Analysis of Secure Key Storage Solutions on Android

Tim Cooijmans, Joeri de Ruiter, Erik Poll

Digital Security, Radboud University Nijmegen

MI

Mobile payments

- App to transfer money or pay in a shop
- Transaction needs to be approved by user
- Typically done by signing transaction data
- How can this key be protected?

Bank Confirm transaction

From: Tim Cooijmans NL12SNS12345235

Amount: 100 Euro

To: Jan Jansen NL12SNS1223456

Secure key storage

- Secure environment to store keys
 - Symmetric: AES, 3DES
 - Asymmetric: RSA, ECC
- Cryptographic operations usually performed within secure environment
- Form of secure computations

Secure key storage on Android

- Biggest OS for mobile devices
- Open environment
 - Easy to inspect or make changes
- More public documentation available
- Focused on Nexus devices

Security mechanisms

- Access control
 - File system
 - Unique user id per app
- Trusted execution environment (TEE)
 - Complete app in secure world
 - Cryptographic operations in secure world
- Password-protected storage
 - Stored password
 - User-provided password

TrustZone Technology

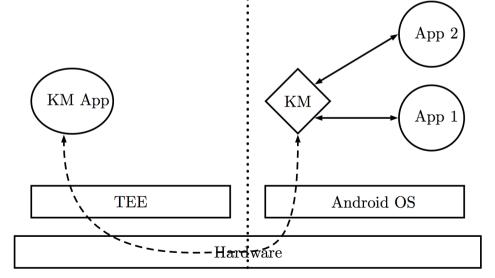
- ARM processor feature
- Default in processor designs
- Two execution environments
- Normal world
 Secure world
 Secure world
 Virtualisation
 Trustlet Trustlet
 Secure world OS
 Normal OS

Joeri de Ruiter - Digital Security, Radboud University Nijmegen 🛒

6 / 22

Secure key storage solutions: Bouncy Castle

- Cryptographic library for Java
- Stripped down for Android
- Software only
 - Stored password
 - User-provided password


Secure key storage solutions: Bouncy Castle

- Cryptographic library for Java
- Stripped down for Android
- Software only
 - Stored password
 - User-provided password

Secure key storage solutions: AndroidKeyStore

- Available since 4.3
- Service running in background
- No access to key
- Hardware-based secure storage
 - Qualcomm devices
 - Texas Instruments devices
- Software-fallback

9/22

Joeri de Ruiter - Digital Security, Radboud University Nijmegen 👘

Attacker models

- Malicious app attacker
 - Attacks other apps
- Root attacker
 - Full access to file system
- Intercepting root attacker
 - Full access to file system and user input

Security requirements

- Device-binding
 - Key can only be used on one device
- App-binding
 - Key can only be used by one app on one device
- User-consent
 - Key can only be used with explicit consent from user

Method

- KeyStorageTest app
 - Check if algorithms are bound to device
 - Generate keys
 - Generate signatures
- Try to create a valid signature
 - Using another app
 - On another device
 - Without asking for user consent

Devices

Phone	Processor	Android version	TrustZone
Nexus 4	Qualcomm	4.4.2	Yes
Nexus 5	Qualcomm	4.4.2	Yes
Galaxy Nexus	Texas Instruments	4.3	Yes*
Nexus S	Samsung	2.3.6	No
Nexus S	Samsung	4.1.2	No
Moto G	Qualcomm	4.3	No
Moto G	Qualcomm	4.4.2	Yes

* not enabled by default

Bouncy Castle using stored password

Password stored in app specific directory

	Malicious app	Root	Intercepting root
Device-binding	\checkmark	×	×
App-binding	\checkmark	×	×
User-consent	V	×	×

Bouncy Castle using user-provided password

- Password not stored on device
- Password need to contain enough entropy
- Correctness of password can be verified using Bouncy Castle's integrity check

	Malicious app	Root	Intercepting root
Device-binding	\checkmark	√ *	×
App-binding	\checkmark	√ *	×
User-consent	\checkmark	√ *	×

AndroidKeyStore

- Storage handled by service in Android
- Two files on filesystem
 - Key parameters and encrypted private key 10101_USRPKEY_TestKeyPair
 - Certificate

10101_USRCERT_TestKeyPair

Files can be moved by root user

AndroidKeyStore using TEE

- Qualcomm: Nexus 4 and 5, Moto G
- Texas Instruments: Galaxy Nexus
- Trustlet running in TEE for key operations
- Device specific key
- File formats different

	Malicious app	Root	Intercepting root
Device-binding	V	V	V
App-binding	\checkmark	×	×
User-consent	V	×	×

AndroidKeyStore using softwarefallback

No encryption if no device PIN/password set

	Malicious app	Root	Intercepting root
Device-binding	\checkmark	×	×
App-binding	\checkmark	×	×
User-consent	V	×	×

Encrypted using device PIN/password

	Malicious app	Root	Intercepting root
Device-binding	V	√ *	×
App-binding	\checkmark	×	×
User-consent	V	×	×

Discussion

- All methods safe against malicious app
- Bouncy Castle
 - If user-provided password is used app- and device-binding provided
- AndroidKeyStore
 - No app-binding
 - No posibility for user-consent
 - Possible to create oracle
- User-consent
 - No control over what is signed

Recommendations

- Use Bouncy Castle with user-provided password if possible
 - Be careful with passwords
- Educate users about the dangers of root
- AndroidKeyStore
 - Include user id integrity in key files
 - Offer possiblity to use user-provided passwords
- Improve TEE implementations
 - Check apps that request key operations
 - What-you-see-is-what-you-sign

Conclusions

- Bouncy Castle provides reasonable security when using user-provided password
- AndroidKeyStore
 - TEE-based store provides device-binding
 - No app-binding so effectiveness is limited
 - Can be improved by using more TEE-features
 - Confirmation dialogs
 - Integrity checking

Conclusions

- Bouncy Castle provides reasonable security when using user-provided password
- AndroidKeyStore
 - TEE-based store provides device-binding
 - No app-binding so effectiveness is limited
 - Can be improved by using more TEE-features
 - Confirmation dialogs
 - Integrity checking

Thank you for your attention!