
Analysis of Secure Key Storage Solutions on Android

Tim Cooijmans
SNS REAAL

tim.cooijmans@sns.nl

Joeri de Ruiter
Institute for Computing and

Information Sciences
Radboud University Nijmegen

joeri@cs.ru.nl

Erik Poll
Institute for Computing and

Information Sciences
Radboud University Nijmegen

erikpoll@cs.ru.nl

ABSTRACT
Mobile phones are increasingly used for security sensitive
activities such as online banking or mobile payments. This
usually involves some cryptographic operations, and there-
fore introduces the problem of securely storing the corre-
sponding keys on the phone. In this paper we evaluate the
security provided by various options for secure storage of
key material on Android, using either Android’s service for
key storage or the key storage solution in the Bouncy Castle
library. The security provided by the key storage service of
the Android OS depends on the actual phone, as it may or
may not make use of ARM TrustZone features. Therefore
we investigate this for different models of phones.

We find that the hardware-backed version of the Android
OS service does offer device binding – i.e. keys cannot be
exported from the device – though they could be used by
any attacker with root access. This last limitation is not
surprising, as it is a fundamental limitation of any secure
storage service offered from the TrustZone’s secure world to
the insecure world. Still, some of Android’s documentation
is a bit misleading here.

Somewhat to our surprise, we find that in some respects
the software-only solution of Bouncy Castle is stronger than
the Android OS service using TrustZone’s capabilities, in
that it can incorporate a user-supplied password to secure
access to keys and thus guarantee user consent.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls

Keywords
Android; key storage; trusted computing; TrustZone; TEE

1. INTRODUCTION
The use of mobile platforms such as smartphones has

grown enormously in the last years and with it also the
number of mobile applications (also called apps) on these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPSM’14, November 7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-3155-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666620.2666627.

platforms. Naturally this also gained the interest of crim-
inals. This in turn forced the manufacturers of the mobile
platforms and the application developers to invest in secur-
ing their mobile platform and the apps on it. Since very
early on security has already been an important topic for
both Android and Apple iOS, the two main operating sys-
tems for mobile phones [7, 12].

One of the basis of securing mobile platforms is the prin-
ciple of secure key storage. Secure key storage offers a secure
environment that protects the integrity and confidentiality
of the cryptographic keys stored within the environment. To
ensure the confidentiality of the keys, basic cryptographic
operations using the keys are executed within this secure
environment.

Most mobile phones and tablets are based on an ARM pro-
cessor. ARM does not produce processor itself but rather
licences processor designs to chip manufacturers. The man-
ufacturers use this design and add their own features, after
which they produce the actual chips. Examples of such chip
manufacturers are Qualcomm and Texas Instruments (TI).

To improve the security of solutions such as secure key
storage on mobile devices, hardware manufacturers intro-
duced hardware-based security features. One of these fea-
tures is ARM TrustZone Technology. ARM TrustZone Tech-
nology is a hardware-based solution embedded in the ARM
processor cores that allows the cores to run two execution
environments. These execution environments are also called
worlds: the normal world, where for example Android OS
or any other operating system runs, and a special secure
world, where sensitive processes can be run. Both worlds
can run interleaved. In 2012 ARM announced that it would
include ARM TrustZone Technology in every processor de-
sign they license to manufacturers [11]. As a result, many
smartphones today are equipped with a processor with ARM
TrustZone Technology.

This article analyses the different secure key storage so-
lutions available on Android smartphones. Our research fo-
cused on Android because it is currently the most used oper-
ating system on mobile phones and tablets [2]. Also, a large
part of the operating system is open source and therefore
can easily be inspected. There is a large number of Android
smartphones available today produced by various manufac-
turers. On top of this, each manufacturer creates its own
“flavor” of Android OS by modifying the open source soft-
ware. Because it is infeasible to analyse all different hard-
ware with different versions and variants of Android we focus
on the Nexus phones with the original software as provided
by Google.

A more detailed description of this research can be found
in [3], the MSc thesis of the first author, which besides op-
tions for secure storage also considers possibilities for secure
computation on Android devices.

2. RELATED WORK
Though quite some research has been done on Android,

not much of this research has focused on key storage. Elenkov
discussed the architecture and some details of secure key
storage on Android in a number of blog posts, such as ECDH
support in Bouncy Castle [4] and an analysis of hardware-
backed storage in Android Jelly Bean [5].

Hay and Dayan discovered a vulnerability in the Android-
KeyStore code on Android 4.3 [9]. The vulnerability allows
for a stack buffer overflow which could allow for code exe-
cution under the rights of the KeyStore process. However
the practical exploitability of this vulnerability is limited as
noted in the article: the buffer overflow is situated in a vari-
able that limits the data in the buffer. Also note that the
vulnerability is in the code running in Android OS, not in
the code running in the secure world.

In 2013, Rosenberg showed that the software running in
the secure world on Motorola devices based on a Qualcomm
chip could be attacked [16]. The vulnerability allows the
non-secure world to write to arbitrary locations in the secure
world memory. Using this exploit the secure boot could be
disabled (also known as “unlocking” the device), which al-
lows the device to run code that is not signed by Motorola.
Possibly this attack could allow the master key used for en-
cryption to be extracted.

Teufl et al. discuss the encryption systems used within
Android OS in [19]. This includes both disk encryption and
credential storage. For the latter, the default functionality
offered by new Android versions is discussed. Before, Teulf
et al. performed a similar analysis for Apple’s iOS [20]. In
[18], Shabtai et al. give a more general security of Android
OS. Othman et al. propose a high level API for Android in
[15] to let developers make easy use of Trusted Computing
to perform security sensitive operations.

