Learning From Others’ Mistakes: Penetration Testing IoT Devices in the Classroom

Tom Chothia and Joeri de Ruiter
Penetration testing course

- Masters course
- Taught at University of Birmingham, UK
- Two practical assignments
 - Analysing commercial off-the-shelf IoT devices
Learning objectives

- Collect and analyse network traffic
- Understand commonly used network protocols
- Simple reverse engineering of code
- Perform penetration tests of IoT devices
- Present results of a penetration test in form of a report and presentation
Introduction

- Introduction to penetration testing
- Relevant standards (e.g. PCI-DSS, NIST SP800-115)
- Legal and ethical issues
Analysing network traffic

• Web security
 • Common attacks: SQLi, XSS, CSRF
 • Burp Proxy to intercept, view and alter web traffic
 • Practical exercise with VM running vulnerable web application

• Network protocols
 • HTTP and TLS
 • Network scanning with Nmap
 • Capturing of network traffic using Wireshark
 • TLS man-in-the-middle using Burp Proxy
Reverse engineering

- Android / Java apps
 - Apktool, dex2jar and JD-GUI tools introduced
 - Tools useful for group assignment
- x86 binaries
 - IDA Pro
 - Buffer overflows
- Practical exercise on buffer overflows
Practical assignments

- Analysis of commercial off-the-shelf IoT devices
- Results in report and presentation
- Students signed declaration
 - Only analysis of device and app, no backends
 - No publicity without permission from staff
First group assignment

- Analysis of vulnerable IoT device
- Groups of 4
- Lasted for 4 weeks
- Individual group meetings to discuss progress
- Lab session to get help with the tools
Vulnerable devices

- Easy to find vulnerabilities
 - Known vulnerabilities
 - Found during quick manual analysis
- Can be during setup
 - For example, sending Wi-Fi credentials over unprotected Wi-Fi connection
- Or when device is used
 - For example, improper use of TLS
Results first assignment

- All groups found some vulnerability
- Findings were presented to class
 - Demos given of found attacks
- Reports were peer reviewed by students
Student reviews

• Reports of first assignments were reviewed and ranked by all students
 • One paragraph per reviewed report
 • Not taken into account for grade of reviewed report
• Review reports were part of the final grade
• Useful exercise for the students
Second group assignment

- Different groups
 - Knowledge sharing
- Unknown whether devices were vulnerable
- Less guidance
- Grade based on report
 - Finding vulnerability not necessary for good grade
Results second assignment

- New vulnerabilities found
 - Home alarm system: app used same credentials over TLS and plaintext connection
 - Smart padlock: validity period only checked by app and master code provided to guest users
 - Smart camera: face recognition fooled using Facebook pictures
- Knowledge shared after first exercise
Grading

- Practical assignments
 - Analysis of device functionality (25%)
 - Risk analysis (10%)
 - Substantialness of achievement (15%)
 - Report (20%)
 - Presentation (20%)
 - Teamwork (10%)
Grading

• Final grade
 • Written exercises (10%)
 • First practical assignment (40%)
 • Peer reviews (10%)
 • Second practical assignment (40%)
• No students failed
• Distribution of marks comparable to other courses
Student feedback

- Course very well received
- Maximum score for
 - How worthwhile course was
 - The amount learned
 - How interesting course was
- Rated slightly harder than average
- Practical aspects, learned skills and use of real IoT devices especially appreciated
- Students would have liked more time for analysis
Conclusions

- IoT devices provide good learning material to teach penetration testing techniques
 - All groups found vulnerabilities
- Having two rounds improved knowledge sharing
 - First round builds confidence that the students can find vulnerabilities
- Course very well received by the students
Thanks for your attention!

Teaching material available on:
http://www.cs.bham.ac.uk/~tpc/Edu/Pentesting/