Using JASON to Secure SOA

tukasz Chmielewski !

! Digital Security group
Radboud University Nijmegen
the Netherlands
{lukaszc,r.brinkman,jhh}@cs.ru.nl

ABSTRACT

Nowadays business applications closely collaborate with other
business applications by sharing one or more services. Un-
fortunately, opening your business application to the outside
world also sacrifices security. There is quite a number of
standards that aims at protecting these services. However,
most of these standards require special knowledge about se-
curity and are cumbersome to use. Our JASON* framework
aims at simplifying the task of securing services. A pro-
grammer simply annotates his code with appropriate key-
words and our tools will generate the security related code.
The programmer can simply concentrate on the business ap-
plication, while the JASON framework does the necessary
cryptography.

Categoriesand Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems— Distributed applications

Keywords

middleware, SOA security, secure remote management

1. INTRODUCTION

Recent application architectures have become increasingly
complex. Starting from mainframe centric, client / server,
distributed computing, loosely coupled architecture, they re-
sulted in Service Oriented Architecture (SOA). Each step of
this evolution increased the architecture’s complexity.

Service Oriented Architecture [8] is an architectural style
for designing and utilizing business processes, and defining

This research is supported by the research program Sen-
tinels (www.sentinels.nl) as project ’JASON’ (NIT.6677).
Sentinels is being financed by Technology Foundation
STW, the Netherlands Organization for Scientific Research
(NWO), and the Dutch Ministry of Economic Affairs.

"http://www.cs.ru.nl/jason

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

1st International Workshop on Middleware Security (MidSec 2008) Decem-
ber 2, 2008, Leuven, Belgium

Copyright 2008 ACM 978-1-60558-363-1/08/12 ...$5.00.

Richard Brinkman !

2TNOICT
) the Netherlands
jaap-henk.hoepman@tno.nl

Bert Bos 2

3 Chess IT
the Netherlands
Bert.Bos@chess.nl

Jaap-Henk Hoepman *2

the infrastructure that allows different applications to par-
ticipate in business processes. In the SOA model, separate
services (that may run on separate servers) are combined to
form the business application. These services communicate
with each other by passing data.

There are many systems that aim at providing security
for SOA architectures. Unfortunately those systems tend
to be very complex. A programmer must understand all
the security standards, to build even a simple application.
Hence, it is crucial to develop solutions that would simplify
implementing the security of SOA systems in a generic way.

Such a generic system might be the JASON system. JA-
SON is our JavaCard As Secure Objects Networks platform
[2] which was originally designed for smartcards (addition-
ally, analysis of the applicability of the JASON system for
M2M systems is in [1]). The aim of this paper is to show
that the same principles can be applied to SOA, as well.
We also analyzed how to incorporate JASON into SOA. We
investigated several ways how JASON could provide the se-
curity for SOA in the most flexible manner. The JASON
architecture consists of: the JASON compiler (a tool to ex-
tract security requirements from annotated Java code) and
the JASON framework (a performer of the security actions).
The implementation of these tools has not been finished at
the time of publication of this article.

We also have improved the JASON compartmentalization
mechanism. A JASON compartment limits the access to
the service resources by using Java sandbox. Additionally,
to limit the access to public methods of objects from various
sandboxes on the same JVM, we use a multiple class loaders
mechanism (as described in Section 7.1).

Firstly, in Section 2 we give an overview of a work re-
lated to JASON. Later (in Section 3) we describe prelimi-
naries: the “old” JASON and the SOA concepts. In Section
4 we present different ways of cooperation between JASON
and SOA, and conclude by a description of the best choice
for our purpose. JASON annotations are described in Sec-
tion 5. Subsequently, we present a multiple policies feature
(Section 6) and the JASON framework (Section 7) together
with the new investigation on JASON compartmentaliza-
tion. In Section 8, we present security standards of web
services that are used within JASON. We finish the paper
with the conclusions in Section 9.

2. RELATED WORK

A very interesting approach for distributed policy speci-
fication for service-oriented computing is presented in [16].
These system provides various solutions for developing busi-

ness services, and also enforcing various policies. For the
policy specification and enforcement a language PSEL is in-
troduced, together with the necessary framework. Although
the system provides means for specifying security aspects,
it is not the main part of the system, and for example, sep-
aration of services, on the same machine seems not to be
considered.

