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ABSTRACT

Operator algebras, specifically C∗-algebras andW ∗-algebras (the latter are also known
as von Neumann algebras), give a formulation for quantum theory that is alternative to
the one by Hilbert spaces. They are successfully used in areas such as quantum field
theory and quantum information theory, yielding many notable results. It seems, how-
ever, that the use of operator algebras is not common so far in the area of quantum
computation.

As an application of operator algebras to quantum computation, the present thesis
gives a denotational semantics for a quantum programming language by operator alge-
bras. We show that the opposite category of the category of W ∗-algebras and normal
completely positive pre-unital maps is an elementary quantum flow chart category in the
sense of Selinger. As a consequence, Selinger’s quantum programming language QPL can
be interpreted as a map between W ∗-algebras.

論文要旨

作用素環，つまりC∗-環とW ∗-環（後者は von Neumann環としても知られる）はHilbert
空間による定式化に代わる，量子論の新たな定式化を与える．作用素環は量子場理論や量
子情報理論の分野において効果的に用いられ，様々な成果をもたらしている．しかしなが
ら，量子計算の分野においては，作用素環はこれまであまり利用されていなかったようで
ある．
作用素環の量子計算への応用として，本論文では量子プログラミング言語への表示的意味

論を作用素環によって与える．W ∗-環と正規完全正前単位的写像の圏の双対圏が Selingerの
意味での elementary quantum flow chart圏であることが示され，その結果として，Selinger
の量子プログラミング言語 QPLがW ∗-環の間の写像として解釈できることがわかる．
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Chapter 1

Introduction

1.1 Background

1.1.1 Quantum computation and quantum programming language

Quantum computation is a new paradigm of computation that is done in the
framework of quantum theory. In other words, it is a computation making use
of quantum phenomena such as superposition and entanglement. Such quantum
phenomena enable us to design quantum algorithms and quantum protocols which
realize what is impossible in a classical way. For instance, Shor’s algorithm [58]
performs integer factorization in polynomial time, which is believed to be clas-
sically impossible. Another example is quantum cryptography protocols such
as BB84 [6]. It guarantees unconditional security without relying the computa-
tional hardness, while the security of the classical cryptographic system RSA, for
instance, relies on the hardness of integer factorization.

Quantum algorithms and protocols are actively studied, but they are often
designed via low level machinery such as quantum gates and circuits. Coupled
with the counter-intuitive nature of quantum phenomena, it is difficult to design
quantum algorithms and protocols correctly. To alleviate such difficulties, quan-
tum programming languages have been recently studied. As one of pioneering
works, Selinger proposed a first-order functional language for quantum compu-
tation and its denotational semantics [53]. He (jointly with Valiron) successively
started to study a higher-order functional language for quantum computation,
also known as a quantum lambda calculus [55–57]. The first denotational seman-
tics for a quantum lambda calculus with full features (especially, the ! modality)
was given by Hasuo and Hoshino via Geometry of Interaction [25]. Recently,
Pagani, Selinger and Valiron gave a denotational semantics by a different ap-
proach [45].

1.1.2 Operator algebras for quantum theory

It is now standard that quantum theory is formulated in terms of Hilbert spaces.
This rigorous formulation of quantum theory is, after enormous efforts by physi-
cists, finally given by John von Neumann [64]. It seems lesser-known, however,
that quantum theory can be formulated in more abstract and general way by
operator algebras. This formulation is sometimes called the algebraic formula-
tion [35]. In fact, von Neumann also played a major role in developing the theory
of operator algebras, and he preferred the formulation of quantum theory by
operator algebras to the one by Hilbert spaces [48].

An operator algebra, in general, refers to an algebra of bounded operators
on a Hilbert space, but there are two important classes. Von Neumann (jointly
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with Murray) studied rings of operators [41–43,62,63], a certain class of operator
algebras which are now called von Neumann algebras. Gelfand and Neumark char-
acterized C∗-algebras abstractly (i.e. space-freely) [20], which is another class of
operator algebras that includes von Neumann algebras. Abstract characterization
of von Neumann algebras, called W ∗-algebras, was later obtained by Sakai [51].
Currently, the theory of operator algebras is usually concerned with C∗-algebras
and W ∗-algebras, or von Neumann algebras [52,60].

C∗-algebras can be seen as noncommutative geometry [12], while W ∗-algebras
can be thought of as noncommutative measure (or probability), which in fact
coincides with measure (probability) in quantum theory [23,36,39,49]. Operator
algebras are, indeed, successfully used in the wide area of quantum theory such
as quantum statistical mechanics [8, 9], quantum information theory [5, 31] and
quantum field theory [2,21,22]. It is commonly said that the algebraic formulation
has an advantage in handling a system with infinitely many degrees of freedom
over the Hilbert space formulation.

1.2 Our work

Despite its success in many areas of quantum theory, the use of operator algebras
is not common so far in the area of quantum computation. One of the reasons
is that to study quantum computation, usually a finite level system is sufficient,
i.e. we can work in just a finite dimensional Hilbert space Cn. Therefore, it
might seem useless and meaningless to use operator algebras to study quantum
computation. One of motivations of our work is to demonstrate that operator
algebras are indeed useful and meaningful to study quantum computation.

In the present paper, as an application of operator algebras to quantum com-
putation, we give a denotational semantics for a quantum programming language
by operator algebras. More specifically, we show that the category WstarCP-PU
of W ∗-algebras and normal completely positive pre-unital maps is a symmetric
monoidal Dcppo⊥-enriched category with products, and hence the opposite cat-
egory of WstarCP-PU is an elementary quantum flow chart category [53]. As a
consequence, it gives rise to a denotational semantics for the quantum program-
ming language QPL [53].

Our contributions can be summarized as follows. On the mathematical side,
we examine categories of operator algebras (C∗-algebras or W ∗-algebras) with
various morphisms, and especially we show the category WstarCP-PU is a Dcppo⊥-
enriched category with suitably enriched (categorical) products and symmetric
monoidal structure (i.e. tensor products). To the author’s knowledge, this fact
is not previously observed. We also prove some missing results in the literature
such as the distribution of tensor products over direct sums. On the quantum
computational side, we propose a novel denotational semantics of the quantum
programming language QPL by operator algebras. Due to Selinger’s work [53],
it suffices to show the opposite category of WstarCP-PU is an elementary quan-
tum flow chart category, which is immediate from the fact that WstarCP-PU is a
symmetric monoidal Dcppo⊥-enriched category with finite products.

In comparison to Selinger’s original semantics, our semantics by operator
algebras has an advantage in handling infinite data and classical data well. As
a consequence, we demonstrate that operator algebras (especially, W ∗-algebras)
give a good model for quantum computation.
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1.3 Related work

First of all, our work depends to a great extent on Selinger’s work [53], where he
designed a first-order functional quantum programming language QPL1 and gave
its denotational semantics. The denotational semantics is given by (matrices of)
quantum operations, but he also established what (abstract) categorical structures
suffice to interpret the language QPL. Namely, he clarified that any elementary
quantum flow chart category gives rise to a denotational semantics of the language
QPL (without recursion). Hence we can give a denotational semantics of QPL,
just by showing that a category satisfies the conditions of a elementary quantum
flow chart category.

D’Hondt and Panangaden also gave a denotational semantics of QPL by the
weakest precondition semantics [15]. We will discuss in Chap. 5 the difference
between Selinger’s original semantics, D’Hondt and Panangaden’s weakest pre-
condition semantics, and our semantics by operator algebras.

Recently, there are much more works on higher-order functional quantum
programming languages, or quantum lambda calculi. Selinger and Valiron first
proposed a quantum lambda calculus with classical controls and its operational
semantics in [55]. They then gave a denotational semantics of a fragment of the
quantum lambda calculus in [56]; it is given in essentially the same approach as
in [53]. Most recently, Pagani, Selinger and Valiron have succeeded in giving a
denotational semantics of the “full” quantum lambda calculus by the extending
the approach of [53, 55]. In advance of them, however, the first denotational se-
mantics of the “full” quantum lambda calculus is given by Hasuo and Hoshino [25]
via Geometry of Interaction. Their semantics has a flavor of game semantics, and
hence is significantly different from Selinger et al. [45, 53,56] and our work.

Jacobs’ work [30] is one of a few works using operator algebras for quantum
computation. The work axiomatized, in categorical terms, block structures that
often appears in programming languages. Applying it to the quantum setting,
it turns out that such a block structure does not exist on Hilbert spaces, but
does exist on C∗-algebras. It led him to use operator algebras. His work does
not overlap directly with ours, but they should be related in some way. The
exploration of the relationship between his and our works will be future work.
Actually, Jacobs’ work [30] and Furber and Jacobs’ works [18, 19], which also
study C∗-algebras from a categorical perspective, were what inspired the author
to use operator algebras for quantum computation.

1.4 Organization of the thesis

In Chap. 2, we will fix notations and terminologies, and collect basic results we
need later. Chapter 3 presents the basics on C∗-algebras, almost all of which are
well-known. Chapter 4 first presents the basics on W ∗-algebras, and then shows
the order-enrichment of categories of W ∗-algebras. In Chap. 5, we will present a
denotational semantics of the language QPL by operator algebras. We conclude
the thesis with future work in Chap. 6.

1Strictly speaking, he defined two languages: a flow chart language and a textual language.
The name QPL is in fact reserved for the textual one. Because the denotation of the textual
language is given by reducing to the flow chart language, we do not distinguish the two languages.
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Chapter 2

Preliminaries

This chapter is intended to fix notations and terminologies, and collect some
elementary results we will use later.

2.1 Functional analysis

In this section, we will fix notations and terminologies and present some basic
results in the theory of functional analysis. Our primary references are [13,47].

Definition 2.1.1. Let X and Y be normed spaces. A linear map f : X → Y is
said to be

1. bounded if there exists M ∈ R+ such that ∥f(x)∥ ≤M∥x∥ for all x ∈ X.

2. (weakly) contractive (or non-expansive, short) if it does not increase the
norm, i.e. ∥f(x)∥ ≤ ∥x∥ for all x ∈ X.

3. isometric if it preserves the norm, i.e. ∥f(x)∥ = ∥x∥ for all x ∈ X. ◁

Definition 2.1.2. Let f : X → Y be a bounded linear map between normed
space. An operator norm ∥f∥ of f is defined by:

∥f∥ := sup
{
∥f(x)∥

∣∣ x ∈ X, ∥x∥ ≤ 1
}

= inf
{
M ∈ R+ ∣∣ ∥f(x)∥ ≤M∥x∥ for all x ∈ X

}
. ◁

Here are some elementary properties of normed spaces.

Proposition 2.1.3. Let X, Y and Z be normed spaces.

1. A linear map f : X → Y is bounded if and only if it is continuous (wrt. the
norms).

2. A bounded linear map f : X → Y is contractive if and only if ∥f∥ ≤ 1.

3. The set B(X,Y ) of bounded linear maps is again a normed space with point-
wise operations and operator norm. Moreover, if Y is complete (i.e. a Ba-
nach space) then so is B(X,Y ). In particular, a dual space X∗ := B(X,C)
of a normed space X is a Banach space.

4. Let f : X → Y and g : Y → Z be bounded linear maps. Then ∥g ◦ f∥ ≤
∥g∥ · ∥f∥.

5. The canonical map ι : X → X∗∗, defined by ι(x)(ϕ) = ϕ(x), is an isometry.
Thus we can regard X as a sub-normed space of X∗∗.
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6. Let f : X → Y be a bounded linear map. Then its dual f∗ : Y ∗ → X∗,
defined by f∗(ϕ) = ϕ ◦ f , is again bounded linear. ◁

Proof. 1. See [47, Prop. 2.1.2] or [13, Prop. III.2.1].
2. Immediate by definition.
3. See [47, 2.1.3–4] or [13, Prop. III.2.1, Prop. III.5.4].
4. See [47, 2.1.3].
5. See [47, 2.3.7] or [13, III.§11].
6. See [47, Prop. 2.3.10]. ■

Lemma 2.1.4. Let X be a locally convex topological vector space. Then there is
a canonical bijection ι : X

∼=→ (X∗,wk∗)∗, given by ι(x)(ϕ) = ϕ(x). ◁

Proof. See [13, Thm. V.1.3] or [47, 2.4.4–5]. ■

Notation 2.1.5. Let X be a normed space (or, more generally, a locally convex
topological vector space). For x ∈ X and φ ∈ X∗, we write ⟨φ, x⟩ := φ(x),
emphasizing the duality ⟨·, ·⟩ : X∗ × X → C. Furthermore, when we have an
(often canonical) isomorphism ι : Y → X∗, we also write ⟨y, x⟩ := ι(y)(x) and
make the isomorphism ι implicit. ◁

Proposition 2.1.6. Let X and Y be Banach spaces. For every bounded map
f : X → Y , the dual f∗ : Y ∗ → X∗ is weakly* continuous (besides norm-continuous).
Conversely, for every weakly* continuous map h : Y ∗ → X∗, there exists a unique
bounded map f : X → Y such that h = f∗. Hence we establish the following bi-
jective correspondence:

f : X −→ Y bounded

h : Y ∗ −→ X∗ weakly* continuous ◁

Proof. This is proved in [47, Prop. 2.4.12] except the uniqueness. The uniqueness
is showed as follows. Suppose f, g : X → Y are bounded maps with f∗ = g∗.
Then for each x ∈ X, we have f∗(φ)(x) = g∗(φ)(x) for all φ ∈ Y ∗, i.e. φ(f(x)) =
φ(g(x)) for all φ ∈ Y ∗. It follows that f(x) = g(x) since Y ∗ separates the points
of Y (see e.g. [47, Cor. 2.3.4]). Hence f = g. ■

Corollary 2.1.7. Let X and Y be Banach spaces. Every weakly* continuous
map Y ∗ → X∗ is bounded. ◁

Proof. By Prop. 2.1.6 and Prop. 2.1.3.6. ■

Definition 2.1.8. Let {Vi}i∈I be a finite family of Banach spaces. We define two
different direct sums: an ℓ∞-direct sum

⊕∞
i∈I Vi and an ℓ1-direct sum

⊕1
i∈I Vi.

