De Bruijn’s ideas on the Formalization of
Mathematics

Herman Geuvers
Radboud Universiteit Nijmegen & Technische Universiteit Eindhoven

Foundation of Mathematics for Computer-Aided Formalization

Padova, 9-11 January 2013



Dick de Bruijn

July 9, 1918 - February 17, 2012



Checking of Mathematical Proofs with a computer

Around 1970 five new systems / projects / ideas

e Automath De Bruijn

e Ngthm Boyer Moore (Austin, Texas)
e LCF Milner (Stanford; Edinburgh)

e Mizar Trybulec (Biatystok, Poland)

e Evidence Algorithm Glushkov (Kiev, Ukrain)

In parallel (and before that):
Foundational research in type theoy and proof theory: Martin-Lof,
Girard, (Howard, Curry, Church; Brouwer, Heyting, Kolmogorov)

Interaction between Foundations of Math and Formalization of Math.



This talk

e De Bruijn’s ideas on formalization of mathematics
e \Where we are now

e Comments on (minimalist) foundations



The Automath project

AUTOMATH is a language for expressing detailed mathematical
thoughts. It is not a programming language, although it has several
features in common with existing programming languages. It is defined
by a grammar, and every text written according to its rules is claimed to
correspond to correct mathematics. It can be used to express a large
part of mathematics, and admits many ways of laying the foundations.
The rules are such that a computer can be instructed to check whether
texts written in the language are correct. These texts are not restricted
to proofs of single theorems; they can contain entire mathematical
theories, including the rules of inference used in such theories.

AUTOMATH, a language for mathematics, N.G. de Bruijn
TH-Report 68-WSK-05, November 1968



The Automath project

Formal language

Express large parts of mathematics, admitting many ways for laying

a foundation.
Computer can check correctness.

Deduction rules can be part of the text (i.e. need not be part of the

system)



The role of proofs in mathematics

1. A proof explains: why? Goal: understanding

2. A proof argues: is it true? Goal: verification, convincing

Notably for (2), computersupport can be helpfull.

the desirability of mechanical verification. In a short paper by E.W. Dijkstra on
a number of processes that might sometimes block one another, the correciness
of the algorithm was explained in a paragraph that ended with the remarkable
sentence: “And this, the author believes, completes the proof”. Indeed, the
argument was a bit intuitive. I took it as a challenge and tried to build a
proof that would be acceptable for mathematicians. What I achieved was long
and very ugly. It might have been improved by developing efficient lemmas for
avoiding the many repetitions in my argument, but I left it as it stood. Instead
of improving the proof I got the idea that one should be able to instruct a
machine to verify such long and tedious proofs. But of course I have to admit
that it will be often more elegant and more efficient to try to streamline such
an ugly proof before giving it to a machine.



The (future) role of formalised proofs in mathematics

Some translated quotes from de Bruijn

e One should keep in mind that the framework of formalised
mathematics is not the same as mathematics itself.

e A machine that has checked formalised mathematics hasn't
understood anything.

e Formalised mathematics is (just a poor) part of mathematics.
Nevertheless, through the ages, mathematicians have tried to put
down their ideas in such formalisms, free of unclarities or
uncertainties.

e The final text is the end of the process of mathematical thought,
not the process itself.



The different phases in a mathematical proof

1. finding a proof
Everything goes: experiment, wild guesses, simplify, . ...
Is not preserved (goes to the paper bin), but crucial for students to
learn to do math.

2. writing down a proof
Contains some explanation why the theorem holds and why the

proof is the way it is, but mainly proof-steps that together verify the
result.

3. present and communicate a proof

Explain to others, present in a seminar. Improve, simplify, change,
generalise the proof.

Computers can play a major role in (2) and (3)



Why would we believe a proof assistant?

A proof assistant is just another program . ..

To increase the reliability of a PA:

e Describe the rules and the logic of the system.

e A small "kernel”. All proofs can be translated to a small number of
basic principles. High level steps are defined in terms of smaller ones.



How can we believe a proof assistant?

e Check the checker. Verify the correctness of the PA inside the

system itself, or in another system.

e The De Bruijn criterion
Some PAs generate proof objects that can be checked independently
from the system by a simple program that a skeptical user could

write him /herself.



Automath

Propositions-as- Types, Proofs-as-Terms

De Bruijn:

e A proposition is not a type, but for any proposition A we have
T(A), the type of proofs of A.

e Proofs-as-Terms (PAT) is the crucial novelty.

e Proof-terms are checkable (not necessarily computable .. .)

An impor!;ant thing I got from Heyting is the interpretation of a proof of an
implication A — B as a kind of mapping of proofs of A to proofs of B. Later
this became one of the motives to treat proof classes as types.