3. BACKGROUND

3.1 Android OS
Android OS is an operating system developed by the Open

Handset Alliance led by Google. It was first released in
2007 [13]. The operating system is based on a Linux ker-
nel that is modified to better fit a mobile operating system.
While the Android operating system and its packages are
open source, only at the release of a new final version the
source code is released. Ongoing development is not open-
sourced. Most apps are written in Java but C++ is also
supported. As opposed to apps, OS services on Android are
mostly written in C++. Everybody can use the Android op-
erating system on their devices. This means that Android
phones are available from a large number of manufactur-
ers. Some manufacturers supply an Android experience that
looks and feels like the versions released by the Open Hand-
set Alliance, such as, for example, the Nexus phones that are
released by LG and Samsung in collaboration with Google.
Others only use the Android OS as basis and modify the
experience and features.

A few features of the Android OS are relevant in the light
of secure key storage. The first is file storage on Android
OS. The directory layout of the file system for Android is
somewhat different from a usual Linux operating system:

• /data is used to store the data of all apps and services
running on the operating system.

• /data/data is the location for apps to store their data
Each app gets its own directory, which is only accessi-
ble by the intended app.

• /sdcard is the location where the SD-card (if present
in the system) is mounted. The internal storage is lim-
ited but faster on older Android devices so developers
had to choose whether to stored data internally or on
the SD-card. Most recent Android devices have larger
internal flash storage so they do not need a SD-card
anymore. On systems that have internal flash storage
and no SD-card slot the /sdcard path is symlinked to
/storage/emulated/legacy.

The (emulated) SD-card directory, also called external stor-
age, can be accessed via USB to write and read all files from
it. Developers are recommended to only use internal storage
for data that they want to restrict access to1.

The second feature is the assignment of separate logical
user IDs to every individual application and internal ser-
vices. This is different from a normal Linux system where
each user is allocated a user ID and all applications he runs
use the user ID assigned to the user.

3.2 TrustZone Technology and the TEE
As discussed in Section 1, ARM TrustZone Technology

provides a separation of the hardware in two worlds as de-
picted in Figure 1. In the normal world runs Android OS or
any other operating system and in the secure world security
sensitive operations can be handled.

Normal OSSecure world OS

App App

Hardware

ServiceTrustlet

Secure world Normal world

Trustlet

Figure 1: The separation of the hardware by Trust-
Zone into two worlds

One of the main features of ARM TrustZone Technology
is the security bit on the communication bus [1]. The ARM
processor has a communication bus called the AXI-bus that
is used by the main processor to communicate with periph-
erals (see Figure 2). These peripherals can either be located

1See http://developer.android.com/guide/topics/
data/data-storage.html#filesExternal

http://developer.android.com/guide/topics/data/data-storage.html#filesExternal
http://developer.android.com/guide/topics/data/data-storage.html#filesExternal

in the same package or chip, or outside the package. When
multiple systems are located on one chip or in one package
this is called a System on Chip (SoC). The security bit is
added to this bus to communicate to the peripherals whether
the transaction they are receiving is either from the secure
or the normal world. All peripherals should check the secu-
rity status of the transaction and ensure that they do not
leak any sensitive information from the secure world to the
normal one.

System Security

2-2 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

2.1 System security
System designs for embedded devices are complicated, including multiple independent
processor cores, secondary bus masters such as DMA engines, and large numbers of
memory and peripheral bus slaves. In addition to these functional components there is
typically a parallel system infrastructure that provides invasive and non-invasive debug
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST)
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a
way that it works with the security solution, rather than developing each sub-system
independently of the security requirements. If the threat model for a device indicates
that it needs to protect against shack attacks, there is no point securing only the
functional part of the system. An attacker with unrestricted access to a debug port can
bypass many of the functional protections that may exist.

This section aims to look at some of the security architectures that have historically been
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design

Media System Main Processor3G Modem

FlashDRAM
JTAG +

Boundary
Scan

Trace Display KeypadAerial

Memory
Controller

Memory
Controller

Debug
Access Port

Trace
Port

Display
Controller KMIADC / DAC

ARM1156

DSP

Cortex-R4

DSP

GSM Modem

DMA DMA

AudioDE

Mali200

Level 3 Cache

Cortex-A8

L2 Cache

Interrupt
Controller

Debug Bus

AXI to APB
Bridge

AXI Bus

Timers

RTC

Watchdog

Clock Ctrl.

Boot
ROM SRAM

AXI Bus

Figure 2: The ARM architecture and its AXI bus
(source: [1])

Another aspect of the TrustZone hardware is the separa-
tion of the two worlds in the processor itself. This is indi-
cated by the NS -bit (Non-Secure-bit) in the Secure Configu-
ration Register (SCR) of the processor [1]. This bit can only
be set by the system running in the secure world. When the
NS-bit is 0 the processor is operating in the secure world
and otherwise it operates in the normal world.

Two operating systems can run alongside each other us-
ing this architecture: one in the secure world and one in
the normal world. As a result a special form of virtualiza-
tion is created. There are two virtual environments that
include virtual processors and virtual resources. Access to
those virtual resources can be limited depending on the se-
curity status of the processor. The value of the NS-bit is
used to signal the security status of communications on the
AXI-bus by means of the security bit. This is in turn used
by the peripheral to decide how it should act on a certain
transaction.