These two have the same underlying sets1:⊕∞
i∈I

Vi =
⊕1

i∈I
Vi :=

∏
i∈I

Vi

and pointwise operations, but have the different norms:

∥(vi)i∈I∥∞ := max
i∈I
∥vi∥

∥(vi)i∈I∥1 :=
∑
i∈I

∥vi∥ ,

respectively. ◁
1This is because I is finite.
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Lemma 2.1.9. Let {Vi}i∈I be a finite family of Banach spaces. There is an
isometric isomorphism: (⊕1

i∈I
Vi

)∗ ∼=
⊕∞

i∈I
V ∗

i . ◁

Proof. The mapping is given by the following bijection of sets:

B
(⊕1

i∈I
Vi,C

)
∼=
∏

i∈I
B(Vi,C) ,

which is due to the universality of direct sums as coproduct. Its linearity is
easy. We then check it is isometric. Let (ϕi)i ∈

⊕∞
i V ∗

i , which corresponds to
[ϕi]i ∈ (

⊕1
i Vi)∗. By definition,

∥(ϕi)i∈I∥∞ = max
i∈I
∥ϕi∥

= max
i∈I

(
sup

{
|ϕi(v)|

∣∣ v ∈ Vi, ∥v∥ ≤ 1
})

= sup
{
|ϕi(v)|

∣∣ i ∈ I, v ∈ Vi, ∥v∥ ≤ 1
}

and

∥[ϕi]i∥ = sup
{∣∣[ϕi]i

(
(vi)i

)∣∣ ∣∣∣ (vi)i ∈
⊕1

i
Vi, ∥(vi)i∥1 ≤ 1

}
= sup

{∣∣∣∑
i
ϕi(vi)

∣∣∣ ∣∣∣ (vi)i ∈
∏

i
Vi,
∑

i
∥vi∥ ≤ 1

}
.

We clearly see ∥(ϕi)i∈I∥∞ ≤ ∥[ϕi]i∥, but observe, for (vi)i ∈
∏

i Vi with
∑

i∥vi∥ ≤
1, ∣∣∣∑

i
ϕi(vi)

∣∣∣ ≤∑
i
|ϕi(vi)|

≤
∑

i
∥ϕi∥∥vi∥

≤ max
i∈I
∥ϕi∥

= ∥(ϕi)i∈I∥∞ .

Hence ∥[ϕi]i∥ ≤ ∥(ϕi)i∈I∥∞ and then ∥[ϕi]i∥ = ∥(ϕi)i∈I∥∞. ■

Lemma 2.1.10. Let {Vi}i∈I be a finite family of Banach spaces. There is an
isometric isomorphism: (⊕∞

i∈I
Vi

)∗ ∼=
⊕1

i∈I
V ∗

i . ◁

Proof. Since algebraic structures are the same as Lem. 2.1.9, it suffices to check
the mapping is isometric. Let (ϕi)i ∈

⊕1
i V

∗
i , which corresponds to [ϕi]i ∈

(
⊕∞

i Vi)∗. Then

∥(ϕi)i∥1 =
∑

i
∥ϕi∥

=
∑

i
sup

{
|ϕi(v)|

∣∣ v ∈ Vi, ∥v∥ ≤ 1
}

= sup
{∑

i
|ϕi(vi)|

∣∣∣ (vi)i ∈
∏

i
Vi, ∀i ∈ I. ∥vi∥ ≤ 1

}
⋆= sup

{∣∣∣∑
i
ϕi(vi)

∣∣∣ ∣∣∣ (vi)i ∈
∏

i
Vi, ∀i ∈ I. ∥vi∥ ≤ 1

}
= sup

{∣∣∣∑
i
ϕi(vi)

∣∣∣ ∣∣∣ (vi)i ∈
∏

i
Vi,maxi∥vi∥ ≤ 1

}
= sup

{∣∣[ϕi]i
(
(vi)i

)∣∣ ∣∣∣ (vi)i ∈
⊕∞

i
Vi, ∥(vi)i∥∞ ≤ 1

}
= ∥[ϕi]i∥ .
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The equality ⋆= is because we can always reverse the sign of each ϕi(vi) by sub-
stituting −vi for vi, since ∥−vi∥ = ∥vi∥. ■

Remark 2.1.11. Lemma 2.1.9 holds even if the index set is infinite, but Lem. 2.1.10
fails in the infinite case. ◁

Definition 2.1.12 ([47, §2.3.6]). Let X be a normed space. For a subspace Y
of X, the annihilator Y ⊥ of Y is a subspace of X∗ defined by

Y ⊥ := {φ ∈ X∗ | ∀y ∈ Y. φ(y) = 0} .

For a subspace Z of X∗, the annihilator Z⊥ of Z is a subspace of X defined by

Z⊥ := {x ∈ X | ∀φ ∈ Z.φ(x) = 0} . ◁

Lemma 2.1.13. Let X be a normed space. For any subspace Z of X∗, the
annihilator Z⊥ is norm-closed in X. If Z is weakly* closed in X∗, then (Z⊥)⊥ =
Z. ◁

Proof. The norm-closedness of Z⊥ follows from norm-continuity of functionals
φ ∈ Z. It is easy to check Z ⊆ (Z⊥)⊥. To show the converse inclusion when Z is
weakly* closed, use [47, Prop. 2.4.10]. ■

Lemma 2.1.14 ([13, Thm. V.2.2]). Let X be a normed space, M ⊆ X a closed
subspace, and Q : X → X/M a quotient map. Then a mapping f 7→ f ◦Q defines
isometric isomorphism (X/M)∗ ∼=→M⊥ of normed spaces. Moreover, the mapping
is homeomorphic wrt. the weak* topology on (X/M)∗ and the relative topology on
M⊥ to the weak* topology on X∗. ■

Lemma 2.1.15. Let X,Y, Z,W be normed spaces and f : X → Y, g : Z → W be
dense isometric maps. Let ⊕ denote one of the ℓ∞-direct sum ⊕∞ and the ℓ1-
direct sum ⊕1. Then f ⊕ g : X ⊕Z → Y ⊕W is also dense isometric. Especially,
if X and Y are the completions of X and Y respectively, then X ⊕ Y is the
completion of X ⊕ Y . ◁

Proof. It is easy to see f ⊕ g is isometric. Let (xi)i, (zj)j be a net in X,Y
respectively. Suppose (f(xi))i converges to y in Y and (g(zj))j converges to w
in W . Then

(
(xi, zj)

)
(i,j) is a net in X ⊕ Z, and moreover

(
(f ⊕ g)(xi, zj)

)
(i,j) =(

(f(xi), g(zj))
)

(i,j) converges to (y, w) in Y ⊕W . Hence f ⊕ g is dense. ■

Proposition 2.1.16. Let H be a Hilbert space. Let B(H) := B(H,H) and T (H)
denote the sets of bounded operators and trace class operators, respectively. Then

1. T (H) is a Banach space with the trace norm ∥T∥1 = tr(|T |).

2. The dual of T (H) is isometrically isomorphic to B(H) by the mapping
ι : B(H)→ T (H)∗ defined by ι(T ) = tr(T (−)). ◁

Proof. See [47, Thm. 3.4.13], [14, Thm. 19.2] or [60, §II.1]. ■

Lemma 2.1.17. Let H be a Hilbert space. Recall we have the isometric isomor-
phism ι : B(H) → T (H)∗ defined by ι(T ) = tr(T (−)). Then a bounded operator
T ∈ B(H) is positive if and only if ι(T )(S) ∈ R+ for all positive S ∈ T (H). ◁
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Proof. (if) Assume that ι(T )(S) = tr(TS) ∈ R+ for all positive trace class oper-
ator S. For any x ∈ H, |x⟩⟨x| is obviously positive and trace class. Then

⟨x, Tx⟩ = tr(T |x⟩⟨x|) ∈ R+ .

Hence T is positive.
(only if) Let T be a positive operator with T = A†A. Then, for any positive

trace class operator S with S = B†B,

tr(TS) = tr(A†AB†B) = tr(BA†AB†) = tr((AB†)†AB†) ∈ R+. ■

2.2 Complete partial orders

We here list some elementary definitions and properties. Our references are [1]
and [61].

Definition 2.2.1. A preordered set P is directed if every finite subset of P has
an upper bound, which is equivalent to that P is nonempty and every pair of
elements in P has an upper bound. A directed set refers to a directed preordered
set. ◁

Definition 2.2.2. A poset P is directed complete if every directed subset of P
has the supremum (i.e. least upper bound, or join) A directed complete poset is
abbreviated as a dcpo. ◁

Definition 2.2.3. Let P and Q be posets. A function f : P → Q is Scott-
continuous if it is monotone and preserves directed suprema, that is:

f
(⊔

D
)

=
⊔
f(D)

for any directed subset D ⊆ P with its supremum
⊔
D. ◁

Remark 2.2.4. If a function f : P → Q between posets preserves directed suprema,
then it is automatically monotone and hence Scott-continuous. This is because:

x ⊑ y ⇐⇒ y = x ⊔ y =⇒ f(y) = f(x) ⊔ f(y) ⇐⇒ f(x) ⊑ f(y) .

Nevertheless, it is convenient to assume the monotonicity in advance because
f(D) is then a directed subset of Q. ◁

Definition 2.2.5. A poset is pointed if it has the least element. A monotone
function between pointed posets is strict if it preserves the least element. ◁

A notion “monotone net” is useful to describe directed subsets.

Definition 2.2.6. Let P be a poset. A monotone net in P is a family (xi)i∈I in
P indexed by a directed set I satisfying

i ⊑ j =⇒ xi ⊑ xj

for all i, j ∈ I. In other words, the function x(−) : I → P is monotone. ◁

Definition 2.2.7. Let P be a poset, and (xi)i∈I a monotone net in P . The
supremum of (xi)i∈I is defined by:⊔

i∈I

xi :=
⊔
{xi | i ∈ I} .

Notice that {xi | i ∈ I} is a directed subset of P . ◁
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The next proposition is immediate, since every directed subset of a poset can
be seen as a monotone net, which is indexed by itself.

Proposition 2.2.8. Every monotone net in a dcpo has the supremum. Con-
versely, a poset in which every monotone net has the supremum is directed com-
plete. ■

We will use a notion that slightly generalizes directed completeness.

Definition 2.2.9. A poset P is bounded directed complete if every bounded-
above directed subset of P has the supremum. A bounded directed complete
poset is abbreviated as a bdcpo. ◁

There are weaker notions than directed completeness and Scott continuity.

Definition 2.2.10. An ω-chain is a monotone net (xn)n∈N indexed by I = N
(with usual order), that is, a monotone sequence. ◁

Definition 2.2.11. A poset is ω-complete if every ω-chain has the supremum.
An ω-complete poset is abbreviated as an ωcpo. ◁

Definition 2.2.12. A function between posets is ω-continuous if it is monotone
and preserves suprema of ω-chains. ◁

We here present some results we use later.

Proposition 2.2.13. Let I and J be directed sets, and (xij)(i,j)∈I×J a monotone
net. Note that (xij)j∈J and (xij)i∈I are monotone nets for each i ∈ I and j ∈ J
respectively. If

⊔
j∈J xij and

⊔
i∈I xij exists for each i ∈ I and j ∈ J respectively,

then we have ⊔
i∈I

(⊔
j∈J

xij

)
=

⊔
(i,j)∈I×J

xij =
⊔
j∈J

(⊔
i∈I

xij

)
◁

Proof. Apply [1, Prop. 2.1.4.3]. See also [1, Prop. 2.1.12]. ■

Proposition 2.2.14. Let P,Q,R be posets. A function f : P ×Q→ R is Scott-
continuous if (and only if) it is separately Scott-continuous. ◁

Proof. See [1, Lem. 3.2.6]. ■

Lemma 2.2.15. Let P be a poset and D ⊆ P a directed subset of P . For any
element l ∈ D, let D ∩ ↑l = {d ∈ D | l ≤ d}, which is clearly directed. Then we
have ⊔

D =
⊔

(D ∩ ↑l) ;

this means if one side exists, then the other side exists and they are equal. ◁

Proof. Note that for any subset S ⊆ P , u ∈ P is the supremum of S if and only
if

∀p ∈ P.
(
u ⊑ p ⇐⇒ ∀s ∈ S. s ⊑ p

)
.

To prove the lemma, therefore, it suffices to show for all p ∈ P ,

∀d ∈ D. d ⊑ p ⇐⇒ ∀x ∈ D ∩ ↑l. x ⊑ p .

=⇒ is obvious. We shall show ⇐=. Assume x ⊑ p for all x ∈ D ∩ ↑l. Because
D is directed, for any d ∈ D there exists e ∈ D such that d ⊑ e and l ⊑ e, i.e.
e ∈ D ∩ ↑l. Hence d ⊑ e ⊑ p. ■
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2.3 Category theory

We assume the reader is familiar with the basics of category theory. The standard
textbook of category theory is [37], and a more introductory one is [3]. The article
[11] is a good introduction of category theory for physics, putting emphasis on
monoidal categories.

We here just fix notations for some categories.

Definition 2.3.1.

1. Dcppo⊥ is the category of pointed dcpos and strict Scott-continuous maps.

2. Bdcppo⊥ is the category of pointed bdcpos and strict Scott-continuous
maps.

3. ωCppo is the category of pointed ωcpos and ω-continuous maps. ◁
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Chapter 3

C∗-algebras

This chapter is devoted to the study of C∗-algebras. We will study basics of
C∗-algebras, maps between C∗-algebras, representations of C∗-algebras, matrices
of C∗-algebras, completely positive maps, direct sums and tensor products of C∗-
algebras. Almost all results in this chapter are well-known, but some results do
not seem to be found in the literature. One of such results is the distribution of
tensor products over direct sums, which will be proved in §3.7. Finally, in §3.8,
we will summarize structures of C∗-algebras from a categorical point of view.
The contents of this chapter is a prerequisite for Chap. 4 because W ∗-algebras
are “special” kind of C∗-algebras.