A related work on the security in large-scale distributed
systems was performed in [14] for the Globe system. Globel[6]
is a distributed system based on distributed shared objects
(DSO). The notion of a DSO stresses the property that ob-
jects in Globe are not only shared by multiple users, but also
physically replicated at possibly thousands of hosts over a
wide-area network. Thus, many security issues occur for
this system, and they are solved in [14]. This security can-
not be applied directly to SOA, due to: model differences
(e.g., SOA does not consider objects / services replication),
and GLOBE does not use SOA communication standards.

As a related work can be also considered the compartmen-
talization within the operating system SELinux [9] and the
Xen virtualization mechanism [4]. These mechanisms can
be used to ensure separation within JASON, however, we
decided to use the Java separation mechanism (details can
be found in [1]).

Other approaches than the one we propose in this paper do
exists, like J2EE (WSIT/XWSS), Spring (Acegi) and JBoss,
but none of them are targeted to programmers who lack a
thorough understanding of the underlying security protocols
and cryptographic techniques.

3. PRELIMINARIES

3.1 JASON Targeted Towards JavaCards

JASON is our JavaCard As Secure Objects Networks plat-
form [2] and was originally designed for smartcards. Lately,
we have performed an investigation on the applicability of
the JASON concept for M2M (machine to machine) systems
[1]. JASON realizes the secure object store paradigm where
objects (that are written in Java) are stored on devices and
back office systems. Devices may be pervasive, highly mo-
bile, computationally weak, communicationally weak, etc.
The JASON platform is a middleware layer which securely
interconnects an arbitrary number of smartcards, embedded
devices, terminals and back office systems over the Internet.
It is important to mention that recently embedded devices
has been increasingly equipped with SOA (described e.g., in
[7]), and therefore, JASON should be SOA-aware.

The JASON platform supports secure deployment and re-
mote management of secure pervasive systems which run ap-
plications from various parties. A JASON application con-
sists of a collection of objects with role-based access, where
membership of a role corresponds to the knowledge of a key.
In the distributed object model that JASON follows, all ob-
jects are separate entities running on separate nodes. Ob-
jects interact by requesting remote methods or services from
each other. The method invocations are transparent and are
performed using secure protocols. Objects do not necessarily
know whether its requested method is executed remotely.

A very important concept in JASON is the separation
of concerns: the security requirements and the implemen-
tation. Programmers only have to specify the security re-
quirements (formulated as an Java annotations), not to im-
plement them. The JASON platform translates these re-

Device A

@ Sandbox

Device B

Sandbox

‘ OlRe

N [[
network ——{ |

e

Figure 1: Sandboxing and communication in JASON

quirements into a secure implementation (based on RMI).
At runtime, the JASON platform provides a secure environ-
ment and secure communication protocols, according to the
specified requirements.

Figure 1 conceptually shows how two objects can com-
municate via stubs and skeletons. The object which calls
a remote method on a remote object is identified as the
caller, while the remote object is the callee. In this model,
stub and skeleton are Java codes produced by the JASON
compiler, used by the caller and callee respectively. They
provide transparent access to remote methods. The caller
locates the interface of the callee and issues a request which
is passed to the stub. The stub establishes the connection
to the (skeleton at the) callee over the public network using
standard protocols and formats. The callee authenticates
the caller using the keys in the keystore and evaluates the
request. Security requirements for returned values such as
authenticity, confidentiality, etc., can be specified. The JA-
SON platform enforces these security properties during the
execution of the call.

In JASON, all objects are separate entities, running on
separate nodes. The compartmentalization mechanism al-
lows different objects to be safely and securely run on one
hardware platform. To this end we studied several compart-
mentalization approaches [1] and their applicability to the
JASON platform (see Figure 1). In the end, we have cho-
sen to combine the Java sandbox (for restricted access to
resources) and multiple class loaders (to separate services).

