
Master’s Thesis

End-To-End Application Security Using Trusted

Computing

Michiel Broekman

August 18, 2005

University of Oxford University of Nijmegen

Software Engineering Programme Security of Systems Group

.

Preface

This thesis is the result of my research project at the Software Engineering
Programme of the Oxford University Computing Laboratory, from January
till August 2005. This project has been done under the supervision of Dr.
Andrew Martin from the University of Oxford and Dr. Jaap-Henk Hoepman
from the University of Nijmegen. I would like to take the opportunity to
thank Andrew Martin, Andrew Cooper, and Jaap-Henk for their help and
support. Also, I would like to thank my family for supporting me throughout
these years and for giving me the opportunity to fully develop myself.

Michiel Broekman

.

Abstract

This thesis describes the implementation of Trusted Computing in end-to-
end application security. It focuses on the services that are provided by
application layer protocols in end-to-end communication. There are many
security issues related to application layer protocols and some of these are
explored. Application layer firewalls are often used to protect against these
security issues. Unfortunately they are application specific, which means
that only recognised protocols can be examined. It is practically impossible
to distinguish between all possible application layer protocols. Therefore
an abstraction to application layer protocols is proposed by providing a
classification that tries to capture a large subset of the full spectrum of pro-
tocols. The security issues involved are discussed and addressed by Trusted
Computing. A more thorough investigation is performed by examining the
architecture of some distributed application components. Spam and se-
cure message store in SMTP are researched and discussed in the context of
Trusted Computing. Access control in FTP is enhanced to enable policy
enforcement of an object on both the server and client platform. Further-
more, some ideas are proposed to enhance the privacy and security of web
cookies. The research offers a new perspective on how Trusted Computing
can improve end-to-end application security.

.

Contents

1 Introduction 11
1.1 Application Layer Protocols and End-To-End Security 11
1.2 End-To-End Argument . 12
1.3 Trusted Computing Platforms 13
1.4 Research . 14

2 Trusted Platforms and TCG Technology 15
2.1 An Overview of Trusted Platform Technology 15

2.1.1 The Reasons for Trusted Platforms 16
2.1.2 Limitations of Existing Security Technology 17
2.1.3 Definition of Trust . 18
2.1.4 Trusted Computing Group and the TCG Specification 19
2.1.5 Definition of a Trusted Platform 19
2.1.6 Cryptographic Capabilities 20
2.1.7 Digital Signatures . 21
2.1.8 Integrity Measurement and Report 22
2.1.9 Creation of Trusted Identities 22
2.1.10 Privacy . 23
2.1.11 Protected Storage . 23

2.2 Applications of TCG Technology 24
2.2.1 Improvements Realized by Trusted Platforms 25
2.2.2 Examples of Improved Conventional Services 26
2.2.3 Virtual Machine-Based Platforms for Trusted Com-

puting . 27
2.2.4 Example Applications 28

2.3 Key Components of Trusted Computing 29
2.3.1 Platform Configuration Registers 29
2.3.2 Integrity Recording and Reporting 30
2.3.3 Protected Storage . 33

3 End-To-End Application Properties 38
3.1 Introduction . 38
3.2 Architecture . 39

7

3.3 Transfer of Responsibility . 40
3.4 Identification . 41
3.5 Intermediaries . 42
3.6 Old Versus New Protocols . 43
3.7 Security Issues . 44
3.8 Classification of Application Layer Protocols 45

4 Classification and Security Issues 48
4.1 Message Connection . 48
4.2 Shared Data Repository Connection 51

4.2.1 Filestore Connection 52
4.2.2 Web Connection . 53
4.2.3 Database Connection 55

4.3 Conferencing Connection . 56

5 Trusted Computing Applied 58
5.1 Architecture for Access Control Using Trusted Computing . . 58

5.1.1 A Platform with Trusted Reference Monitor 59
5.1.2 Architecture . 62
5.1.3 Policy . 64
5.1.4 Policies and User Attributes 65

5.2 FTP and Access Control . 67
5.3 Whiteboarding and Trusted Computing 70
5.4 SMTP and Trusted Computing 73

5.4.1 Spam . 74
5.4.2 Securing Message Store 75

5.5 Cookies and Trusted Computing 78

6 Conclusion and Further Research 82

Bibliography 87

8

List of Figures

2.1 Questions addressed by TPs. 18
2.2 Trusted Computing Platform model. 20
2.3 The measurement process in a TP. 22
2.4 A storage hierarchy. 24
2.5 Integrity-checking. 26
2.6 Terra’s architecture. 28
2.7 Architecture for dynamic checking in a TrustedVM. 33
2.8 Hashes of bootstrap code stored in PCRs. 34
2.9 Sealing and unsealing. 37

3.1 Message interactions in SMTP. 39
3.2 Simple client-server architecture. 40
3.3 Architecture with interconnected servers. 40
3.4 Store-and-forward of email. 41
3.5 Dual Homed Gateway. 45
3.6 Publish/subscribe mechanism. 46

5.1 The platform architecture. 60
5.2 Architecture for client-side policy enforcement. 63
5.3 Policy enforcement in a client platform. 64
5.4 An example of a policy. 66
5.5 User identity migration. 67
5.6 Secure whiteboarding architecture. 71
5.7 Whiteboarding policy enforcement in a platform. 73
5.8 Preventing spam by rate limiting. 75
5.9 An SMIME message. 76
5.10 SMTP on a Trusted Platform. 77
5.11 Efficiency problem in routing. 78

9

.

Chapter 1

Introduction

This thesis describes the outcome of the research project that has been
carried out at the Software Engineering Programme (SEP) of the Oxford
University Computing Laboratory (OUCL). This chapter will first provide
some introductory information on the problem definition. Then it will for-
mulate the exact problem definition which will be the basis for the rest of this
thesis. After the reader has gained a clear understanding of the motivations
behind this project, chapter 2 will provide some information about Trusted
Computing to show what trust mechanisms it can provide and how they are
realized. Chapter 3 will give some background information on application
layer protocols and present a classification of application layer protocols,
which will make it easier to look at security issues from the perspective of
end-to-end application security. Chapter 4 will discuss the security require-
ments of the various classes and the application of Trusted Computing to
these security requirements. In chapter 5, Trusted Computing will be used
in the implementation of the architecture of some distributed application
components. At the end, chapter 6 will summarize the performed research
and give an answer to the problem definition stated in the beginning. It will
conclude by proposing topics for future research.

1.1 Application Layer Protocols and End-To-End
Security

From the perspective of the Open Systems Interconnection (OSI) model
application layer protocols are part of the top layer of the network stack.
The OSI stack does not focus on how the various network protocols exactly
accomplish their task. Instead, it describes different layers of which each
layer performs services for the next higher layer, and makes request to the
next lower layer. The OSI model is a hierarchical structure of layers which
defines the requirements for communication between two computers. In this
thesis the emphasis lies on the services that are provided by the application

11

layer protocols in end-to-end communication. This approach is completely
in agreement with the objective of the OSI model.

There are many security issues related to application layer protocols. Var-
ious web servers, mail servers and other internet service software contain
bugs that let remote users do things that are harmful. For example remote
users can gain control of the machine and can do whatever they want. The
exposure to these kind of threats can be minimized by running only the
necessary software and getting the latest patches, and using software that
has a good reputation [RCR04]. However, there remain many security issues
that cannot be easily dealt with. Firewalls are often used to cope with these
kind of issues.

Application layer firewalls are hosts running proxy servers that do not permit
direct traffic between networks and perform logging and auditing of traffic
that is going through them. These proxy applications are software com-
ponents that run on the firewall and are application specific, which means
that only recognized protocols can be examined. However, it is difficult
to distinguish between all possible application layer protocols. Therefore a
higher level approach must be chosen to cover all protocols without having
to deal with the protocols one by one. This can be achieved by looking
at how information is shared and disseminated in end-to-end communica-
tion between hosts. In the next section a justification is presented for this
end-to-end approach.

1.2 End-To-End Argument

The end-to-end argument that was raised by Saltzer, Reed and Clark in 1984
[SRC84] has been one of the most influential in the area of communication
protocol design. The paper discusses the placement of functions in a com-
munication network. Certain functions can be placed in both the network
and the end systems, like for example error control, security and routing.
The end-to-end argument however, suggests that these functions should be
implemented in the endpoints. The end-to-end argument states that:

“The function in question can completely and correctly be implemented only
with the knowledge and help of the application standing at the end points of
the communication system. Therefore, providing that questioned function as
a feature of the communication system itself is not possible.”

As an example of the end-to-end argument the secure transmission of data
is presented. Firstly, if the data transmission system encrypts and decrypts
data, it has to be trusted to manage the required encryption keys in a se-

12

cure manner. Secondly, if the data is transferred to the target node and
sent to the application, the data is not encrypted and vulnerable to attacks.
Thirdly, the authenticity of the message has still to be checked by the appli-
cation on the end system. However, if the application performs end-to-end
encryption, then it can obtain the required authentication check and it can
handle key management itself. Furthermore, the data is never exposed out-
side the application.

So in order to meet the requirements of the application, the communication
subsystem does not have to provide automatic encryption of all data. How-
ever, automatic encryption of all the data by the communication subsystem
may be used to ensure that a user or application does not deliberately trans-
fer information that should not be exposed. However, neither mechanism
can completely satisfy both requirements.

1.3 Trusted Computing Platforms

The ability to protect a computing platform by using only software has some
inherent weaknesses [Pea03]. Security solutions based on software depend on
the correct installation and execution, which can be easily affected by other
software that has been executed on the same system. Even the most robust
software does not have complete control over its own integrity. Malicious
software can bypass the mechanisms of the OS and corrupt the behavior of
the OS.

Experts in information security say that some security issues cannot be
solved by software alone and therefore trusted hardware is required. For
example, the increasing e-business activities on the internet demand more
security than is given at this moment. This has led to the Trusted Com-
puting Group (TCG, which was formerly called the Trusted Computing
Platform Alliance) that designs the specifications for computing platforms
that are supposed to create trust for software processes, based on some extra
hardware within the platform.

Basically a Trusted Platform is a computing platform that makes use of a
trusted component. This trusted component is in the form of built-in hard-
ware and is the basis of trust for software processes. The security functions
of the security hardware in a Trusted Platform must be trusted. The hard-
ware is a root of trust and is able to measure both the hardware and the
software environment of a specific system. If the software is decided to be
trustworthy for some purpose, then all other security functions and software
can operate as normal processes. These roots of trust are the core TCG
capabilities.

13

There are all kind of interesting applications that can be realized with TCG
technology. One interesting application is that of distributed firewalls. On
a Trusted Platform a distributed firewall is significantly more powerful. An-
other application is rate limiting for the prevention of distributed denial of
service attacks (DDoS). There are a few papers that describe possible OS
architectures which support Trusted Computing. One of these architectures,
called Terra, will be briefly discussed in the next chapter.

1.4 Research

The introductory information given in this chapter is meant to familiarize
the reader with some basic concepts that will be further investigated and
used in the following chapters. In this thesis the emphasis lies on the end-to-
end communication between applications. The general problem definition
can be formulated as follows:

What are the benefits and drawbacks of using Trusted Computing in the im-
plementation of end-to-end application security?

From the information provided above, it can be concluded that Trusted
Computing may significantly improve platform security and guarantee spe-
cific properties of applications. Therefore it is very interesting to research
the possibilities of enhancing end-to-end application security using Trusted
Computing.

14

Chapter 2

Trusted Platforms and TCG
Technology

This chapter provides the reader with relevant information about Trusted
Platforms and TCG technology in order to create a basis of understanding
for the rest of the thesis. The first section is intended to give the reader
a summary of Trusted Platforms and their context. In the second section
some applications of Trusted Platforms (TPs) are brought together. The
last section describes a few relevant properties of Trusted Platform technol-
ogy in more detail. These properties are used further on in this research.

Much of the information given in this chapter is gained from the book
“Trusted Computing Platforms, TCPA Technology in Context” [Pea03].
This book presents an overview of the 1.0 specification which is a bit out of
date, as the 1.2 specification was already released in February 2005. How-
ever, the general ideas of Trusted Computing Platforms are still the same
and version 1.0 of the TCG specifications provides the basic building blocks
to design secure applications and services. For more comprehensive and
up-to-date information about Trusted Computing Platforms the reader is
referred to the official web site of the Trusted Computing Group (TCG)1.

2.1 An Overview of Trusted Platform Technology

This section introduces the reader to the concept of Trusted Platform tech-
nology. It describes the reasons for Trusted Platforms and what they can
provide. Trust is an important notion in the development of Trusted Plat-
forms and therefore a short discussion about its definition is given. After
that, a summarization of the main features of Trusted Platforms is presented.

1Web site can be found at http://www.trustedcomputinggroup.org

15

2.1.1 The Reasons for Trusted Platforms

A platform is a computing device like a PC, server or mobile phone that is ca-
pable of computing and communicating electronically with other platforms.
Nowadays computer platforms can be found everywhere and they are used
for electronic business and commerce. This means that information pro-
tection is becoming increasingly important, especially on client platforms.
Secure operating systems have been developed for server platforms but no
corresponding improvement has been realized for client platforms. The rea-
son for this is the ad hoc manner in which client platforms are developed,
the large number of them and the cost.

The flexibility and openness of PC platforms have created a remarkable busi-
ness growth and efforts to counter this flexibility and openness have proven
to be unsuccessful. People have always preferred convenience to security
and this makes confidence in client platforms (PCs in particular) even more
difficult.

There is no single company responsible for the design of the architecture
of all platforms. Most client platforms on the internet are PC-based and
the variety of hardware and software continues to increase. As businesses
increasingly rely on PCs and the internet in order to meet their objectives,
the trustworthiness of platforms and PCs becomes an increasingly impor-
tant issue. Furthermore, the same computer platforms are used for both
personal use and business which means that users must be able to store and
use sensitive data on their platforms.

Unfortunately a computing platform cannot be protected by using software
alone because of its inherent weaknesses. The amount of confidence a user
can get of the software largely depends on the correct installation and exe-
cution of it, which can be influenced by other software that is running on the
same platform. Malicious software can bypass the security mechanisms of an
OS and corrupt its behavior without the OS noticing anything. In general it
is not really difficult to find a particular change made to the software if it is
clear what to look for. However, conventional computing platforms do not
enable a remote user to check whether the platform is appropriate to store
and process sensitive information. It is certainly possible to identify a re-
mote user accessing a corporate network by using a Virtual Private Network
(VPN) gateway, however nothing can be said about the trustworthiness of
the remote machine.

Some security issues cannot be solved by software alone and therefore trusted
hardware is required as a basis for security mechanisms.

16

2.1.2 Limitations of Existing Security Technology

In the previous section it was stated that software alone is not enough to
protect a computing platform because of its inherent weaknesses. Although
this may be true, a few other important and more specific limitations of
existing security software should be discussed as well. Existing security
infrastructure includes the following technologies:

• Firewalls provide boundary protection for computer networks, but
when much traffic is going through them they can become a bottleneck
[RCR04]. Moreover, to add new functionalities and services it has
become normal to increase the number of ‘holes’ in firewalls through
which dynamic content and programs can be pushed. So there is the
choice to either prohibit the new traffic or to adapt the firewall to deal
with the new situation.

• Software security programs are available to provide a spectrum
of security functions. These programs may run in a cryptographic co-
processor or on the main platform processor. Software that runs on the
main platform processor assumes that it runs in a safe environment. So
confidence can be gained only if the software is installed and executed
properly. However, data that is stored can be exposed to malicious
programs and is therefore not safe.

• Cryptographic accelerators/co-processors are other types of se-
curity products. They are very good at creating a trusted environ-
ment. They may even be preferred over a Trusted Platform, because
the co-processor can do bulk encryption in a physically protected en-
vironment. However, the disadvantage is that this kind of specialized
hardware is too expensive and therefore cannot be used in all plat-
forms. Therefore it must be clear that ubiquitous platform security
cannot be based on conventional cryptographic co-processors.

• Other specific technologies can be used to increase the levels of
confidence in computing platforms. A large number of security proto-
cols (like IPsec) can be implemented in either hardware or software.
All these techniques are executed on the main CPU and therefore rely
upon the correct operations of the host computing platform.

This does certainly not mean that Trusted Computing technology will re-
place existing security technology. Both technologies can be combined to
realize new applications and to provide a higher level of security. Examples
of applications that use both existing security technology and Trusted Plat-
form technology are described in for example [GRB03], where Trusted Com-
puting technology is combined with SSL. A recently published book [Smi05]
treats various application case studies in which existing security technology

17

is merged with Trusted Computing technology. More information about this
will be presented later on in this thesis.

2.1.3 Definition of Trust

First if all it should be noticed that trust is a complex notion. With respect
to trust one usually thinks in terms of entity A trusting entity B for some-
thing. However due to a number of reasons it is a more complex notion than
expected. For example, trust is dynamic which means there exist differing
phases in a relationship such as building trust, ongoing trust and declining
trust. Further, trust levels vary in the degree and scope of trust: entities
trust (or do not trust) each other to fulfill specific tasks, rather than for
everything. At the same time, trust in certain areas can transfer to trust
more generally.

Trust can be categorized in terms of behavioral and social components.
These two different approaches help to get a better understanding of how
Trusted Platforms can improve trust.

• The behavioral definition of trust is about collecting evidence of be-
havior and providing evidence of behavior. The obtained information
is used to decide whether a platform can be trusted.