TrustZone Technology provides hardware features to cre-
ate a secure environment separated from the normal exe-
cution environment. However, the hardware features that
are provided do not implement or ensure a secure environ-
ment. Some functionalities (such as context switching be-
tween the two worlds) are left to the software running in
the secure world to implement. The communication of data
between the two worlds is left to the software running in
both worlds to implement. Hardware features such as the
possibility of the secure world to access the memory of the
normal world allow these functionalities to be implemented.
However, note that the normal world can not inspect the
secure world’s memory.

To complete the secure environment and to allow multi-
ple apps to be run in the secure world a secure world op-

erating system (secure world OS) has to be implemented.
This provides an execution environment for apps to run in.
This environment is usually called a Trusted Execution En-
vironment (TEE). Applications running in the TEE are also
called trustlets. The secure world OS schedules resources
between both the trustlets running in the secure world and
the operating system running in the normal world. The se-
cure world OS should handle context switches both between
trustlets in the secure world and between the secure and
normal world. It should also ensure that no data is leaked
during the context switches. Note that if an untrusted user
is allowed to run trustlets in the TEE, also the security of
context switches between trustlets in the TEE should not
leak any information. Even if all trustlets are created by
the same issuer this is still a good property to ensure.

4. SECURITY MECHANISMS
There are several security mechanisms that can be used

to secure access to cryptographic keys on Android:

Android access control As a first line of defence, the An-
droid OS provides conventional access control on files.
Because different apps run as different users on An-
droid, this allows access to files to be controlled per
app.

TEE Additionally, the TEE provided by the ARM Trust-
Zone Technology, and the separation between the se-
cure and normal world it offers, can be used. There
are (at least) two ways of doing this:

1. The app that accesses the key material runs in
the secure world. For most apps, however, this
will not be an option, as it requires the coopera-
tion of whoever is in control of the TEE to grant
permission. We will therefore not consider this
option, but we will come back to it when drawing
our conclusions in Section 9.

2. The app runs in the insecure world and requests
operations that use the keys from a service run-
ning in the secure world. This service is respon-
sible for storing and using these keys. This is an
option we will consider, as on some Android de-
vices such a service is available, as discussed in
sections 8.3 and 8.4.

Password-protected storage Independently of the secu-
rity mechanisms above, access to key material could
be further protected by an additional encryption key
or password. Of course, this introduces the problem
of where to store this encryption key or password. We
will refer to this encryption key as a password to avoid
confusion. Here we have two options:

Stored password An app could simply store the pass-
word in the file system or use white-box crypto
techniques to try and hide it in its code. Of
course, an attacker with access to the code and
data of an app, and with enough time and pa-
tience, can then in principle always recover the
password.

User-provided password An app could rely on the
user to provide the password which is used as the
encryption key, or used to derive the encryption

key. An attacker with access to the code and files
of an app can then no longer retrieve its key ma-
terial. This approach might leave a possibility
open for a brute-force attack. Such an attack
could work if the password is checked locally on
the phone and the attacker can determine when
he guessed the correct password. This could be
countered if the user-provided password provides
enough entropy to make this attack infeasible.
Note that this may not be a realistic assumption
for most smartphone users: entering a password
with sufficient entropy on a smartphone is not
very user-friendly. An attacker could of course
still try to obtain the user-supplied password by
eavesdropping on the running system with, for in-
stance, a key logger, or by some form of phishing
that tricks the user into providing the password
to the attacker.

5. ATTACKER MODELS
To evaluate the security guarantees, which we will discuss

in Section 6, offered by the different solutions, we define
three attacker models. In increasing power, these are:

Malicious app attacker This attacker tries to attack the
secure key storage from another app installed on the
same device. The app is assumed to be installed from
an app-market (such as the Google Play-store or the
Amazon appstore). The attacker is assumed to be able
to use all permissions that an app that is installed from
such store can request.

Root attacker This attacker has root credentials and is
able to run apps under root permissions and inspect
the file system. This models an attacker that either
uses an exploit to gain root permissions on the device
or has the ability to run an application with root per-
missions. Note that this is not an unrealistic scenario
as many users today enable root permissions on their
phone to work around the permission model. There are
even apps in the Google Play Store that require root
permissions such as, for example, Titanium Backup2

which can be used to backup phones.

Intercepting root attacker This attacker has the same
abilities as the root attacker but is also able to capture
user-input in Android OS as the user enters it. This
can be done by, for example, inspecting the memory
of the device.

6. SECURE KEY STORAGE SOLUTIONS
Android provides a number of secure key storage solu-

tions. The first version of Android, API level 1, already
provided cryptographic operations and key storage. It has
a standardised interface to store key material. An abstract
class defines an interface to store keys and facilitates get-
ting an instance of a particular storage method. The actual
storage of keys is provided by different keystore types. Two
commonly used keystore types are analysed:

2https://play.google.com/store/apps/details?id=
com.keramidas.TitaniumBackup

Bouncy Castle Bouncy Castle is a cryptographic library
for Java3. It is provided on all Android versions en-
countered and provides a keystore type. The Android
version of Bouncy Castle [4] is a limited version of the
regular Bouncy Castle library. Many functions and
classes are removed as the Android developers consid-
ered them unnecessary for early versions of Android.
For example, the APIs needed to create certificates
are removed.4 The Android API provides a method
that returns the default keystore type on the device.
On all the devices we analysed, the default keystore
is Bouncy Castle (indicated by BKS). Keys are stored
using file-based keystores.