3.1 Basics of C∗-algebras

We start with the definition of ∗-algebras rather than C∗-algebras.

Definition 3.1.1 (∗-algebra). A ∗-algebra is a complex vector space A with a
multiplication · : A × A → A and an involution (−)∗ : A → A that satisfy the
following conditions.

• The multiplication is bilinear, i.e.

– (x+ x′) · y = x · y + x′ · y
– x · (y + y′) = x · y + x · y′

– (tx) · y = t(x · y) = x · (ty)

for all x, x′, y, y′ ∈ A and t ∈ C. It is also associative, i.e.

– (x · y) · z = x · (y · z)

for all x, y, z ∈ A.

• The involution is anti-linear, i.e.

– (x+ y)∗ = x∗ + y∗

– (tx)∗ = t(x∗)

for all x, y ∈ A and t ∈ C. It also satisfies:

– (x∗)∗ = x

– (x · y)∗ = y∗ · x∗

for all x, y ∈ A.
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Furthermore, in this paper, we require ∗-algebras to be unital. Namely, there
exists 1 ∈ A such that 1 · x = x = x · 1 for all x ∈ A. ◁

Note. A multiplication x·y is also written just as xy. Note that we do not symbol-
ically distinguish the multiplication · : A×A→ A from the scalar multiplication
· : C×A→ A. Usually the distinction is clear from the context. ◁

Definition 3.1.2 (Banach ∗-algebra). A Banach ∗-algebra is a ∗-algebra A with
a norm ∥·∥ : A→ R+ which makes A a Banach space and further satisfies:

• ∥xy∥ ≤ ∥x∥∥y∥

• ∥x∗∥ = ∥x∥ ◁

Definition 3.1.3 (C∗-algebra). A C∗-algebra is a Banach ∗-algebra A satisfying
∥x∗x∥ = ∥x∥2. ◁

Remark 3.1.4. Since we have required ∗-algebras to be unital, all C∗-algebras
are unital, too, in this paper. Note that it is not usually assumed in the litera-
ture. ◁

Remark 3.1.5. We may drop the axiom ∥x∗∥ = ∥x∥ from the definition of C∗-
algebras. This is because ∥x∥2 = ∥x∗x∥ ≤ ∥x∗∥∥x∥ and then ∥x∥ ≤ ∥x∗∥, while
∥x∗∥ ≤ ∥x∗∗∥ = ∥x∥ by substituting x∗ for x. ◁

Remark 3.1.6. For a historical reason, the identity ∥x∗x∥ = ∥x∥2 is sometimes
called the B∗-identity, while the identity ∥x∗x∥ = ∥x∗∥∥x∥ may be called the
C∗-identity. They are obviously equivalent in the presence of ∥x∗∥ = ∥x∥. By
Remark 3.1.5, the B∗-identity implies the C∗-identity without assuming ∥x∗∥ =
∥x∥. The converse in fact holds, though it is highly nontrivial (see e.g. [16, §2
and Thm. 16.1], [52, The last remark in §1.1]). Therefore we do not distinguish
two identities, and in what follows we will call the identity ∥x∗x∥ = ∥x∥2 the
C∗-identity. ◁

Example 3.1.7. Let H be a Hilbert space. Then B(H), the set of bounded
operators on H, is a C∗-algebra. See [13, Example VIII.1.2], [47, 4.3.7]. ◁

Definition 3.1.8. Let A be a C∗-algebra. An element x ∈ A is said to be

1. invertible (or regular) if yx = xy = 1 for some y ∈ A, i.e. the inverse x−1

exists;

2. normal if x∗x = xx∗;

3. unitary if x∗x = xx∗ = 1, i.e. x∗ = x−1;

4. self-adjoint (or hermitian) if x∗ = x;

5. positive if x = y∗y for some y ∈ A;

6. an effect if both x and 1− x are positive;

7. a projection if x2 = x = x∗. ◁
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Notation 3.1.9. Let A be C∗-algebra. We write SA(A) for the set of self-adjoint
elements in A, Pos(A) or A+ for the set of positive elements in A, and Ef(A) for
the set of effects in A. ◁

Proposition 3.1.10. For an element of a C∗-algebra,

1. unitary =⇒ invertible;

2. unitary =⇒ normal;

3. self-adjoint =⇒ normal;

4. positive =⇒ self-adjoint;

5. being an effect =⇒ positive;

6. being a projection =⇒ being an effect. ◁

Proof. Immediate by definition except 6, which follows from

x∗x = x2 = x

and
(1− x)∗(1− x) = (1− x)2 = 1− x . ■

Definition 3.1.11 (Spectrum). Let A be an algebra. A spectrum SpA(x) of
x ∈ A is defined by:

SpA(x) := {λ ∈ C | x− λ1 is not invertible} . ◁

Definition 3.1.12 (Spectral radius). Let A be an algebra. A spectral radius
∥x∥sp of x ∈ A is defined by:

∥x∥sp := sup
{
|λ|
∣∣ λ ∈ SpA(x)

}
. ◁

Proposition 3.1.13. Let A be a Banach algebra. Then for any x ∈ A,

1. ([60, Prop. 2.3]) ∥x∥sp <∞;

2. ([60, Prop. 2.4]) ∥x∥sp = lim
n→∞

∥∥xn
∥∥1/n. ■

Proposition 3.1.14 ([60, Prop. 4.2]). Let A be a C∗-algebra. Then for a normal
element x ∈ A, we have ∥x∥ = ∥x∥sp. ■

Corollary 3.1.15. Let A be a C∗-algebra. For any x ∈ A,

∥x∥ =
√
∥x∗x∥sp . ◁

Proof. ∥x∥2 = ∥x∗x∥ = ∥x∗x∥sp. ■

The last result means that a norm of a C∗-algebra is determined by its algebraic
structure. The following is an immediate consequence.
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Corollary 3.1.16. For a ∗-algebra A, a norm with which A is a C∗-algebra is
unique if exists. ■

Proposition 3.1.17 ([60, Thm. 6.1]). Let A be a C∗-algebra. Then the set A+

of positive elements is a closed convex cone in A with A+ ∩ (−A+) = {0}. Con-
sequently:

1. A+ is a closed subset of A;

2. If x, y is positive and t, s > 0, then tx+ sy is positive.

3. If both x and −x is positive, then x = 0. ■

Definition 3.1.18. Let A be a C∗-algebra. We define a relation ≤ on A by

x ≤ y def⇐⇒ y − x is positive . ◁

Proposition 3.1.19. The relation ≤ defined in Def. 3.1.18 is a partial order. ◁

Proof. It is reflexive since x− x = 0 is positive. To show the transitivity, assume
x ≤ y and y ≤ z. Then z − x = (z − y) + (y − x) is positive since a sum of
positive elements is positive by Prop. 3.1.17. Hence x ≤ z. Finally to show
the antisymmetry, assume x ≤ y and y ≤ x. It means that both y − x and
x− y = −(y − x) are positive. Then y − x = 0 by Prop. 3.1.17, thus x = y. ■

Note. The ordering on a C∗-algebra defined in Def. 3.1.18 is standard in the
literature (e.g. [60, §I.6], [52, §1.4], [14, §1.3]). For matrix algebras, it is called
the Löwner partial order. It appears in [53, §3.8] and [25, Def. II.2]. ◁

Remark 3.1.20. We may write x ≥ 0 for “x is positive”, which is consistent
with the ordering in Def. 3.1.18. ◁

Lemma 3.1.21 ([60, Thm. 6.1]). Let A be a C∗-algebra. A self-adjoint element
x ∈ A is positive if and only if SpA(x) ⊆ R+. ◁

Proposition 3.1.22. Let A be a C∗-algebra and x ∈ SA(A) a self-adjoint ele-
ment. Then

∥x∥ ≤M ⇐⇒ −M1 ≤ x ≤M1
for any M ∈ R+. ◁

Proof. First, note that for each t ∈ C we have SpA(tx) = t · SpA(x) and SpA(x+
t1) = SpA(x) + t. Then

∥x∥ ≤M
⇐⇒ ∥x∥sp := sup

{
|λ|
∣∣ λ ∈ SpA(x)

}
≤M by Prop. 3.1.14

⇐⇒ ∀λ ∈ SpA(x).−M ≤ λ ≤M
⇐⇒ ∀λ ∈ SpA(x).M − λ ≥ 0 and λ+M ≥ 0
⇐⇒ SpA(1M − x) ⊆ R+ and SpA(x+M) ⊆ R+

⇐⇒ 1M − x ≥ 0 and x+ 1M ≥ 0 by Lem. 3.1.21
⇐⇒ −M1 ≤ x ≤M1 ■

Corollary 3.1.23. Let A be a C∗-algebra and x, y ∈ A.

1. x ∈ SA(A) implies −∥x∥1 ≤ x ≤ ∥x∥1.

2. 0 ≤ x ≤ y implies ∥x∥ ≤ ∥y∥. ■
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3.2 Maps between C∗-algebras

We next consider maps between C∗-algebras.

Definition 3.2.1. Let A and B be C∗-algebras. A linear map f : A→ B is said
to be

1. multiplicative if it commutes with the multiplication, i.e. f(xy) = f(x)f(y)
for all x, y ∈ A.

2. involutive if it commutes with the involution, i.e. f(x∗) = f(x)∗ for all
x ∈ A.

3. unital if it preserves the unit, i.e. f(1) = 1.

4. pre-unital if it decreases the unit, i.e. f(1) ≤ 1.

5. positive if it preserves positive elements, i.e. f(x) ∈ B+ for all x ∈ A+.

A multiplicative involutive linear map is called a ∗-homomorphism. A bijective
∗-homomorphism is called ∗-isomorphism. ◁

Note. Note that we do not assume ∗-homomorphism is unital. Instead, ∗-homomorphism
is automatically pre-unital, see Cor. 3.2.12. ◁

Note. The terminology “pre-unital” is not common in the literature. To make
matters worse, some authors use “pre-unital” for maps between quantales in the
dual way to ours (e.g. [34, Def. 2.5]): a homomorphism φ : Q → Q′ between
quantales is pre-unital if e′ ≤ φ(e), where e ∈ Q and e′ ∈ Q′ are the units.

Later it turns out that a positive map between C∗-algebras is pre-unital if
and only if contractive. ◁

Note. Since we consider only linear maps, the adjective ‘linear’ is often omitted.
When we say ‘positive map’, for example, it refers to a positive linear map. ◁

The following three propositions are easy consequences from the definition.

Proposition 3.2.2. If a multiplicative map is surjective, it is unital. ■

Proposition 3.2.3. A ∗-homomorphism is positive. ■

Proposition 3.2.4. A linear map between C∗-algebras is positive if and only if
it is monotone wrt. the orders defined in Def. 3.1.18. ■

Proposition 3.2.5. Every positive map between C∗-algebras is involutive and
bounded. ◁

Proof. See [18, Lem. 1]. Note that the unitality is not necessary. For a posi-
tive (not necessarily unital) map f , we have an inequality ∥f(x)∥ ≤ 4∥f(1)∥∥x∥
instead of theirs. ■

We can say more about norm of positive maps although it is nontrivial.

Proposition 3.2.6 ([46, Cor. 2.9]). Let f : A → B be a positive map between
C∗-algebras. Then ∥f∥ = ∥f(1)∥. ◁

15



Remark 3.2.7. For Prop. 3.2.6 to hold, it is crucial that not only A but also
B is unital. Even when B does not have a unit, we have ∥f∥ ≤ 2∥f(1)∥ ([46,
Prop. 2.1]), and ∥f∥ = ∥f(1)∥ provided f is completely positive ([46, Prop. 3.6]).

◁

Also nontrivially, ∗-homomorphisms have even more good properties.

Proposition 3.2.8.

1. Every ∗-homomorphism between C∗-algebras is contractive.

2. A ∗-homomorphism between C∗-algebras is isometric if and only if it is
injective. ◁

Proof. 1. See [13, Thm. VIII.4.8, Prop. VIII.1.11.(d)], [17, Prop. 4.67] or [52,
Cor. 1.2.6].

2. See [13, Thm. VIII.4.8] or [17, Prop. 4.67]. ■

Corollary 3.2.9. Every ∗-isomorphism is unital and isometric. ◁

Proof. By Prop. 3.2.2 and Prop. 3.2.8.2. ■

Lemma 3.2.10. Let A be a C∗-algebra, and x ∈ A a positive element. Then
x ≤ 1 if and only if ∥x∥ ≤ 1. ◁

Proof. Note that for 0, 1 ∈ A, if 0 = 1 then ∥1∥ = 0, otherwise ∥1∥ = 1 because
∥1∥ = ∥1∗ · 1∥ = ∥1∥2. Hence we have ∥1∥ ≤ 1 in both cases.

Then, using Cor. 3.1.23, 0 ≤ x ≤ 1 implies ∥x∥ ≤ ∥1∥ ≤ 1, and conversely
∥x∥ ≤ 1 implies x ≤ ∥x∥1 ≤ 1. ■

Proposition 3.2.11. Let f : A → B be a positive map between C∗-algebras.
Then f is pre-unital if and only if contractive. ◁

Proof. Note that f(1) is positive. Now

f(1) ≤ 1 ⇐⇒ ∥f(1)∥ ≤ 1 by Lem. 3.2.10
⇐⇒ ∥f∥ ≤ 1 by Prop. 3.2.6. ■

Corollary 3.2.12. Every ∗-homomorphism between C∗-algebras is pre-unital.■

3.3 Representations of C∗-algebras

Definition 3.3.1 (Representation). A representation of a C∗-algebra A is a pair
(H, π), where H is a Hilbert space and π : A→ B(H) is a ∗-homomorphism. It is
said to be faithful if π is injective (that is, π(x) = 0 implies x = 0 for all x ∈ A)
and unital if π is unital. ◁

The next theorem is fundamental in the theory of C∗-algebras.