• The social definition of trust focuses on what it is to be trustable.
Social trust in a Trusted Platform is an expression of confidence in
behavioral trust, because it is an assurance about the implementation
and operation of the specific Trusted Platform.

�

Trusted Platforms Can I trust what you
claim to be true?

Will you behave
as I expect?

Are you a Trusted
Platform?

?

Figure 2.1: Questions addressed by TPs.

Trusted Platforms use social trust to get confidence in the mechanisms that
collect and provide evidence of behavior. They also use social trust to pro-
vide confidence that certain values of evidence represent a platform that is
in a “good” state. It should be noted that a platform itself cannot decide

18

whether it can be trusted because trust is dependant on how the platform
is to be used. So ultimately only a user can decide if the platform should be
trusted for the intended purpose. The platform must report the necessary
information to the user so that a decision can be made. Figure 2.1 shows
what kind of questions play a central role in obtaining trust.

2.1.4 Trusted Computing Group and the TCG Specification

The security issues described above are addressed by the Trusted Computing
Group (TCG), formerly known as the Trusted Computing Platform Alliance
(TCPA). This group is responsible for the design of the specifications for
computing platforms that can provide a basis of trust to software processes,
based on some hardware within the platform. The TCG specification is
independent of the type of platform. More information about the Trusted
Computing Group can be found on their official web site.

2.1.5 Definition of a Trusted Platform

A Trusted Platform is a computing platform with a trusted component. Cre-
ating a Trusted Platform out of a conventional platform requires TCG roots
of trust to be embedded in the platform, so that local and remote users can
trust the platform. These TCG roots of trust are realized by cost-effective
security hardware. The security functions that are enabled by this hardware
must be trusted as the hardware is the root of trust in the process that mea-
sures the platform’s hardware2 and software environment. The focus will be
on the software environment because knowing what the computing engine
is doing is of most importance. If the software environment turns out to
be trustworthy then all other security functions and software can operate
normally. These roots of trust are core TCG capabilities.

As can be observed in the figure 2.2, within each Trusted Platform there is
a Trusted (Platform) Subsystem which contains a Trusted Platform Module
(TPM), a Core Root of Trust for Measurement (CRTM), and support soft-
ware (the Trusted platform Support Service, TSS). The TPM is a hardware
chip that is separate from the CPU(s). During the boot process the CRTM
is the first piece of software that is allowed to run. The TSS is responsible
for all kind of functions that are necessary for communication with the rest
of the platform or other platforms. So called Certification Authorities (CAs)

2[HvD04] claims that TCG technology does not measure the hardware environment,
whereas [Pea03] claims that it can do both. This contradiction is the result of the fact
that at this stage the CRTM is part of the BIOS. However, the BIOS can be altered so
that the CRTM cannot be trusted anymore. Therefore future BIOS should have both a
writable and a read-only part. Then the CRTM can remain unaltered in the read-only
part of the BIOS.

19

are used to testify that the TP is genuine and are therefore very important
in gaining trust.

Trusted Platform Subsystem =
Trusted Platform Module + Core Root of Trust for Measurement +

Trusted platform Support Service

Trusted
Platform

(TP)
CRTM

TPM

TSS
Software

Certification Authority (CA)

Certifies TP, TP Design,
Identities and Components

TCG Specification

Specifies correct
operation

Figure 2.2: Trusted Computing Platform model.

In information security the Trusted Computing Base (TCB) is the set of
functions that is responsible for the security properties of a platform. With
respect to a Trusted Platform the TCB is the combination of a Trusted
Subsystem (mainly dealing with secrets) and some additional functions that
mainly deal with the use of those secrets, like bulk encryption. The Trusted
Subsystem first shows that it can be trusted and then it shows that the rest
of the TCB in the Trusted Platform can be trusted as well. Certifications
from trusted entities are used to vouch for the platform in all kind of con-
figurations.

Now that the Trusted Platform model has been described, some specific
trust mechanisms of Trusted Platforms can be introduced. In the following
subsections the characteristics of the most important ones are summarized.

2.1.6 Cryptographic Capabilities

Cryptography plays an important role in the realization of a Trusted Plat-
form. Therefore the cryptographic capabilities that are provided by the
TPM are listed below.

• Hashing (SHA-1) can be used on both data and secret keys and pro-

20

duces a fixed-size output. The use of SHA-1 is explained later on in
the thesis.

• Random number generation (RNG) is used for the security of many
cryptographic mechanisms. Examples are the primes in the RSA en-
cryption and digital signature schemes and the nonce (the concept of
a nonce will be explained later on in the thesis). In all these cases the
number that is generated must be of sufficient size and be random in
the sense that an adversary cannot construct the generated number.

• Asymmetric key generation (RSA) is used to create asymmetric key
pairs for asymmetric encryption/decryption.

• Asymmetric encryption/decryption (RSA) is used to wrap and unwrap
secrets because this gives better functionality than would be provided
by symmetric encryption/decryption. By using an asymmetric algo-
rithm, public key operations can be performed outside the TPM on
the CPU or at another platform, while the private keys are left inside
the TPM. If a symmetric algorithm would be used then both encryp-
tion and decryption must be performed in the TPM because the single
symmetric key has to remain secret.

Besides asymmetric encryption/decryption the TCG specification also re-
quires symmetric encryption/decryption (3DES) for purposes that are not
further described here. At the moment AES, 3DES’s replacement, is not
part of the TCG specifications, however in the future it may be required as
well. For more information the reader is referred to [Pea03].

2.1.7 Digital Signatures

On a Trusted Platform digital signatures are created by encrypting data
with the private key that is protected by the TPM. Digital signatures will
become more important as their legal status is increasing. Trusted Platforms
can support and enhance the use of digital signatures. The benefits that can
be achieved are listed below.

• A Trusted Platform can protect signature keys by using the TPM. It
never releases these keys outside the TPM. The Trusted Platform uses
these keys to digitally sign data that is submitted to the TPM.

• A Trusted Platform can improve the value of digital signatures by
adding integrity metrics that show the software state of the platform
when the data is signed.

• Depending on the implementation of the TPM, a Trusted Platform
can further improve the value of signatures to guarantee that what is
signed matches with what was seen by the signer.

21

2.1.8 Integrity Measurement and Report

A Trusted Platform executes a series of measurements that record the sum-
maries of software that has executed or is executing on the platform. This
is illustrated in the figure 2.3. There is a boot-strapping process where
Trusted Subsystem components measure each next component in the chain
and save the value in the TPM. This procedure enables the measurement
and record of a set of software instructions (binary code) before it is exe-
cuted. This means that malicious software is recorded and therefore cannot
hide. Cryptographic techniques are used to send the measurement to an
interested party without enabling a malicious party to change it in transit
(in most literature this principle is known as remote attestation).

TPMCRTM

Software
Component

Other Software
Components

Software
Component

Software
Component

Other Software
Component

Execution order,
building a chain of trust

�

Measures

Sends value

�

�

�

�

�

Measures

Measures

Measures

Measures

Sends value

Sends value

� �

� �

Sends value

Figure 2.3: The measurement process in a TP.

2.1.9 Creation of Trusted Identities

To prove that the measurements are reliable it is necessary to prove that
a platform is a genuine Trusted Platform. This proof is realized by cryp-
tographic attestation identities. Each identity is created on the individual
Trusted Platform, with attestation from a PKI Certification Authority. A
randomly generated asymmetric key and an arbitrary string that is used as
an identifier for the pseudonym (which can be chosen by the owner of the
platform) are part of each identity. In order to get an attestation from a CA,
the platform’s owner sends the CA information that shows that the identity
was created by a genuine Trusted Platform. This attestation process makes
use of signed certificates from the manufacturer of the platform and uses a
secret that is installed in the TPM. This secret is only known to the TPM

22

and is not released to other parties. Cryptographic attestation identities are
used so that these secrets do not have to be made public to arbitrary third
parties.

2.1.10 Privacy

Attestation identities provide a prove that they correspond to a Trusted
Platform. A specific identity always identifies the same platform. The Cer-
tification Authority (CA) is the only party that can track the origin of the
specific identity, which assures privacy. So an appropriate selection of CAs
enables the owner to control traceability from an attestation’s identity to
the certificates that attest to a specific TPM and a specific platform. It
is important to mention that identities can only be correlated with other
identities by the CA that certifies these identities and that the owner has
the choice of that CA. The owner is able to choose a CA that has the policy
not to correlate identities or to correlate the identities. Different purposes
can get different identities and separate identities are given to different users
of the Trusted Platform. However, platform privacy can still be at stake be-
cause of identification of platforms from for example MAC and IP addresses.

In [Arb02] it is claimed that Trusted Computing does not provide a rea-
sonable degree of privacy. According to this paper there are two major
problems with the approach described above: (1) if a user requests several
anonymous identities then the trusted third party can link all of the anony-
mous credentials to the user because they have complete knowledge of the
user’s identity and (2) if the trusted third party ever conspires with a true
name CA then it becomes easy to relate the user’s real identity with their
anonymous identities by matching public keys.

This claim should not be taken too seriously because there is no reason
to talk about Trusted Platforms if CAs cannot be trusted anymore. A
CA is an organization that vouches for an entity and verifies if a TP is
genuine. Therefore CAs are centrally involved in the manufacture and usage
of TPs. Furthermore the owner is able to choose a CA that does not correlate
identities. Nonetheless, there is definitely some truth in this claim because
preventing potential conspiracies between different parties is a serious issue
that has to be taken care of.

2.1.11 Protected Storage

A TPM can be seen as a secure portal to protected storage, however the
time to store and retrieve specific information can become large. The TPM
is intended for keys that encrypt files and messages, keys that sign data
and for authorization secrets. It is possible for a CPU to get a symmetric

23

TPM

Storage Root Key (Asymmetric Key)

Protects (Stored internally)

Arbitrary data

Asymmetric keys

TPM protected objects

�

Storage keys

Protects (Using encryption)

Protects (using encryption)

Storage key

Protects (using encryption)

Symmetric keySecret Data

Signature Key Secret Data

�
�� �

�

��

Figure 2.4: A storage hierarchy.

key from a TPM for bulk encryption or a CPU can send data to a TPM
and ask the TPM to sign that data. The TPM acts as a series of separate
operations on individual secrets. These operations together form a tree (hi-
erarchy) of TPM protected objects, each of which contains a secret that is
encrypted (wrapped) by the key above it in the hierarchy. It is important to
mention that the TPM itself does not know anything about this hierarchy
and only receives a series of commands from untrusted software that man-
ages the hierarchy. An example of a possible hierarchy is shown in figure 2.4.

An essential characteristic of Trusted Platforms is that an object that is
protected by a TPM can be sealed to a particular software state in a plat-
form. If the object is created the creator specifies the software state that
has to exist when the secret is to be revealed. If a TPM decrypts the TPM
protected object, the TPM first checks if the current software state equals
the stated software state. If they match, the TPM grants access to the secret
and if they do not match, the TPM denies access to the secret.

2.2 Applications of TCG Technology

Trusted Platform technology can provide the basic features that are required
for current applications. The protection of data and digital signing can be
achieved by using secrets that are protected by the TPM. In this section some
basic enhancements that are enabled by Trusted Computing are given first.
Then a brief description of Virtual Machine-Based Platforms for Trusted

24

Computing is presented. After that a few possible applications are shown
where Trusted Platforms promise to have significant impact.

2.2.1 Improvements Realized by Trusted Platforms

By providing improved methods of storing secrets and signing data Trusted
Platforms can attest that a specific secret is being used on a TP and they
can report the state of a TP. The enhancements that are enabled by TPs
are described below.

• Improved Protection of Secrets TCG technology provides a way
of encrypting that enables the caller to define the software environ-
ment that must be fulfilled in order to get the TPM decrypt a secret.
A decrypting software environment is described by defining values of
some or all so-called Platform Configuration Registers (PCRs) which
are saved with the secret. So when a TPM tries to retrieve the se-
cret, it first compares the saved PCR values with the current values of
those PCRs. Only if the stored and current PCR values match then
the TPM reveals the secret (in the case of data) or it uses the secret
(in the case of a key). This TCG feature can be used quite easily,
however the application should know how to use it.

• Improved Signatures TCG technology improves digital signatures
by (1) using keys that can prove they belong to a genuine TPM and (2)
incorporating the current value of some or all PCRs into the value of
the signature. Only specific data structures generated by the TPM are
signed directly by a TP identity key. Some structures that originate
outside the TPM, but are constructed by the TPM and thus cannot
be tampered with, are included as well. Examples of these kind of
structures are messages concerned with identity creation, signatures
that include PCR values and signatures that vouch for other keys. A
TP does not directly use its identity keys to sign homogenous data.
In fact, an identity key vouches for another TP key which then signs
the homogenous data. This mechanism is important as it prevents a
malicious party from signing data with the identity key. Otherwise
it would be impossible to distinguish between data generated by the
TPM and data that is generated outside the TPM.

• Improved Protection of Data on Remote Computers The afore-
mentioned improvements increase the confidence for the owner of data
that resides on a remote platform. So it is possible to store data on
a remote platform and to define the conditions under which the data
can be used.

25

2.2.2 Examples of Improved Conventional Services

Conventional services can be improved by using the storage and signature
mechanisms that TPs provide. A few scenarios are described below.

• Checking Client Integrity A server can ask client TPs for integrity
information and then use this information to check that unauthorized
modification has not been made to the client platforms. Figure 2.5
visualizes this process.

�

�

Server requests integrity
information

Client platforms return
integrity information

Server Client TPs

Figure 2.5: Integrity-checking.

• Authorized Network Connection A corporate server allows ser-
vices to be provided only to remote platforms that are TPs and that
can provide trustworthy information about the software that is in-
stalled on the platform. This makes it impossible that sensitive infor-
mation is sent to computers that cannot be trusted.

• Remote Attestation Trusted Platforms can be used in a Virtual Pri-
vate Network (VPN), so employees that are not at their home office
can check if an unknown platform is trustworthy before using it. So
employees can use an unknown TP at an arbitrary physical location
to work on company information. The employees insert a smart card
into the unknown platform. The smart card then asks the employer’s
server to challenge the unknown platform and to decide whether it
can be trustworthy. The server challenges the unknown platform af-
ter which the unknown platform responds by digitally signing and
sending its PCRs and other integrity information. The set of data
that is sent should be enough to show that a TP will not reveal sen-
sitive information to unapproved platforms. The server then checks
the identity signature and determines whether the integrity metrics
are acceptable. If the server decides that everything is well then the
server gives the smart card the TPM identity and PCR values of the
approved platform. So at the end the server sends sensitive informa-
tion to the approved platform and the approved platform will not use
the information in the wrong way.

26

For a comprehensive list of enhanced conventional services the reader is
referred to [Pea03].

2.2.3 Virtual Machine-Based Platforms for Trusted Com-
puting

It is claimed that the vision of Trusted Platforms cannot be achieved with
today’s operating systems because they offer poor assurance and implement
a security model that contradicts the one that is required for trusted com-
puting [GRB03]. Therefore [GRB03] and [GPC+03] outline the design of
implementing a new OS architecture based on the idea of a Trusted Virtual
Machine Monitor (TVMM). In this model traditional applications and OSes
can run side-by-side on the same platform in either an open box or closed
box execution model.

A Trusted Virtual Machine Monitor is a high-assurance virtual machine
monitor that splits up a single tamper-resistant, general-purpose platform
into multiple isolated virtual machines. Existing applications can run in a
standard virtual machine (open-box VM) which is quite similar to today’s
open platforms. Applications can run in closed-box virtual machines as well
so that the functionality of a dedicated closed platform is provided. The
TVMM is responsible for protecting the privacy and integrity of the content
of a closed-box VM. At the same time the TVMM can cryptographically
authenticate the running software to remote parties by attestation.

Closed-box VMs are completely isolated from the rest of the platform. Be-
cause of hardware memory protection and cryptographic protection of stor-
age, the content is protected from observing and tampering by the platform
owner or some malicious party.

A good example of an OS architecture that enables these kind of features
is Terra [GPC+03]. In figure 2.6 the TVMM isolates and protects the in-
dependent VMs. The two closed-box VMs that are shown in dark gray are
protected from eavesdropping and modification by anyone but the remote
party that supplied the box. The SETI@Home client is put in a closed-box
VM so that its server can verify that it has not been modified and claims
that it has run checks that it actually has not. The online game is in a
closed-box as well in order to deter cheating. The TVMM can identify the
contents of the closed box to remote parties so that they can gain trust
in the platform. In each VM another OS can be run. The management
VM is responsible for the configuration of how much storage and memory is
assigned to the VMs.

27

Attestation, Sealed Storage
 DeviceHardware Platform

TVMM

Management
VM

Email,
Web Apps

SETI@Home
Client

Online Game

Thin OS Commodity
OS

Thin OSCommodity
OS

Figure 2.6: Terra’s architecture.

2.2.4 Example Applications

There are several areas in which Trusted Platforms can have a significant im-
pact. The use of Trusted Platforms can have a big influence on the function-
ality of today’s client side technology. There will be no focus on applications
that are related to Digital Rights Management (DRM) of which the public
policy consequences have been discussed quite thoroughly [And03]. Some
interesting examples are presented in [GRB03] and are briefly described be-
low.