Automath

Propositions-as- Types, Proofs-as-Terms

Isomorphism 1" between formulas and the types of proofs:
I'Flogic ¥ ifF T Ftype theory M T()

M codes (as a A-term) the derivation of .
I’ contains

e declarations = : A of free variables

e assumptions, of the form y : T'(1))

e proven lemmas are definitions, recorded as y :=p : T'(v))
(y is a name for the proof p of ).



Automath

Propositions-as- Types, Proofs-as-Terms

Isomorphism I' between formulas and the types of proofs:

r '_Iogic @ iff T I M :T(p)

type theory

Consequence:
proof checking = type checking

A simple typing algorithm suffices to satisfy the De Bruijn criterion.
Automath systems had a small kernel, so for them the typing algorithm

is relatively simple.



Automath

Logical Framework

Automath is a language for dealing with basic mathematical mechanisms
like substitution, variable binding, creating and unfolding of definitions

etc.

1.2 Properly speaking, the rules of AUTCMATH involve little more than the art

of substitution. A text written in AUTQMATH consists of a sequence of lines,



Automath

Logical Framework

A user is free to add the logical rules that he/she wishes
= Automath is a logical framework, where the user can do his/her own

favourite logic (or any other formal system).

Automath is a big restaurant where one can eat in any style.
Those who want to eat kosher, can do that, but do not force
others to do the same. Only intolerant people will be upset by
the fact that there is room for people with a different opinion.

Pluralism!
Which should not lead to pillarisation . ..



Automath

Logical Framework

De Bruijn’s version of the proof-as-terms principle:

where L is a logic, I';, is the context in which the constructions of the
logic L are declared.

Choice: Which logical constructions do you put in the type theory and

which constructions do you declare axiomatically in the context?

De Bruijn: Keep the framework as weak as possible (“ A plea for weaker
frameworks" )



Philosofical implications of Automath

On Platonism

Before I started Automath I was slightly anti-platonistic. That is to say that
I always sympathized with Kronecker’s statement that only the natural numbers
really exist. But building Automath I rapidly concluded that I had to be anti-
platonistic. Before that, I had allowed myself to be a bit confused by statements
like “3 is not a number, it is the neme of a number”. But if you have to talk to a
machine that knows nothing about the real mathematical objects, then you know
that you can handle names only. The “real” mathematical objects are irrelevant
in the discussion with the machine. In the language used for communicating with

De Bruijn loves to cite Wittgenstein:

Don't ask for the meaning, ask for its use



Philosofical implications of Automath

constructivism vs. formalism

Remarkably, at that occasion Scott wrote: “de Bruijn had been, of course,
personally infiwenced by Brouwer and wanted to present a suitably construc-
tive notion of proof”. I think this is confusing. Not just because I was never
influenced by Brouwer’s talking or writing, but because “constiuctive notion
of proof” is different from “notion of constructive proof”. The latter can be
connected to Brouwer, but the former is much closer to Hilbert and his finitis-
tic game with symbols and rigid rules. Brouwer’s constructivity is (at Jeast in
Heyting’s formalized form) is a matter of the content of axioms, and not the
way these axioms are manipulated.



Beyond Automath

Constructive Type Theory

Formulas-als-types isomorphism translates proofs in constructive logic to

typed A-terms, seen as functional programs
Martin-Lof:

e foundations for mathematics

e inductive types and functions defined by wefounded recursion are
the basic principles

e computational content of proofs

Proof Assistants based on CTT (and also on LCF and Automath): Nuprl
(Constable, Cornell), Agda (Gothenburg), Coq (INRIA, France)



Present state of affairs

Is formalising proofs as simple as using BTEX?

As a kind of dream I played (in 1968) with the idea of a future where every
mathematician would have a machine on his desk, all for himself, on which he
would write mathematics and which would verify his work. But, by lack of
experience in such maiters, I expected that such machines would be available
within 5 years from then., But now, 23 years later, we are not that far yet.
Anyway I expected in 1968 that the memory capacity of main frame computers
would grow rapidly in the next few years, but that was a deception too. Im-
plementing Automath on the quite advanced computers available to us in the
years 1970-1975 was to a large extent a struggle for living with the limitations
of fast accessible memory.

Question Why do mathematicians and engineers all use Computer
Algebra systems and IATEX, but not Proof Assistants?



Present state of affairs

Big formalisations

e Proof of the Odd Order Theorem (Walter Feit and John G.
Thompson), completely machine-checked using Coq.
Mathematical Components team lead by Georges Gonthier (MSR
Cambridge) at the Inria Microsoft Research Joint Centre.

e Flyspeck Project to produce a formal proof of the Kepler
Conjecture. Thomas Hales et al. in HOL-light.