3.2 ServiceOriented Architecture

Service Oriented Architecture (SOA) [5] defines an infras-
tructure in which business processes are spread over a num-
ber of services. The different services may be owned by
different (business) parties, run on different operating sys-
tems and written in different programming languages. These
services communicate with each other by passing data from
one service to another. SOA is often seen as an evolution of
distributed computing or modular programming.

Services are relatively large units of various functionality,
e.g.: filling out an online application for an account, viewing
an online bank statement, placing an order for an online
book, or ordering an airline ticket, etc.

To describe the communication between services and their
interoperable characteristics, flexible standards are neces-
sary. Web Services based SOA implementations (almost all
SOAs are WS based) use XML based protocols to exchange
data (like SOAP) and describe the service itself as a WSDL
[3] description. A good description of Web Services security
standards is in [15].

SOA Building Blocks.

In SOA we can distinguish three types of building blocks
(as shown in Figure 2). The Service Provider creates a Web
service and publishes its interface and access information

|
: Service
1 Broker
WSD
WSDL

T SOAP) f

f(x) —
Service Service
Requester Provider

Figure 2: SOA Building Blocks

to the service registry. He should make trade-offs between
security and easy availability, and decide how to price the
services, etc. The Service Broker (also called service reg-
istry) is responsible for making the Web service interface
and access information available to any potential service re-
quester. The Service Broker uses the Universal Description
Discovery and Integration® (UDDI) specification which de-
fines a way to publish and discover information about Web
services. The Service Requester is a client that first gets the
location of the desired service information from the Service
Broker. After that he can contact the Service Provider in
order to invoke one of its Web services.

Sometimes in SOA there are also other components in-
volved (e.g., Service Bus), but due to the space constraints
we do not describe them in this paper.

JASON does not aim at improving the security of Service
Broker now, but it is considered as a future work.

4. JASON CONCEPT AND SOA

Originally, JASON and SOA aimed at different goals. JA-
SON was meant to be a middleware layer between a PC
and a JavaCard making it easy for a programmer without
knowledge of cryptography, to build secure smartcard appli-
cations. As it turns out (much to our own surprise) the same
principle of the original JASON, i.e. the strong separation
between secure communication and the core business imple-
mentation, can be applied in the broader context in which
SOA operates. On the other hand, today lots of embedded
devices are equipped with SOA, and thus, JASON should
be able to cope with that. Therefore, JASON and SOA can
supplement each other.

This paper seeks for an answer, how to achieve that. There
are a few obvious ways that can be considered: JASON can
be seen as an extension to SOA (JASON on top of SOA)
— Figure 3a, SOA can be on top of JASON (here JASON
takes care of communication) — Figure 3b, JASON can be
a plugged into SOA (shown in Figure 3c), or that JASON
can be put alongside SOA (JASON next to SOA; shown in
Figure 3d). The first two approaches are not very useful
from our point of view because they limit the usefulness of
JASON.

4.1 JASON within SOA

In this section we describe our JASON within SOA ap-
proach, which combines JASON next to SOA with JASON
plugged into SOA approaches. At the beginning we consid-
ered the JASON next to SOA approach as the most suit-
able. We assumed that separate JASON services should

’http://uddi.xml.org/

Service Service Service Service

JASON JASON SOA SOA

SOA SOA JASON JASON

com. channel com. channel

(a) JASON on top of SOA (b) SOA on top of JASON

Service Service

Service Service

SOA | JASON
JASON | SOA|| JASON | SOA

com. channel com. channel
(c) JASON plugged in SOA (d) JASON next to SOA
Figure 3: Ways of complementing JASON and SOA

SOA | JASON

implement security issues, but also “talk the same language”
(use the same communication standards, e.g., WSDL, WS-
Security, etc.) as SOA services. Then programmers using
JASON would be able to write secure services without huge
effort (e.g., implementing security action, like encryption,
etc.). Moreover, because JASON secure web services would
comply to existing standards, they would be able to com-
municate with existing secure SOA services.

These properties are extremely useful and we decided that
they are necessary for our new JASON. JASON next to SOA
fulfills them, however, this approach has an important draw-
back: a large part of SOA would have to be reimplemented
in JASON. This would significantly slow down the imple-
mentation process of JASON. Therefore, we started to look
for another concept (or just some modification) that fulfills
the aforementioned properties but avoiding this drawback.