• Regulated Endpoints and Distributed Firewalls Conventional
firewalls assume that everyone on the inside of the network is trusted
and that everyone on the outside is untrusted. However, due to the
deployment of wireless access points, tunnels, VPNs and dial-ins the
distinction between the inside and the outside becomes more vague.
Because of increasingly dynamic network topologies, distributed fire-
walls simplify the task of implementing network security policies a lot.
By using a distributed firewall the security policy is defined centrally
and enforced at every endpoint of the network. This enables a larger
variety of policies and greater scalability than the conventional cen-
tralized firewalls [IKBS00].

On a normal host, distributed firewalls can help protecting a host from
others, but they are of little use for protecting others from the host:
it is impossible to tell if the host does not tamper with or bypass the
firewall. However, on a Trusted Platform a distributed firewall is a lot
more powerful because it can prevent packets that violate the central
security policy from ever reaching the network. A distributed firewall
can for example prevent port scanning and IP spoofing as the packets
will never reach the network. At the same time the distributed firewall
can make sure that all VMs on the machine have implemented the
connection rate limits properly. This means that distributed firewalls
on Trusted Platforms enable well-regulated endpoints for a all kind of
network types.

28

• Third-Party Computing It is increasingly common to borrow, lease
or donate computing resources. A nice example of this is the use of
donated cycles for massively parallel scientific and mathematical com-
putations by SETI@home. Another example, which is quite popular
at this moment in the United Kingdom, is the emerging field of grid
computing which allows heavy users of scientific computing resources
to pool and share their computing resources. The problem with this
third-party computing is trusting the machines that are doing the com-
putation to (1) produce the correct results and (2) keep the contents
of the computation secret. Trusted Platforms offer a solution to these
two problems by providing attestation. Using attestation, remote ma-
chines can show and prove that they are running the right executable
image. The results of the computation can be signed and encrypted
so that privacy and authenticity is guaranteed.

• Civil Liberties Protection Law enforcement increasingly needs the
use of network surveillance devices that can potentially violate civil
liberties. These kind of devices are certified not to exceed their legal
boundaries by getting together a select group of experts to review
their design. Unfortunately, there is no certainty that the system that
is reviewed by the experts is the one used in the field. Attestation
is the technique that makes it possible to verify if a system can be
trusted.

2.3 Key Components of Trusted Computing

This section focuses on some of the key components that are part of Trusted
Computing technology. They will be discussed in more detail as they will
be used later on to address the security issues of some application layer
protocols or to enhance specific security mechanisms. Each of the following
subsections scrutinizes a specific component. First, the concept of platform
configuration registers is explained, because they are a prerequisite for the
functioning of the other key components.

2.3.1 Platform Configuration Registers

An important part of a Trusted Platform are the platform configuration
registers (PCRs). They are used in all kind of trust mechanisms. The in-
tegrity metrics are stored in such a manner that misrepresentation of the
presented values or the sequence in which they were presented is prevented.
The PCRs are used to store summaries of integrity metrics. If values of in-
tegrity metrics would be individually stored and updates of integrity metrics
would have to be individually stored as well, then it is difficult to define an
upper bound on the size of memory that is necessary to store them. There

29

is an unknown number of integrity metrics that have to be measured in a
platform and an integrity measure can change at every moment so that a
new value has to be stored. The authentication of the source of measure-
ments of integrity metrics is practically impossible, and adding a new value
of an integrity metric should not overwrite an existing value. If this would
be possible then a malicious party can easily erase an existing value that
represents a subversion and replace it with a value that looks harmless.

The solution that is presented in the TCG specification is based on storing
sequences of integrity metrics instead of individual integrity metrics. So
values of integrity metrics are appended to a sequence of which the repre-
sentation has a fixed size. At power-up the states of all the sequences in
the TPM are set to a specific value. Then each new metric must change the
value of the sequence. The value of a new integrity metric is concatenated
with the existing value of the sequence. The digest of the concatenation will
then be the new representation of the sequence. The digests are saved in
the Platform Configuration Registers inside the TPM.

2.3.2 Integrity Recording and Reporting

Integrity measurement is one of the most important components of a Trusted
Platform. The host platform uses integrity measurements to provide pro-
tected storage: the disclose of secrets is only performed if the platform is in
the correct state. Third parties use integrity measurements to verify if the
target platform is in the correct state. A third party believes the measure-
ments because the platform signs the measurements with the TPM identity
which provides guarantee that the measurements are coming from a Trusted
Platform.

Integrity challenge and integrity response are the TCG processes that are
responsible for reporting the current hardware and software configuration of
a computing platform to local and remote challengers. Integrity verification
is the process of verifying that the configuration is the one that is desired.
So if some computing platform wants to know the state of the computing
environment inside a TP then there is a strong dependance on the values of
the integrity metrics. Therefore the integrity metrics should be reported by
a trusted mechanism which in this case is the TPM. The TPM creates a cer-
tain amount of trustworthiness by signing data using one of its identity keys.

A challenger, who wants to know the state of a target platform, creates a
nonce and sends an integrity challenge to the target platform. The TP does
not have to respond to the challenger, which depends on the policy of the
TP. If the TP decides to respond, the Trusted Platform Agent coordinates
the integrity response. The TPA sends the nonce to the TPM so that the

30

TPM signs the nonce and the current PCR values, using a TPM identity.
After that, the TPA gets the logs of the measured software from the Trusted
Platform Measurement Store and gets certificates from the relevant reposi-
tories. The TPA collects all this information and sends it to the challenger.
This is the integrity response.

The challenger must verify the integrity response in order to decide if the
target platform can be trusted. In practice, the challenger must investigate
the following aspects:

• The certificate that is signed by the Privacy CA that attests to the
TPM identity (to know whether the TPM identity is a genuine TPM
identity).

• The nonce signed by the TPM identity.

• The PCRs signed by the TPM identity.

• The PCR values and the certificate signed by the entities that vouch
for the platform (to determine whether the platform is in the expected
state).

The challenger then makes a decision whether there is enough reason to trust
the target platform and to interact with it. In most cases the challenger only
wants to know if the target has the correct identity, if it is running the right
OS with the latest security updates and if it has a virus checker that is using
the latest virus definitions. If the challenger wants to communicate with the
target platform then the platform should sign all information that it sends
to the challenger for the rest of the session. If the data would not have been
signed there is a chance of a man-in-the-middle attack. If a specific signing
command, which includes PCR values, is issued then a TPM identity signs
the information. Arbitrary data is signed by an ordinary signing key that
is certified by a TPM identity, because TCG does not allow TPM identities
to sign arbitrary data as there is a risk of forgery of special data structures
that are generated by the TPM and signed by TPM identity keys. It is
important to notice that there is a time interval between the beginning and
the end of a trusted transaction. The TCG specification tries to overcome
this problem by asking the integrity metrics both before and after the trans-
action, although this approach clearly does not really offer a satisfactory
solution.

Fine-Grained Remote Attestation In [SPvD05] an idea is proposed to
address two important problems that are inherent to the attestation tech-
nology described above:

31

• Due to the great diversity of software versions and configurations the
verification of the hash is quite difficult.

• The time-of-use and time-of-attestation discrepancy is still to be ad-
dressed, because the code may be correct at the time of attestation,
but it may be compromised by the time of use.

BIND, a fine-grained attestation service for secure distributed systems, promises
to deal with these issues. It offers the following properties to realize its aims:

• BIND accomplishes fine-grained attestation, by only attesting to the
part of the memory that is relevant. So instead of attesting to the
entire memory content. This makes verification a lot easier.

• BIND makes the gap between time-of-attestation and time-of-use a lot
smaller. It measures a piece of code directly before it is executed and
uses a sand-boxing mechanism to protect the execution of the attested
code.

• BIND ties the code attestation with the data that the code produces,
so that it can figure out what code has been run to generate that
data. Further, the verification of input data integrity is incorporated
into the attestation which enables a transitive integrity verification.
So by using one signature it is possible to vouch for the entire chain
of processes that performed transformations over a piece of data.

Semantic Remote Attestation In [HCF04] remote attestation is scru-
tinized and a another approach is chosen. The kind of attestation that
is proposed is called semantic remote attestation. It is claimed that the
kind of remote attestation, which is described in the TCG specifications, is
static, inexpressive and fundamentally incompatible with today’s heteroge-
neous distributed computing environments. Current techniques of remote
attestation do not really investigate program behavior as they only attest
to a specific binary. However, it is possible that an attested binary has bugs
and does not confirm to the security policy the server was expecting. At
the same time it is quite difficult to keep pace with the continuing release of
software patches and upgrades. Therefore a language-based virtual machine
is proposed to enable remote attestation of complex, dynamic and high-level
properties in a platform-independent way. This principle is known as seman-
tic remote attestation.

Semantic remote attestation uses a Java Virtual Machine to create a language-
based virtual machine (for the sake of clarity, a VM is not the same as a
VMM which was described earlier in this chapter) that executes platform-
independent code. The requests for remote attestation are now made to

32

the TrustedVM which enforces or checks the specific security policies on the
code that is run by the TrustedVM. See also figure 2.7 for an overview of
the top-level architecture.

Client with TrustedVM

Client
Application

Enforcer

Server

Attestation
Requester

Server
Application

��

�

�

�

TrustedVM
Attestation

Service

Figure 2.7: Architecture for dynamic checking in a TrustedVM.

Secure Boot Integrity measurements can be used in secure boot which is
about checking that a boot process is proceeding as expected. A secure boot
process checks if the values of the PCRs match with the expected values that
are stored in the data integrity register (DIR) and activates an exception-
handling routine if the values do not match. So a platform boots in a
predefined way or not at all. However, [HvD04] states that secure bootstrap
is not enough and that secure boot standards should verify the firmware of
all devices in the computer as well, so not just only devices that are acces-
sible by the host CPU. Therefore a simple extension to secure bootstrap is
proposed which prevents attacks on firmware by adding some extra func-
tionality to the devices so that they can prove their trustworthiness. Figure
2.8 shows that hashes of bootstrap code, operating system and applications
are stored in the PCRs which can be queried. For a more detailed descrip-
tion about PCRs and integrity measurement the reader is referred to [Pea03].

2.3.3 Protected Storage

Protected storage is a service to the platform in which the TPM is used as
a portal to confidential data that can be stored on all kind of unprotected
storage media. The service creates and uses TPM protected objects that
exist outside the TPM. The objects can be either data protected by the
TPM (TPM protected data objects) or TPM keys protected by the TPM
(TPM protected key objects). The protected storage service needs help
from the host platform software to manage those objects. The management

33

PCR[0]

PCR[11]

PCR[10]

PCR[9]

PCR[8]

PCR[7]

PCR[6]

PCR[4]

PCR[3]

PCR[2]

PCR[1]

PCR[5]

PCR[12]

PCR[13]

PCR[14]

PCR[15]

Operating System
Specific:

Device Drivers,
Application, etc.

BIOS

Hardware
Configuration

Option ROMS

Option ROM
Configuration

Boot Loader
Configuration

Boot Loader

Figure 2.8: Hashes of bootstrap code stored in PCRs.

process itself is not security sensitive and therefore the TCG specification
does not include this. The protected storage service can work without using
any integrity measurements, but complete functionality requires access to
the data that is stored in the PCRs. The values of these PCRs have to be
known in order to decide if the platform is in the right state and if access
should be granted to the secrets. Important points of interest for users are:

• Protected storage makes it possible to store signature keys in such a
way that the TPM can use them without exposing them to the host
platform.

• Bulk encryption keys or arbitrary authorization data can be stored in
such a way that cooperation of the TPM is needed to reveal them to
the host platform.

• Protected data can be stored in such a way that either permits duplica-
tion of the data by TCG features (which is under control of the owner
of the data) or prevents duplication of the data by TCG features.

• Protected data can be stored in such a way that prevents use of the
data if the platform is not in an expected state (this functionality
requires access to the data stored in the PCRs).

Cryptographic Protection The TPM uses cryptographic functions to
make sure that the TPM protected objects that are created by protected
storage have the necessary properties of confidentiality and integrity. The
focus here will not be on the cryptographic capabilities, for further informa-
tion on this topic the reader is referred to [Pea03].

To provide confidentiality of TPM objects asymmetric cryptography is used
instead of symmetric cryptography. One important reason for this is the fact

34

that some plain text originates outside the TPM and asymmetric cryptog-
raphy permits encryption of that data outside the TPM without revealing
the decryption secret. This can improve overall platform throughput as the
TPM becomes less of a bottleneck. At the same time it permits encryption
to be done at another platform. Unfortunately the drawback of using asym-
metric cryptography, compared to symmetric cryptography, is that it takes
a longer time to generate keys and perform encryption/decryption. Another
drawback is that the size of data in the TPM protected object is limited by
the size of the asymmetric key that is used to encrypt it. So the amount of
data that can encrypted by the TPM and stored as a TPM protected object
is limited. The Trusted Computing Group came with the idea to make all
Protected Storage structures fit in a single block.

The integrity of data objects should be checked as well. Usually integrity
checks are performed by checking the self-consistency of data. Protected
storage already has a built-in consistency check for decrypted data in the
form of the authorization check. A TPM protected object includes the
encrypted authorization data so that a comparison can be made with the
authorization data that is sent to the TPM to prove sufficient rights to use
the TPM object. The probability that there is an authorization match after
decryption of a corrupt TPM protected object is very small, because autho-
rization data is the size of an SHA-1 digest. So no other explicit integrity
check is required.

However, an explicit integrity check is certainly needed for every associated
plain text data, because all TPM protected objects correspond with plain
text data. At the same time all TPM protected key objects are associated
with the public part of that key and other descriptive information, whereas
all TPM protected data objects are associated with descriptive data. In
order to enable an integrity test of the plain text data that corresponds
with the TPM protected object, every TPM protected object contains a
digest of the associated plain text data. So if the authorization for the
TPM protected object is successful then the plain text integrity digest must
be correct and can then be used to check the integrity of the plain text data.

Migratable and Non-Migratable Migratable TPM protected objects can
be infinitely replicated by its owner and can be moved to another platform.
Non-migratable TPM objects however, are locked to one particular TPM
and never duplicated. As a result, migratable TPM key objects are allowed
to be created outside the TPM and are only protected by the TPM, but
they can also be created by the TPM itself. Non-migratable keys always
have to be created by the TPM. More detailed information can be found in
[Pea03].

35

Object hierarchy A TPM protected object that is stored outside a TPM
will not be lost or corrupted. A TPM protected object includes all kinds
of secret attributes of the key or data it is protecting, and it is associated
to plain text attributes that are not secret. All TPM objects are encrypted
by an encryption key. Such an encryption key is stored outside the TPM
as another TPM protected key object. The consequence of this is that a
set of TPM protected objects form a tree hierarchy, where each child TPM
protected object is encrypted by the encryption key in the parent TPM
protected object. The only encryption key that is stored in the TPM is
the storage root key (SRK). It is generated inside the TPM and is non-
migratable. The intermediate TPM object nodes in the tree are encryption
keys (storage keys) and they are used to decrypt child nodes. It is not very
wise to use the same key for both signing and encrypting, so a signature
key will never be used as a storage key and vice versa. Therefore a storage
key can exist anywhere in the tree, but a signature key will always be a
leaf key. Further, a migratable storage key will never be the parent of a
non-migratable TPM object, as this would result in a non-migratable ob-
ject being migratable. Of course a non-migratable node can be the parent
of a migratable node without any bad consequences. Figure 2.4, which was
already shown before, gives an example of a storage hierarchy.

Arbitrary data will be contained in a leaf TPM object node as the TPM
never uses arbitrary data as a key. The time that is required to access the
contents of a particular TPM protected object node depends on its position
in the tree. Only the SRK is always available as it is stored as plain text
inside the TPM. In order to get the content of some TPM protected object,
the management software outside the TPM has to look for a path from the
SRK to the target TPM object. First the SRK is “loaded” and used to
decrypt the child TPM key object which is next in the path to the target.
Then the key from that child object is used to decrypt the child TPM key
object that is the next in the path to the target. This process continues and
at the end target object is decrypted by the TPM and can be immediately
used. There are ways of decreasing the delay in accessing a node and this
can be read in [Pea03].

Sealing and Unsealing Keys and Data If arbitrary data or a key are
saved by protected storage it is possible to define the future software envi-
ronment that has to be satisfied before a TPM will release the data or key.
This adds some extra functionality to access control. The desired software
state is defined by the values of platform configuration registers (PCRs).

Sealing is the process of locking a secret to a certain software configuration.
So a TPM will not unseal the secret unless the platform is in the approved
software configuration. Both TPM data objects and TPM key objects can

36

be sealed to a specific software configuration. Two important advantages of
sealing data and keys are listed below.

• By directly sealing arbitrary data the use of that data is prevented
unless the platform is in the right software state.

• By sealing TPM signature keys a signature will not be performed un-
less the platform is in the right software state.

In figure 2.9 the sealing and unsealing is visualized [ELM+03a]. A secret S
is sealed and a program N is named that is allowed to access the secret. If
a program calls unseal then the secret is revealed only if the identity of the
requester is the same as the identity specified in the sealed data block. The
successful unseal requests are represented by dashed lines.

Program 1 Program 1 Program 1Program 2 Program 1Program 3

Seal Unseal

Unseal(blob)

Seal (S1, N1) Seal (S2, N2) Seal (S1, N1) Seal (S2, N2)

Seal (S1, N1) Seal (S2, N2)

Figure 2.9: Sealing and unsealing.

Authorization There are two authorization types related to objects in
protected storage. One proves rights to use the contents of the object and
the other proves rights to migrate the contents of the object. There are two
values used, so a protected storage object can be created and an entity can
get the right to use to object but it may not have the right to copy (migrate)
the object, for example.

