
 1

 Linux Basics

Basic Flow of Operation

Basically an operating system (OS) is a piece of software running on a computer which
provides:

• a nice interface to hardware,
• management of computer resources, where the two most important resources are

memory and processor execution time, and
• a means to run several programs concurrently, allowing multiple users at the same

time.

The user can ask the OS to run several programs at the same time. Then the OS
will schedule this work in such a way that each program gets some percentage of the
execution time of the processor.
The OS can be asked to perform certain tasks by, for instance, typing a letter at the keyboard
or clicking with a mouse. This will generate an interrupt and with these interrupts you can
drive the OS to do what you want.

Thus the OS is driven by interrupts, which can be considered as the heartbeats of a
computer:

• All programs running in an OS are scheduled by a scheduler which is driven by timer
interrupts of a clock to reschedule at certain times.

• An executing program can block or voluntary give up the CPU in which case the
scheduler is informed by means of a software interrupt (system call).

• Hardware can generate interrupts to interrupt the normal scheduled work of the OS
for fast handling of hardware.

In an OS the specific part of software dealing with interrupts is called the kernel, which is the
core of an OS. In general we can say that the kernel has the highest priority of getting
executed on the computer because it is always the first software executed when an interrupt
happens.

The kernel is also executed in a higher privileged mode than normal user programs, because
for safety and security reasons we do not want a program to access the hardware of the
computer directly.

In short, we list the basic flow of operations for interrupts:
• when an interrupt arrives, it is first given to the kernel
• depending on the type of interrupt, the kernel does certain actions:

• timer interrupt: it calls the scheduler to reschedule the programs (Note: it may
also start a new program on request)

• hardware interrupt: it deals with data from or to the hardware on the specific
hardware bus

• software interrupt: it executes some code on behave of some program which
does not have the privilege to do it herself.
Note: before doing it, it checks if the program is authorized to call this
request.

 2

• finally when the kernel is done serving the interrupt it will switch to running the
scheduled program in lower privilege mode

Memory
http://en.wikipedia.org/wiki/Memory_protection

Segmentation
Segmentation divides the memory of a computer into segments. Each segment can get a
different privilege level.

Paging
In paging, the memory address space is divided into small pieces, called pages. Using a
virtual memory mechanism, each page can be made to reside in any location of the physical
memory, or be flagged as being protected. Paging makes it possible to have a linear virtual
memory address space that access pieces out of a fragmented physical memory space.

Each process is given a page table to define the valid addresses and map them to physical
memory. The page table is usually invisible to the process. Page tables make it easy to
allocate new memory for a process, as each new page can be allocated from anywhere in
physical memory.

Parts of an application's memory can be "swapped out" to other forms of storage. This
happens to memory that is seldom used and it allows the application to act as if it has a much
larger working memory than actually exists. By swapping out memory, the virtual memory
layout will not change, but it frees a lot of physical memory (i.e. RAM) for other uses.

If the process is accessing a virtual memory location that is not mapped by the page table, a
page fault will occur. Page faults could mean either that the process has tried to access
memory that it should not have access to, or that part of the application's memory has been
swapped out. In the last case, the page will be swapped back in and execution will proceed
where it was interrupted.

Memory Spaces
http://en.wikipedia.org/wiki/User_space
A protected-mode operating system usually segregates virtual memory into kernel space and
user space:
• Kernel space is strictly reserved for running the kernel, device drivers and kernel

extensions. In most operating systems, kernel memory is never swapped out to disk.
• User space is the memory area where all user mode applications work and this memory

can be swapped out when necessary. The term “userland” is often used for referring to
operating system software that runs in user space.

User mode and kernel mode are explained in more detail in the section “Memory segments”
below

Privileges and Execution Modes
http://en.wikipedia.org/wiki/Kernel_mode

http://en.wikipedia.org/wiki/User_mode
For safety and security reasons, a program is not allowed to directly access the hardware of
the computer. Instead, the program must do a request to the OS, a so-called system call, and

http://en.wikipedia.org/wiki/Memory_protection�
http://en.wikipedia.org/wiki/User_space�
http://en.wikipedia.org/wiki/Kernel_mode�
http://en.wikipedia.org/wiki/User_mode�

 3

the OS then evaluates if it is safe, and if so, it does this hardware access on behalf of the
requesting program. To enforce this mechanism, modern CPU's have 4 different execution
modes built into hardware. By switching between execution modes (also called “privilege
levels”) one can allow or disallow two privileges:
 1. Interaction with low level hardware
 2. Access to arbitrary memory

Linux uses only two modes:
• User mode: disallow privileges 1 and 2
• Kernel mode: allow privileges 1 and 2

The idea of having two different operation modes comes from the principle "with more control
comes more responsibility". A program in kernel mode is trusted never to fail, since a failure
may cause the whole computer system to crash, whereas user-space applications are not
trusted to work correctly.