AndroidKeyStore This type is added in API Level 18. It
communicates with a service called KeyStore using In-
ter Process Communication (IPC). The KeyStore ser-
vice is started when the device boots. Manufacturers
can develop drivers for their hardware that communi-
cate with this service to provide hardware-based secure
storage. If no drivers are available, Android defaults
to a software implementation. AndroidKeyStore does
not provide an API to use a user-provided password
to protect the stored keys.

Different devices provide different realisations for Android-
KeyStore, which may or may not involve a TEE. As can be
seen in Table 1, the same model phone may or may not pro-
vide a TEE depending on the version of Android running on
it. When the Bouncy Castle library is used, the password
could be user-supplied or stored on the file system. All this
means we end up with several options to compare:

1. Bouncy Castle using a stored password This op-
tion does not use the TEE or a user-provided pass-
word. The keystore is encrypted using a password that
is stored in the application-specific data directory as
discussed in Section 3.1.

2. Bouncy Castle using a user-provided password
This option uses a user-provided password with suffi-
cient entropy to store the keystore. However, the TEE
is not used.

3. AndroidKeyStore using the TEE on Qualcomm
devices On devices that have a Qualcomm processor
with TrustZone Technology, the TEE is used to secure
AndroidKeyStore.

4. AndroidKeyStore using the TEE on TI devices
Similar to the previous option, except a device with
a processor by Texas Instrument is used. The actual
implementation differs from the Qualcomm implemen-
tation, so both solutions are analysed separately.

5. AndroidKeyStore using software-fallback This
option concerns the case where no TEE (or no driver
for the TEE) is available on the device for Android-
KeyStore to use. As discussed before, no user-provided
password can be used.

3https://www.bouncycastle.org/
4The full version of the Bouncy Castle library, however,
is also available for Android. To avoid naming conflicts
this library for Android is called Spongy Castle (http:
//rtyley.github.io/spongycastle/) and can be included
in any application.

https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup
https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup
https://www.bouncycastle.org/
http://rtyley.github.io/spongycastle/
http://rtyley.github.io/spongycastle/

When analysing the different key storage solutions, we
distinguish three security requirements:

App-binding The key can only be used by an instance
of a certain application on a certain device. The key
can not be used by another application or on a other
device.

Device-binding The key can only be used on a certain
device.

User-consent required The key can only be used when
the user wants to use the key and has given his explicit
consent to do so.

The requirements of App-binding and Device-binding are
related: App-binding is a stronger variant of Device-binding.
If App-binding is guaranteed then, by definition, Device-
binding is also guaranteed.

7. METHOD
To test the keystores on Android we created the KeyStor-

ageTest application. On start-up the KeyStorageTest ap-
plication first checks if the cryptographic algorithms RSA,
ECDSA and DSA are claimed to be bound to the device (if
the necessary method is available). This check is done us-
ing the isBoundKeyAlgorithm(String algorithm) method
of the KeyChain class. This function is implemented by the
device manufacturer who should guarantee that the keys are
bound to the device if the function returns true. Next, the
application stores all keys in the keystore under an alias.
This alias is a string defined by the programmer that is
used to identify a key or key pair. The KeyStorageTest ap-
plication provides functionality to generate a new key pair
and delete it again. This key pair can be used to generate
signature on specific data.

The KeyStorageTest application is used to generate a
RSA key pair using the KeyPairGenerator. The KeyPair-

Generator, by default, also generates a (self-signed) certifi-
cate. To allow this, the subject, the serial number and the
start and end of the validity period have to be declared.

Two instances of the KeyStorageTest application are in-
stalled on a device. One instance is used to generate a key
pair. The goal then is to give the second instance control
over the key pair that is generated by the first instance. This
instance should then generate a valid signature over prede-
fined data. This is repeated for each of the three attacker
models with increasing privileges. We also look at the APIs
to see if they have the possibility to require user input or
user consent to use a key. If the APIs offer a way to re-
quire the user’s consent, we try to use the key without this
consent. The phones that are used in our tests are listed in
Table 1. These phones are chosen because they provide rep-
resent both high-level and low-level phones running recent
versions of Android and the older Android 2.3 that is still
commonly used today.

8. RESULTS

8.1 Bouncy Castle using stored password
According to the Bouncy Castle documentation5 the de-

fault format only protects against tampering but not against

5http://www.bouncycastle.org/specifications.html

inspection. This is clearly the case for the certificates stored
in the keystore. The certificates stored in the keystore can
be read using OpenSSL’s asn1parse tool6.

To ensure the integrity of the keystore, a password needs
to be provided while storing the keystore and when the in-
tegrity needs to be verified. Without this password the in-
tegrity of the whole keystore cannot be verified. The pri-
vate and secret keys stored in the keystore are protected
against inspection. These keys are encrypted using the pbe-
WithSHAAnd3-KeyTripleDES-CBC encryption scheme, as
defined in the PKCS #12 standard [17]. No vulnerabilities
are known for the encryption algorithm that is used. The
password needs to be provided by the application in order
to use the keys stored in the keystore.

Because the test application uses best practices, which in-
clude storing the keystore file in the application specific data
directory the keystore file cannot be accessed by other apps
without root permissions (see Section 3.1 for more details).
Since the malicious app attacker without root permissions
cannot access the keystore file, the attacker cannot retrieve
the private keys.

With root-permissions the application-specific data direc-
tory where the keystore file is stored by the test application
can be accessed. This application directory also contains
the file that stores the password that is used when storing
the keystore file. By copying both files to another device
running the same application we could successfully create a
valid signature using the private key stored in the keystore.
The attacker does not have to inspect the memory of the
device because all data needed is stored in files. The root
attacker can therefore violate the confidentiality of the keys
and use them in other applications and on other devices.