37

Chapter 3

End-To-End Application
Properties

This chapter gives an introduction to application layer protocols and de-
scribes their fundamental properties from the perspective of end-to-end com-
munication between applications. Some security issues are briefly addressed
by Trusted Computing technology. Then an abstraction to application layer
protocols is proposed by providing a classification that tries to capture the
full spectrum of protocols. The obtained classification is of great importance
as it it will be used in the next chapter to address the involved security issues.

3.1 Introduction

The term “application layer” refers to the top layer of the Open Systems
Interconnection (OSI) model1 which is a layered abstract description for
communications and computer network protocol design. This model divides
the functions of protocols into seven layers of which each layer only uses
the services of the layer below and exports functionality to the layer above.
The lower layers are usually implemented in hardware and the higher ones
in software. This separation of seven layers makes it easier to discuss the
behavior of protocol stacks. The application layer interfaces directly to and
performs common application services for the application processes. It also
sends requests to the presentation layer. Furthermore, it is the application
layer that contains the protocols used by applications to exchange data.

In the beginning application layer protocols were quite simple. Basically, a
program on one host that wants to connect to a program on another host
is able to communicate by the transfer of simple textual commands. Figure
3.1 visualizes the messages that are required to send an e-mail message from

1The OSI model is described in ISO 7498.

38

Mail

Client

Mail

Server

HELO

250 (=OK)

MAIL FROM (specify sender)

250 (=OK)

RCPT TO (specify recipient)

250 (=OK)

DATA

354 (Send Text)

.... Message Header and Text ...

. (End of Text)

250 (=OK)

�

�

�

�

�

�

�

�

�

�

�

Figure 3.1: Message interactions in SMTP.

a client to a server, using the SMTP protocol. An e-mail is transmitted
by sending a few lines of text back and forward between the client and the
server.

Some widely-known application layer protocols are those that are used for
the exchange of user information like HTTP which is used to transfer files
that form the web pages of the World Wide Web, FTP which is used for
interactive file transfer, SMTP which is used for the transfer of mail messages
and attachments, and Telnet which is used for logging on to network hosts
remotely. There are other application layer protocols that help facilitate
the use and management of TCP/IP networks like DNS which is used to
resolve a host name to an IP address and RIP which is a routing protocol
that routers use to exchange routing information on an IP internetwork.

3.2 Architecture

There can be several processes at different computers that communicate
with each other. The term architecture refers to the way applications are
organized into different modules and how these modules communicate. Fig-
ure 3.2 shows a very simple architecture where a few clients communicate
with one server. The server is usually responsible for a database. The pro-
tocol is a client-server protocol.

A more complex architecture that is used for example to transfer email and
Usenet News can be observed in figure 3.3. There are two types of connec-
tions to be distinguished: (1) connections between a user agent and a service
agent and (2) connections between two service agents. Because of the na-
ture of these connections the protocols are different. In the case of email
the protocol used for sending email (from a user agent to a service agent)

39

Server

Database

Client ClientClient

Figure 3.2: Simple client-server architecture.

is another one than the one used for receiving email (from a service agent
to a user agent). The boxes are labelled “user agent” and “service agent”
instead of just “client” and “server” because a service agent can be both a
client and a server, depending on who opens the connection and requests
the service.

Service Agent Service Agent

Service Agent

User Agent User Agent User Agent

1

2 2
2

1 1

Figure 3.3: Architecture with interconnected servers.

3.3 Transfer of Responsibility

The interaction between a client and a server may include a number of in-
teractions that are sent back and forward. An example of a common type
of interaction is the transfer of responsibility. This transfer of responsibility
can for example be found in email where a store-and-forward technique is
used. The original sender sends the email to the local mail server which is
closest to the original sender. On its turn the local mail server forwards the
email to the local mail server which is closest to the final recipient. Finally,
this local mail server delivers the email to the final recipient. It is very
important that an email is forwarded in such a manner that it does not get
lost in transit. At each moment a computer can crash or the connection
between two computers can get lost. Therefore each agent stores the email
in non-volatile memory so that it can always be retrieved, for example af-
ter a reboot. This implies that there is a certain transfer of responsibility

40

between the consecutive agents, see also figure 3.4. In chapter 5 Trusted
Computing technology is used to enhance the storage of emails in such a
chain of responsibility.

Original
Sender

Transfer
 Agent

Transfer
Agent

Final
Recipient

Figure 3.4: Store-and-forward of email.

3.4 Identification

Another part of the interaction is the identification between two agents. For
example, assume that the server wants to tell its name to the client so that
the client knows for sure that the servers is who it claims to be. This can
be realized by using certificates. Knowledge about the identity of the other
party may help to gain trust, however one could ask the question what as-
surance the client has that the server, even with that identity, is actually
providing that service.

For example, assume that Bob is shopping for a video graphics card and he
finds the cheapest price at an online merchant he has never heard of. Then
SSL assures him that his transaction cannot be eavesdropped and it also
provides Bob with the name of the merchant. However, what Bob really
wants to know is if he can trust the merchant to carry out the transaction
and if his credit card number is kept secret. Just the name of the merchant
does not tell him this. This kind of security issue is addressed by Trusted
Computing technology. In [Smi05] a way is proposed to solve this problem
by:

• binding a server’s SSL private key not only to the server, but also to
the application which the server says it provides.

• putting the binding beyond the reach of anyone, so that even the
operator of the server cannot manipulate the data.

This can be achieved by “connecting” the server end of the tunnel to the
advertised application and placing both in a Trusted Computing Platform
at the server site. The application then creates the SSL key pair and asks
the Trusted Computing Platform to prove to a standard SSL CA that the
Trusted Computing Platform binds the public key to the application at the
server. The CA then issues a special kind of certificate that indicates the

41

binding. However, the approach discussed in [Smi05] does not discuss the
trustworthiness of the application itself.

In the example above, Bob wants to be sure that the shopping software used
by the online merchant only does what it is expected to do. This assurance
can only be gained if the shopping software is acquired from and attested by
the official party which releases that software. Then the official party can
attest to the software and transmit a certificate to the online merchant. Bob
is able to trust the software as the certificate vouches for its trustworthiness.

3.5 Intermediaries

In some cases the communication between two agents is passed through in-
termediary computers like proxies, gateways and tunnels. A proxy is a server
that caches data which means that requests from a client can be directly
taken care of by the proxy. Proxies are also used for all kind of regulatory or
security reasons. These kind of regulating proxies are also known as firewalls.

Firewalls can block inbound or outbound traffic. Personal firewalls are only
effective at blocking incoming traffic. Once a policy has been set up to block
outbound traffic, the policy can be altered if a Trojan horse or malicious user
is able to gain access to the firewall policy file. For example, in Microsoft
Windows it is possible for any process to execute arbitrary code in the con-
text of another process. However, this is only the case if both processes are
running in the same user context2. For example, a Trojan horse running
in the context of the logged on user can execute code as Internet Explorer.
Personal firewalls that block outbound connections based on program iden-
tity fail because of this reason.

All of these attacks rely on weaknesses that are solved by Trusted Com-
puting. In Trusted Computing, it would be impossible for a Trojan horse
or malicious user to alter the firewall policy, because it is protected under
sealed storage. Even a kernel vulnerability would not bypass the access
controls. Only a vulnerability in the personal firewall process itself would
be sufficient to alter the policy. Secondly, it is possible to run the firewall
process in curtained memory, and a Trojan horse could not run code in an-
other processes memory space.

In [GRB03] it is said as well that a proxy or firewall is significantly more
powerful on a Trusted Platform as it can prevent packets from ever reaching
the network in the first place. This is completely in agreement with the
discussion above: a personal firewall based on Trusted Computing can be

2See also http://www.windowsecurity.com

42

effective at blocking both inbound and outbound connections. Therefore it
can block attacks at the source, before the attack ever reaches the target.

3.6 Old Versus New Protocols

Many different types of computers can communicate in a network by using
protocols. However when an upgrade to a protocol is required then all
computers need to be upgraded as well. With standard protocols like HTTP
and SMTP there are millions of agents that have to be upgraded and this
would be practically impossible. If different companies develop the various
agents it will be even more difficult as some companies want to support other
features than other companies. It is possible to design protocols that can be
quite easily extended in the future. Unfortunately, many internet standards
only have a few features to add extensions and this forced developers of newer
versions to use less tidy solutions. There are some methods to overcome this
problem. Two of these are described below.

• Version Number Method By using the version number method the
communication between a client and a server starts with exchanging
version numbers. After this, both agents are assumed to adhere to
the lowest version any of them use. This means that an agent should
support both the new protocol and many or all older versions, which
may be used by the other agents.

• Feature Selection Method By using the future selection method the
communication starts with the server and client listing which features
they support. After this, the communication continues and only the
features are used that are supported by both agents. An advantage
of this method is that an agent can choose which features it wants
to support and still co-work with another agent that supports other
features.

Trusted Platforms provide a mechanism called attestation, which enables
remote machines to prove that they are running the expected software. As
stated before, the Trusted Computing Group specifies coarse-grained attes-
tation: the attestation is performed over the entire software platform. By
using fine-grained attestation hash verification is simplified, which means
that software upgrades can be performed more easily because the expected
hash for each process can be updated independently [SPvD05]. Especially
when protocols are frequently updated fine-grained attestation is definitely
preferred.

43

3.7 Security Issues

There are many security issues related to application layer protocols. Var-
ious web servers, mail servers and other internet service software contain
bugs that let remote users do things that are harmful. For example remote
users can gain control of the machine and can do whatever they want. The
exposure to these kind of threats can be minimized by running only the nec-
essary software and getting the latest patches, and using software that has
a good reputation. However there remain many security issues that cannot
be easily dealt with. Firewalls are often used to deal with these kind of issues.

In the beginning of this chapter the OSI model and its layers were described.
Conceptually, there exist three types of firewalls: (1) Network Layer, (2) Ap-
plication Layer and (3) Hybrids [RCR04]. However, they are not as different
as one may think: in today’s firewalls they are combined and therefore it is
no longer clear if either one is better or worse. An important thing to notice
is that the lower-level the forwarding mechanism, the less examination the
firewall can perform. In general, lower-level firewalls are faster, but they are
easier to fool into doing things that are wrong.

The focus here will be on application layer firewalls which are hosts run-
ning proxy servers that do not permit direct traffic between networks and
perform logging and auditing of traffic that is going through them. These
proxy applications are software components that run on the firewall and are
application specific which means that only recognized protocols can be ex-
amined. The examination techniques used in proxies are anomaly detection
and attack signature detection.

In anomaly detection these proxies examine application layer protocols for
anomalies and their failure to conform with standards. For example, proto-
col anomaly detection can recognize HTTP packets with fields that contain
more bytes than the standard specifies, which probably indicates of a buffer
overflow attack. The drawback of the protocol anomaly detection is that
protocols may be slightly differently implemented by each application devel-
oper. The consequence is that an anomaly detector may alert in the case of
a harmless difference between the two implementations. In attack signature
detection the incoming packets are investigated to check if there are specific
code strings that represent a known attack.

In figure 3.5 an application layer firewall, called a dual homed gateway is
depicted. A dual homed gateway is a highly secure host that runs proxy
software. It has two network interfaces, one on each network, and blocks all
traffic that passes through it.

44

Internet
Protected
Network

IP routing/forwarding
disabled

Figure 3.5: Dual Homed Gateway.

Firewalls that incorporate encryption, which protects traffic passing between
them over the internet, are increasingly used. If these firewalls provide end-
to-end encryption then organizations with multiple points of internet con-
nectivity do not have to worry about their data or passwords being stolen.

Because proxies must have knowledge about the application layer protocol
being used, they can also implement protocol specific security. For example
an FTP proxy may be configurable so that incoming FTP is permitted and
outgoing FTP is blocked. A disadvantage is that proxy servers are applica-
tion specific: in order to support a new protocol, a proxy must be specially
developed for it.

It is difficult and practically impossible to distinguish between all possible
application layer protocols. Therefore a higher level approach must be cho-
sen to cover all protocols without having to deal with the protocols one by
one.

3.8 Classification of Application Layer Protocols

A somewhat higher level approach to application layer protocols can be re-
alized by adopting another perspective. From the level of application layer
firewalls it is all about what the actual protocol messages look like. How-
ever one can also look at how information is shared and disseminated in
end-to-end communication between applications. This perspective allows
an abstraction from the application layer protocols and makes it easier to
look at security issues from a more general point of view.

The classification outlined below is inspired by the Domain Based Security
Model described in [Goh03]. This carefully designed model helps a defence-
related organization to estimate security issues at different levels of detail.
The classification gives an abstraction from the protocols without focusing
on implementation issues, as these are constantly subject to change. Fur-
thermore, it enables an interesting perspective on end-to-end application

45

security issues that will be discussed in the next chapter.

• Message connection is a connection where messages are sent from
one place to another. Transfer from a member of one domain to a
member of another is realized through the explicit action of the former
sending the message. An important characteristic of this class is that
information is received without any explicit request. An advantage of
this type of connection is that if the recipient is temporarily off line
data will be delivered later on when the recipient is available again.
Application layer protocols like SMTP and POP are designed to be
used in the message connection class.

• Shared data repository connection is a connection where a per-
son from a particular domain publishes data so that others can view
and possibly change it. This principle is also known as the pub-
lish/subscribe method, see figure 3.6. In contrast to the previous class
the information is explicitly requested beforehand. A disadvantage is
that if the recipient is temporarily off line data will get lost, whereas
it would be stored in the previous class. The following subclasses are
contained in this class.

�

�

� Shared Data
repository

Publish

�Subscribe

�

Figure 3.6: Publish/subscribe mechanism.

1. Filestore connection is a traditional way of file sharing where
a hierarchy of files and file containers are involved. The structure
enables tight control over the sharing of data. An application
layer protocol like FTP is designed to be used in the filestore
connection class.

2. Web connection is a connection where data is shared by pub-
lishing on a web server. The advantage is that more flexible
structures can be created with unlimited cross-references. How-
ever, the control over the sharing of data is difficult to achieve.
An application layer protocol like HTTP is designed to be used
in the web connection class.

3. Database connection is a connection where data from an ap-
plication specific database is shared to people who have access
to the database. Data can only be requested by sending queries
which must be in accordance with the security requirements in

46

order to retrieve the requested data. The advantage is that the
database structures are well defined. However, the obvious disad-
vantage is that detailed security requirements have to be adapted
to the specific applications.

• Conferencing connection is a connection that allows people to in-
teract in a real-time manner and passes large quantities of data in
a publish/subscribe model similar to a repository. Although it gives
people the real-time advantage it is really difficult to control the in-
formation that is sent. The protocols that are contained in this class
are based on a peer-to-peer model. Video-conferencing is an instance
of this class and it is unlikely that many checks can be made on the
data as there is a requirement to view it in real-time and slow downs
are not acceptable. Other examples are VoIP and whiteboarding and
the same counts for them.

It should be noted that a specific application layer protocol may not ex-
clusively belong to only one class or subclass. For example, SOAP can
belong to both the message connection class and the shared data repository
class. This is due to the fact that SOAP can deliver data in two different
ways: (1) SOAP can deliver data in the form of a message when the re-
cipient is temporarily unavailable or (2) SOAP can deliver data by pushing
it (publish/subscribe principle) towards the recipient when the recipient is
available.

The obtained classification enables an interesting perspective on security
issues, without focusing on the individual application layer protocols. The
nature of the classification ensures that it will be valid for a long time, even
when the protocols have undergone some changes or when new protocols are
invented. The following chapter will address the involved security issues.

47

Chapter 4

Classification and Security
Issues

In the previous chapter a classification of application layer protocols was pre-
sented which makes it easier to look at security issues from the perspective
of end-to-end application security. The classification looks at how informa-
tion is shared and disseminated between end hosts, without focusing on the
individual application layer protocols. The underlying mechanisms used by
application layer protocols to achieve end-to-end communication are not of
importance. This approach is completely in agreement with the OSI model
described earlier.

Each of the following sections describes the security requirements for the
classes contained in the classification. The sections also provide some brief
discussion on how Trusted Computing can be used to address the various
security requirements. A more detailed and technical approach can be found
in the next chapter where some concrete scenarios will be investigated. That
chapter will also clarify which benefits and drawbacks can be encountered
in using Trusted Computing in end-to-end application security.

4.1 Message Connection

In the message connection class the transfer from a member of one domain
to a member of another is realized through the explicit action of the former
sending the message. The fact that messages are received without an ex-
plicit request is an important feature of this class. A consequence of this is
that hosts might be flooded by unsolicited messages and therefore cannot
provide their services anymore. Messages that cannot be directly delivered
to the recipient are usually stored in non-volatile memory which creates the
risk of an adversary gaining access to the messages. In this section these
kind of security issues are further discussed. They are also briefly addressed

48

by the trust mechanisms provided by Trusted Platforms.

Denial of Service Attacks and Rate Limiting A denial of service at-
tack is realized by the explicit attempt of a hacker to prevent legitimate
users of a service from using that service. Hackers usually try to flood a
network in order to prevent legitimate network traffic. In order to tackle
denial of service attacks it is important to invent a mechanism that deals
with flooding. By rate limiting the amount of messages that can be sent
from one host to another the roots of the problem are directly addressed.