We have decided to slightly modify the JASON plugged
into SOA approach, but in the JASON next to SOA set-
ting. In plain JASON plugged into SOA, the whole JASON
system is a security module of SOA and therefore, the archi-
tecture of SOA would be minimally modified. This JASON
plugin is called the JASON framework (Figure 5) in our final
system, but it is only a part of the whole JASON system.

The other JASON functionality that has to be taken care
of is the specification of the JASON security interface. We
have decided that the most the most flexible way is to let the
programmer specify the security requirements directly in the
source code of a program. This way he can precisely specify
the security requirements as well as the SOA requirements
concerning communication (Web Services annotations). The
JASON annotations are taken care of by our JASON com-
piler — the second part of the JASON system.

The JASON compiler extends the Java compiler in the
following way. It translates the JASON annotations and
WS annotations to a WSDL file that contains the security
requirements expressed in the WS-SecurityPolicy standard.

Figure 4 shows a sample program in which the program-
mer has specified methods with relevant JASON security an-
notations (they express: confidentiality, authenticity, etc.)
and the web service annotation. The program defines a
class named HomeEmergencyDoor that represent a hypothet-
ical door device at a Home Control Box® (HCB). How to
use JASON in the HCB context is described in [1]. The
first JASON annotation is @AvailablePolicies (a list of
JASON annotations is in Section 5) which define two dif-

3http://www.homecontrolbox.com/

package jason.test;

import jason.annotation.AccessibleTo;
import jason.annotation. AvailablePolicies;
import jason.annotation.Authentic;

import jason.annotation.Confidential;
import jason.annotation.Logged;

import jason.annotation.Policies;

import jason.annotation.Policy;

import jason.annotation.Roles;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService
@AvailablePolicies ({”0OldVersion”, ”"NewVersion”})
@Roles ({ "OWNER” , ”AMBULANCE” })
public class HomeEmergencyDoor {
@WebMethod
@AccessibleTo ({”OWNER” ,”AMBULANCE” })
@Confidential
public boolean checkDoorStatus () {
// code that checks if the door is open

}

@WebMethod

@AccessibleTo ({ "OWNER” })

@Authentic

public void changeDoorStatus

(@Confidential @Authentic boolean status) {
// code that opens / closes the door

@WebMethod
@Policies ({
@Policy (name="0OldVersion”,
accessibleTo=@AccessibleTo ({”AMBULANCE” })) ,
@Policy (name="NewVersion” ,
accessibleTo=Q@AccessibleTo ({ ’AMBULANCE” }) ,
logged=Q@Logged ,
authentic=@QAuthentic)
})
public void openDoor () {
// code that opens the door

}

Figure 4: A sample program showing the flexibility of spec-
ifying both the security requirements and the web service
parameters.

ferent security behaviours (that are described as policies):
"0ldVersion" and "NewVersion". These two policies can
be used by clients to call the service (as explained in Sec-
tion 6). It is useful to have more than one policy because, for
example, sometimes updating policies on many clients takes
much time, and then, temporarily, the old policy might be
accepted as well. Subsequently, @Roles defines which roles
are allowed to access the web service: the Owner’s role (this
role corresponds to the application of the house owner, that
can be stored on the mobile phone), and the Ambulance’s
role, which roughly corresponds to secret keys or certificates,
that are stored by the JASON framework that works on the
HomeEmergencyDoor Web Service. In the class HomeEmer-
gencyDoor three methods are specified:

checkDoorStatus — this method checks if the door is open,
and is only accessible to (@AccessibleTo) the Owner
and the Ambulance. The result of the method is con-
fidential (@Confidential), and therefore is sent en-
crypted to the caller. The security requirements of this
method are contained (by default) in both policies.

changeDoorStatus — this method opens or closes the door.