Theorem 3.3.2. Every C∗-algebra admits a faithful unital representation. ◁

Proof. See one of [60, Thm. I.9.18], [52, Thm. 1.16.6], [13, Thm. 5.17] and [14,
Thm. 7.10]. The unitality is not mentioned explicitly, but it is clear from construc-
tion. The way constructing the representation is called the Gelfand-Naimark-
Segal construction. ■
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3.4 Matrices of C∗-algebras and completely positive maps

Definition 3.4.1. Let A be a ∗-algebra. For n ∈ N, let Mn(A) denote the set
of n × n matrices with entries from A. Then Mn(A) is again a ∗-algebra with
the following operations:

• The addition and the scalar multiplication are pointwise:

[xij ] + [yij ] := [xij + yij ]
t[xij ] := [txij ]

• The multiplication is the matrix multiplication:

[xij ][yij ] :=
[∑

k
xikykj

]
• The involution is the conjugate transpose:

[xij ]∗ := [x∗
ji] ◁

Remark 3.4.2. When n = 1,M1(A) is ∗-isomorphic to A. When n = 0,M0(A)
is the zero space {0}. ◁

Lemma 3.4.3. Let H be a Hilbert space. For each n ∈ N there is a ∗-isomorphism

Mn(B(H)) ∼= B(H⊕n) .

Hence Mn(B(H)) is a C∗-algebra. ◁

Proof. See [59, Lem. 1.22] or [46, Exercise 1.2]. ■

Lemma 3.4.4. Let A be a C∗-algebra and (π,H) a faithful representation of
A. Then for each n ∈ N, Mn(π) : Mn(A) → Mn(B(H)) is an injective ∗-
homomorphism such that the image Mn(π)

(
Mn(A)

)
is closed in Mn(B(H)).

Hence Mn(A) is a C∗-algebra with a faithful representation:

Mn(A) Mn(π)−−−−→Mn(B(H)) ∼= B(H⊕n) . ◁

Proof. See [59, Thm. 1.24]. ■

Remark 3.4.5. [60, §IV.3] gives a slightly different representation of Mn(A). ◁

Corollary 3.4.6. Let A be a C∗-algebra. Then Mn(A) is a C∗-algebra, too. ◁

Proof. By Thm. 3.3.2 and Lem. 3.4.4. ■

Definition 3.4.7 (Complete positivity). Every linear map f : A → B between
C∗-algebras induces a linear map Mn(f) : Mn(A)→Mn(B) for each n ∈ N by

Mn(f)[xij ] := [f(xij)] .

A linear map f is said to be n-positive if Mn(f) is positive, and completely
positive if for all n ∈ N, Mn(f) is positive. ◁
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Remark 3.4.8. Every linear map is trivially 0-positive. The 1-positivity is
equivalent to ordinary positivity. ◁

Proposition 3.4.9. Let f : A → B be a linear map between C∗-algebras. Then
Mn(f) : Mn(A)→Mn(B) is multiplicative (resp. involutive, unital, pre-unital)
for each n ∈ N if f is multiplicative (resp. involutive, unital, pre-unital). ◁

Proof. Assume f is multiplicative. Then

Mn(f)([xij ][yij ]) =Mn(f)
([∑

k
xikykj

])
=
[∑

k
f(xik)f(ykj)

]
= [f(xij)][f(yij)]
=Mn(f)([xij ])Mn(f)([yij ]) .

Assume f is involutive. Then

Mn(f)([xij ]∗) =Mn(f)([x∗
ji])

= [f(x∗
ji)]

= [f(xji)∗]
= [f(xij)]∗

=
(
Mn(f)([xij ])

)∗
.

Assume f is unital. Note that the unit of Mn(A) is [δij ], where

δij =
{

1 ∈ A if i = j

0 ∈ A if i ̸= j.

ThenMn(f)([δij ]) = [f(δij)] is the unit ofMn(B), because f(1) = 1 and f(0) =
0.

Assume f is pre-unital. Then Mn(f)([δij ]) = [f(δij)], where f(δij) = 0 for
i ̸= j and f(δii) ≤ 1. It is easy to see [δij ] − [f(δij)] = [δij − f(δij)] is positive,
because it is a diagonal matrix such that each diagonal entry is positive. ■

Corollary 3.4.10. Let f : A → B be ∗-homomorphism between C∗-algebras.
Then Mn(f) is ∗-homomorphism, too. It follows that f is completely positive
(by Prop. 3.2.3). ■

The following theorem is useful.

Theorem 3.4.11. Let f : A → B be a positive map between C∗-algebras. If at
least one of A and B is commutative, then f is completely positive. ◁

Proof. See [60, Cor. IV.3.5 and Prop. IV.3.9]. ■

3.5 Direct sums of C∗-algebras

Definition 3.5.1. A direct sum of a finite family of C∗-algebras (Ai)i∈I , denoted
by
⊕

i∈I Ai, is defined as follows.

• An underlying set is the product of the underlying sets:⊕
i∈I

Ai :=
∏
i∈I

Ai
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• Operations are defined pointwisely:

– (ai)i∈I + (bi)i∈I := (ai + bi)i∈I

– α · (ai)i∈I := (α · ai)i∈I

– (ai)i∈I · (bi)i∈I := (ai · bi)i∈I

– (ai)∗
i∈I := (a∗

i )i∈I

• A norm is defined by maximum:

∥(ai)i∈I∥ := max
i∈I
∥ai∥

The disjoint sum is equipped with projections πi :
⊕

i∈I Ai → Ai and injections
κi : Ai →

⊕
i∈I Ai defined by

πi
(
(ai)i∈I

)
:= ai

κi(a) := (δij(a))j∈I where δij(a) =
{
a if j = i

0 if j ̸= i .
◁

Remark 3.5.2. When I = ∅, the direct sum
⊕

∅ is the zero space {0}. ◁

Remark 3.5.3. We can define an infinite direct sum, not only a finite one. For
an infinite (small) family of C∗-algebras (Ai)i∈I , an ℓ∞-direct sum ⊕∞

i∈IAi is given
by:

• An underlying set:
⊕∞

i∈I

Ai :=
{

(ai)i∈I ∈
∏
i∈I

Ai

∣∣∣∣ sup
i∈I
∥ai∥ <∞

}
• A norm: ∥(ai)i∈I∥ := sup

i∈I
∥ai∥

• Operations are defined pointwisely.

There is another choice of direct sum. It is called a c0-direct sum, denoted by
⊕c0

i∈IAi. The definition is the same as ℓ∞-direct sums except that an underlying
set is defined by:

⊕c0

i∈I

Ai :=
{

(ai)i∈I ∈
∏
i∈I

Ai

∣∣∣∣ ∀ε > 0. {i ∈ I | ∥ai∥ ≥ ε} is finite
}
.

Note that if I = N, the condition

∀ε > 0. {n ∈ N | ∥an∥ ≥ ε} is finite

is equivalent to ∥an∥ → 0 when n→∞. ◁

Proposition 3.5.4. Let
⊕

i∈I Ai be the direct sum of a finite family of C∗-
algebras.

1. Each projection πi :
⊕

i∈I Ai → Ai is multiplicative involutive unital (hence
completely positive).

2. Each injection κi : Ai →
⊕

i∈I Ai is multiplicative involutive pre-unital
(hence completely positive). ◁

Proof. Straightforward. ■
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Proposition 3.5.5. Let
⊕

i∈I Ai be the direct sum of a finite family of C∗-
algebras. It is the categorical biproduct as a vector space. That is, it has following
universal properties.

1. For each C∗-algebra B and for every family of linear maps {fi : B → Ai}i∈I ,
there is a unique linear map h : B →

⊕
i∈I Ai such that fi = πi ◦ h for each

i ∈ I.
The unique map h is denoted by ⟨fi⟩i∈I , and defined by ⟨fi⟩i∈I(x) = (fi(x))i∈I .

2. For each C∗-algebra C and for every family of linear maps {gi : Ai → C}i∈I ,
there is a unique linear map k :

⊕
i∈I Ai → C such that gi = k ◦κi for each

i ∈ I.
The unique map k is denoted by [gi]i∈I , and defined by [gi]i∈I

(
(xi)i∈I

)
=∑

i∈I gi(xi).

Pictorially:
B

⟨fi⟩i
��

fi

""

Aj

gj
##

κj
//
⊕

iAi

[gi]i
��

πi

// Ai

C ■

Proposition 3.5.6. In the setting of Prop. 3.5.5, the following equations hold.

⟨fi⟩i =
∑

i

κi ◦ fi

[gi]i =
∑

i

gi ◦ πi ◁

Proof. By direct calculation. ■

Proposition 3.5.7. Let (Ai)i∈I be a finite family of C*-algebras, {fi : B →
Ai}i∈I and {gi : Ai → C}i∈I families of linear maps between C∗-algebras. For the
direct sum

⊕
i∈I Ai, and linear maps ⟨fi⟩i∈I : B →

⊕
i∈I Ai and [gi]i∈I :

⊕
i∈I Ai →

C, the following hold.

1. If fi is multiplicative (resp. involutive, positive, completely positive, unital,
pre-unital) for all i ∈ I, then ⟨fi⟩i∈I is multiplicative (resp. involutive,
positive, completely positive, unital, pre-unital), too.

2. If gi is involutive (resp. positive, completely positive) for all i ∈ I, then
[gi]i∈I is involutive (resp. positive, completely positive), too. ◁

Proof. 1. Assume fi is multiplicative for all i ∈ I. Then

⟨fi⟩i(xy) = (fi(xy))i

= (fi(x)fi(y))i

= (fi(x))i · (fi(y))i

= ⟨fi⟩i(x) · ⟨fi⟩i(y) .
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Assume fi is involutive (resp. positive, completely positive) for all i ∈ I. The
involutivity (resp. positivity, complete positivity) of ⟨fi⟩i follows from Prop. 3.5.6,
Prop. 3.5.4.1 and the fact the involutivity (resp. positivity, complete positivity)
is preserved by the composition and the addition of maps.

Assume fi is unital for all i ∈ I. Then

⟨fi⟩i(1) = (fi(1))i

= (1)i ,

which is the unit of ⊕iAi.
Assume fi is pre-unital for all i ∈ I. Then

⟨fi⟩i(1) = (fi(1))i

≤ (1)i ,

since the order is pointwise.
2. One can follow the same argument as 1. ■

Proposition 3.5.8. Let A,B be C∗-algebras, and (πA,H), (πB,K) representa-
tions of them respectively. Then we have a representation (πA⊕B,H ⊕ K) of
A⊕B, defined by

πA⊕B(a, b)(x, y) = (πA(a)(x), πB(b)(y)) .

Moreover, the representation (H⊕K, πA⊕B is faithful (resp. unital) if both (H, πA)
and (K, πB) are faithful (resp. unital). We shall denote the map πA⊕B by πA ⊕
πB.1 ◁

Proof. We have just to show πA⊕B is a ∗-homomorphism. In the following, we
suppress the subscripts of πA, πB, πA⊕B when it is clear from the context.

π((a, b) + (a′, b′))(x, y) = π(a+ a′, b+ b′)(x, y)
=
(
π(a+ a′)(x), π(b+ b′)(y)

)
=
(
π(a)(x) + π(a′)(x), π(b)(y) + π(b′)(y)

)
since πA and πB are linear

=
(
π(a)(x), π(b)(y)

)
+
(
π(a′)(x), π(b′)(y)

)
= π(a, b)(x, y) + π(a′, b′)(x, y)
= (π(a, b) + π(a′, b′))(x, y)

π(t(a, b))(x, y) = π(ta, tb)(x, y)
= (π(ta)(x), π(tb)(y))
= (tπ(a)(x), tπ(b)(y))

since πA and πB are linear
= t(π(a)(x), π(b)(y))
= tπ(a, b)(x, y)
= (tπ(a, b))(x, y)

1In the literature, the notation π ⊕ π′ is often reserved for the different meaning. See [60,
Def. I.9.15]
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π((a, b) · (a′, b′))(x, y) = π(aa′, bb′)(x, y)
=
(
π(aa′)(x), π(bb′)(y)

)
=
(
π(a)(π(a′)(x)), π(b)(π(b′)(y))

)
since πA and πB are multiplicative

= π(a, b)
(
π(a′)(x), π(b′)(y)

)
= π(a, b)

(
π(a′, b′)(x, y)

)
= (π(a, b) ◦ π(a′, b′))(x, y)

π((a, b)∗)(x, y) = π(a∗, b∗)(x, y)
= (π(a∗)(x), π(b∗)(y))
= (π(a)†(x), π(b)†(y)) ,

where the last equality is since πA and πB are involutive. We here need to show

π(a, b)†(x, y) = (π(a)†(x), π(b)†(y)) .

It is easily seen by:

⟨(x, y), π(a, b)(x′, y′)⟩ =
⟨
(x, y),

(
π(a)(x′), π(b)(y′)

)⟩
= ⟨x, π(a)(x′)⟩+ ⟨y, π(b)(y′)⟩
= ⟨π(a)†(x), x′⟩+ ⟨π(b)†(y), y′⟩
=
⟨(
π(a)†(x), π(b)†(y)

)
, (x′, y′)

⟩
We assume that representations (πA,H) and (πB,K) are faithful, i.e. πA and

πB are injective. Then

π(a, b) = 0
⇐⇒ π(a, b)(x, y) = 0 for all (x, y) ∈ H ⊕K
⇐⇒ (π(a)(x), π(b)(y)) = 0 for all (x, y) ∈ H ⊕K
⇐⇒ π(a)(x) = 0, π(b)(y) = 0 for all x ∈ H, y ∈ K
⇐⇒ π(a) = 0, π(b) = 0
⇐⇒ a = 0, b = 0
⇐⇒ (a, b) = 0 .