In kernel mode (also called “supervisor mode”) it is possible to execute machine code
operations, such as modifying registers for various descriptor tables or performing operations
such as disabling interrupts, which are not allowed in the less privileged user mode. To
perform specialized operations in user mode, such as interaction with hardware, the code
must perform a system call to trusted code running in kernel mode which can perform the
requested task. Note that a system call is a consequence of having different privilege levels.

Memory segments
When the scheduler switches the running process, it also switches the memory segment that
can be addressed when running this process. This changes both the rearrangement of the
virtual memory mapping to physical memory and privilege level the CPU is in when running
the process. Linux has several memory segments to which it applies paging. We discuss the
two most important ones:
• User segment

o A process running within this segment is called a user (space/mode) process; it
runs with user mode privilege level

o When paging this segment:
 Virtual memory is mapped purely to memory private for the user process
 User process can only address the first 3 gigabytes of the usual 4 GB of

virtual memory (using 32 bit addresses); the 4th gigabyte is forbidden
and reserved for kernel processes

o This memory is called user space memory which uses a different mapping to
physical memory for different user process; hence a process can never access
memory of other user processes, nor kernel processes, i.e., we have memory
protection

• Kernel segment
o A process running with this segment is called a kernel (space/mode) process; it

runs with kernel mode privilege level
o When paging this segment, virtual memory is mapped in two parts

 Part one: This part is called kernel space memory. It is mapped to shared
physical kernel memory using the same mapping used for all kernel
processes; this is the 4th gigabyte of virtual memory which is shared by
all kernel processes, i.e., no memory protection!

 Part two: the user space memory of the user process which was running
when this kernel process got started; these are the first 3 gigabytes of
virtual memory

 4

Interrupts and System Calls
As stated before, a system call is a request of code running in user mode to have something
done by the kernel running in the kernel mode. The only way to switch from user mode to
kernel mode is by generating an interrupt. Therefore at booting the kernel configures a special
interrupt 0x80 to do such requests. Note that all other interrupts generated by a program in
user mode are ignored by the kernel.
Thus a system call is nothing else than an interrupt generated by software. When an interrupt
is generated, the CPU immediately stops with what it was doing and starts handling the
interrupt. The handler for the interrupt can be found in the interrupt table.

• For all interrupts, the memory segment is set to the kernel segment, meaning that the
CPU will switch to kernel mode

• A user mode program can only generate interrupt 0x80; all other interrupts it generate
will result in an security error

• Interrupt 0x80 is used to implement system calls. The interrupt handler for this
interrupt looks in the CPU registers to see which system function it has to execute
and with which arguments. After having finished this function, it places the result also
there and next the processor switches back to the process in user mode

Note that a kernel module does not need a system call. Because it is in kernel mode, it can
directly call the service of the system call.

Hardware Abstraction Layer - HAL
The hardware abstraction layer (HAL) provides an abstraction of the hardware.

• The software interacts with an abstract representation of the hardware in the HAL
• The software can be ported to another hardware platform by porting the HAL to this

platform, implementing the same abstract representation.
In the context of an Operating System (OS) such as Windows or Linux, a HAL is used to
abstract from the motherboard of the system. This makes it easier to run the OS on different
platforms with different CPUs and controllers on the motherboard. This does not include
special hardware attached to the motherboard; this requires the installation of special drivers.

Linux architecture

user processes

kernel processes

OS kernel

specific
hardware

device driver

Hardware Abstraction Layer (HAL)

CPU + motherboard

user mode

kernel mode

software

hardware

 5

	Linux Basics
	Basic Flow of Operation
	Memory
	Segmentation
	Paging

	Memory Spaces
	Privileges and Execution Modes
	Memory segments

	Interrupts and System Calls
	Hardware Abstraction Layer - HAL
	Linux architecture