Present state of affairs

Freek Wiedijk: The 100 greatest theorems, 88 formalised

The Irrationality of the Square Root of 2 > 17
Fundamental Theorem of Algebra

The Denumerability of the Rational Numbers

Pythagorean Theorem

Prime Number Theorem

Godel’s Incompleteness Theorem

Law of Quadratic Reciprocity

The Impossibility of Trisecting the Angle and Doubling the Cube
The Area of a Circle

Euler's Generalization of Fermat’s Little Theorem

. The Infinitude of Primes

. The Independence of the Parallel Postulate

© 0o NSOk WDNH

==
N = O
H OO ML, H DM WDNOO M

—
W

. Polyhedron Formula

google: | 100 theorems




The best proof assistants . ..

five systems seriously used for matematics:

HOL {

HOL Light
ProofPower
Isabelle
Coq

Mizar

86
42
49
49
57



Some comments on (minimalist) foundation



Putting more semantics into the type theory

Partial terms in Proof Assistants

Four possible approaches (J. Harrison)

1.

Give each partial function a convenient value on points outside its
domain. (ACL2; Mizar, HOL, Isabelle)

Give each partial function some arbitrary value outside its domain.
(Coq, Mizar, HOL, lIsabelle)

Encode the domain of the partial function in its type and make its

application to arguments outside that domain a type error. (PVS,
Coq, Nuprl)

Have a true logic of partial terms. (IMPS)



Putting more semantics into the type theory

Partial terms in Proof Assistants

Is 1/— a total function on IR? How to treat 1/07?

e Coq standard library: 1/— is total ... but then one cannot make a
model of IR inside Coq.

e CoRN: 1/— needs a proof, 1/— : Ilx : IR.x#0 — IR ..., now one
can make a model of IR in Coq, but we cannot even write down 1/0.

Add domain conditions D, e.g. D(x/y) =y # 0

e First order logic with domain conditions, F. Wiedijk J. Zwanenburg,
TPHOL 2003

e A Partial Functions Version of Church’'s Simple Theory of Types
William M. Farmer, JSL 55 1990.



Comments on (minimalist) foundation |

More computation in the system

e Inductive types and (well-founded) recursive functions turn a PA
(Coq, Matita, Agda, Nuprl, ...) into a programming language.

e This allows programming automated theorem proving techniques

inside the system. (Via Reflection)

e When the power of this was first shown to Per Martin-Lof (Kloster
Irsee 1998), he strongly opposed to this ... “These aren’t proofs!”



Reflection

Trading in proofs for computations

e Say we have a class of problems P, that we can represent by the
inductive type Problem. So we have [p] : Prop for p : Problem.

e Say we can also write a problem solver for Problem, that is
solve : Problem — Bool

e that we can prove correct:

Vp : Problem, [p] <— solve p = true.

e Then we can replace a goal 7 : A for A € P by a computation
solve a, if Ja] = A.
M. Oostdijk, H.G. Proof by Computation in Coq, TCS 2001



Even more computation in the system?

Unbounded proof search using a fixed point combinator

e Say P is a decidable property over the natural numbers:
Vr: N,Px =trueV Px = false. We want to prove dx : N, Px
by an unbounded search.

e For f: N —dzx: N,Px and n: N, define

F fn:=if Pnthen (n,refl) else f (n+ 1)

e Take f:=Y F (so f is a fixed-point of F).

e Now f: N —-dz: N,Px



Even more computation in the system?

Unbounded proof search using a fixed point combinator

e {0 evaluates to

— (n,refl) where n is the first number for which P n holds (if
such n exists)

— nothings [runs forever| (if no such n exists).
e Theorem: adding Y to a type system in this way is conservative, i.e.

in case f 0 terminates, it indeed finds a solution in the original
system (without Y).

H.G., E. Poll, J. Zwanenburg, Safe Proof Checking in Type Theory with
Y, CSL 1999.



Back to simple (linear time?) typechecking?

Storing a trace of the conversion in the proof-term

e \H := the type theory AP with the following special rules
I'-t:A H:A=B
r=+".B

conversion e(a) :a = |al

e \We construct an expression H to record the conversion trace

between A and B, H : A = B. This is just the usual 5(.()-path
extended with an erasure step.

e In A\H, type-checking is linear

H.G., F. Wiedijk A logical framework with explicit conversions. ENTCS
199 2008



Compatibility with HOL

Present day PAs

e The kernel of a PA is not small, except for HOL-light.

e HOL is much easier to explain to / convince mathematicians of then
inductive types

Any minimalist foundation should be compatible with (classical)
HOL.



Compatibility with HOL

Are Set and Prop the same?

e Prop and Set should be distinct.

e HOL + Prop=Setis not conservative over HOL. (H.G. 1989, S.
Berardi 1989)

e To put it more clearly (S. Berardi 1989):

HOL + Prop = Set + EXT + Arithmetic - L

EXT :=VA,B :Prop,(A+ B) - A= B.



Foundations of Mathematics for Computer-Aided Formalization

A number of issues

e If LF is the system to use, or do we need a more foundational
approach?

e Do we want to formalize what mathematicians do or do we want to
change what mathematicians do?
Hendrik Lenstra: Why avoid LEM? Then you can prove less
theorems!? | want to prove more theorems!



Questions?