Hence πA⊕B is injective, i.e. the representation (πA⊕B,H⊕K) is faithful.
We assume that representations (πA,H) and (πB,K) are unital, i.e. πA and

πB are unital. Then

π(1, 1)(x, y) = (π(1)(x), π(1)(y)) = (x, y) .

Hence πA⊕B is unital, i.e. the representation (πA⊕B,H⊕K) is unital. ■

3.6 Tensor products of C∗-algebras

Definition 3.6.1. Let A,B be C∗-algebras. The algebraic tensor product A⊙B
(as vector spaces) is a ∗-algebra with the following operations. The operations

(x⊗ y)(z ⊗ w) := xz ⊗ yw
(x⊗ y)∗ := x∗ ⊗ y∗
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extend to a bilinear map · : (A⊙B)2 → A⊙B and an antilinear map (−)∗ : A⊙
B → A⊙B. Explicitly, they are given by(∑

i
xi ⊗ yi

)(∑
j
zj ⊗ wj

)
:=
∑

i

∑
j
xizj ⊗ yiwj(∑

i
xi ⊗ yi

)∗
:=
∑

i
x∗

i ⊗ y∗
i . ◁

Definition 3.6.2. Let A,B be C∗-algebras and (H, πA), (K, πB) representations
of them, respectively. Then we obtain a representation (H ⊗ K, π) of A ⊙ B
defined by:

π(x⊗ y) := πA(x)⊗ πB(y) ,

or, more explicitly,

π
(∑

i
xi ⊗ yi

)
:=
∑

i
πA(xi)⊗ πB(yi) .

We shall denote the map π by πA⊙πB. If both (H, πA) and (K, πB) are faithful,
then (H⊗K, πA ⊙ πB) is faithful (see [10, Prop. 3.1.12 and Lem. 3.3.9]). ◁

Lemma 3.6.3. Let A,B be C∗-algebras and (H, πA), (K, πB) be faithful repre-
sentations of them, respectively. Note that we have a faithful representation
(H⊗K, πA ⊙ πB) of A⊙B. Then we define a norm on A⊙B by

∥x∥ := ∥(πA ⊙ πB)(x)∥

for x ∈ A⊙B. Here, the following hold.

1. The norm on A⊙B is a C∗-cross-norm; it satisfies, besides usual conditions
for a norm,

• ∥xy∥ ≤ ∥x∥∥y∥
• ∥x∗x∥ = ∥x∥2

for x, y ∈ A⊙B, and

• ∥a⊗ b∥ = ∥a∥∥b∥

for a ∈ A, b ∈ B.

2. The norm does not depend on a choice of faithful representations of A and
B. ◁

Proof. See [60, Def. IV.4.8, Thm. IV.4.9, etc.] or [10, Def. 3.3.4, Prop. 3.3.11,
etc.]. ■

Definition 3.6.4 (Tensor product of C∗-algebras). A (spatial) tensor product of
C∗-algebras A and B, denoted by A⊗B, is a completion of A⊙B wrt. the norm
defined in Lem. 3.6.3. ◁

Proposition 3.6.5. Let A,B be C∗-algebras and (H, πA), (K, πB) representa-
tions of them respectively. Then the representation (H ⊗ K, πA ⊙ πB) of A ⊙ B
extends to a representation (H⊗K, πA ⊗ πB) of A⊗B.

A⊗B
πA⊗πB

''

A⊙B
?�

dense

OO

πA⊙πB

// B(H⊗K)

If both (H, πA) and (K, πB) are faithful, then (H⊗K, πA ⊗ πB) is faithful. ◁
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Proof. See [60, Def. IV.4.8, Thm. IV.4.9.(iii)] or [52, Prop. 1.22.9]. ■

Remark 3.6.6. For C∗-algebras A and B, a norm on A ⊙ B is not necessarily
canonically determined. In other words, it is possible for A ⊙ B to have C∗-
cross-norms other than the one defined in Lem. 3.6.3. In the literature, the norm
defined in Lem. 3.6.3 is called a spatial (or injective, minimal) C∗-norm, which is
in fact the least C∗-norm. A tensor product defined in Def. 3.6.4 is called a spatial
(or injective, minimal) tensor product. Another important C∗-cross-norm is the
greatest one, which is called a projective (or maximal) C∗-norm in the literature.
For further details, see [60, §IV.4], [10, §3.3] or [52, §1.22]. ◁

Definition 3.6.7. Let A,A′, B,B′ be ∗-algebras, and f : A → A′, g : B → B′

linear maps. We define f ⊙ g : A⊙B → A′ ⊙B′ by

(f ⊙ g)
(∑

i
ai ⊗ bi

)
:=
∑

i
f(ai)⊗ g(bi) . ◁

The C∗-tensor product of maps is not easy to handle as seen in the following
fact.

Fact 3.6.8 ([10, Prop. 3.5.2]). There exists a positive unital isometry f : A→ A
such that f ⊙ idA : A⊙A→ A⊙A is unbounded (i.e. not norm-continuous). ◁

However, if maps are ∗-homomorphism, the situation becomes simple.

Proposition 3.6.9 ([60, Prop. 4.22]). Let A,A′, B,B′ be C∗-algebras, and f : A→
A′, g : B → B′ be ∗-homomorphisms. It is easy to see f ⊙ g : A⊙B → A′ ⊙B′ is
again a ∗-homomorphism. Moreover, it extends to a ∗-homomorphism f⊗g : A⊗
B → A′ ⊗B′. ■

More interestingly and importantly, tensor products of completely positive maps
work well.

Theorem 3.6.10. Let A,A′, B,B′ be C∗-algebras, and f : A → A′, g : B → B′

completely positive maps. Then f ⊙ g extends to a completely positive map f ⊗
g : A⊗B → A′ ⊗B′. ◁

Proof. See [60, Prop. IV.4.23.(i)] or [10, Thm. 3.5.3]. ■

Remark 3.6.11. In Prop. 3.6.9 and Thm. 3.6.10, if both f and g are unital,
then f ⊗ g is unital, too, since f ⊙ g is clearly unital, and A ⊙ B,A′ ⊙ B′ are
(norm-dense) unital ∗-subalgebras of A ⊗ B,A′ ⊗ B′ respectively. Moreover, if
both f and g are pre-unital, then f ⊗ g is pre-unital. This is because

1⊗ 1− f(1)⊗ g(1) = 1⊗ 1− f(1)⊗ 1 + f(1)⊗ 1− f(1)⊗ g(1)
= (1− f(1))⊗ 1 + f(1)⊗ (1− g(1))
≥ 0 .

Note here that we use the positivity of f . ◁
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3.7 Tensor products distribute over direct sums

In this section, we will show that tensor products distribute over direct sums.
The author cannot find this result in the literature, so that we give a rather
detailed proof.

Proposition 3.7.1 (⊗ distributes over ⊕). Let A,B,C be C∗-algebras. Then
we have a ∗-isomorphism:

(A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C) .

The mapping is given as the extension of∑
i
(ai, bi)⊗ ci 7−→

∑
i
(ai ⊗ ci, bi ⊗ ci) . ◁

Proof. Note firstly the following ∗-isomorphism:

(A⊕B)⊙ C ∼= (A⊙ C)⊕ (B ⊙ C) . (3.1)

The mappings are given by∑
i
(ai, bi)⊗ ci 7−→

∑
i
(ai ⊗ ci, bi ⊗ ci)

and ∑
i
(ai, 0)⊗ ci +

∑
j
(0, bi)⊗ c′

j ←−[ (∑
i
ai ⊗ ci,

∑
j
bj ⊗ c′

j

)
.

Let

ιA : A⊙ C ↪−→ A⊗ C
ιB : B ⊙ C ↪−→ B ⊗ C

be dense inclusions. Then we have an injective ∗-homomorphism:

ιA ⊕ ιB : (A⊙ C)⊕ (B ⊙ C) −→ (A⊗ C)⊕ (B ⊗ C) ,

which is also dense by Lem. 2.1.15. Because of the uniqueness of completion, it
suffices to show (3.1) is isometric wrt. spatial C∗-norms.

Let (HA, πA), (HB, πB), (HC , πC) be faithful representations of A,B,C re-
spectively. Notice that the following diagram commutes:

(A⊙ C)⊕ (B ⊙ C)

ιA⊕ιB

��

(πA⊙πC)⊕(πB⊙πC)

,,

(A⊗ C)⊕ (B ⊗ C)
(πA⊗πC)⊕(πB⊗πC)

// B((HA ⊗HC)⊕ (HB ⊗HC)) ,

and hence (πA ⊙ πC) ⊕ (πB ⊙ πC) is isometric. It is known that we have the
following isomorphism of Hilbert spaces:

(HA ⊕HB)⊗HC
∼= (HA ⊗HC)⊕ (HB ⊗HC) ,

hence we have

B((HA ⊕HB)⊗HC) ∼= B((HA ⊗HC)⊕ (HB ⊗HC)) .
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By Prop. 3.5.8, (HA ⊕ HB, πA ⊕ πB) is a faithful representation of A ⊕ B. To
show (3.1) is isometric, it suffices to show the following diagram commutes:

(A⊕B)⊙ C
(πA⊕πB)⊙πC //

∼=
��

B((HA ⊕HB)⊗HC)
∼=
��

(A⊙ C)⊕ (B ⊙ C)
(πA⊙πC)⊕(πB⊙πC)

// B((HA ⊗HC)⊕ (HB ⊗HC)) .

It follows from the commutativity of the following diagram:

(HA ⊕HB)⊗HC

∼= //

(πA(a)⊕πB(b))⊗πC(c)
��

(HA ⊗HC)⊕ (HB ⊗HC)

(πA(a)⊗πC(c))⊕(πB(b)⊗πC(c))
��

(HA ⊕HB)⊗HC

∼= // (HA ⊗HC)⊕ (HB ⊗HC)

for each a ∈ A, b ∈ B, c ∈ C. ■

We also have a result for the nullary direct sum, i.e. the zero space. The proof
is trivial.

Proposition 3.7.2. Let A be a C∗-algebra, and let 0 denotes the zero space {0},
which is a C∗-algebra in trivial way. Then

0⊗A ∼= 0 . ■

3.8 Categories of C∗-algebras

In this section, we shall summarize structures of C∗-algebras from a categorical
point of view. First of all, notice that we have many choices of maps between
C∗-algebras.

Definition 3.8.1. We define categories CstarX of C∗-algebras and maps be-
tween them of the kind denoted by the subscript X. Specifically:

1. CstarM-I is the category of C∗-algebras and multiplicative involutive maps
(i.e. ∗-homomorphisms).

2. CstarM-I-U is the category of C∗-algebras and multiplicative involutive uni-
tal maps (i.e. unital ∗-homomorphisms).

3. CstarCP is the category of C∗-algebras and completely positive maps.

4. CstarCP-PU is the category of C∗-algebras and completely positive pre-
unital maps.

5. CstarCP-U is the category of C∗-algebras and completely positive unital
maps.

Notice that all these categories have the same collection of objects. Note also
that all C∗-algebras are assumed to be unital, and maps are linear. ◁

Proposition 3.8.2. There are the following inclusions of categories.

CstarM-I-U
� � //

� _

��

CstarM-I� _

��

CstarCP-U
� � // CstarCP-PU

� � // CstarCP ◁
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Proof. Note that multiplicative involutive maps (∗-homomorphisms) are com-
pletely positive (Cor. 3.4.10) and pre-unital (Cor. 3.2.12). ■

Proposition 3.8.3. Finite direct sums of C∗-algebras form categorical finite
products in all of the five categories defined in Def. 3.8.1. ◁

Proof. Finite direct sums form categorical products as vector spaces (Prop. 3.5.5.1).
Hence it suffices to check the projections satisfy the conditions of maps, and the
tupling ⟨·, ·⟩ of maps preserves the structures of maps. We have already done it
in Prop. 3.5.4.1 and Prop. 3.5.7.1. ■

Remark 3.8.4. In fact, ℓ∞-direct sums are infinite categorical products. ◁

Proposition 3.8.5. Finite direct sums of C∗-algebras form categorical finite co-
products in CstarCP. Hence, combined with Prop. 3.8.3, CstarCP has finite
biproducts. ◁

Proof. Use Prop. 3.5.5.2, Prop. 3.5.4.2 and Prop. 3.5.7.2. ■

Remark 3.8.6. The nullary direct sum, i.e. the zero space 0, is the initial object
in the categories CstarM-I, CstarCP-PU (and CstarCP, of course). Hence they
have the zero object. ◁

Proposition 3.8.7. The (spatial) C∗-tensor products of C∗-algebras makes all
of five categories defined in Def. 3.8.1 symmetric monoidal categories. ◁

Proof. The functoriality of the C∗-tensor products wrt. each category follows
from Prop. 3.6.9, Thm. 3.6.10 and Remark 3.6.11. Then, it suffices to show that
CstarM-I with the C∗-tensor products is symmetric monoidal, i.e. there exist
isomorphisms that satisfy the axioms for a symmetric monoidal category. This is
because isomorphisms in CstarM-I are isomorphism in the other categories. We
will skip the detail since it is straightforward and well-known (see e.g. [40, §2.3],
[65, Scholium 6.19]). ■

Remark 3.8.8. By Fact 3.6.8, the C∗-tensor products fail to be functorial in
the category of C∗-algebras and just positive maps. ◁

The distribution of the C∗-tensor product over direct sum (Prop. 3.7.1, Prop. 3.7.2)
means the preservation of (categorical) finite products by the functor (−)⊗A for
each C∗-algebra A.
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Chapter 4

W ∗-algebras

This chapter is devoted to the study of W ∗-algebras. As the previous chapter,
we will study basics of W ∗-algebras, representations of W ∗-algebras, matrices of
W ∗-algebras, direct sums and tensor products of W ∗-algebras. Direct sums of
W ∗-algebras are the same as C∗-algebras, while tensor products of W ∗-algebras
are more complicated than C∗-algebras. The distribution of tensor products over
direct sums of W ∗-algebras seems missing again in the literature, hence we show
it in §4.6. Then we summarize structures of W ∗-algebras from a categorical point
of view in §4.7.