8.2 Bouncy Castle using user-provided pass-
word

If a user-provided password is used to store a Bouncy Cas-
tle keystore it is still possible to copy the keystore file to
another device by an attacker that gained root permissions.
However, the key entries in it can not be used without the
user-provided password. This password itself is not stored
on the device. A way to learn this password is to intercept
it in memory when the user enters it. The intercepting root
attacker would therefore be able to compromise keys stored
using this method.

Another possibility is to brute-force the password. The
entropy of the password used to encrypt the keystore may
be limited. Passwords that only consists of 4 or 5 digits are
regularly used on phones since entering a long and complex
password on a mobile device is cumbersome. When such a
low entropy password is used, an attacker that has access
to the keystore file can easily brute-force the password. As
a result, when a low entropy password is used, the root at-
tacker may be able to gain access to the data stored in the
keystore. Using the integrity check provided by the Bouncy
Castle keystore, the attacker can determine whether a pass-
word guess was correct.

8.3 AndroidKeyStore on Qualcomm devices
AndroidKeyStore on Qualcomm is implemented using the

KeyMaster service running in Android OS and a trustlet run-
ning in the TEE. An application that uses AndroidKeyStore

6https://www.openssl.org/docs/apps/asn1parse.html

http://www.bouncycastle.org/specifications.html
https://www.openssl.org/docs/apps/asn1parse.html

Phone Manufacturer Model name SoC Android
version

TrustZone
support

Nexus 5 LG Electronics LG-D821 16GB Qualcomm Snapdragon 800 MSM8974 4.4.2 Yes

Nexus 4 LG Electronics LG-E960 16GB Qualcomm Snapdragon 600 APQ8064 4.4.2 Yes

Galaxy Nexus Samsung Electronics GT-I9250 Texas Instruments OMAP 4460 4.3 Yes*

Nexus S Samsung Electronics GT-I9020T Samsung Exynos 3 Single S5PC110 2.3.6 No

Nexus S Samsung Electronics GT-I9020T Samsung Exynos 3 Single S5PC110 4.1.2 No

Moto G Motorola Mobility SM3719AE7F1 Qualcomm Snapdragon 400 MSM8226 4.3 No

Moto G Motorola Mobility SM3719AE7F1 Qualcomm Snapdragon 400 MSM8226 4.4.2 Yes

* Disabled by default

Table 1: Phones used in the evaluation

Android OSTEE

App 1

App 2

Hardware

KMKM App

Figure 3: Architecture of AndroidKeyStore on
Qualcomm devices

communicates using Inter-Process Communication with the
KeyMaster service. This KeyMaster service in turn commu-
nicates with a trustlet in the TEE that is responsible for
the key operations. This process is shown in Figure 3. The
actual keys are not stored in the TEE. Two files are created
in the /data/misc/keystore/user_0 directory when a new
key pair is generated:

• A USRPKEY file that stores the key pair parameters in-
cluding the private key.

• A USRCERT file that stores the certificate for the public
key.

Both files have the following naming format: (user ID of the
app)_USRPKEY_(key entry alias) and (user ID of the appli-
cation)_USRCERT_(key entry alias). For example 10102_US-

RPKEY_TestKeyPair. The user ID of the application is the
logical user ID in the Android OS under which the appli-
cation is running. Each Android application is allocated its
own user ID as discussed in Section 3.1. The key entry alias
can be chosen by the programmer.

The /data/misc/keystore/user_0 directory where the
key-entry files are stored is not accessible by a non-root user
and apps can not access the private key material of another
app. The usage of the application user ID in the filename
of the key-entry files is suspicious. And indeed this is what
controls the assignment of keys to certain applications. Us-
ing root permissions an attacker can rename or copy the files
to new files in the same directory on the same device with

the user ID of a second malicious application. For exam-
ple here we copy the entry files from the first to the second
KeyStorageTest application:

cp 10102_USRCERT_TKP 10101_USRCERT_TKP

cp 10102_USRPKEY_TKP 10101_USRPKEY_TKP

The private keys will then be directly accessible to the other
application. So the root attacker can use the keys in an-
other application on the device. The key-files seem to be
encrypted using a device-specific key that is stored in the
TEE and cannot be retrieved.

8.4 AndroidKeyStore on TI devices
AndroidKeyStore on Texas Instruments devices also stores

two files in the /data/misc/keystore/user_0 directory for
each key pair. However, the actual contents of the pri-
vate key file is different than with the Qualcomm imple-
mentation. The private key cannot be stored in the pri-
vate key file since the file size is smaller than the actual
private key used. An analysis of the keystore by Elenkov
shows that the actual private key data is stored encrypted
in /data/smc/user.bin [5]. The actual format is unknown
and again appears to be encrypted using a device-specific
key stored in a trustlet in the TEE.

The naming of the key entry files stored on devices that
have a TI processor and use AndroidKeyStore is exactly
the same as the Qualcomm-based version discussed in Sec-
tion 8.3. Again the root attacker can rename or copy the
files to assign them to another application. So, again, App-
binding is not achieved. However, since the keys are en-
crypted using a device-specific key, no attacker can use the
keys on another device and Device-binding is therefore still
achieved.