Messages can be stamped by a rate limiter and then sent into the network
at most once every time period. It is important that the rate limiter is
run as an isolated process and that all messages are first delivered to the
rate limiter. The rate limiter will then decide whether the message will be
stamped or not. The receiving host(s) can discard any incoming messages
that are not stamped or invalid. There already exist Trusted Computing
technologies like LT1 that support isolated processes and therefore enable
the implementation of a design like the one described here. In the next chap-
ter a more detailed design is presented which addresses the problem of spam.

At present, one of the best known methods to realize rate limiting is using
client puzzles [DN93]. The client is forced to do some costly computation
for every request that is made. The Trusted Computing solution presented
above provides a few important advantages over client puzzles: (1) there are
no resources wasted in order to stamp messages (which is quite relevant on
mobile devices where computing client puzzles can cause a significant power
drain) and (2) users do not have to wait for messages to be stamped and
(3) client puzzles vary a lot in their impact because of the type of platform
(processor, memory speed, etc.).

Protected Storage of Messages A characteristic of the message connec-
tion class is that if the recipient is temporarily unavailable, data will be
delivered another time when the recipient is available again. This feature is
only possible if data that cannot be directly delivered is temporarily stored
in non-volatile memory.

In the previous chapter the concept of transfer of responsibility was men-
tioned which is based on the store-and-forward principle. Current mes-
sage infrastructure provides no means to verify the integrity and security
of server machines, so an adversary may read or modify the content of a

1LaGrande Technology contains a set of hardware enhancements that will be part of
Intel processors, chipsets and platforms. The capabilities of LT include protected execution
and memory spaces, sealed storage, protected input, protected graphics and attestation.
More detailed information can be found at http://www.intel.com.

49

message stored on disk. Trusted Computing, however, can protect messages
by using a mechanism like protected storage. A big advantage of protected
storage is that data can be stored in such a way that prevents disclosure of
the data if the platform is not in the expected state. In the next chapter a
more detailed design is presented which addresses the problem of protected
storage of email messages.

Digital Signatures Digital signatures can be used to digitally sign mes-
sages so that both tampering and impersonation of messages can be pre-
vented. As already mentioned before, Trusted Computing can enhance and
support digital signatures. A couple of security issues involved in using
digital signatures are listed below.

• Normally, it is possible that somebody can steal the signature key from
a computer. A Trusted Platform however, can protect signature keys
by using the TPM. It never releases these keys outside the TPM and
uses these keys to digitally sign data that is submitted to the TPM.

• There are some issues with sending the public key to another computer.
If Bob sends his public key to Alice, then there is the risk of a man-in-
the-middle attack. The directory service2 needs to be trusted. Trusted
Computing may help to bootstrap such a service, but it does not solve
the problem by itself. This issue is left for future research.

• There are some legitimate security concerns with sending genuinely
anonymous mail. Just forging a return address will always leave some
clues about the origin of the email. A Trusted Platform can improve
the value of a digital signature by adding integrity metrics that show
the software state of the platform when the data is signed. So by
looking at the particular software state of the sender, the recipient
can decide if it should trust the signature. This feature increases the
confidence in a signature. In [Pea03] it is claimed that, because TP
identities can be pseudonymous, Trusted Computing provides a high
level of confidence in the signature while simultaneously increasing the
anonymity.

This advantage can be used to create a user group identity without
disclosing the true identities of the specific users contained in that
group. Imagine a group of employees who have to complete an online
poll which asks them to rate the performance of their colleagues. In-
formation like this is of course privacy-sensitive and in order to obtain

2A directory service belongs to a CA and provides the public keys of the certificate
holders. This service makes it possible that anyone has access to these keys and can use
them for the secure communication with they key holder.

50

honest opinions the employer should guarantee their anonymity. Be-
cause of anonymous TP identities, the employer can be sure that the
poll has been completed by its employees and the employees can be
sure that their true identity has not been revealed.

4.2 Shared Data Repository Connection

In the shared data repository connection a person from a particular domain
publishes data so that others can view and possibly change it. In contrast
to the message connection class, information is explicitly requested before-
hand. This means that a client has to establish a connection to a server and
usually has to authenticate itself in order to request specific information.

Client Authentication Basically, client authentication can be seen as the
process in which a server checks the identity of a client before it allows access
to its data. The server wants to get assurance that a client platform is who
it says it is and that it can be trusted. Of course there exist various ways
of client authentication, however these will not be discussed here. Instead,
there will be a general discussion on how Trusted Computing can provide a
more secure authentication process.

By changing standard client platforms into Trusted Platforms, client au-
thentication can be improved. The Trusted Platforms all have a unique
TPM identity key which is bound to the platform. If this identity key is
later presented to the server, then the server can be sure that the client is
who it says it is, regardless of the origin of the connection. Furthermore the
server can be sure that it is talking to a Trusted Platform. No machine in
which a TPM identity key is installed can be impersonated, as copying of
TPM identities is practically impossible.

Machine identification alone is often not enough. For example assume that
a client machine is known to be part of the internal network of a company.
If the user on that client machine wants to have access to the shared data
resources on a per-employee basis, then machine authentication must be
extended with user authentication. In an internal network, machine iden-
tification is not always required (as all computers in the internal network
can sometimes be trusted) and only reliable user identification is needed in
order to provide access control.

User identification is another problem than machine identification, but it
can also be improved by using Trusted Platforms [Pea03]. User authenti-
cation can be delegated to the client platform, instead of to a centralized
server. This delegation can be performed if it is known that the software

51

environment on that platform will perform proper user authentication. This
assurance can be gained if for example an IT department administers the
platform or by checking the software state of the platform and identifying
that the platform is a genuine Trusted Platform. Verification of the software
state can provide confidence that the platform can be trusted to perform
user authentication locally. So the role of the server is just to check that
a correctly identified machine is trying to access a resource and that this
machine provides credentials for the use of this resource. This approach also
reduces the complexity of the distribution of user credentials.

As a result, Trusted Platforms can improve client authentication and access
control by improving confidence in the authentication process and by sim-
plifying user credentials management.

4.2.1 Filestore Connection

In a filestore connection the way of file sharing and the structure of the
hierarchy of files and file containers enables tight control over the sharing
of data. The principle of access control was already mentioned once above.
The filestore connection is probably most suitable for the implementation of
enhanced access control using Trusted Computing.

Access Control Trusted Computing can enhance access control in ways
that have not been possible before. First some general introduction to ac-
cess control is presented below. Then a brief discussion on how Trusted
Computing can provide enhanced access control is given.

Basically, access control is a method of restricting access to resources by
allowing only privileged entities. Access control mechanisms may work, but
past experience has shown that access control can be easily overcome. Most
of the time access control is nothing more than an attribute for a set of data.
If the managing software (the OS or an application) respects the attribute,
then the access control mechanism is secure. However, when another OS or
application tries to access the data, then the access control mechanism does
no longer provide protection. It is claimed that improvements in access con-
trol mechanisms do not improve the level of security, so another technology
is required. The solution to this problem is encryption and is considered as
the ultimate level of data protection. The things that are required are the
keys that are used for encryption and decryption. The only security issue is
the proper handling of the keys so that a malicious party is not able to get
access to these keys.

Trusted Computing provides a way of keeping these keys at a safe place: the

52

keys are protected by the protected storage key hierarchy (the root of this
hierarchy is the Storage Root Key which does not leave the TPM). Another
mechanism that can be used to enhance access control is protected storage.
Secrets can be sealed to a particular operating system or to a platform
configuration. This means that data can be stored in a way that prevents
use of the data unless the platform is in the expected state. In the next
chapter enhanced access control is discussed in a lot more detail.

4.2.2 Web Connection

In a web connection data is shared by publishing it on a web server. At
present, the web is often used in information services. Basically, a client
(that is, the browser) sends a request to a remote server, which then re-
sponds with data. Without any security measures, the exchange of infor-
mation takes place in plain text which results in data getting exposed to
potential adversaries. Another security issue is that the browser user can-
not be sure whether a connection has been established to the intended server,
or whether the adversary (by performing some DNS attack for example) is
impersonating the other end [Smi05]. The secure sockets layer (SSL) is nor-
mally used to address these security risks.

Web Security A problem with using SSL to solve the “web security prob-
lem” is that it only protects the traffic between the browser and the server
and in the standard instantiation it only authenticates the server identity.
As already mentioned in chapter 2 there are still some security issues to be
addressed:

• What happens to the data if it arrives at the server?

• What assurance does the client have that the server with that specific
identity is actually providing that service?

In chapter 2 a way to solve this problem was described. In [Smi05] a trusted
co-server is proposed, which is basically formed by the Trusted Platform
combined with the application that has to be attested. The result is that an
authenticated and secret shelter for the particular application is provided.
The client, server and maybe even other stakeholders can then trust this
shelter for maintaining a high level of security. The use of a trusted co-
server enables many possibilities in the field of web applications. Below,
a couple of interesting applications of a trusted co-server are described to
give some idea of how hardened web servers can be realized using Trusted
Computing. The following examples are taken from [Smi05].

Integrity of Server At present there is no way for the client to check the
integrity and site security of a server. For example, a server may run on a

53

machine where a hardened operating system is run and/or other good secu-
rity practises are performed. The question here is how a client can get to
know this.

This problem can be solved by using a trusted co-server which can witness
that the appropriate security tool or secure boot was actually applied to
the host. The tool may have been applied from the trusted co-server itself
or from a companion trusted machine. In this way the client can trust all
kind of assertions it receives through the SSL-authenticated communication
channel between the trusted co-server and the client.

Privacy of Sensitive Web Activity Currently there are no ways for a
server operator to deny that he is monitoring all client activity. In the same
way the operator cannot deny that an adversary who comprised his machine
is monitoring this data.

In order to solve this problem for the data retrieval case, the trusted co-
server can implement a variation of a RAM algorithm which treats encrypted
storage in the server’s file system as the “RAM”. By making use of an SSL-
protected channel, the client can send a request to the trusted co-server
which then retrieves the record via the algorithm, re-encrypts it, and returns
it to the client. In this way, the server operator will not notice anything (it
only sees ciphertext) except the fact that a query has been made.

Non-repudiation of Client Authentication Without the public key in-
frastructure (PKI) web users are forced to authenticate themselves by using
a username and password. However, a user can never know the integrity
of the server to which it sends the authenticators to. This implies that an
adversary or a malicious server operator can impersonate the user at this
site and at all other site where that user can use its authenticators. This
also prevents legitimate server operators from being able to judge if it really
was a particular client which opened a particular session.

This problem can be addressed by using a trusted co-server that can retain
the password and authenticate the client. After a successful authentication
it can send a signed receipt to the server with which the client wants to have
a session.

Safety of Downloadable Content Currently there are no ways for the
client to make sure that an executable content downloaded from a server is
safe. Safety depends on the clients running the latest anti-virus software.
Unfortunately, most people do not take this issue seriously and are therefore
at risk.

54

This problem may be solved by moving the anti-virus software (and the
problem of maintaining the latest updates of virus signatures) to the server.
The trusted co-server could run the anti-virus software with the latest signa-
tures. This can be done either dynamically, as the co-server is transferring
data back to the client or offline. In this latter case the trusted co-server
would check that it had indeed scanned this data before. In this way, clients
can trust that downloaded content via the SSL-authenticated channel from
the trusted co-server has been scanned. This process has to be optimized
of course, otherwise the anti-virus software might ask too many resources of
the TCP.

4.2.3 Database Connection

In general a database connection uses a non-standard protocol that is spe-
cific to the database software in use. For example, MySQL, which is quite
a well-known DBMS, uses an extremely simple protocol. It sends the SQL
statement to the DBMS in a network packet and returns the results in a
comma separated format3.

A database typically uses access controls that can restrict the tables and
columns that a specific user can access and whether they can read, update
or create new entries or database structures.

The security requirements for a database connection are somewhat more
complicated than the filestore or web connection. Databases are mostly
used to store large quantities of sensitive information and each class of user
should have a different view of that data. Often, a lot of information can
be collected indirectly. For example, if a database tells a user that a record
does not exist, they may be able to infer information from the database even
if they do not have access rights to it.

It is difficult to implement databases by using isolation countermeasures like
compartmented operating systems (mandatory access controls) like SELinux
or Trusted Solaris. Typically the DBMS must have access to the entire data-
base in order to perform global searches. A vulnerability in the DBMS then
gives the attacker access to the entire database. The same problem occurs
using virtualisation, where you might want to put a public database in one
operating system, and a more sensitive database in another.

Most of the time it is necessary to restrict queries to prevent a malicious
party from downloading the entire database. For example, imagine an online
dictionary. The web site may allow users to query on particular words. The

3See also http://dev.mysql.com

55

owners of the dictionary are happy to do this because a human user will
only query on particular words. Now, imagine a competitor of the online
dictionary that wants to steal the online dictionary. The competitor can
write a program that queries every word, at a rate of several thousand
per minute, and will then be able to download the entire dictionary. One
way to prevent this kind of attack is to rate limit queries from a particular
connection. The same kind of approach, described in denial of service attacks
and rate limiting above, can be taken to limit the amount of queries that
are sent into the network.

4.3 Conferencing Connection

A conferencing connection allows people to interact in a real-time manner.
As said before it gives people the real-time advantage but it is really difficult
to control the information that is sent. For example, a video connection
passes large quantities of data in a publish/subscribe model similar to a
repository. It is unlikely that many checks can be made on the data as there
is a requirement to view it in real-time and slow downs are not acceptable.

There has already been done considerable work in secure routing and net-
work connections in a peer-to-peer model. However, in this thesis the focus
is on the end-to-end communication between platforms. Since each stream
can be encrypted by the initial platform, the security problem in the in-
termediate nodes will be be ignored. So the main security concern lies on
the end platforms. An important requirement is the real-time protection for
video-conferencing and whiteboarding, for example.

In recent peer-to-peer VoIP applications like Skype, audio streams are routed
and delivered to the recipient by making use of active peers, which is a simi-
lar mechanism as that in traditional peer-to-peer file sharing systems4. The
main difference is that in the case of Skype it is people (userIDs) instead of
files that are searched and after a successful search a real-time communica-
tion is started rather than a file transfer.

Besides the security considerations in routing and network connections, the
real-time protection of audio data in a platform is a new issue. Real-time
protection prevents a malicious party from eavesdropping or illegally record-
ing a conversation. In general, an audio stream is encrypted so that inter-
mediate nodes cannot have access to the data. To ensure that in an end
platform an audio stream is not illegally accessed by other applications or
processes, the initiator of the conversation needs to verify the integrity and
state of the platform, including the peer-to-peer client application and the

4See also http://www.skype.com

56

audio output channel between the sound card and the VoIP application.

Trusted Computing can be used to enforce these kind of security policies on
a platform. There are already existing Trusted Computing technologies like
LT (LaGrande Technology) that enable curtained memory space, process
isolation and secure channels between processes [SZ05]. There should also
be a trusted path between an application and audio, video and I/O channels.
For example, the channel from an application to an audio card and driver
should be protected so that no other process can read or change the content.
This feature can also be realized by a Trusted Computing technology like
LT.

57

Chapter 5

Trusted Computing Applied

In the preceding chapter the application of Trusted Computing to the clas-
sification of application layer protocols was discussed. The approach was
quite general and can be used in the future as it does not focus on the
individual protocols themselves. However, the information provided in the
previous chapter was still quite abstract.

Therefore it is time to get more concrete and to investigate the possibility of
applying Trusted Computing to the architecture of some distributed applica-
tion components. There are four candidates that will be scrutinized: FTP,
whiteboarding, SMTP, and web cookies. The first section introduces an
access control architecture on which the enhancements of FTP and white-
boarding are based. An important feature of FTP, called access control,
will be discussed in the light of Trusted Computing. Then the end-to-end
communication of a whiteboarding session is discussed. In another section,
several aspects of SMTP that can be enhanced by Trusted Computing are
examined. At the end, the privacy and security issues of web cookies are
investigated.

5.1 Architecture for Access Control Using Trusted
Computing

Basically, access control is a method of restricting access to resources by
allowing only privileged entities. There exist two interesting papers about
access control and Trusted Computing: [SZ05] and [SJZvD04]. Both pa-
pers describe access control architectures and mechanisms based on Trusted
Computing. In this thesis the architecture proposed in [SZ05] is chosen
as the flexibility it provides for distributed computing systems is relatively
higher. Below, the new requirements of the security model and architecture
are listed.

58

• Change of Trust Relation Traditionally, sensitive objects and pol-
icy enforcements are located on the server-side and a client usually
trusts a server. Once the information is released to the client there
is no further control. However, in a many of today’s circumstances a
server needs to trust the client as well with respect to both the plat-
form and the user authentication. The server here distributes objects
to other platforms.

• Location of Policy Enforcement An important requirement of the
security architecture proposed here is that the security policies are
enforced on the client platforms. The policy enforcement depends on
the trust between the two platforms.

• Trust of Platform and Application In many traditional security
systems (like mandatory access control) security policies mostly con-
sider the properties of subjects and objects. However the integrity and
state of the platform and running software is not taken into account.
In modern open systems mechanisms to guarantee their integrity are
required.

• Trusted User Authentication and Authorization in Client
Platform Subject authentication is necessary to enforce a security
policy. In traditional security systems, a centralized server usually
provides authentication mechanisms. However, in distributed and de-
centralized systems, a particular object or policy owner has to trust
that the valid user is authenticated and authorized in a client platform
before he is allowed to access a protected object.

• Trusted Path from User to Applications and Vice Versa Spoof-
ing and man-in-the-middle eavesdropping or modification attacks are
a few possible software attacks. Trusted path technology can help
guarantee that input from the user to the application software (and
vice versa) is not tampered with.