We will successively study the unique structure of W ∗-algebras. W ∗-algebras
have a pretty good order structure, which is one of features of W ∗-algebras that
makes them different from C∗-algebras. We review such “monotone closedness”
of W ∗-algebras in §4.8. Finally, in §4.9, we show this order structure of W ∗-
algebras is “lifted” into categories of W ∗-algebras. What we show is, Specifically,
that the category WstarCP is a Bdcppo⊥-enriched category and the category
WstarCP-PU is a Dcppo⊥-enriched category. This result is, to the author’s
knowledge, not previously observed.

4.1 Basics of W ∗-algebras

W ∗-algebras are “special” kind of C∗-algebras. We can define them in several
equivalent ways, but we here adopt the following definition.

Definition 4.1.1 (W ∗-algebra). A W ∗-algebra is a C∗-algebra that is a dual
space of some Banach space. Specifically, a C∗-algebra A is a W ∗-algebra if there
exists a Banach space X and an isometric isomorphism ι : A

∼=→ X∗ of Banach
spaces. The Banach space X is called a predual of A. ◁

Proposition 4.1.2. A predual of a W ∗-algebra is unique up to (unique) isomet-
ric isomorphisms. For a W ∗-algebra M , we shall denote the predual of M by
M∗. ◁

Proof. See [52, Cor. 1.13.3] or [60, Cor. III.3.9]. ■

Definition 4.1.3. Let M be a W ∗-algebra. Using the predual M∗, We can equip
M with the weak* topology σ(M,M∗), which is the coarsest (weakest) topology
that makes functions M → C, x 7→ ⟨x, φ⟩ continuous for each φ ∈ M∗. We call
this topology the ultraweak (or σ-weak) topology on M . ◁

Example 4.1.4. Recall that B(H) is a C∗-algebra for a Hilbert space H (Ex-
ample 3.1.7). By Prop. 2.1.16, B(H) has the predual T (H), the set of trace class
operators on H. Hence B(H) is a W ∗-algebra. ◁
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Definition 4.1.5 (Normal map). A linear map between W ∗-algebras is normal
if it is continuous wrt. the ultraweak topologies. ◁

Proposition 4.1.6. Let f : M → N be a linear map between W ∗-algebras. Then
f is normal if and only if there exists unique bounded map f∗ : N∗ → M∗ such
that the following diagram commutes.

M
f

//

∼=
��

N

∼=
��

(M∗)∗ (f∗)∗
// (N∗)∗

◁

Proof. This is a consequence of Prop. 2.1.6. ■

Proposition 4.1.7 (W ∗-subalgebra). Let M be a W ∗-algebra. Suppose that N ⊆
M be a ultraweakly closed ∗-subalgebra of M . Then N is a W ∗-algebra. Moreover,
the ultraweak topology of N coincides with a relative topology to the ultraweak
topology of M . ◁

Proof. Note that ultraweak closedness implies norm-closedness, so that N is a
C∗-algebra. Hence we have only to show N has the predual. By Lem. 2.1.13, N⊥

is norm-closed in M∗ and (N⊥)⊥ = N . By applying Lem. 2.1.14, we obtain an
isometric isomorphism:

(M∗/N
⊥)

∼=−→ (N⊥)⊥ = N .

Hence M∗/N
⊥ is the predual of N . The latter half follows from the latter half of

Lem. 2.1.14.
See also [52, Def. 1.1.4]. ■

Remark 4.1.8. In contrast to C∗-algebras, W ∗-algebras are necessarily unital.
In other words, we can show that if a (not necessarily unital) C∗-algebra has the
predual, then it has the unit. See [51, Appendix], and also [52, §1.6–7]. ◁

Remark 4.1.9. Every finite dimensional C∗-algebra A is a W ∗-algebra, because
A is canonically isometrically isomorphic to its double dual A∗∗. Hence A∗ is
the predual of A. For the same reason, every (necessarily bounded) linear map
between finite dimensional W ∗-algebras is normal. ◁

4.2 Representations of W ∗-algebras

Definition 4.2.1 (Representation). A representation of a W ∗-algebra M is a
representation (H, π) of M as a C∗-algebra (see Def. 3.3.1). It is said to be
normal if π is normal. ◁

Theorem 4.2.2. Every W ∗-algebra admits a normal faithful unital representa-
tion. ◁

Proof. See [52, Thm. 1.16.7] or [60, Thm. III.3.5]. ■

For a normal ∗-homomorphism f : M → N , its image f(M) is ultraweakly
closed in N ([52, Prop. 1.16.2]), so that f(M) is a W ∗-subalgebra of N by
Prop. 4.1.7. Therefore, Thm. 4.2.2 states that W ∗-algebras are characterized
as ultraweakly closed unital ∗-subalgebras of B(H) for some Hilbert space H,
which are called von Neumann algebras on H and studied very well. Thanks to
Thm. 4.2.2, many of results for von Neumann algebras can be applied equally to
W ∗-algebras.
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4.3 Matrices of W ∗-algebras

Lemma 4.3.1 ([60, §II.2]). Let H be a Hilbert space. A net (Ti)i∈I converges
ultraweakly to T in B(H) if and only if for every sequences (ξn)∞

n=1 and (ηn)∞
n=1

in H with ∞∑
n=1
∥ξn∥2 <∞ ,

∞∑
n=1
∥ηn∥2 <∞ ,

we have: ∣∣∣∣∣
∞∑

n=1
⟨ξn, (T − Ti)ηn⟩

∣∣∣∣∣→ 0 .
■

Proposition 4.3.2. Let H be a Hilbert space. Note the isometric isomorphism:
Mn(B(H)) ∼= B(H⊕n) (see Lem. 3.4.3). A net (Ti)i∈I = ([Tkli]lk)i∈I converges
ultraweakly to T = [Tkl] in B(H⊕n) if and only if a net (Tkli)i∈I converges ultra-
weakly to Tkl in B(H) for each k, l ∈ {1, . . . , n}. ◁

Proof. By Lem. 4.3.1, a net (Ti)i∈I = ([Tkli]kl)i∈I converges ultraweakly to T =
[Tkl]kl in B(H⊕n) if and only if for every sequences (ξm)∞

m=1 = ((ξkm)k)∞
m=1 and

(ηm)∞
m=1 = ((ηlm)l)∞

m=1 in H⊕n with

∞∑
n=1
∥ξn∥2 <∞ ,

∞∑
n=1
∥ηn∥2 <∞ , (4.1)

we have: ∣∣∣∣∣
∞∑

m=1
⟨ξm, (T − Ti)ηm⟩

∣∣∣∣∣→ 0 .

Here the following holds:
∞∑

m=1
∥ξm∥2 =

∞∑
m=1

n∑
k=1
∥ξkm∥2 =

n∑
k=1

∞∑
m=1
∥ξkm∥2 <∞ , (4.2)

∞∑
m=1
∥ηm∥2 =

∞∑
m=1

n∑
l=1
∥ηlm∥2 =

n∑
l=1

∞∑
m=1
∥ηlm∥2 <∞ , (4.3)

and ∣∣∣∣∣
∞∑

m=1
⟨ξm, (T − Ti)ηm⟩

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
m=1
⟨(ξkm)k, ([Tkl]kl − [Tkli]kl)(ηlm)l⟩

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
m=1
⟨(ξkm)k, ([Tkl − Tkli]kl)(ηlm)l⟩

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
m=1

⟨
(ξkm)k,

( n∑
l=1

(Tkl − Tkli)ηlm

)
k

⟩∣∣∣∣∣
=
∣∣∣∣∣

∞∑
m=1

n∑
k=1

n∑
l=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣
=
∣∣∣∣∣

n∑
k=1

n∑
l=1

∞∑
m=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣ .
Note that each series converges absolutely.
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Assume for each k, l ∈ {1, . . . , n}, a net (Tkli)i∈I converges ultraweakly to Tkl

in B(H). Namely, for every sequences (ξkm)∞
m=1 and (ηlm)∞

m=1 in H with

∞∑
m=1
∥ξkm∥2 <∞ ,

∞∑
m=1
∥ηlm∥2 <∞ , (4.4)

we have: ∣∣∣∣∣
∞∑

m=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣→ 0 .

Now, for every sequences (ξm)∞
m=1 = ((ξkm)k)∞

m=1 and (ηm)∞
m=1 = ((ηlm)l)∞

m=1 in
H⊕n, (4.1) (⇐⇒ (4.2), (4.3)) implies (4.4) for each l, k ∈ {1, . . . , n}. Hence∣∣∣∣∣

∞∑
m=1
⟨ξm, (T − Ti)ηm⟩

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

n∑
l=1

∞∑
m=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣
≤

n∑
k=1

n∑
l=1

∣∣∣∣∣
∞∑

m=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣
→ 0 ,

because ∣∣∣∣∣
∞∑

m=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣→ 0

for each k, l ∈ {1, . . . , n}.
Conversely, assume a net (Ti)i∈I = ([Tkli]lk)i∈I converges ultraweakly to T =

[Tkl]. For each k′, l′ ∈ {1, . . . , n} and for every sequences (ξ′
m)∞

m=1 and (η′
m)∞

m=1
in H with ∞∑

m=1
∥ξ′

m∥
2 <∞ ,

∞∑
m=1
∥η′

m∥
2 <∞ ,

we define sequences (ξm)∞
m=1 = ((ξkm)k)∞

m=1 and (ηm)∞
m=1 = ((ηlm)l)∞

m=1 in H⊕n

by

ξkm =
{
ξ′

m if k = k′

0 otherwise ,
ηlm =

{
η′

m if l = l′

0 otherwise .

Then they satisfy the conditions (4.1). Hence∣∣∣∣∣
∞∑

m=1
⟨ξm, (T − Ti)ηm⟩

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
m=1

n∑
k=1

n∑
l=1
⟨ξkm, (Tkl − Tkli)ηlm⟩

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
m=1
⟨ξk′m, (Tk′l′ − Tk′l′i)ηl′m⟩

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
m=1
⟨ξ′

m, (Tk′l′ − Tk′l′i)η′
m⟩
∣∣∣∣∣

→ 0 .

It follows that a net (Tk′l′i)i∈I converges ultraweakly to Tk′l′ . ■

Proposition 4.3.3. Let M be a W ∗-algebra Then Mn(M) is a W ∗-algebra.
Moreover, a net (xi)i∈I = ([xkli]lk)i∈I converges ultraweakly to x = [xkl] in
Mn(M) if and only if a net (xkli)i∈I converges ultraweakly to xkl in M for each
k, l ∈ {1, . . . , n}. ◁
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Proof. Take a normal faithful representation (H, π) of M . Then we have a faith-
ful representation (H⊕n,Mn(π)) of Mn(M) by Lem. 3.4.4. Since the image
π(M) is ultraweakly closed in B(H), the image Mn(π)(Mn(M)) = Mn(π(M))
is ultraweakly closed in B(H⊕n), too, by Prop. 4.3.2. Then Mn(π)(Mn(M))
is a sub-W ∗-algebra of B(H⊕n). Because Mn(M) is ∗-isomorphic to the image
Mn(π)(Mn(M)), Mn(M) is a W ∗-algebra, too.

For the latter half,
a net (xi)i∈I = ([xkli]lk)i∈I converges ultraweakly to x = [xkl] in Mn(M)
⇐⇒ (by Mn(M) ∼=Mn(π)(Mn(M)))
a net (Mn(π)(xi))i∈I = ([π(xkli)]lk)i∈I converges ultraweakly toMn(π)(x) =

[π(xkl)] in Mn(π)(Mn(M)) =Mn(π(M))
⇐⇒ (since Mn(π)(Mn(M)) is a ultraweakly closed subspace of B(H⊕n))
a net (Mn(π)(xi))i∈I = ([π(xkli)]lk)i∈I converges ultraweakly toMn(π)(x) =

[π(xkl)] in B(H⊕n)
⇐⇒ (by Prop. 4.3.2)
a net (π(xkli))i∈I converges ultraweakly to π(xkl) in B(H) for each k, l ∈

{1, . . . , n}
⇐⇒ (since π(M) is a ultraweakly closed subspace of B(H))
a net (π(xkli))i∈I converges ultraweakly to π(xkl) in π(M) for each k, l ∈

{1, . . . , n}
⇐⇒ (by M ∼= π(M))
a net (xkli)i∈I converges ultraweakly to xkl in M for each k, l ∈ {1, . . . , n}. ■

Proposition 4.3.4. Let f : M → N be a normal map between W ∗-algebras.
Then Mn(f) : Mn(M)→Mn(N) is normal, too. ◁

Proof. Use the latter half of Prop. 4.3.3. ■

4.4 Direct sums of W ∗-algebras

A direct sum of W ∗-algebras as C∗-algebras is again a W ∗-algebra. In fact, we
can give its predual explicitly.

Proposition 4.4.1. Let {Mi}i∈I be a finite family of W ∗-algebras. Let
⊕

i∈I Mi

be a direct sum of {Mi}i∈I as C∗-algebras. Then
⊕1

i∈I Mi∗ is the predual of⊕
i∈I Mi, where Mi∗ is the predual of Mi. Hence

⊕
i∈I Mi is a W ∗-algebra. ◁

Proof. Let {Mi}i∈I be a finite family of W ∗-algebras with isometric isomorphisms
ιi : (Mi∗)∗ →Mi. Then ⊕

i
ιi :

⊕∞
i

(Mi∗)∗ −→
⊕

i
Mi

is an isometric isomorphism because
⊕

i ι
−1
i is clearly the inverse and∥∥∥(⊕

i
ιi
)(

(ϕi)i
)∥∥∥ =

∥∥(ιi(ϕi)
)

i

∥∥
= max

i∈I
∥ιi(ϕi)∥

= max
i∈I
∥ϕi∥

= ∥(ϕi)i∥∞ .