8.5 AndroidKeyStore using software-fallback
The naming of the key entry files when a software-based

keymaster is used is the same as we have seen with the
Qualcomm-based key storage: the key entry files include
the user ID of the application. Again, if an attacker gains
root permissions he can rename or copy the key entry files
to include the user ID of another app and use the keys in
that application. This issue appears to be specific to An-
droidKeyStore and not to the actual implementation of the
key storage that AndroidKeyStore uses.

When a PIN is required to unlock the device a random
128-bit AES master key is used for encryption. This master
key is randomly generated and stored in the .masterkey file

in the /data/misc/keystore/user_0 directory. This file is
encrypted using a key that is derived from the PIN using
8192 rounds of PKCS5_PBKDF2_HMAC_SHA1. The master key
is used to encrypt all key entries without any form of per
entry key derivation.

When a device does not require a PIN to unlock the device
no encryption of the private key file is used. By parsing the
USRPKEY-file an attacker can learn all information needed to
reconstruct the private key such as the private exponent and
the two primes of the RSA key pair. An attacker that does
not have root permissions (malicious app attacker) cannot
access the keystore directory and therefore cannot rename
or copy key entry files. The root attacker can simply read
the PKEY file to learn all private key information as shown
above. Subsequently there is nothing limiting the attacker
in copying this data off the device. Therefore Device-binding
is not achieved in presence of the root attacker .

Even when requiring a PIN to unlock the device, an at-
tacker that has root permissions (root attacker) can assign
private keys to other applications on the same device by re-
naming the (possibly encrypted) files as shown in Section 8.3
and discussed above. However, the root attacker has to de-
crypt the private key entries to be able to use them outside
of the device. To do this he has to learn the PIN (or pass-
word) used to unlock the device. While research shows that
this may not be impossible it does require brute-forcing [10].
The intercepting root attacker can however learn the nec-
essary information when the user inputs it and therefore
breaks the Device-binding requirement.

9. DISCUSSION
The results for the security requirements Device-binding,

App-binding and User-consent as defined in Section 6 on the
various phones can be found in tables 2, 3 and 4 respectively.

A first thing to note is that all keystores protect against
the malicious app attacker . The use of hardware-based se-
curity features ensures that the AndroidKeyStore solutions
that use the TEE guarantee device binding, even against
the intercepting root attacker . However, when we look at
App-binding we see that only the Bouncy Castle keystore
provides App-binding when used with a password with suf-
ficient entropy. While AndroidKeyStore provides Device-
binding, an attacker can create a signing oracle on the de-
vice to query for signatures over arbitrary data. So while
the attacker cannot gain access to the private key, he can
effectively use it without any limitations. This raises the
question what the value is of device binding when app bind-
ing is not guaranteed. It does make it harder for an attacker
to always have access to a key. However, with devices being
connected to the internet most the time nowadays, this is
not necessarily a major obstacle for the attacker.

When looking at the results for User-consent and App-
binding, the same solutions seem to provide the same se-
curity. This is not surprising, as User-consent is a stronger
requirement than App-binding. If an attacker cannot break
App-binding, he will not be able to break User-consent ei-
ther. For User-consent there is an additional risk, namely
when considering malicious app developers. An example of
this is when using an email app that can also sign messages.
The developer of the app could modify it to sign other data
apart from the user’s messages as well. This cannot be pre-
vented in the solutions we considered in this paper. A pos-
sible countermeasure for this would be a TEE that has a

trusted path to the user such that it can display the mes-
sage to be signed to the user and get confirmation directly
without it having to go through the untrusted operating sys-
tem. This would provide a what-you-see-is-what-you-sign
solution.

Given the results we wonder what is actually achievable.
Is it possible to have a secure method to bind keys stored
in the secure world to apps running in the normal world?
A possible solution could be to inspect the integrity of the
normal world from the secure world as we discuss in Sec-
tion 9.1. However, more research should be done on how to
actually ensure and check the integrity of (components of)
the normal world from the secure world.

In the end, the additional security that TEE-backed se-
cure key storage provides is Device-binding. It provides se-
curity against malicious apps, but not against a root at-
tacker. This is a fundamental limitation when using a secure
service for key storage from the secure world to the normal
world. Such a service will have to rely on the operating sys-
tem running in the insecure world to identify the app asking
access to some key. Still, the developers of AndroidKeyStore
could have made it a bit more difficult for a root attacker.
Now the attacker only needs to rename a file to obtain access
from a different app.

There may be other ways to do secure key storage that
were not discussed in this paper. An option that we have not
considered here is the use of a secure element (SE), where
keys could be stored in the SIM card or an embedded chip
in the phone.

With respect to app binding, the Android documentation
is a bit misleading. In the list of security enhancements in
Android 4.3 the documentation notes that7:

“AndroidKeyStore Provider. Android now has a
keystore provider that allows applications to cre-
ate exclusive use keys. This provides applications
with an API to create or store private keys that
cannot be used by other applications.”

In this paper we showed that this is clearly not true. How-
ever, on the same page it is also noted that:

“KeyChain isBoundKeyAlgorithm. Keychain API
now provides a method (isBoundKeyType) that
allows applications to confirm that system-wide
keys are bound to a hardware root of trust for the
device. This provides a place to create or store
private keys that cannot be exported off the de-
vice, even in the event of a root compromise.”

This does correctly indicate that it is possible that key can-
not be exported off the device, which is true for Android-
KeyStore using the TEE.

It is a pity that AndroidKeyStore does not provide sup-
port for the use of a password to encrypt the key storage
files like Bouncy Castle does. When done correctly, this
could make attacking AndroidKeyStore more difficult, as
the attacker then also needs to learn the password. Also,
this provides a way to implement for user consent.