By using the mechanisms provided by Trusted Computing, [SZ05] claims
that an architecture can be realized to support these kind of security re-
quirements.

5.1.1 A Platform with Trusted Reference Monitor

The platform contains trusted components like a TPM, a secure kernel, and
a trusted reference monitor (TRM) in user space of the operating system, see
also figure 5.1. The hardware works together with the kernel and provides
the important functions to the TRM from basic cryptography functions to
platform and program attestation, sealed storage for sensitive data, and

59

protected running environment. The sensitive data of the TRM includes
the secrets and policies. A secret can be an encryption key for an object,
which is originally from the object owner and distributed to the platform.
A policy is made by the object owner and controls the access to this object
in this platform. A policy specifies the integrity state of an application on a
genuine platform where the object can be accessed. The security attributes
that belong to a subject may also be specified in a policy, like a security
clearance or a role name. Secrets and policies are sealed by a TRM so that
they can only be read in a valid integrity state. This guarantees that the
policies are well enforced by the TRM and that the secrets are not revealed
outside the TRM. The policy enforcement is realized by attestation, which
will be explained later on.

Application 1

Secure Kernel

Trusted
Hardware TPM

Secure
Channel

�

Hardware

OS Kernel Space

OS User Space

protected runtime
environment

Sealed Storage

Trusted Reference
Monitor

�

�

Application 2

�

Figure 5.1: The platform architecture.

A relevant security requirement is the integrity and confidentiality of the
protected runtime environment for every application, including the TRM.
This involves two aspects: first, the memory space of an application must
be private, so that it cannot be accessed by other applications, this also
accounts for devices with direct memory access (DMA) capabilities. This
means that an application which is able to access an object cannot release
it to other applications without the explicit opening of a secure channel.
Secondly, the communication between applications must be protected by
secure channels which are only available to the corresponding applications.
There are already existing Trusted Computing technologies like LT which
provide curtained memory space, process isolation and secure channels be-
tween processes.

A trusted path between an application an graphics and I/O channels is an-
other important security requirement. For example, the channel from an
application to the graphic card and driver should be protected so that no
other process can have access to the data. At the same time inputs from a
keyboard and a mouse have to be protected as well and Trusted Computing

60

technologies like LT support these functions.

The secure kernel’s function is to separate execution between upper layer
applications and related services like TCG Core Services (TCS) and TCG
Service Providers (TSP), for more information on this the reader is referred
to [SZ05].

Credentials The set of credentials and the corresponding certificate au-
thorities presumed are listed below.

• TPM attestation identity key (AIK) pair PKTPM.AIK , SKTPM.AIK .
The AIK is created by a TPM and used to sign PCR values and to
present to a challenger in an attestation protocol, or to sign a public
key of an application running in the platform for authenticity. The
private part of an AIK is protected by the TPM by the storage root
key (SRK) and the public key certificate is issued ba a trusted third
party such as a privacy CA. The TRM can have a number of AIKs
with certificates from different CAs.

• TRM asymmetric key pair PKTRM , SKTRM . Every TRM has this key
pair for signature and encryption. The private key is protected by the
TPM in the platform so that only the TPM on the platform is able to
make use of it (this is realized by checking the integrity value). The
public key is in the form of a certificate signed by an AIK of the TPM.

• Application asymmetric key pair PKAPP , SKAPP . This is similar to
the TRM, each application has an asymmetric key pair. The private
key is protected by the TPM and the public key is in the form of a
certificate signed by an AIK of the platform.

• TPM storage key(s) to protect TRM’s credential and other sensitive
data with sealed storage, like secrets and policies. This key has to be
either the SRK of a TPM or a key protected by the SRK.

Primitive Functions of a TRM By using the capabilities of a TPM, a
TRM has the following primitive functions.

• TRM.Seal(H(TRM), x). This function seals data x by a TRM which
has integrity measurement of H(TRM). The x can only be unsealed
under this TRM when the corresponding PCR value is H(TRM). The
actual key that is used in the sealed storage is a TPM storage key.

• TRM.UnSeal(H(TRM), x). This function unseals x provided H(TRM)
was the value that was used to seal x.

• TRM.GenerateKey(k). This function generates a secret key k.

61

• TRM.Attest(H(TRM), PKTRM) = {H(TRM) | PKTRM}SKTPM.AIK
.

This function generates an attestation response by returning a certifi-
cate of the TRM’s public key concatenated with its integrity value,
signed with an AIK private key of the TPM.

5.1.2 Architecture

In order to control access to an object in a client platform, first the the
policy and the object encryption secret have to be generated and distributed.
Figure 5.2 shows the case where a server (Alice’s platform) attests a client
(Bob’s platform) and distributes policies and secrets to the client platform.
The general process is listed below.

1. The TRM of Bob’s platform issues an access request message to the
TRM of Alice’s platform in the case it has not requested this object
before. This request may originally be from an application APPB in
Bob’s platform: Bob causes APPB to access OBJ. The integrity mea-
surement H(APPB) signed by one AIK of the TPM in Bob’s platform
may be included in this message, which can be available to the TRM
by an attestation challenge in the same platform. At the same time,
an object identity OBJ ID may be included in this message.

2. The TRM of Alice’s platform checks the integrity of the requesting
application. If Alice trusts APPB to enforce some basic policy (for
example, APPB will not change an object or save in it in plain text
to persistent storage) as well as additional object-specific policies that
Alice can specify, then Alice’s TRM sends an attestation challenge to
Bob’s TRM.

3. Bob’s TRM executes the TRM.Attest(H(TRM), PKTRM) function,
which returns a certificate of Bob’s TRM running hash and its public
key, signed by the private key of his platform’s AIK and sends it back
it Alice.

4. Alice checks the attestation. If Alice trusts the platform (which means
that the platform has a genuine TPM and trusted booting) and the
running hash of the TRM, then Alice’s TRM creates a secret key kOBJ ,
encrypts this key together with the policy information using the public
key of Bob’s TRM, and sends it to Bob’s platform.

In order to ensure confidentiality of the policy and secret, the TRM in Bob’s
platform seals the items with its own integrity measurement value. Secrets
and policy information never leave the TRM. The TPM forms an application
domain, which is isolated from other application domains and communica-
tion between these domains is encrypted.

62

Secrets that are created by a server platform and sent to a client platform
are used to encrypt protected objects during distribution. For example, Al-
ice encrypts the target OBJ with kOBJ and distributes it to Bob’s platform.
An object can be distributed together with a policy or without. Because
it is encrypted and the key is only available to a TRM, the security of the
object is maintained during distribution.

APP

Secure Kernel

Trusted
Hardware TPM

�

Hardware

OS Kernel Space

OS User Space

Sealed Storage

Trusted Reference
Monitor

Secure Kernel

Trusted
Hardware TPMHardware

OS Kernel Space

OS User Space

Trusted Reference
Monitor

Access request

Attest challenge

Attest response
Policy and secrets

� �

��

�

��

�

�

Request {OBJ_ID | H(APPB)}SKTPMB.AIK

Verify H(APPB)
Attest challenge

Attest response: {H(B.TRM) | PKB.TRM}SKTPMB.AIK

Verify attestation
Generate object encryption key kOBJ

Seal kOBJ
{kOBJ | policy }PKB.TRM

Seal kOBJ and policy

1

2

3

4

Figure 5.2: Architecture for client-side policy enforcement.

An essential property of secrets and policies is migratability. A migratable
object can be re-distributed from a platform to another platform while a
non-migratable object cannot be re-distributed. Another option is whether
the key is kept or deleted on the original platform after a distribution. The
implication of deleting a key after a migration is that the object is only
accessible in a single platform at any time. The application and policies
are responsible of determining and specifying these options. Fine-grained
policies can be designed to specify complex situations, such as Alice can
re-distribute an object to Bob, who cannot re-distribute it to others.

Policy Enforcement When a secret and a policy are distributed, a subject
on the client platform can issue an access request by invoking an application
or process. Then the TRM in the platform verifies the application’s integrity
state based on the policy information of a policy when an access to OBJ is
generated from an application APPB in Bob’s platform. This procedure is
presented in a high-level description below.

1. APPB sends the request view OBJ to the TRM, with the object en-
crypted by the secret key kOBJ which is distributed from the object
owner.

63

2. The TRM then sends an attestation challenge to APPB.

3. APPB responds with its running integrity measurement (which con-
sists of one or more PCR values) and its public key signed by the
TPM’s AIK.

4. The TRM compares the integrity measurement with a list of expected
values according to the policy. If APPB can be trusted, the TRM
creates a session key ks and encrypts it with the public key of APPB

and then sends it to APPB. At the same time, the TRM unseals kOBJ

and decrypts OBJ with kOBJ and encrypts OBJ with ks and finally
sends this back to APPB. If necessary, the TRM updates the policy,
for example to update a usage count, see also figure 5.3.

APPB

Secure Kernel

Trusted
Hardware TPMHardware

OS Kernel Space

OS User Space

Sealed Storage

Trusted Reference
Monitor

1

2

3

4

APPB TRM
View request: {OBJ}kOBJ

Attest challenge

Attest response: {H(APPB) | PKAPPB}SKTPM.AIK

Verify attestation
Generate session key ks

{ks}PKAPPB,{OBJ}ks

Update object attribute:
viewTimes = viewTimes -1

Figure 5.3: Policy enforcement in a client platform.

5.1.3 Policy

A policy is created by an object owner, distributed to a client platform, and
enforced by the TRM in that platform. In general a policy is sealed in a
TRM and it can be logically assumed that each object is related to a specific
policy.

Basically, a policy specifies under which conditions a subject can access a
specific object. In reality the condition consists out of one or more platform
configurations. A platform configuration consists of a trusted platform at-
testation identity name (which is represented by an AIK certificate) and an
application’s integrity measurement with expected properties. A policy can

64

specify that a specific property of the accessing application must be satis-
fied. For example, an application is not allowed to save an object in plain
text to any persistent storage. This can be certified by a trusted third party.

Figure 5.4 shows an example of a policy specified in XML. The “migratable”
attribute with boolean value of the <policy> entry defines whether this pol-
icy can be migrated to another platform or not. A <subject> entry specifies
the attributes that are needed for the accessing subject, like an identity cer-
tificate and a role name. Multiple <subject> entries may be part of a policy,
all of which have to be satisfied in an access. A <right> entry can have some
parameters, such as, an object can be viewed 5 times (viewTimes attribute
with value 5). A <condition> with type TP defines a platform environment,
including a running applications state, such as version, integrity hash, and
a conformance certificate. A conformance certificate is issued by the vendor
of the application software and certifies a set of properties of the software.

More complex policies can be specified according to the requirements of
the object owner. For example, if a policy is migratable, then the possible
platforms that a policy may be migrated to can be defined in the policy.

5.1.4 Policies and User Attributes

Till so far the architecture describes access control that is based on the prop-
erties of platforms and applications only. An object owner may also want to
control by which user an object can be accessed. Generally, a user is asso-
ciated with one or more security attributes, like a role name or a clearance
level. Figure 5.4 shows that a subject type is an attribute name, such as
“role” and the value is a role name. User-based access control policies are
enabled by extending the architecture described above.

A user identity can be imported into a platform if there is a User Agent
(UA) in each platform. A UA can be both an independent service or a com-
ponent of a service that manages user authentication and identities. Like a
TRM, a UA in a platform has a key pair PKUA, SKUA. Each user has at
least one identity key pair PKu, SKu, which is a migratable object protected
by a TPM and encrypted with the UA’s credential in the protected object
hierarchy of the TPM. A migratable key can be generated by the local TPM
or some other platform and can be securely migrated from one platform to
another platform with the authorization of the key owner.

Identity and Role Certificates In principle a user can be certified by a
trusted party just like a platform attestation identity key is certified by the
pivacy CA. A user receives a role as well, which is also done in the form of
a certificate by a role server. A role certificate is based on a user’s identity

65

and contains the role name. The mechanisms to obtain a user’s identity and
a user’s role certificate are not described here but can be read in [SZ05].

<?xml version="1.0" encoding="UTF-8"?> <policyns
xmlns="http://www.example.com/tc-policy"
owner="example.com" filename="mypolicy">
<policy migratable="false">
 <object_id type="object_type">object_ID</object_id>
 <subject type="cert"> Bob </subject>
 <subject type="role"> employee </subject>
 <right name="view">
 <param name="viewTimes" value=10/>
 </right>
 <condition type="TP">
 <platform_id> Bob_office </platform_id>
 <environment>
 <title> APP_B</title>
 <version> 1.0</version>
 <integrity alg="sha1"> 0x487A3D... </integrity>
 <certificate> 0xA48ED...<certificate>
 </environment>
 </condition>
</policy>

Figure 5.4: An example of a policy.

Role-Based Policy Enforcement in a TRM In order to enforce a role-
based policy in a platform, a TRM starts with sending an attestation chal-
lenge to the UA in the local platform after which the UA responds with
attestation information. If the TRM decides to trust the running UA, it
sends a request for role information of the user that invokes an application
to access an object, which is issued either by a role server or migrated from
another platform. The UA sends back the role certificate of the user.

Migration of User Credentials The idea of an identity of a user is quite
close to that of the attestation identity of a TPM. An attestation identity
key is flagged as non-migratable when it is created, because it has to be
tightly bound to a single platform. In general, a user should be able to
access a number of platforms, such as a desktop at home and a laptop in
the company. This implies that a user identity key is a migratable object,
and can be copied from one platform to another under the authorization
of the user. The identity owner can define the restrictions on the set of
the destination platforms that an identity key can be migrated to. Trusted
Computing enables the copying of a migratable key object protected by a
TPM to another TPM. Figure 5.5 shows a way of copying a user identity
from the source platform to the destination platform directly. However, this
requires that both platforms are available at the same time. In reality in-
termediary entities are possibly needed and this is also supported by TPM
specifications [Pea03]. The migration process is listed below.

1. The UA of platform 1 (source) sends an attestation challenge to the

66

UA of platform 2 (destination).

2. The UA of platform 2 responds to the attestation challenge with the
corresponding PCR value and its public key, signed with the AIK of
the TPM in platform 2.

3. The UA of platform 1 checks the attestation. If platform 2 and its UA
are trusted, then the UA of platform 1 unseals the identity key and
encrypts it with the public key of the UA in platform 2 and sends it
back to platform 2.

4. The UA in platform 2 decrypts the received identity key and seals it
with a storage key of the local TPM.

User
Agent

Trusted Reference
Monitor

Secure Kernel

Trusted
Hardware TPM

User
Agent

Trusted Reference
Monitor

Secure Kernel

Trusted
Hardware TPM

�

Platform 1 Platform 2

�

�

�

Attest challenge

Attest response: {H(UA2), PKUA2}SKTPM2.AIK

{SKu}PKUA2

Verify attestation
Unwrap SKu

Wrap SKu

Figure 5.5: User identity migration.

5.2 FTP and Access Control

FTP, the File Transfer Protocol, is one of oldest application layer protocols
which is still in widespread use. It was designed in a time when computers
could trust each other and security attacks were quite rare. An important
security drawback of FTP is that is does not encrypt the username and
password of the client, which may make the account vulnerable to an unau-
thorized attack from a person or eavesdropping. Therefore FTP is usually
not recommended, except for anonymous FTP. The secure alternatives for
FTP are Secure Copy (SCP) and Secure FTP (SFTP) which do provide
encryption.

67

Anonymous Login In contrast to FTP, SFTP does not directly provide
anonymous login because a username and password are required to access
the server. It must be noted that providing anonymous access may not be
a security advantage because then it is difficult to perform accounting and
audit: it is impossible to tell the difference between several users logged in
under the anonymous account. However, Trusted Computing may be used to
allow users to be anonymous so that the server does not know their personal
identity or name, but still can tell the difference between several anonymous
logged on users. The TCG specification provides “pseudonymous authenti-
cation” technology that addresses this issue. A user can use a TPM identity
to present credentials to the server that show that the platform is unique
which gives protection against spoofing. Furthermore, the credentials show
that the platform is reliable as they include the platform state. This is all
realized without disclosing anything that can be related to the specific user.

Is is also possible to implement anonymous access in SFTP by adding a
guest account and then sharing the username and password with several
users. This is basically how anonymous FTP works, except the username
is fairly standardized: it is usually “anonymous” with an email address as
password.

Enhanced Access Control All file transfer protocols mentioned above
are based on a traditional architecture where sensitive objects and policy
enforcements are located on the server. The following text, which is an ex-
cerpt from RFC 959, explains what is understood by access control in FTP:

“Access controls define users’ access privileges to the use of a system, and
to the files in that system. Access controls are necessary to prevent unautho-
rized or accidental use of files. It is the prerogative of a server-FTP process
to invoke access controls.”

This statement clarifies that access control in FTP does not deal with unau-
thorized or accidental use of files when the files are not under the supervision
of the FTP server anymore. So, once a client downloads objects from an
FTP server, the information is released to the client and there is no further
control.

However, due to recent and emerging technologies like Trusted Computing,
an FTP server is able to trust the client with respect to both the platform
and the authentication. It would be a considerable improvement if the object
owner knows for sure that the security policies are enforced on all platforms
the object is distributed to. In this section the access control architecture
described above is used to realize an enhanced form of access control.

68

It is important to notice that in the approach chosen here, the access control
policy is not sent separately but is sent together with the specific object it
is related to. The access control policy and the corresponding object are
contained in a single object. This single object can then be encrypted and
decrypted by the TRM. The reason for this solution is that the access control
policy and the object of interest would otherwise have to be stored at two
different places in the system. This means that when a client requests an
object, the FTP server has to know where to find the corresponding access
control policy and this would add needless extra complexity.