By Lem. 2.1.9, we now see that
⊕1

i Mi∗ is the predual of
⊕

iMi. ■

Note. See also [52, Def. 1.1.5]. ◁
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As expected, structures associated with a direct sum respect normality.

Proposition 4.4.2. Let {Mi}i∈I be a finite family of W ∗-algebras, and L,K
W ∗-algebras. Let {fi : L → Mi}i∈I and {gi : Mi → K}i∈I be families of normal
maps. Then the following maps are normal.

πi :
⊕

i
Mi −→Mi

κi : Mi −→
⊕

i
Mi

⟨fi⟩i : L −→
⊕

i
Mi

[gi]i :
⊕

i
Mi −→ K ◁

Proof. We can explicitly give their predual maps. Recall that
⊕1

i Mi∗ is the
predual of

⊕
iMi, and suppose that fi∗ and gi∗ are the predual maps of fi and

gi respectively. Then, the predual maps of πi, κi, ⟨fi⟩i, [gi]i are respectively the
following maps:

κ′
i : Mi∗ −→

⊕1
i
Mi∗

π′
i :
⊕1

i
Mi∗ −→Mi∗

[fi∗]i :
⊕1

i
Mi∗ −→ L∗

⟨gi∗⟩i : K∗ −→
⊕1

i
Mi∗

It is straightforward to check the following diagrams commute.

⊕
iMi

∼=
��

πi //Mi

∼=
��

(
⊕1

i Mi∗)∗ κ′∗
i // (Mi∗)∗

Mi

∼=
��

κi //
⊕

iMi

∼=
��

(Mi∗)∗ π′∗
i // (

⊕1
i Mi∗)∗

L
⟨fi⟩i //

∼=
��

⊕
iMi

∼=
��

(L∗)∗ [fi∗]∗i // (
⊕1

i Mi∗)∗

⊕
iMi

[gi]i //

∼=
��

K

∼=
��

(
⊕1

i Mi∗)∗ ⟨gi∗⟩∗
i // (K∗)∗ ■

Remark 4.4.3. Another way to show that ⟨fi⟩i and [gi]i are normal is to use
the following equations.

⟨fi⟩i =
∑

i

κi ◦ fi

[gi]i =
∑

i

gi ◦ πi ◁

4.5 Tensor products of W ∗-algebras

Let M and N be W ∗-algebras. Note that we have the embeddings M∗ ↪→
M∗, N∗ ↪→ N∗. Then there exists canonical embeddings:

M∗ ⊙N∗ ↪−→M∗ ⊙N∗ ↪−→ (M ⊙N)∗ ∼= (M ⊗N)∗ .
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Hence we can equip M∗ ⊙ N∗ with the dual norm of the spatial C∗-norm on
M ⊙N . Let M∗ ⊗N∗ denote the completion of M∗ ⊙N∗ wrt. this norm. Then
M∗ ⊗N∗ can be seen as a closed subspace of (M ⊗N)∗. Let I ⊆ (M ⊗N)∗∗ be
the annihilator of M∗ ⊗N∗, i.e.

I = (M∗ ⊗N∗)⊥ = {φ ∈ (M ⊗N)∗∗ | ∀x ∈M∗ ⊗N∗. ⟨x, φ⟩ = 0} .

Then (M∗ ⊗N∗)∗ ∼= (M ⊗N)∗∗/I is a C∗-algebra, and hence a W ∗-algebra with
the predual M∗ ⊗ N∗. Note that I is a two-sided ideal of (M ⊗ N)∗∗ (and see
[13, Thm. III.10.1, Thm. V.2.3] [52, Thm. 1.17.2, Cor. 1.17.3]). The C∗-tensor
product M ⊗N is embedded into (M∗ ⊗N∗)∗ by

M ⊗N
∼=−→ (M ⊗N + I)/I ↪−→ (M ⊗N)∗∗/I

∼=−→ (M∗ ⊗N∗)∗ ,

and moreover this embedding is ultraweakly dense. We now define tensor prod-
ucts of W ∗-algebras as follows (for further details, see [52, §1.22], [60, §IV.5] or
[50]):

Definition 4.5.1. A (spatial) tensor product of W ∗-algebras M and N is defined
to be (M∗ ⊗ N∗)∗ (∼= (M∗ ⊙ N∗)∗), and denoted by M ⊗N . By definition, its
predual is (M ⊗N)∗ = M∗ ⊗N∗. ◁

This tensor product is “spatial” in the following sense.

Theorem 4.5.2. Let M,N be W ∗-algebras and (H, πM ), (K, πN ) be a normal
representations. Then the representation (H⊗K, πM ⊙πN ) of M ⊙N extends to
a normal representation (H⊗K, πM ⊗πN ) of M ⊗N . Moreover, if both (H, πM )
and (K, πN ) is faithful (resp. unital), then (H ⊗ K, πM ⊗πN ) is faithful (resp.
unital). If both (H, πM ) and (K, πN ) are faithful and unital, then the image
(πM ⊗πN )(M ⊗N) coincides with the tensor product of von Neumann algebras
πM (M) and πN (N). ◁

Proof. See [52, Prop. 1.22.11] and [60, Thm. IV.5.2]. ■

Proposition 4.5.3. Let M,N be W ∗-algebras. Consider a chain of the canonical
embeddings:

M ⊙N ι
↪−→M ⊗N θ

↪−→M ⊗N

Then M ⊙N is ultraweakly dense in M ⊗N . ◁

Proof. Note that ι is a norm-dense embedding into a Banach space and θ is an
isometry. Hence the norm closure cl(M ⊙N) of M ⊙N in M ⊗N coincides with
M ⊗ N when seen as subspaces of M ⊗N . Now recall that θ is a ultraweakly
dense embedding. Hence

M ⊗N = uw-cl(M ⊗N) = uw-cl(cl(M ⊙N)) = uw-cl(M ⊙N) ,

where the last equality holds because the ultraweak topology is coarser than the
norm topology. ■

Let f : M → M ′ and g : N → N ′ be normal maps between W ∗-algebras. By
their normality, we have the bounded maps between their preduals: f∗ : M ′

∗ →
M∗, g∗ : N ′

∗ → N∗. Then, a map f∗ ⊙ g∗ : M ′
∗ ⊙ N ′

∗ → M∗ ⊙ N∗ is bounded if
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f ⊙ g : M ⊙ N → M ′ ⊙ N ′ is bounded, because f∗ ⊙ g∗ can be considered as a
restriction of (f ⊙ g)∗ as in the diagram:

M ′
∗ ⊙N ′

∗
f∗⊙g∗ //

��

M∗ ⊙N∗

��

M ′∗ ⊙N ′∗ f∗⊙g∗
//

��

M∗ ⊙N∗

��

(M ′ ⊙N ′)∗ (f⊙g)∗
// (M ⊙N)∗ ,

where vertical arrows are canonical embeddings. On that occasion we can extend
f∗ ⊙ g∗ to a bounded map f∗ ⊗ g∗ : M ′

∗ ⊗ N ′
∗ → M∗ ⊗ N∗, and hence we have

a normal map (f∗ ⊗ g∗)∗ : (M∗ ⊗ N∗)∗ → (M ′
∗ ⊗ N ′

∗)∗. We denote this map by
f ⊗ g : M ⊗N → M ′⊗N ′, which is extension of f ⊗ g, hence of f ⊙ g, in the
sense that the following diagram commutes:

M ⊙N

��

f⊙g
//M ′ ⊗N ′

��

M ⊗N

��

f⊗g
//M ′ ⊗N ′

��

M ⊗N f ⊗ g
//M ′⊗N ′ ,

where vertical diagrams are canonical embeddings.

Lemma 4.5.4. Let M,N be W ∗-algebras and A ⊆ M a ultraweakly dense ∗-
subalgebra of M . Let f : M → N be a normal map and f |A : A→ N a restriction
of f to A. Then, if f |A is multiplicative (resp. involutive, unital, pre-unital), then
f is multiplicative (resp. involutive, unital, pre-unital), too. ◁

Proof. Assume f |A is multiplicative (resp. involutive). Then the multiplicativ-
ity (resp. involutivity) of f follows from ultraweak continuity of each operation.
Note that the multiplication is only separately ultraweakly continuous, but it is
sufficient as follows. Let (xi)i and (yj)j be nets in A with uw-limi xi = x and
uw-limj yj = y. Then

f(xy) = f((uw-limi xi)(uw-limj yj))
= f(uw-limi(xi uw-limj yj))
= f(uw-limi uw-limj xiyj)
= uw-limi uw-limj f(xiyj)
= uw-limi uw-limj f(xi)f(yj)
= uw-limi(f(xi) uw-limj f(yj))
= (uw-limi f(xi))(uw-limj f(yj))
= f(uw-limi xi)f(uw-limj yj)
= f(x)f(y) .

Note that if 1 ∈ A is the unit in A, then 1 is also the unit in M . This is
because for all x ∈M ,

1 · x = 1 · uw-limi xi

= uw-limi(1 · xi)
= uw-limi xi

= x ,
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and similarly x · 1 = 1. Hence if f |A is unital (resp. pre-unital) then f is unital
(resp. pre-unital). ■

The next proposition is immediate from Prop. 3.6.9 and the arguments so far.

Proposition 4.5.5. Let M,M ′, N,N ′ be W ∗-algebras, and f : M →M ′, g : N →
N ′ normal ∗-homomorphisms. Then f ⊙ g extends to normal ∗-homomorphisms
f ⊗ g : M ⊗N →M ′⊗N ′. ■

Moreover, we have a similar result to Thm. 3.6.10 for the tensor products of
W ∗-algebras.

Theorem 4.5.6. Let M,M ′, N,N ′ be W ∗-algebras, and f : M → M ′, g : N →
N ′ normal completely positive maps. Then f ⊙ g extends to a normal completely
positive map f ⊗ g : M ⊗N →M ′⊗N ′. ◁

Proof. See [60, Prop. IV.5.13]. This is in fact a proposition for von Neumann
algebras, but we can apply it to W ∗-algebras via Thm. 4.5.2. ■

Remark 4.5.7. In Prop. 4.5.5 and Thm. 4.5.6, it is easy to see, by Lem. 4.5.4, if
both f and g are unital (resp. pre-unital), then f ⊗ g is unital (resp. pre-unital),
too. ◁

4.6 Tensor products distribute over direct sums

In this section we show that tensor products of W ∗-algebras distribute over direct
sums. This result seems missing in the literature.

Proposition 4.6.1 (⊗ distributes over ⊕). Let M,N,L be W ∗-algebras. Then
we have

(M ⊕N)⊗L ∼= (M ⊗L)⊕ (N ⊗L) . ◁

Proof. Note that their preduals are explicitly given:

((M ⊕N)⊗L)∗ = ((M ⊕N)∗ ⊗ L∗) = (M∗ ⊕1 N∗)⊗ L∗

((M ⊗L)⊕ (N ⊗L))∗ = (M ⊗L)∗ ⊕1 (N ⊗L)∗ = (M∗ ⊗ L∗)⊕1 (N∗ ⊗ L∗)

Hence we firstly show the preduals are isometrically isomorphic. As usual, there
is an algebraic isomorphism:

(M∗ ⊕N∗)⊙ L∗ ∼= (M∗ ⊙ L∗)⊕ (N∗ ⊙ L∗) ,

given by
(x, y)⊗ z 7−→ (x⊗ z, y ⊗ z) .

The norms on them are given by embeddings:

(M∗ ⊕1 N∗)⊙ L∗ ↪−→ (M ⊕N)∗ ⊙ L∗ ↪−→ ((M ⊕N)⊙ L)∗ ∼= ((M ⊕N)⊗ L)∗

M∗ ⊙ L∗ ↪−→M∗ ⊙ L∗ ↪−→ (M ⊙ L)∗ ∼= (M ⊗ L)∗

N∗ ⊙ L∗ ↪−→ N∗ ⊙ L∗ ↪−→ (N ⊙ L)∗ ∼= (N ⊗ L)∗ .
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Notice that the following diagram commutes:

(M∗ ⊕1 N∗)⊙ L∗ //

∼=
��

((M ⊕N)⊗ L)∗

∼= Prop. 3.7.1
��

(M∗ ⊙ L∗)⊕1 (N∗ ⊙ L∗) // (M ⊗ L)∗ ⊕1 (N ⊗ L)∗ ∼=
Lem. 2.1.10

// ((M ⊗ L)⊕ (N ⊗ L))∗ ,

so that the norms on (M∗ ⊕1 N∗)⊙L∗ and (M∗ ⊙L∗)⊕1 (N∗ ⊙L∗) coincide. By
Lem. 2.1.15,

(M∗ ⊙ L∗)⊕1 (N∗ ⊙ L∗) −→ (M∗ ⊗ L∗)⊕1 (N∗ ⊗ L∗)

is a dense isometry. Hence

(M∗ ⊕1 N∗)⊗ L∗ ∼= (M∗ ⊗ L∗)⊕1 (N∗ ⊗ L∗)

by the uniqueness of completion. Finally, we have to show that the isomorphism
is a ∗-isomorphism. By Lem. 4.5.4, it suffices to show that the following diagram
commutes:

(M ⊕N)⊗ L
∼= //

��

(M ⊗ L)⊕ (N ⊗ L)
��

(M∗ ⊗N∗)∗ ⊕ (N∗ ⊗ L∗)∗

∼=��
((M∗ ⊕1 N∗)⊗ L∗)∗ Φ∗

∼=
// ((M∗ ⊗N∗)⊕1 (N∗ ⊗ L∗))∗

(M ⊕N)⊗L (M ⊗L)⊕ (N ⊗L) ,

where Φ∗ is the dual map of

Φ: (M∗ ⊗ L∗)⊕1 (N∗ ⊗ L∗)
∼=−→ (M∗ ⊕1 N∗)⊗ L∗ .