Thus, this method is only accessible to the Owner.
The Owner’s decision status should be confidential

and signed (@Authentic). The result is of type void,
so it may sound strange to mark it as @Authentic.
However, it just means that the confirmation of the
method’s invocation is signed and sent by the ser-
vice. The security requirements of this method are
contained in both policies.

openDoor — this method opens the door (and is similar
to changeDoorStatus), and is accessible to the Ambu-
lance. The @Policies annotation shows how the ser-
vice can provide different policies. This may be neces-
sary to smoothly upgrade to a new policy version while
still accepting old clients. Details of multiple policies
and a description of this method are in section 6.

Mixing JAX-WS annotations with JASON annotations
gives the programmer more flexibility at the cost of a slightly
more difficult interface specification. We have chosen this
approach for implementing JASON due to its generality:
many instances of JASON and SOA can inter-communicate
in a secure way without any changes to the existing security
standards used in SOA (e.g., XML encryption). The details
of our design decisions for JASON next to SOA are presented
in Sections 5, 6, 7, 8.

5. JASON ANNOTATIONS

In this section we describe the JASON annotations. The
annotations are based upon our investigation described in
Sections 4.1 and 6. We divide them into 4 groups: annota-
tions that consider a whole class (they are placed just before
the description of the class), method specific ones, parameter
specific ones, and the most complex annotation: @Policies.
The class annotations are:

1. @Roles (String[] 1list) declares all the roles that

can be used with the other JASON annotations.

2. @AccessibleTo (String[] 1list) defines the list of
roles that can access the class. If omitted, everybody
can access the class.

3. @AvailablePolicies (String[] 1list) lists the
names of policies. If omitted, then the default policy
is used.

The following annotations can be placed in front of a method:

1. @AccessibleTo (String[] list) defines the list of
roles that can access the method. An @AccessibleTo
annotation in front of a method restricts the behaviour
of the @AccessibleTo annotation in front of the class.

2. @Logged specifies that the access pattern should be
logged.

These JASON annotation can be specified for parameters
and method results:

1. @Confidential (String[] encryptedBy) defines that
the parameter or the method’s result should be en-
crypted before sending; encryptedBy defines the list
of roles that can encrypt the parameter; by default
it is set to the list from the method’s @AccessibleTo
annotation.

2. @Authentic (String[] signedBy) defines that the pa-
rameter should be authenticated; works analogically to
@Confidential.

3. @Integrity defines that the parameter should be send
in unchanged form.

Additionally, a @Policies annotation can be placed at each
of the above places to specify a list of different @Policy anno-
tations. Each @Policy (String name, <@Annotation>
<annotation>, ...) defines one policy instance. Param-
eter name specifies the name of the policy, which has to be
declared in the @AvailablePolicies annotation. The rest
of the parameters link to the other JASON annotations. For
instance, the authentic parameter can be set to @Authen-
tic(signedBy="..."). An annotation within a @Policy af-
fects only that policy. The parameters that are allowed are
dependent on where the encapsulating @Policy is placed,
following the same rules as specified above.

The syntax for the @Policies and the @Policy annota-
tion could have been less verbose if Java annotations would
have allowed multiple annotation with the same name (but
with different parameters) or having an array of different
annotation types.

6. MULTIPLE POLICIES

In this section we describe an important new feature of
JASON: support for multiple policies. In the original JA-
SON, the compiler produced the secure implementation di-
rectly from the security interface (which was just an exten-
sion of the Java interface). Hence, if a programmer updated
the security interface, the code was compiled into a new ex-
ecutable (every time when the interface was changed, it was
necessary to recompile the source code). Therefore, to run
some functionality with a different security specification it
was necessary to produce (using the JASON compiler) a new
skeleton and a new stub, and replace the old versions. To
avoid this problem, dynamic policies are used, which can be
changed at runtime. Therefore, it is enough to produce a
new policy file and deliver it to the JASON framework.

The main consequence of decoupling the policy from the
executable code, is the ability to run the code with different
policies. This ensures easy transition from one policy to
another. Instead of updating the policies of the clients all
at once, the service may allow connections from both clients
running with the old policy as well as clients who switched
to the new policy.