The control over the dissemination of data is a fundamental problem in
access control. By using the trusted access control architecture described
above a policy like “Alice downloads OBJ from Bob’s FTP server after
which it can be viewed 5 times” (P1) can be formulated. This policy can
be further extended by including user role attributes, like “Alice downloads
OBJ from Bob’s FTP server after which it can be viewed 5 times only by
the employees of the Alice’s company” (P2). Under certain circumstances
objects must be moved to other platforms (platform roaming) and then a
policy could look like “Alice downloads OBJ from Bob’s FTP and it can be
viewed 5 times on the office desktop and laptop” (P3). These three policies
are further discussed below.

Simple Policy Policy P1 is platform-based only and can be enforced by
using the basic architecture shown in figure 5.2 with the policy that is spec-
ified in figure 5.4, although there is no <subject> field. The parameter
viewTimes is created for <right> to indicate the available times that the
object can be viewed on the specific platform. The TRM of Alice’s platform
updates the value of viewTimes each time an authorized access is performed.
The policy here is non-migratable because Alice is not allowed to distribute
the object to other platforms.

Role Included in Policy Policy P2 also contains a role attribute of a
user, so that every employee in the company can view the document on
Bob’s platform. The policy is identical to the policy shown in figure 5.4,
although there is only a single <subject> entry with type “role” and value
“employee”. Again, the policy is non-migratable because Alice is not al-
lowed to distribute the document to other platforms.

Accessability From Different Platforms Sometimes a user must be able
to access an object from different platforms (platform roaming). Ideally,
both platforms are available at the same time and the object can be trans-
ferred by direct migration of the key and policy from one platform to the
other when both of them are migratable. This can be realized in the same
manner as is done in identity migration, explained before. However, in most

69

cases two platforms will usually not be available at the same time and there-
fore one or more intermediaries may be used like a centralized online service
[SZ05]. An online policy service component can be introduced in order to
support platform roaming. The object owner first has to trust the compo-
nent to store and update policies.

It is a problem when the consistency of possible policy updates in different
platforms for a single object has to be maintained. Policy P3 says that
Alice can view the object at two platforms with a total usage of 5 times.
So if Alice reads the object once on her desktop in the office by migrating
the policy and secret from her laptop, the policy should be updated, which
concretely means that viewTimes is decreased by one. When Alice wants to
view OBJ again on the laptop, the policy should be synchronized in order to
count the access in the desktop. This can be solved by performing a policy
migration each time a platform roaming happens. A second solution is an
online trusted policy service component on which each update is performed.

The given examples are all one-step user-to-user transfers of objects. How-
ever, the chosen architecture also supports multi-step transfer control by
defining all permitted steps in the policy. For example, assume that Alice
downloads OBJ from Bob and Bob allows Alice to distribute OBJ to Char-
lie (Alice can either upload the object to Charlie or Charlie can download
the object from Alice). Then Bob must place both Alice’s and Charlie’s
information (platform, running environment and user attributes) in the pol-
icy, after which Alice can download the object and policy. The TRM in
Alice’s platform can enforce the policy by verifying Charlie’s platform and
user attributes if there are any requests. Also in this case a trusted online
policy component can be an option to enforce multi-step transfer control.

5.3 Whiteboarding and Trusted Computing

A whiteboarding connection allows clients to make changes to each other’s
screens in a peer-to-peer model. For example a user can draw a diagram on
his screen and it would automatically appear on everyone else’s screen. In
contrast to a video connection which can be implemented over a one-way
device (as there is no need for control signals to flow in the opposite direc-
tion other than possible acknowledgement packets for quality of service, but
these could be omitted) a whiteboarding session has to allow two-way data
exchange. Unfortunately, not much information can be found about proto-
cols used in whiteboarding and therefore a more general approach is taken
which is based on the model of end-to-end communication in a peer-to-peer
connection, described in [SZ05].

70

There has been done a considerable amount of work in secure routing and
network connections in peer-to-peer. If the encryption of the stream gener-
ated by the initial platform is assumed, the security problem in the inter-
mediate nodes can be ignored. Therefore, the main security concerns lie on
the end platforms. An important requirement is the real-time protection of
a whiteboarding connection in a platform.

A real-time protection demands that the streams in a platform are not eaves-
dropped or illegally recorded by other processing during the whiteboarding
session. Besides process isolation in runtime space, another requirement for
whiteboarding is the secure channel between the client application and the
video card driver. The TRM has to secure the communication between the
client application and video card so that a possible compromise is prevented.
Trusted Computing technologies such as LT (LaGrande Technology) make
it possible to establish a trusted channel between an application and input
or output devices. Figure 5.6 shows the architecture of an end-to-end white-
boarding session.

Whiteboarding
Client Application

User
Agent

Trusted Reference
Monitor

Driver

Video Card

Secure Kernel

Trusted
Hardware TPM

Secure
Channel

Whiteboarding
Client Application

User
Agent

Trusted Reference
Monitor

Driver

Video Card

Secure Kernel

Trusted
Hardware TPM

Secure
Channel

�

�

�

�

�

�

Alice Bob

�

�

Figure 5.6: Secure whiteboarding architecture.

The distribution of the whiteboarding stream encryption key and policy be-
tween the TRMs is identical to the policy and secret distribution described in
the access control architecture discussed above. Furthermore, the integrity
of the loaded video card driver is also attested and checked by the TRM
in the sender’s (Alice) platform. Mutual attestation may be required if the
receiver (Bob) needs to trust the sender’s platform and application because
a whiteboarding connection is bidirectional. In this section a one-way flow
will be discussed only. In the sender’s platform, the whiteboarding client
application accepts video streams from the video card by using a secure
channel with the video card driver. After the video stream is encrypted by
the TRM with the object encryption key kOBJ , it is sent to the receiver’s
side. Bob’s client application receives the encrypted stream and sends it to
the TRM for decryption and finally sends it to the video card through the
secure channel. In [SZ05] the policy enforcement in the receiver’s platform is

71

discussed in quite some detail. A similar kind of policy enforcement is now
described in the context of a whiteboarding client application. The various
steps of the policy enforcement in the receiver’s platform are shown in figure
5.7 and explained below.

1. The TRM challenges the whiteboarding client application and receives
the attestation response.

2. If the integrity verification turns out to be valid according to the spec-
ified policy, the TRM creates a secret key ks and sends it to the client
application.

3. The TRM challenges the video card driver and receives an attestation
response.

4. If the integrity verification turns out to be valid according to the speci-
fied policy, the TRM sends the secret ks to the video card driver. Then
the client application and video card driver both poses the secret key
ks which will be used to encrypt the stream between them.

5. If any subject information is specified in the policy, the TRM sends
an attestation challenge to the User Agent together with the expected
information of the user that calls the whiteboarding client application.

6. The User Agent sends an attestation response and the related authen-
tication information (which are attributes) of the user back. If the
TRM decides to trust the User Agent and the user attributes are in
accordance with the specified policy then the whiteboarding session is
authorized and the client application can start receiving and sending
streams.

7. If the client application receives the encrypted stream, it first sends it
to the TRM, after which the TRM decrypts the stream with the secret
key kOBJ that was obtained from the sender’s TRM, and then the
TRM encrypts it with ks and sends the newly encrypted stream back
to the client application. The client application must rearrange the
receiving stream (because of the different delays of the streams from
the network) and sends the stream to the video card driver which
will finally send it to the hardware. Sending streams to the other
platform goes in the same way. More precisely, the client application
creates a stream, encrypts it with the session key ks and sends it to
the TRM. The TRM decrypts it, re-encrypts it with the object secret
kOBJ shared with the TRM of the other platform and sends it back
to the client application which is responsible of delivering it to the
network.

72

Whiteboarding
Client Application

User
Agent

Trusted Reference
Monitor

Driver

Video Card

�

�

� �

�

�

�

�

1
2

3

5 6

7

4

7

�

Figure 5.7: Whiteboarding policy enforcement in a platform.

The policy enforcement in the receiver’s platform, described step-by-step
above, includes the support for policies with user attributes. This means
that users can have different access rights which have to be enforced on all
platforms. For example, Trudy may have full access to all possible oper-
ations (adding, changing and deleting drawings) during the session. Alice
however, may only add drawings but not change or delete them. These kind
of access control policies can be specified in a straightforward manner. By
migrating user identities, users can perform the same kind of actions on all
Trusted Platforms.

It should be mentioned that the secret key ks that is shared by the TRM,
client application and device driver is only a one-time key and is generated
each time a new whiteboarding session is started. The object secret kOBJ

that is shared between the two TRMs can be one-time if there is no storage
or replay after the whiteboarding session, otherwise it should be sealed by
the TRM along with the policy that deals with replay. If it is one-time,
then kOBJ can be sent to the client application by the TRM for better per-
formance. This means that the client application does not have to send the
received stream to the TRM for decryption and encryption. However, the
attestation challenge of a client application by the TRM is always necessary
before a whiteboarding session is allowed.

5.4 SMTP and Trusted Computing

This section describes the application of Trusted Computing to SMTP.
There are two interesting issues related to SMTP that can be addressed
by Trusted Computing. First, the problem of spam will be discussed and
a design for a rate limiter is proposed to reduce the rate at which spam is

73

generated. Then the secure storage of email messages is investigated.

5.4.1 Spam

Basically, spam is flooding the internet with a large number of copies of the
same message, in an attempt to force the message on people who would not
otherwise choose to receive it1. Normally, spam costs the sender a little to
send and therefore most of the costs are paid for by the recipient or the re-
lay hosts rather than the sender. Email spam targets individual users with
direct email messages. Receiving spam costs people money: people with a
measured phone service read or receive the email while the meter is running
and spam costs them additional money. Furthermore, it also costs money
for the ISP and online services to transmit spam, and these costs are trans-
mitted directly to the subscribers.

Transmitting spam is often achieved by by misusing relaying hosts. This
problem can be partially solved by rejecting specific incoming email at relay
hosts. However, the root of the problem lies in people sending spam. One
possible solution for this is to use client puzzles that slow down the rate in
which emails can be sent on a client platform. Trusted Computing though,
enables a new and more efficient method of preventing spam. By limiting
the rate at which machines can send email, the rate at which spam email is
generated can be reduced. The implementation of a rate limiter was already
described in the previous chapter and will now be applied to sending email
with SMTP. The approach chosen here is based on [GRB03] and requires
isolation of processes by using a TVMM.

On every Trusted Platform a ticket-granting service is running in a closed-
box VM. This ticket-granting service releases at most one content dependent
ticket every time period. In order to limit the rate at which an email client
can send emails there should be an open-box email client VM which tries to
obtain a ticket from a ticket-granting VM for every email being sent. More
precisely, this means that before sending an email, the email client VM sends
a hash of the email to the ticket-granting VM. The resulting ticket will then
be attached to the outgoing email. The network of SMTP servers will reject
any incoming emails that contain no ticket or an invalid ticket. Figure 5.8
uses Terra’s architecture [GPC+03] to visualize the process.

An obvious drawback is that this approach only works if all SMTP servers
in the message transit are Trusted Platforms that implement a rate limiter
with a ticket-granting service. People who are using a traditional platform
can still send spam, although the email messages will be directly rejected

1See also http://spam.abuse.net

74

Attestation, Sealed Storage
 DeviceHardware Platform

TVMM

Management
VM

Email,
App

Ticket-
granting
Service

Thin OS Commodity
OS

Commodity
OS

�

Hash of
email

Email

Ticket

�

NIC

Figure 5.8: Preventing spam by rate limiting.

by the Trusted Platforms. An approach like this one will only have a sig-
nificant impact if IT companies feel responsible and introduce software that
exploits the potential benefits of Trusted Computing. As part of its Trusted
Computing initiative, Microsoft has already been busy adjusting Outlook to
provide some functionality that is based on Trusted Computing technology2.

5.4.2 Securing Message Store

As already explained in the previous chapter, current message infrastructure
provides no means to verify the integrity and security of server machines, so
an adversary may read or modify the content of an email message stored on
disk of an SMTP server. Trusted Computing, however, can protect messages
by using a mechanism like protected storage. A big advantage of protected
storage is that data can be stored in such a way that prevents disclosure
of the data if the platform is not in the expected state. In this section the
protection of an email message in a platform is further investigated.

SMIME In order to secure email messages SMIME (Secure Multipurpose
Internet Mail Extension) is usually used. SMIME is a specification for secure
mail and was designed to add security to email messages in MIME format.
It provides encryption and signing3 of email messages to prevent adversaries
from gaining access to the content of an email message. However, SMIME
only encrypts the body and attachments of an email message and leaves the
header unchanged. Therefore SMIME does not prevent adversaries from
observing and changing the header information. See also figure 5.9.

SMTP on a Trusted Platform Figure 5.10 shows the design of an SMTP
server on a Trusted Platform. At the left an encrypted email message is

2See also http://www.pcmag.com
3The concept of a digital signature was already explained before. It should be noted

however, that they do not guarantee that a message has not been read by another party.

75

To:

From:

Subject:

SMIME MESSAGE

Body

Attachment

Header

Encrypted
&

Signed

Figure 5.9: An SMIME message.

shown which is about to be transmitted by a trusted client platform. The
difference with SMIME is that the email message on the Trusted Platform
is completely (including the header) encrypted before it is transmitted into
the network. This security measurement directly prevents an adversary from
observing and changing the header information while the email message is
on the wire.

Before the client decides to trust an SMTP server it verifies the server’s
trustworthiness by remote attestation. In the example presented here, the
client only trusts an SMTP server if its software configuration satisfies the
following property: Sendmail 1.x & 2.x but not 1.1.1. The SMTP imple-
mentation runs in a protected environment and is attested by the Trusted
Platform. The protected environment prevents adversaries from reading
and changing email messages. At the same time, other components on the
Trusted Platform cannot gain access to the email messages either.

If a message does not have to be relayed it is put in a spool area, where all
email messages are stored in a separate mailbox for each user. An SMTP
server always logs the incoming and outgoing traffic and stores the data in a
log file. This log file can be encrypted by protected storage. Protected data
can be stored in a way that prevents use of the data unless the platform is in
the expected state. Furthermore, protected data can be stored in a way that
either permits duplication of the data or prevents duplication of the data.
This implies that a log file cannot be read by an adversary and can only be
copied if this is allowed by the owner of the object (the administrator).

Although an adversary cannot read or change the message on the wire and
cannot violate the protected environment of the specific SMTP implementa-
tion, there is yet another way of gaining access. For example, in Sendmail,
the administrator has full access to the configuration management system4.
The functionality provided by this system is mostly related to changing
headers of email messages. Furthermore, the administrator also has access

4See also http://www.sendmail.org

76

To:

From:

Subject:

Email message

Body

Attachment

Encrypted
&

Signed

Sendmail
Postfix
Exim

NIC

SMTP Server on a Trusted Platform

TPM

NIC

Pool
User A

Z

NFS

AFS

DNS
Server

MX Record

Client trusts only
Sendmail 1.x & 2.x but

not 1.1.1

Log

Figure 5.10: SMTP on a Trusted Platform.

to the log file which lists all processed emails. This implies that the solution
provided by Trusted Computing only protects adversaries from reading and
changing emails if they do not have admin rights to the system. However, a
persistent hacker may setup his own Trusted Platform and install an SMTP
implementation. If he assigns admin rights to himself, he will be able to do
whatever he wants to. Nonetheless, remote attestation can always assure a
remote party of the software configuration running on the attested platform.

Relaying Email In email, the store-and-forward principle is used to trans-
mit an email message from the sender to the recipient through some inter-
mediate hosts. The routing of an email message is achieved by looking at
the MX records of a DNS server. As already explained before, not all SMTP
servers are trusted and therefore cannot be used in the path from the sender
to the recipient. Normally a DNS server tells an SMTP server that it should
relay a message to a particular SMTP server in order to obtain the shortest
route. However, if due to remote attestation an SMTP server does not turn
out to be trustworthy, then another route should be taken.

In this particular example the client only trusts an SMTP server if the soft-
ware configuration satisfies the following property: Sendmail 1.x & 2.x but
not 1.1.1. The DNS server that resides in the USA could not forward the
email message to an appropriate SMTP server and therefore another DNS
server should be queried. This implies there are two routing criteria: (1)
What is the fastest route? and (2) Is the route secure? An obvious disad-
vantage of this approach is that expensive lines like the Atlantic line between
Europe and the USA may be used without any successful result. See also
figure 5.11.

Sendmail and BIND In chapter 2 a fine-grained attestation service for
distributed systems was discussed. In order to be effective it assumes that a
programmer identifies the relevant process for attestation and annotates the
beginning and end of the critical process with an ATTESTATION INIT and

77

MX

MX

MX

MX

Final SMTP
Server

1 2

3

Atla
ntic

 EU <
->

 U
SA

4

�

�

�

�

Figure 5.11: Efficiency problem in routing.

ATTESTATION COMPLETE call [SPvD05]. So every time the process ex-
ecutes, BIND is invoked and will attest the code to its integrity. However,
for example in the case of Sendmail5, most of the program code is written to
perform changes to a header of an email message. This implies that if one
would like to apply BIND, a lot of code has to be inserted which makes this
approach quite unpractical. Therefore BIND does not offer a satisfactory so-
lution and is only effective if relatively few pieces of code have to be attested.

