
» proven lemmas are definitions, stored as y := p: T ()
(y is a name for the proof p of 7).

Consequence:

proof checking = type checking

Radboud University Nij '%ﬁ
adboud University Nijmegen i\m}

Automath as a Logical Framework

Automath is a language for dealing with the basic mathematical
and unfolding of definitions etc.

linguistic constructions, like substitution, variable binding, creation

Radboud University Nijmegen {s@i}

Automath as a Logical Framework

Automath is a language for dealing with the basic mathematical
linguistic constructions, like substitution, variable binding, creation
and unfolding of definitions etc.

A user is free to add the logical rules that he/she wishes
= Automath is a logical framework, where the user can do his/her
own logic (or any other formal system).

Radboud University Nij '%ﬁ
adboud University Nijmegen i\m}

Logical Framework encoding versus direct encoding

H proof ‘ formula
AXx:A.x A—A
imp_intr AAXM:T Ax | T(A= A)

direct encoding
LF encoding

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Logical Framework encoding versus direct encoding

H proof ‘ formula
AXx:A.x A—A
imp_intr AAXM:T Ax | T(A= A)

direct encoding
LF encoding

Needed:

prop : type
= : prop—prop—prop
T : prop—type
imp_intr : TA, B :prop.(TA— TB) — T(A= B)
impel : MAB:prop. T(A=B)—-TA—TB.

Radboud University Nijmegen {%E
e

Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn's version of the formulas-as-types principle:

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn's version of the formulas-as-types principle:

M @iff T |_type theory M : T(p)

where L is a logic, [, is the context in which the constructions of
the logic L have been declared.

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Automath as a Logical Framework

The user is responsible for the logical rules.
De Bruijn's version of the formulas-as-types principle:

ML @iff Iy, M : T(p)

r '_type theory

where L is a logic, [, is the context in which the constructions of
the logic L have been declared.

Choice and trade-off: Which logical constructions do you put in
the type theory and which constructions do you declare
axiomatically in the context?

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, ...)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, ...) but also about the

Metalanguage that you actually formally describe your
formal systems in.

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, ...) but also about the

Metalanguage that you actually formally describe your
formal systems in.

» How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier,

» De Bruijn index representation: A1(A12) denotes
Ax.x (Ay.y x).

Radboud University Nij ’%ﬁ
adboud University Nijmegen 1\ 75

Language theoretic studies

Metamathematics is about metatheory for logical systems (sequent
calculus, natural deduction, ...) but also about the

Metalanguage that you actually formally describe your
formal systems in.

» How do you really do renaming of variables, capture avoiding
substitution, instantiation of a quantifier,

» De Bruijn index representation: A1(A12) denotes
Ax.x (Ay.y x).

» The “higher order” part of f.o.l. is in the logical framework
(meta-language): Vp : (D — prop) — prop
(This was already how Church did it in 1940.)

Radboud University Nijmegen {E@S

2

Extracting Programs from constructive proofs

A proof p of
Vx:Ady: BR(x,y)
contains an algorithm

f:A— B

and a proof g of Vx : A.R(x,f(x)).
The specification Vx : A3y : B.R(x,y), once realised (proven)
produces a program that satisfies the spec.

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m}

Programming with constructive proofs

Example: sorting a list of natural numbers

sort : Listyy — Listy

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Programming with constructive proofs

Example: sorting a list of natural numbers

sort : Listyy — Listy

More refined spec. (output is sorted):

sort : Listy — Jy:Listy(Sorted(y))

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Programming with constructive proofs

Example: sorting a list of natural numbers

sort : Listyy — Listy

More refined spec. (output is sorted):
sort : Listy — Jy:Listy(Sorted(y))
Even more refined spec. (output is a permutation of the input):
sort : Vx:Listy Jy:Listy(Sorted(y) A Perm(x, y))

The proof sort contains a sorting algorithm.

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Programming with constructive proofs

Extracting the computational content from a proof.
sort : Vx:Listy Jy:Listy(Sorted(y) A Perm(x, y))
Distinguishing data and proofs:

computation

sort : Mx:Listy Xy:Listy (Sorted(y) A Perm(x,y))

specification

Radboud University Nij %‘
adboud University Nijmegen i\m.«’

Programming with constructive proofs

Extracting the computational content from a proof.

sort : Vx:Listy Jy:Listy(Sorted(y) A Perm(x, y))

With data-proof distinction and program extraction:

sort : MNx:Listy Xy:ListySorted(y) A Perm(x,y))

SO/?t : Listy — Listy

Y

correct : Vx:Listy(Sorted(sort(x)) A Perm(x, sort(x)))

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Formulas-as-Types, Proofs-as-Terms in Theorem Proving

Proof checking = Type checking

There is a “type check” algorithm TC:

TC(p) — Aifp: A
TC(p) +— fail if p not typable

Proof search (Theorem Proving) =
interactive search (construction) of a term p : A.

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Some Conclusions

Is type theory necessarily constructive?
“Constructive notion of proof # notion of constructive proof”
(De Bruijn)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\m.o?

Some Conclusions

Is type theory necessarily constructive?
“Constructive notion of proof # notion of constructive proof”
(De Bruijn)

Notion of constructive proof: Brouwer; content of axioms and rules

Constructive notion of proof: Hilbert; how to manipulate axioms
and rules

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Further refinements of Formulas-as-Types

Extend to classical logic
» Vx: N3y : NR(x,y) (with R(x,y) atomic) is provable
classically iff provable constructively

» transform classical proof to constructive one
» extract computational content from classical proof directly

Radboud University Nij ’%ﬁ
oud University Nijmegen i\mj

Further refinements of Formulas-as-Types

Extend to classical logic
» Vx : N3y :NR(x,y) (with R(x,y) atomic) is provable
classically iff provable constructively
» transform classical proof to constructive one
» extract computational content from classical proof directly
» computational content of the double negation rule?
cut-elimination is not confluent so: call-by-value vs.
call-by-name
CPS: "jumping out of a loop”:

mult(l) := if empty(l) then 1 else I[0] * mult (tail(l))

Radboud University Nij ’%ﬁ
oud University Nijmegen i\m.o?

Further refinements of Formulas-as-Types

Extend to (classical) sequent calculus
> Replace sequents = A by ' AJA and T|AF A.

» Proof terms can distinguish between forward and backward
proofs. (Record the “proof process”.)

Radboud University Nij ’%ﬁ
adboud University Nijmegen i\mj

Further refinements of Formulas-as-Types and Program
Extraction

Extract programs from proofs in analysis.
» Exact real arithmetic
» Not: determine output precision on the basis of input precision
(interval arithmetic)
» But: Let the requited output precision determiine the required
input precision.

Radboud University Nijmegen {5@

%
Ve