Figure 4 shows a Java class that allows two different poli-
cies, which are named "0ldVersion" and "NewVersion" by
the new @AvailablePolicies annotation. The first and the
second method, defined in the class, do not contain any in-
formation about policies, and therefore, their security an-
notations affect both policies. The last method openDoor ()
shows how to specify the different security requirements for
various policies. The annotation @Policies contains a list
of @Policy annotations. The first policy, named "01dVer-
sion", defines the method to be accessible to Ambulance,
while the second one also requires logging the access (anno-
tation @Logged) and signing the response message (annota-
tion @Authentic).

Although a programmer can write the policy directly in
WSDL/XML, we recommend to write the security require-
ments as annotations in the source code. This makes it easier
for the programmer to keep the policy and the code in sync.
A compiler tool can read the annotation and generate the
WSDL policy as an XML file.

7. JASON FRAMEWORK

Keeping the policies separate from the implementation not

/ client sandbox \ / server sandbox \
InvokingClass
parameters parameters

‘ Web Services Handler ‘

(> OtherHandlers -
JasonHandler j
encrypted SOAP messages
Figure 5: JASON framework for Web Services

‘ Web Services Handler ‘

only allows us to use the code with multiple policies, also
the JASON framework can perform security actions sepa-
rate from the business application. The JASON framework
minimally consists of a JasonHandler which has access to
a key store and the policies. Figure 5 shows a simplified
model for Web Services (similar one can be made for e.g.,
RPC). The JasonHandler can be seen as a kind of firewall
or gate keeper. It checks the incoming messages against the
access control rules in the policy. When access is granted the
JasonHandler checks whether the message is appropriately
signed or encrypted. If everything is according to the policy
it decrypts the encrypted parts and checks and removes the
signatures. The result of this process is a standard SOAP
message which man be handled by other handlers, and even-
tually parsed by a Web Service Handler into a method call.

The same JasonHandler is used for outgoing messages. It
ensures that outgoing messages are correctly signed and/or
encrypted before they leave the sandbox. In the implemen-
tation of JasonHandler we use many WS-security standards,
which are described in Section 8.

7.1 Compartmentalization

In JASON, every object is placed in a JASON compart-
ment. Each compartment consists of a Security Manager to
control access to resources (files, databases, socket connec-
tions, etc.), and a ClassLoader to prevent an object to invoke
methods of another object that is loaded by a different Class-
Loader. The JASON Handler creates the compartments.

To really separate two services that run on the same JVM,
a standard Java sandbox is not enough, since a sandbox only
limits access to resources, like files and network sockets, but
not to other classes. Two services in different sandboxes can
still call the public methods of each other (this is not the case
on a JavaCard, which has a firewall built in). To provide real
separation we load each service by a different ClassLoader.
A class loader defines a new name space for classes that are
loaded by that class loader. Therefore, classes loaded by
different ClassLoaders cannot access methods of each other.
This approach has proved to be successful in, for example,
the implementation of Apache’s Tomcat server?.

8. SECURITY STANDARDS

SOA security involves a daunting number of security stan-
dards. JASON is not meant as yet another security stan-
dard. Instead JASON strives to simplify the task of writing
a secure application, while being standards compliant. The
JASON annotations are a hint to our JASON compiler to
use the correct security standards. In our view a program-

‘http://tomcat.apache.org/

mer is not required to dick into all the security standards
before he can write a secure program.
The JASON annotations form the security contract which
both the service and the invoking client have to obey. The
most natural place to put this information is the WSDL
description. The WS-Policy standard allows us to extent
the WSDL with any kind of policy. There are a lot of Web
Service related security standards that can be used as WSDL
policies. The WS-SecurityPolicy standard describes how the
requirements of a security standard can be specified as a
consistent WSDL policy. For instance, it can describe which
part of a SOAP message has to be encrypted and which
part has to be signed. It also specifies which standard to
use. WS-SecurityPolicy can reference a lot of other security
standards. Here, we list only those useful for JASON:
WS-Security [10] describes how to encrypt / sign part of a
SOAP message. Basically it will use XML Encryption
and XML Digital Signatures. (Closely linked with the
@Confidential and @Authentic annotations).

WS-SecureConversation [12] describes how to set up a
secure session. (Closely linked with the @Roles and
@AccessibleTo annotations).