For the average user it is hard to see if their phone pro-
vides the security of hardware-backed secure key storage.
For example, initially the Motorola Moto G was sold with-
out hardware-backed secure key storage – it did have the
7https://source.android.com/devices/tech/security/
enhancements43.html

https://source.android.com/devices/tech/security/enhancements43.html
https://source.android.com/devices/tech/security/enhancements43.html

Solution Malicious app
attacker

Root attacker Intercepting
root attacker

Bouncy Castle with stored password X × ×

Bouncy Castle with user-provided password X X* ×

AndroidKeyStore using the TEE on Qualcomm devices X X X

AndroidKeyStore using the TEE on TI devices X X X

AndroidKeyStore using software-fallback without a
PIN to unlock the device

X × ×

AndroidKeyStore using software-fallback with a PIN
to unlock the device

X X ×

* If password has sufficient entropy

Table 2: Overview of the results for Device-binding

Solution Malicious app
attacker

Root attacker Intercepting
root attacker

Bouncy Castle with stored password X × ×

Bouncy Castle with user-provided password X X* ×

AndroidKeyStore using the TEE on Qualcomm devices X × ×

AndroidKeyStore using the TEE on TI devices X × ×

AndroidKeyStore using software-fallback without a
PIN to unlock the device

X × ×

AndroidKeyStore using software-fallback with a PIN
to unlock the device

X × ×

* If password has sufficient entropy

Table 3: Overview of the results for App-binding

Solution Malicious app
attacker

Root attacker Intercepting
root attacker

Bouncy Castle with stored password X × ×

Bouncy Castle with user-provided password X X* ×

AndroidKeyStore using the TEE on Qualcomm devices X × ×

AndroidKeyStore using the TEE on TI devices X × ×

AndroidKeyStore using software-fallback without a
PIN to unlock the device

X × ×

AndroidKeyStore using software-fallback with a PIN
to unlock the device

X × ×

* If password has sufficient entropy

Table 4: Overview of the results for User-consent

required hardware for it but not the required software and
drivers – but later it received an update that enabled the
hardware-backed key storage. Another example is the Sam-
sung Galaxy Nexus, for which drivers that allow hardware-
backed key storage are available but they are not used on
production devices. Sometimes a phone model exists with
different hardware configurations that may or may not of-
fer TrustZone; for example, the Samsung Galaxy S3 may
contain a Samsung Exynos 4 Quad processor or a Qual-
comm Snapdragon S4 MSM8960, and only the former sup-
ports TrustZone.

9.1 Recommendations
To improve AndroidKeyStore we recommend the three im-

provements listed below. These do not require any change
to the architecture, but we should stress that these improve-
ments do not really solve the fundamental problem, and –
especially the first two – only make things a little bit harder
for an attacker.

• Encrypt the keystore files for the software-based An-
droidKeyStore when the device requires no PIN to un-
lock. A key could for example be derived from the
device id. While this provides no additional security
properties, it does makes it harder for attackers to read
a keystore file: the attacker first needs to derive the key
before begin able to retrieve the keystore file.

• Include the user ID of the application that generated
the key pair in the integrity checked section of the
keyblob in the keystore file. This again does not solve
the whole problem: an attacker can change the user
ID of the application that uses the files. However, this
is again harder than just renaming the files.

• Allow encryption of the keystore file using a user pro-
vided password. This provides the possibility to re-
quire user consent to use a key.

Solving the problem that multiple applications on the
same device can access a key is not trivial. As discussed,
adding an integrity check on the user ID of the application
in the keystore file does not solve the problem as the user ID
of an application can be changed. A possible solution could
be to check the signature or application ID of the applica-
tion requesting a key operation from the TEE. This can be
done as the TEE has access to the memory of the Android
OS. This solution may be very hard for an attacker to work
around. However, we are not aware of any research that
has been done in this area and further research is needed to
validate whether this is actually a viable and secure solution.

10. CONCLUSIONS
We reported the findings of our research to Google. Af-

ter our research, the source code of a new beta version of
Android (Android L) was released. This release includes a
fix to make the process of renaming the keystore files of An-
droidKeyStore harder. The assignment of keys to certain
applications is now also checked using SELinux permissions.
Though this does make it harder to rename the files, the
root attacker would be able to change the SELinux permis-
sions and therefore still be able to rename the files. A future
fix could use the capability of the TEE to communicate di-
rectly and securely with the user of the device. It could ask

for user consent in a secure way. By displaying the data to
be signed it could even provide a what-you-see-is-what-you-
sign solution. Of course, providing a trusted user interface is
one of the obvious uses of a TEE, and already standardised
in the Global Platform specifications [8].

In the end, the addition of AndroidKeyStore to Android
OS can provide device binding against a root attacker on
devices where the TrustZone TEE is used. Even though
some documentation on AndroidKeyStore suggests that it
also provides app binding, this is not the case in the presence
of a root attacker. When you think about it, this is not so
surprising, given the inherent limitations of what be done
against a root attacker; still, we were surprised how easy it
was, simply by renaming a file.

We were surprised to find that in one respect the Bouncy
Castle key storage can provide stronger security guarantees
than the hardware-backed AndroidKeyStore using the TEE,
even though the former only relies on software: because the
AndroidKeyStore does not provide a way to require a pass-
word for using a key, Bouncy Castle with a user-provided
password is the only solution that can guarantee user con-
sent.

