Automated Reverse Engineering using Lego®

Georg Chalupar and Stefan Peherstorfer
University of Applied Sciences Upper Austria

Erik Poll and Joeri de Ruiter
Radboud University Nijmegen
Introduction

- Used automated learning techniques to reverse engineer e.dentifier2
- Results in state machines
- Previously done for bank cards
e.dentifier2

- Developed by Todos (now Gemalto)
- EMV-CAP
- Can be used with or without USB
- With USB:
 - See-What-You-Sign
 - “the most secure sign-what-you-see end user device ever seen”
 - Good idea!
EMV-CAP

PIN

challenge

bitfilter(AC)

PIN

OK

GENERATE AC (challenge,...)

AC
Protocol e.dentifier2

Host PC → USB reader → Smartcard

ASK-PIN → Display shows "ENTER PIN" → User enters PIN

PIN OK → SIGndata-DATA number → SIGndata-TEXT text → Display shows text → User presses OK

User pressed OK → GENERATE-AC → g(ARQC) → ARQC → GENERATE-AC f(text, number) → AAC
Protocol \textit{e.dentifier2}

- \textbf{Host PC}:
 - ASK-PIN
 - PIN OK
 - GENERATE-AC $f(\text{text, number})$
 - $g(\text{ARQC})$

- \textbf{USB reader}:
 - Display shows "ENTER PIN"
 - User enters PIN
 - SIGNDATA-DATA \textit{number}
 - SIGNDATA-TEXT \textit{text}
 - Display shows \textit{text}
 - User presses OK
 - GENERATE-AC $f(\text{text, number})$
 - ARQC
 - GENERATE-AC $f(\text{text, number})$
 - AAC

- \textbf{Smartcard}:
 - VERIFY \textit{pin guess}
 - PIN OK
 - PIN OK
Protocol e.dentifier2

Host PC → USB reader → Smartcard

ASK-PIN

Display shows "ENTER PIN"

User enters PIN

PIN OK

SIGndata-DATA number

SIGndata-TEXT text

Display shows text

Generate-AC

Generate-AC $f(\text{text, number})$

ARQC

Generate-AC $f(\text{text, number})$

AAC

$g(\text{ARQC})$
Automated learning

• Used LearnLib
 • Implementation of adapted L* algorithm

• Complete Mealy machine

• Equivalence queries approximated
 • Random traces
 • W-method
Using automated learning

- Reverse engineering
 - Manual inspection of correctness and security
- Fuzzing or model-based testing
 - Use as basis for automated fuzz testing
- Formal verification
 - Use as basis for model checking
Automated reverse engineering

- Two different versions of the device
- Programmable smart card
 - All PIN codes accepted
 - Responses fixed
- Physical interaction needed
Robot

- Built using Lego
- Controlled by Raspberry Pi
 - 3 motors: OK, Cancel, digit
 - Power USB line
 - USB commands
Robot
Robot
Results
Model checking

- Converted output to labelled transition system
- Used model checker CADP
- Checked property in modal logic
 - Is valid cryptogram generated only after OK button is pushed?
- Resulted in an attack trace for the old device
Conclusions

- Automated learning techniques
 - Useful in security analysis for embedded devices
 - Can automatically find security vulnerabilities
 - Good excuse to play with Lego
Conclusions

- Automated learning techniques
 - Useful in security analysis for embedded devices
 - Can automatically find security vulnerabilities
 - Good excuse to play with Lego

Thanks for your attention!