WS-ReliableMessaging [11] deals with
(@Integrity annotation).

WS-Trust [13] describes how to handle trust relations and
right delegations.

Security Assertion Markup Language (SAML) can
be used to exchange authentication and authorisation
information between different parties.

integrity

9. CONCLUSIONS

Securing web services involves many standards, which are
most often cumbersome to use. A programmer should be an
expert in security and SOA standards to get all the settings
files right. JASON aims at reducing this complexity. A
programmer defines security settings by declaring them, not
by implementing them. Encrypting and signing parameters
and method result is as simple as inserting annotations in
the source code. The annotations are used by the JASON
tools to generate definition files which can be used by the
JASON framework.

Our main goal has been to achieve good synergy from com-
bining the JASON concept and the SOA architecture. We
believe that we achieved this goal and the resulting system
(JASON within SOA) is described in Section 4. Therefore,
our future research has been concentrating on writing the
JASON compiler and the JASON framework. We will also
design a key management system and a policy distribution
system. Eventually, we also consider performing a security
validation of the JASON system.

10. REFERENCES

[1] B. Bos, L. Chmielewski, J.-H. Hoepman, and T. S.
Nguyen. Remote management and secure application
development for pervasive home systems using Jason.
In In 3rd International Workshop on Security, Privacy
and Trust in Pervasive and Ubiquitous Computing,
pages 7-12, Istanbul, Turkey, July 2007.

[2] R. Brinkman and J.-H. Hoepman. Secure method
invocation in Jason. In USENIX Smart Card Research
and Advanced Application Conference (CARDIS),
pages 29-40, San Jose, CA, USA, Nov. 2002.

[3] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web services description language
(WSDL) 1.1. Technical report, W3C, 2001.

[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the art of virtualization. In Proceedings of the
ACM Symposium on Operating Systems Principles,
pages 164—177, October 2003.

[5] T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[6] P. Homburg, M. V. Steen, and A. S. Tanenbaum.
Globe: A wide-area distributed system. IEEE
Concurrency, 7:70-78, 1999.

[7] S. Karnouskos, O. Baecker, L. M. S. de Souza, and
P. Spiess. Integration of soa-ready networked
embedded devices in enterprise systems via a
cross-layered web service infrastructure. In Proceedings
of 12th International Conference on Emerging
Technologies and Factory Automation. IEEE
Computer Society, 2007.

[8] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA:
Service-Oriented Architecture Best Practices (The
Coad Series). Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2004.

[9] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, pages 29—42.
The USENIX Association, June 2001.

[10] OASIS. Web Service Security: SOAP message security
1.1 (WS-Security 2004), February 2006. http://www.
oasis-open.org/committees/download.php/16790/
wss-vl.1-spec-os-S0APMessageSecurity.pdf.

[11] OASIS. Web Service Reliable Messaging
(WS-ReliableMessaging 1.1), June 2007.
http://docs.oasis-open.org/ws-rx/wsrm/200702/
wsrm-1.1-spec-o0s-01.pdf.

[12] OASIS. WS-SecureConversation 1.3, March 2007.
http://docs.oasis-open.org/ws-sx/
ws-secureconversation/v1.3/
ws-secureconversation.pdf.

[13] OASIS. WS-Trust 1.8, March 2007.
http://docs.oasis-open.org/ws-sx/ws-trust/vl.
3/ws-trust.pdf.

[14] B. Popescu, M. van Steen, and A. S. Tanenbaum. A
security architecture for object-based distributed
systems. In Proceedings of 18th Annual Computer
Security Applications Conference, pages 161-171.
IEEE Computer Society, 2002.

[15] J. Rosenberg and D. Remy. Securing Web Services
with WS-Security: Demystifying WS-Security,
WS-Policy, SAML, XML Signature, and XML
Encryption. Pearson Higher Education, 2004.

[16] W. T. Tsai, X. Liu, and Y. Chen. Distributed policy
specification and enforcement in service-oriented
business systems. In ICEBE ’05: Proceedings of the
IEEE International Conference on e-Business
Engineering, pages 10-17, Washington, DC, USA,
2005. IEEE Computer Society.