Further Refinement In contrast to SMIME, the approach chosen here
does protect from adversaries on the wire as all email messages are com-
pletely (including the header) encrypted. However, from a theoretical point
of view, a sophisticated hacker can monitor the network traffic to investi-
gate where all the packages are going, without having any knowledge about
the content of the packages. By looking at delays and the size of a package
before and after it arrives and leaves an SMTP server, a hacker may guess
the information that is sent. A way to make this a lot more difficult, a
message could be decrypted en encrypted again, so that the output message
looks different. This decryption and encryption process must be performed
in curtained memory so that no one can observe the unencrypted message.
Of course the protected storage of many keys have to be taken into account,
but that is something for future research. A rate limiter, which was already
described before, can be used to change the delays between the messages so
that a hacker cannot analyze delays and draw valid conclusions.

5.5 Cookies and Trusted Computing

Cookies are a mechanism which can be used by server side connections (like
CGI scripts) to both store and retrieve information on the client side of
the connection. The capabilities of web-based client-server applications can
be significantly extended by using a simple and persistent client-side state.
Cookies are often used to store information which the user has supplied in

5See also http://www.sendmail.org

78

an earlier stage. A typical example is the shopping list which might be up-
dated from time to time.

It should be noted that cookies cannot be used to steal information from
a computer system. Cookies can only be used to store information that a
user has provided in the past. Unfortunately, cookies can also be used for
more controversial practises. Each time a user accesses a web site with its
browser, information is left behind on the computer. Among the data that
is left behind are the name and IP address of the computer, the brand of
the browser being used, the OS that was running and the URL of the web
page that was accessed. Without cookies it is practically impossible to learn
about a person’s web browsing habits: one would have to reconstruct the
person’s path by relating hundreds or even thousands of individual server
logs. The DoubleClick Network exploits this feature of cookies to build up
a database of user profiles and to present advertising banners that are cus-
tomized to the user’s interests.

Besides privacy issues, cookies also have certain security implications [SS].
There are many web sites that make use of cookies to implement a form of
access control. A web site may send a cookie back to the client’s browser
the first time the client user logs in. The site will only provide access to
restricted pages if the browser can show a valid cookie. Although this ap-
proach has some advantages, the system may be vulnerable to attacks by
a malicious party. For example, an eavesdropper may intercept the cookie
when it is sent from the browser to the server, so that it can have free access
to the web site. Because browsers make use of DNS to decide which cookies
belong to a server, it is possible that a browser is tricked into sending a
cookie to a false server if an adversary temporarily subverts the DNS. If a
cookie is persistent then there is also a chance that it will be stolen from
the user’s cookie database file.

When designing a system that uses cookies for authentication and state-
preservation the possibility of cookie interception should always be taken
into account. It is therefore unappropriate for cookies to contain usernames
and password in plain text. In order to gain a higher level of security cookies
include the following information:

• The session ID or authorization information.

• The time and data the cookie was issued.

• An expiration time. By adding an expiration data and time, system
designers are enabled to limit the potential damage a hijacked cookie
can do. If a cookie is intercepted it can only be harmful for a finite
amount of time.

79

• The IP address of the browser the cookie was issued to. The cookie
will only be accepted by the server if the IP address in the cookie is
similar to the IP address of the browser that submits the cookie.

• A message authentication check (MAC) code. The MAC code ensures
that none of the fields of the cookie have been changed. The hash
value of the whole cookie is incorporated into the cookie data. So
when the cookie is sent to the server, the server’s software can check
if the cookie has not expired and is being returned by the proper IP
address.

The most secure method is to encrypt the entire cookie with an encryption
algorithm or to encrypt the channel between the browser and server, using
SSL. In order to avoid that a cookie is disclosed in a non-secure channel, the
security attribute should be set so that the browser only sends the cookie if
SSL is turned on.

Trusted Computing can provide the necessary mechanisms to enhance the
security of cookies. In this chapter the concept of protected storage has
already been discussed in quite some detail. Protected data can be stored
in a way that prevents use of the data unless the platform is in the ex-
pected state. Furthermore, protected data can be stored in a way that
either permits duplication of the data or prevents duplication of the data.
This implies that the IP address field of the cookie becomes obsolete, be-
cause protected storage prevents the disclosure of the cookie if the protected
object is accessed by another platform then specified in the protected object.

A MAC code is used to perform some integrity checks by verifying the self-
consistency of data. It happens, however, that protected storage already
has an implicit consistency check, which was already described in chapter
2. So no explicit integrity check like a MAC code is required to verify if
unappropriate alterations have been made to the protected data. There is
no need to include an expiration data either because a feature like this is
also supported by protected storage.

Cross Site Scripting (CSS or XSS) is sometimes used to steal cookies from
their corresponding users6. Cross site scripting happens when a user is
tricked into sending information to a malicious web site through the use of
scripts. The users clicks on links that appear to be legitimate and the re-
sults that are returned to the user also appear to be legitimate. The attacker
uses HEX and other methods of encoding in order to make the links and
http addresses look less suspicious. There are many guestbook and forum
programs that allow a user to post data that contains javascript which can

6See also http://www.cert.org

80

be used to embed malicious code in the web site. The malicious code will
be executed at the moment people read the forum post. Most people will
never notice when their computer is running malicious code. As long as the
web site looks real enough users will most likely not notice anything.

Unfortunately, this security problem cannot be solved by just encrypting the
cookie. In most cases, cross site scripting requires that some form of em-
bedded scripting language is enabled in the victim’s browser. By disabling
all scripting languages the problem is mostly solved, but has the side effect
for many users of disabling functionality that is important to them. How-
ever, attackers may still able to manipulate the appearance of the content
provided by the legitimate site by just using other HTML tags in the URL.
Especially malicious use of the <FORM> tag is not prevented by disabling
scripting languages.

Protected storage offers the extra advantage of sealing data to a platform
state. Sealing a cookie to a particular web site may prevent an XSS attack.
If an adversary duplicates the content of a web page and inserts some cookie-
stealing code, then the disclosure of the cookie will be prevented. However,
the sealing of a cookie to the details of the web page would be problematic
for updates to the web site. The specific platform state that reduces the risk
of a cross site scripting attack is the state where all scripting languages are
disabled. This state should be included in the protected object, so that the
cookie will only be disclosed and transmitted to another party (preferably
the legitimate server) if no scripting language is enabled. This prevents most
of the cross site scripting attacks. As already mentioned before, attacks can
also take place if the <FORM> tag is used in a malicious way. Nonetheless,
protected storage can significantly reduce the risk of being attacked by cross
site scripting. The inevitable drawback is that important functionality may
be disabled.

81

Chapter 6

Conclusion and Further
Research

The aim of this research project is to investigate the benefits and drawbacks
of using Trusted Computing in the implementation of end-to-end application
security. This final chapter summarizes the performed research and tries to
formulate an answer to the problem definition stated before. At the same
time some topics for further research may be proposed. To simplify matters
an overview will be presented per chapter to emphasize what knowledge has
been gained from literature and what contribution has been made to the
field.

• Chapter 2 provided the reader with information about Trusted Plat-
forms and Trusted Computing technology in order to create a ba-
sis of understanding for the rest of the thesis. Some applications of
Trusted Platforms were brought together and a few relevant proper-
ties of Trusted Computing technology were described in detail. Dur-
ing this preliminary investigation, information had to be reconsidered
quite regularly as there are a number of papers that contradict one
another in matters that are quite fundamental: not all papers explain
the process of attestation in the right way or do not fully understand
its underlying mechanisms, for example. Occasionally, comments on
the TCG specifications were given as there are still various shortcom-
ings that should be addressed.

There exist many papers in which possible applications of Trusted
Computing are proposed. It is suggested that Trusted Computing
will enable a large variety of new applications and has the potential
to revolutionize the world. However, most literature focuses on low-
level facilities and what kind of applications they will support. The
details of the design of applications and end-to-end security are usually

82

quite sketchy. The research fills in some of the gaps and leads to a
better understanding of how Trusted Computing can be used in the
implementation of end-to-end application security.

• Chapter 3 presented an introduction to application layer protocols
and described their fundamental properties from the perspective of
end-to-end communication between applications. Some of the involved
security issues were discussed and briefly addressed by Trusted Com-
puting technology. Then an abstraction to application layer protocols
was proposed by providing a classification that tries to capture a large
part of the full spectrum of protocols. The classification was obtained
by a careful and thorough investigation of how application layer pro-
tocols play a role in the sharing and dissemination of data. The un-
derlying mechanisms used by the protocols to achieve end-to-end com-
munication are not of importance to the scope of the research. This
particular approach is completely in agreement with the OSI model.
Furthermore, it enables an interesting perspective on security issues,
without focusing on the individual application layer protocols them-
selves. The nature of the classification ensures that it will be valid
for a long time, even when protocols have undergone changes or when
new ones are invented.

• Chapter 4 described the security requirements for the classes con-
tained in the classification. It also provided some brief discussion on
how Trusted Computing can be used to address these security require-
ments.

In the message connection class, a general solution to denial of service
attacks was offered by rate limiting the amount of messages that can
be sent from one host to another. An obvious drawback is the ex-
plicit need for Trusted Platforms that implement such a rate limiter.
Another security issue in this class is that current message infrastruc-
ture does not provide any means to verify the integrity and security
of server machines, so an adversary may read or modify the content
of a message stored on disk. Protected storage can prevent an adver-
sary from reading the protected content. Trusted Computing can also
enhance and support digital signatures. A couple of security issues in-
volved in using digital signatures were listed and addressed. However,
the risk of a man-in-the-middle attack still has to be addressed and is
left for future research.

In the shared data repository connection class, client authentication
can be improved by changing standard client platforms into Trusted
Platforms. A server can then be sure that a client is who it says it is,

83

regardless of the origin of the connection. Furthermore, the server can
be sure that it is talking to a Trusted Platform. Trusted Computing
can also enhance access control in ways that have not been possible
before, by providing a safe way of storing the encryption keys. An ex-
tra advantage is that the keys can be sealed to a particular operating
system or platform configuration. The issue of web security should
be further examined as the enhancements of web applications on a
Trusted Platform will have a direct impact on e-business. It is not for
nothing that the demand for more security in e-business is one of the
major reasons that led to the Trusted Computing Group. Sometimes,
it is necessary to restrict queries to prevent a malicious party from
downloading an entire database. Again a rate limiter can be used to
limit the amount of queries that are sent to the database.

In the conferencing connection class all kind of security policies can be
enforced on a Trusted Platform. There are already existing Trusted
Computing technologies like LT (LaGrande Technology) that enable
curtained memory space, process isolation and secure channels be-
tween processes. LT can also provide a trusted path between an appli-
cation and audio, video and I/O channels. For example, the channel
from an application to an audio card and driver can be protected so
that no other process can read or change the content.

• Chapter 5 investigated the possibility of applying Trusted Comput-
ing to the architecture of some distributed application components.
Four candidates were scrutinized: FTP, whiteboarding, SMTP, and
web cookies.

An enhanced access control mechanism for FTP was proposed by using
an already published access control architecture. The control over
the dissemination of data is a fundamental problem in access control.
However, due to the mechanisms provided by Trusted Computing, an
FTP server is able to trust the client with respect to both the platform
and the authentication. A considerable improvement is gained here,
because the object owner knows for sure that the security policies are
enforced on all platforms the object is distributed to. The presence of
a TRM on a Trusted Platform is a prerequisite however.

The same access control architecture was used to provide end-to-end
security of a whiteboarding application. A drawback is that the client
application has to send the received stream to the TRM for decryp-
tion and encryption. Of course, this may be quite CPU intensive. If
possible, some improvements should be made to reduce the CPU load
as much as possible. This is left for future research.

84

In order to prevent spam, a rate limiter was described by using a vir-
tual machine-based platform for Trusted Computing. The concept of
a rate limiter raises all kind of issues. For example, all SMTP imple-
mentations should run on a Trusted Platform that implements a rate
limiter. Furthermore, it should be examined what kind of rate would
be appropriate.

The secure storage of email messages is an important condition for
the transfer of responsibility. SMIME does not encrypt the headers of
an email message as the header provides network devices with impor-
tant information on how an email message should be routed through
a network. Furthermore, the message header can always be changed
at an SMTP server and it is impossible to find out if the adminis-
trator of the SMTP server can be trusted. Attestation however, does
provide some security: it can check if certain options are disabled and
therefore cannot be accessed by the administrator. On a Trusted Plat-
form email messages can be completely encrypted (and decrypted) so
that an adversary cannot observe the header information while the
email message is on the wire. All SMTP implementations should run
on a Trusted Platform: only trusted SMTP servers will be used in
the message transit. This may result in inefficient bandwidth usage.
The discussion provided in chapter 5 clearly shows that the design
and implementation of an application that uses Trusted Computing
technology should not be underestimated. There are still many issues
which have to be dealt with in order to create a satisfactory design.

At the end, the privacy and security of web cookies were investigated
and some brief recommendations of how protected storage may en-
hance security were given. The sealing of a cookie to the details of a
web page would be problematic for updates to the web site. Another
solution is the sealing of a cookie to the state in which all scripting
languages are disabled. However, this would imply that important
functionality may not be present. The discussion provided in chap-
ter 5 was quite general in character and better solutions should be
searched for in the future.

People have just begun to explore the broad range of possible applications
that can be realized by Trusted Computing. Nonetheless, the design and im-
plementation should not be underestimated. As already stated before, most
papers only focus on low-level facilities and the designs of the applications
are often very sketchy. This thesis, however, has filled in some of the gaps
and investigated the possibilities of implementing Trusted Computing in

85

end-to-end application security. Instead of looking at low-level facilities and
vague designs, the research has given a fresh and new perspective on Trusted
Computing at the application layer. Hopefully, this thesis will inspire more
people to further investigate the potential of Trusted Computing.

86

Bibliography

[And03] Ross Anderson. Cryptography and competition policy: issues
with ‘trusted computing’. In PODC ’03: Proceedings of the
twenty-second annual symposium on Principles of distributed
computing, pages 3–10, New York, NY, USA, 2003. ACM Press.

[Arb02] William A. Arbaugh. Improving the tcpa specification. IEEE
Computer, 35(8):77–79, 2002.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or com-
batting junk mail. In CRYPTO ’92: Proceedings of the 12th
Annual International Cryptology Conference on Advances in
Cryptology, pages 139–147, London, UK, 1993. Springer-Verlag.

[ELM+03a] Paul England, Butler Lampson, John Manferdelli, Marcus
Peinado, and Bryan Willman. A trusted open platform. Com-
puter, 36(7):55–62, 2003.

[ELM+03b] Paul England, Butler Lampson, John Manferdelli, Marcus
Peinado, and Bryan Willman. A trusted open platform. Com-
puter, 36(7):55–62, 2003.

[Goh03] Chiew Pheng Goh. A security model for a defence-related or-
ganization. Master’s thesis, University of Wales, 2003.

[GPC+03] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and
Dan Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of the 19th Symposium on
Operating System Principles (SOSP 2003), October 2003.

[GRB03] Tal Garfinkel, Mendel Rosenblum, and Dan Boneh. Flexible
os support and applications for trusted computing. In Proceed-
ing of the 9th Workshop on Hot Topics in Operating Systems
(HotOS IX), pages 145–150, May 2003.

[HCF04] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic
remote attestation — a virtual machine directed approach to
trusted computing. In VM’04. USENIX, 2004.

87

[HvD04] James Hendricks and Leendert van Doorn. Secure bootstrap is
not enough: Shoring up the trusted computing base. In Pro-
ceedings of the Eleventh SIGOPS European Workshop, Leuven,
Belgium, Sept 2004.

[IKBS00] Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin,
and Jonathan M. Smith. Implementing a distributed firewall. In
ACM Conference on Computer and Communications Security,
pages 190–199, 2000.

[Pea03] Siani Pearson, editor. Trusted Computing Platforms: TCPA
Technology in Context. Hewlett-Packard Professional Books.
Prentice Hall, 2003.

[RCR04] Paul D. Robertson, Matt Curtin, and Marcus J. Ranum. Inter-
net firewalls: Frequently asked questions, 2004.

[SCG+03] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.
AEGIS: Architecture for tamper-evident and tamper-resistant
processing. In Proceedings of the 17 Int’l Conference on Super-
computing, pages 160–171, June 2003.

[SJZvD04] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van
Doorn. Attestation-based policy enforcement for remote access.
In Proceedings of the 11th ACM conference on Computer and
communications security, pages 308–317. ACM Press, 2004.

[SKv03] David Safford, Jeff Kravitz, and Leendert van Doorn. Take
control of TCPA. Linux Journal, August 2003.

[Smi05] Sean W. Smith, editor. Trusted Computing Platforms, Design
and Applications. Springer, 2005.

[SPvD05] E. Shi, A. Perrig, and L. van Doorn. BIND: A fine-grained at-
testation service for secure distributed systems. In Proceedings
of the IEEE Security & Privacy Conference, Oakland, CA, May
2005. IEEE Press.

[SRC84] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-
end arguments in system design. ACM Transactions on Com-
puter Systems, 2(4):277–288, November 1984.

[SS] Lincoln Stein and John Stewart. The world wide web security
faq. http://www.w3.org.

[SZ05] Ravi Sandhu and Xinwen Zhang. Peer-to-peer access control
architecture using trusted computing technology. In SACMAT
’05: Proceedings of the tenth ACM symposium on Access control

88

models and technologies, pages 147–158, New York, NY, USA,
2005. ACM Press.

89