The leading standard for electronic payments using smart-
cards, EMV8, has recently been extended to account for dif-
ferent security levels of key storage, amongst other things
[6]. One of the motivations for this extension is the use of
NFC-enabled mobile phones as replacement for contactless
smartcards. It will be interesting to see whether EMV’s clas-
sification of key storage solutions will in the future be refined
to include some of the security levels discussed in this paper,
such as device-binding, something that is already suggested
in [14].

11. REFERENCES
[1] Building a secure system using Trustzone Technology.

Technical report, ARM Limited, 2009.
http://infocenter.arm.com/help/topic/com.arm.

doc.prd29-genc-009492c/PRD29-GENC-009492C_

trustzone_security_whitepaper.pdf.

[2] Apple cedes market share in smartphone operating
system market as Android surges and Windows phone
gains, according to IDC, August 2013. http://www.
businesswire.com/news/home/20130807005280/en/.

[3] T. Cooijmans. Secure key storage and secure
computation in Android. Master’s thesis, Radboud
University Nijmegen, 2014.

[4] N. Elenkov. Using ECDH on Android, December 2011.
http://nelenkov.blogspot.nl/2011/12/

using-ecdh-on-android.html.

[5] N. Elenkov. Jelly Bean hardware-backed credential
storage, July 2012.
http://nelenkov.blogspot.nl/2012/07/

jelly-bean-hardware-backed-credential.html.

[6] EMVCo. EMV Payment Tokenization Specification.
Technical Framework (version 1.0), 2014.

[7] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android security. IEEE Security &
Privacy, 7(1):50–57, 2009.

[8] Trusted User Interface API Specification v1.0.
Technical report, Global Platform, 2013.

8EMV stands for Europay-Mastercard-Visa.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.businesswire.com/news/home/20130807005280/en/
http://www.businesswire.com/news/home/20130807005280/en/
http://nelenkov.blogspot.nl/2011/12/using-ecdh-on-android.html
http://nelenkov.blogspot.nl/2011/12/using-ecdh-on-android.html
http://nelenkov.blogspot.nl/2012/07/jelly-bean-hardware-backed-credential.html
http://nelenkov.blogspot.nl/2012/07/jelly-bean-hardware-backed-credential.html

[9] R. Hay and A. Dayan. Android KeyStore stack buffer
overflow - CVE-2014-3100, 2014.

[10] J. Lerr. Android pin/password cracking: Halloween
isn’t the only scary thing in October, October 2012.
http://linuxsleuthing.blogspot.nl/2012/10/

android-pinpassword-cracking-halloween.html.

[11] J. Mick. ARM to bake on-die security into next gen
smartphone, tablet, PC cores, april 2012.
http://www.dailytech.com/ARM+to+Bake+OnDie+

Security+Into+Next+Gen+Smartphone+Tablet+PC+

Cores/article24372.htm.

[12] C. Miller, J. Honoroff, and J. Mason. Security
evaluation of Apple’s iPhone. Independent Security
Evaluators, 19, 2007.

[13] Industry leaders announce open platform for mobile
devices, 2007. Press release.

[14] D. Ortiz-Yepes. A critical review of the EMV Payment
Tokenisation Specification. Computer Fraud and
Security, 2014. To appear.

[15] A. T. Othman, S. Khan, M. Nauman, and S. Musa.
Towards a high-level trusted computing API for
Android software stack. In Proceedings of the 7th
International Conference on Ubiquitous Information
Management and Communication, ICUIMC ’13, pages
17:1–17:9. ACM, 2013.

[16] D. Rosenberg. Unlocking the Motorola bootloader,
2013. http://blog.azimuthsecurity.com/2013/04/
unlocking-motorola-bootloader.html.

[17] RSA Laboratories. PKCS #12 v1.0: Personal
information exchange syntax, 1999.

[18] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, and C. Glezer. Google Android: A
comprehensive security assessment. IEEE Security and
Privacy, 8(2):35–44, March 2010.

[19] P. Teufl, A. G. Fitzek, D. Hein, A. Marsalek,
A. Oprisnik, and T. Zefferer. Android encryption
systems. In International Conference on Privacy
& Security in Mobile Systems, 2014. To appear.

[20] P. Teufl, T. Zefferer, C. Stromberger, and
C. Hechenblaikner. iOS encryption systems -
deploying iOS devices in security-critical
environments. In SECRYPT, pages 170 – 182, 2013.

http://linuxsleuthing.blogspot.nl/2012/10/android-pinpassword-cracking-halloween.html
http://linuxsleuthing.blogspot.nl/2012/10/android-pinpassword-cracking-halloween.html
http://www.dailytech.com/ARM+to+Bake+OnDie+Security+Into+Next+Gen+Smartphone+Tablet+PC+Cores/article24372.htm
http://www.dailytech.com/ARM+to+Bake+OnDie+Security+Into+Next+Gen+Smartphone+Tablet+PC+Cores/article24372.htm
http://www.dailytech.com/ARM+to+Bake+OnDie+Security+Into+Next+Gen+Smartphone+Tablet+PC+Cores/article24372.htm
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html

	Introduction
	Related work
	Background
	Android OS
	TrustZone Technology and the TEE

	Security mechanisms
	Attacker models
	Secure key storage solutions
	Method
	Results
	Bouncy Castle using stored password
	Bouncy Castle using user-provided password
	AndroidKeyStore on Qualcomm devices
	AndroidKeyStore on TI devices
	AndroidKeyStore using software-fallback

	Discussion
	Recommendations

	Conclusions
	References