To check the commutativity is straightforward. ■

Proposition 4.6.2. Let M be a W ∗-algebra, and let 0 denotes the zero space
{0}, which is a W ∗-algebra with the predual 0. Then

0⊗M ∼= 0 . ◁

Proof. 0⊗M := (0⊗M∗)∗ ∼= 0∗ ∼= 0 ■

Proposition 4.6.3. Let M,N,L be W ∗-algebras. Then the isomorphism in Prop. 4.6.1:

(M ⊕N)⊗L ∼= (M ⊗L)⊕ (N ⊗L)

respects projections and injections of the direct sum. Namely, the following dia-
grams commute.

(M ⊕N)⊗L
∼=
��

π1 ⊗ idL

((

(M ⊗L)⊕ (N ⊗L) π1
//M ⊗L

(M ⊕N)⊗L
∼=
��

π2 ⊗ idL

((

(M ⊗L)⊕ (N ⊗L) π2
// N ⊗L

(M ⊕N)⊗L
∼=
��

M ⊗L

κ1 ⊗ idL

66

κ1
// (M ⊗L)⊕ (N ⊗L)

(M ⊕N)⊗L
∼=
��

N ⊗L

κ2 ⊗ idL

66

κ2
// (M ⊗L)⊕ (N ⊗L) ◁
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Proof. For the first diagram to commute, it suffices to show that the following
composites coincide:

(M ⊕N)⊙ L � � // (M ⊕N)⊗L
∼=
��

π1 ⊗ idL

((

(M ⊗L)⊕ (N ⊗L) π1
//M ⊗L

because of the ultraweak denseness of (M ⊕N)⊙L in (M ⊕N)⊗L. It is shown
via the commutativity of the diagram:

(M ⊕N)⊙ L
∼=
��

π1⊙idL

((

(M ⊙ L)⊕ (N ⊙ L) π1
//M ⊙ L

The second diagram commutes in the similar way. For the third one, it suffices
to show the following composed arrows are equal.

(M ⊕N)⊗L
∼=
��

M ⊙ L � � //M ⊗L

κ1 ⊗ idL

66

κ1
// (M ⊗L)⊕ (N ⊗L)

It follows via the commutativity of the diagram:

(M ⊕N)⊙ L
∼=
��

M ⊙ L

κ1⊙idL

66

κ1
// (M ⊙ L)⊕ (N ⊙ L)

The fourth diagram commute in the same way. ■

4.7 Categories of W ∗-algebras

Definition 4.7.1. We define categories WstarX of W ∗-algebras and maps be-
tween them of kind denoted by the subscript X. Specifically:

1. WstarM-I is the category of W ∗-algebras and normal multiplicative invo-
lutive maps (i.e. normal ∗-homomorphisms).

2. WstarM-I-U is the category of W ∗-algebras and normal multiplicative invo-
lutive unital maps (i.e. normal unital ∗-homomorphisms).

3. WstarCP is the category of W ∗-algebras and normal completely positive
maps.

4. WstarCP-PU is the category of W ∗-algebras and normal completely positive
pre-unital maps.

5. WstarCP-U is the category of W ∗-algebras and normal completely positive
unital maps.

Notice that all categories have the same collection of objects. ◁
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Proposition 4.7.2. There are the following inclusions of categories.

WstarM-I-U
� � //

� _

��

WstarM-I� _

��

WstarCP-U
� � // WstarCP-PU

� � // WstarCP ■

Proposition 4.7.3. Finite direct sums of W ∗-algebras form categorical finite
products in all of five categories defined in Def. 4.7.1. ◁

Proof. By Prop. 3.5.5.1, Prop. 3.5.4.1, Prop. 3.5.7.1 and Prop. 4.4.2. ■

Proposition 4.7.4. Finite direct sums of W ∗-algebras form categorical finite
coproducts in WstarCP. Hence, combined with Prop. 4.7.3, WstarCP has finite
biproducts. ◁

Proof. By Prop. 3.5.5.2, Prop. 3.5.4.2, Prop. 3.5.7.2 and Prop. 4.4.2. ■

Remark 4.7.5. The nullary direct sum, i.e. the zero space 0, is the initial object
in the categories WstarM-I, WstarCP-PU (and WstarCP, of course). Hence they
have the zero object. ◁

Proposition 4.7.6. The tensor products of W ∗-algebras makes all of five cate-
gories defined in Def. 4.7.1 symmetric monoidal categories. ◁

Proof. The functoriality of tensor products wrt. each category follows from Prop. 4.5.5,
Thm. 4.5.6 and Remark 4.5.7. Then it suffices to show the category WstarM-I is
symmetric monoidal, since isomorphisms in WstarM-I are isomorphisms in other
categories. We will skip the detail because it is routine and known fact (see
e.g. [4, §2], [32, Prop. 7.2]) ■

Remark 4.7.7. In an unpublished paper [32], it is claimed that in the category
WstarM-I-U, for each W ∗-algebra M the functor (−)⊗M has a left adjoint. In
other words, the opposite category of WstarM-I-U is closed symmetric monoidal.
I have not checked the detail yet, but if it is the case then it follows, by the
theorem in category theory [37, Thm. V.5.1], that (−)⊗M preserves any limits
in WstarM-I-U. Therefore Prop. 4.6.1 and Prop. 4.6.2 are abstractly implied. ◁

4.8 Complete partial orders in W ∗-algebras

Monotone closedness is one of the unique properties of W ∗-algebras; C∗-algebras
do not possess this property in general (Prop. 4.8.7).

Definition 4.8.1 (Monotone closed). A C∗-algebra A is monotone closed if ev-
ery norm-bounded directed subset of SA(A) has the supremum in SA(A). ◁

Theorem 4.8.2. Every W ∗-algebra M is monotone closed. Moreover, every
norm-bounded monotone net (xi)i in SA(M) converges ultraweakly to supi xi. ◁

Proof. See [52, Lem. 1.7.4], [60, Thm. III.3.16], or [14, Prop. 43.1]. ■

Lemma 4.8.3. Let A be a C∗-algebra and S ⊆ SA(A) be a set of self-adjoint
elements of A. Then S is norm-bounded if and only if S is order-theoretically
bounded in SA(A). ◁
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Proof. Assume S is norm-bounded, that is, there exists m ∈ R+ such that ∥x∥ ≤
m for all x ∈ S. Then, by Prop. 3.1.22, we have −m1 ≤ x ≤ m1 for all x ∈ S.
Hence S is order-theoretically bounded in SA(A).

Conversely, assume S is order-theoretically bounded in SA(A), that is, there
exists l, u ∈ SA(A) such that l ≤ x ≤ u for all x ∈ S. By Prop. 3.1.22, we have
−∥l∥1 ≤ l and u ≤ ∥u∥1. Hence for all x ∈ S,

−m1 ≤ l ≤ x ≤ u ≤ m1 ,

where m := max(∥l∥, ∥u∥). It follows by Prop. 3.1.22 that ∥x∥ ≤ m for all x ∈ S,
i.e. S is norm-bounded. ■

Proposition 4.8.4. Let A be a C∗-algebra. The following are equivalent.

1. A is monotone closed.

2. SA(A) is a bdcpo.

3. A+ is a bdcpo.

4. Ef(A) = [0, 1]A is a dcpo. ◁

Proof. 2 =⇒ 3 and 3 =⇒ 4 are trivial.
2 =⇒ 1 follows from Lem. 4.8.3, while 1 =⇒ 2 also follows from Lem. 4.8.3

with Lem. 2.2.15.
3 =⇒ 1: LetD ⊆ SA(A) be a norm-bounded directed subset, and by Lem. 4.8.3

assume l ≤ d ≤ u for all d ∈ D, for some l, d ∈ SA(A). Let D′ := D− l = {d− l |
d ∈ D}. Then D′ is a directed subset of A+, bounded above by u− l. Hence we
have supD′. It is easy to see l + supD′ is the supremum of D.

4 =⇒ 3: For a given directed subset D ⊆ A+ bounded above by u ≥ 0, let
D′ := ∥u∥−1D = {∥u∥−1d | d ∈ D}. Note that we may assume u ̸= 0. Because
u ≤ ∥u∥1 for any u ∈ A+, D′ is a directed subset of [0, 1]A. Hence we have supD′.
It is easy to see ∥u∥ supD′ is the supremum of D. ■

Corollary 4.8.5. Let M be a W ∗-algebra. Then the following hold.

1. SA(M) is a bdcpo.

2. M+ is a (pointed) bdcpo.

3. Ef(M) = [0, 1]M is a (pointed) dcpo. ◁

Proof. By Thm. 4.8.2 and Prop. 4.8.4. ■

Normality (i.e. ultraweak continuity) of maps between W ∗-algebras can be
order-theoretically characterized.

Theorem 4.8.6. Let f : M → N be a positive map between W ∗-algebra. The
following are equivalent.

1. f is normal, i.e. ultraweakly continuous.

2. f preserves the supremum of every norm-bounded directed subset of SA(M).

3. The restriction of f to SA(M), i.e. f |SA(M) : SA(M) → SA(N), is Scott-
continuous.
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4. The restriction of f to M+, i.e. f |M+ : M+ → N+, is Scott-continuous. ◁

Proof. 1 ⇐⇒ 2 is shown in [14, Cor. 46.5] or [7, Prop. III.2.2.2]. The equivalence
of 2, 3 and 4 is straightforward. ■

In general, C∗-algebras are not monotone closed. We will give a counterex-
ample.

Proposition 4.8.7. There exists a C∗-algebra A such that Ef(A) is not an ωcpo,
and hence A is not monotone closed. ◁

Proof. The (real, closed) unit interval [0, 1] is a compact Hausdorff space. Then
a space C ([0, 1]) of complex-valued continuous functions on the unit interval is
a (commutative) C∗-algebra. The positivity in C ([0, 1]) as a C∗-algebra is the
pointwise positivity, and the order is the pointwise order. The unit is the constant
function on 1. Define a monotone sequence (fn)∞

n=1 in Ef(C ([0, 1])) by:

fn(x) =



0
(
0 ≤ x < 1

2

)
2nx− n

(1
2
≤ x < 1

2
+ 1

2n

)
1

(1
2

+ 1
2n
≤ x ≤ 1

)
Assume the monotone sequence (fn)∞

n=1 has the supremum g ∈ C ([0, 1]). Then
an easy calculation shows g(x) = 0 for [0, 1/2) and g(x) = 1 for (1/2, 1], so that
g is never continuous. Hence the assumption is false: (fn)∞

n=1 do not have the
supremum. ■

4.9 Enrichment of categories of W ∗-algebras

In the previous section, we have showed that W ∗-algebras have the (b)dcpo struc-
ture. In the present section, we will show such structures are “lifted” to the set of
morphisms. In other words, several categories of W ∗-algebras are enriched over
suitable cpo structures.

Proposition 4.9.1. Let M be a W ∗-algebra. Let (xi)i∈I and (yi)i∈I be a bounded
monotone net in SA(M). Then the following hold.

1. If xi ≤ yi for all i ∈ I, then supi∈I xi ≤ supi∈I yi.

2. supi∈I(xi + yi) = supi∈I xi + supi∈I yi ◁

Proof. 1. Assume xi ≤ yi for all i ∈ I. Then xi ≤ yi ≤ supi yi for all i ∈ I. It
follows that supi xi ≤ supi yi.

2. Because xi ≤ supi xi and yi ≤ supi yi, we have xi + yi ≤ supi xi + supi yi

for each i ∈ I. Hence supi(xi + yi) ≤ supi xi + supi yi. Conversely, because
xi +yi ≤ supi xi +yi, we have supi(xi +yi) ≤ supi(supi xi +yi) = supi xi +supi yi.
Therefore supi(xi + yi) = supi xi + supi yi. ■

Proposition 4.9.2. Let M be a W ∗-algebra. The addition +: M ×M → M
and the scalar multiplication · : C ×M → M are continuous wrt. the ultraweak
topology. ◁
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Proof. Recall that the ultraweak topology is defined as weak* topology. The claim
is general property of weak* topology. See e.g. [13, Chap. IV–V] or [47, §2.4]. ■

Lemma 4.9.3 ([52, Lem. 1.7.1]). Let M be a W ∗-algebra. Then both SA(M)
and M+ are ultraweakly closed. ■

Definition 4.9.4. Let M,N be W ∗-algebras. Recall WstarCP(M,N) is the
set of normal completely positive maps from M to N . We define a relation
⊑ ⊆ (WstarCP(M,N))2 by

f ⊑ g def⇐⇒ g − f is completely positive
⇐⇒ Mn(g − f) =Mn(g)−Mn(f) is positive for all n ∈ N
⇐⇒ Mn(f)(x) ≤Mn(g)(x) for all n ∈ N and x ∈ (Mn(M))+ .

It is clear that ⊑ is a partial order. ◁

Proposition 4.9.5. Let M,N be W ∗-algebras and (fi)i∈I a norm-bounded mono-
tone net in WstarCP(M,N) with the order ⊑. We define a map f : M+ → N+

by
f(x) := sup

i∈I
fi(x) = uw-lim

i∈I
fi(x)

for x ∈ M+. Note here that (fi(x))i∈I is a norm-bounded monotone net in N+,
and hence supi∈I fi(x) exists by Thm. 4.8.2. Then

1. f is R+-linear, hence it extends to (C-)linear map f : M → N .

2. f is normal. ◁

Proof. 1. For x, y ∈M+,

f(x+ y) = uw-limi(fi(x+ y))
= uw-limi(fi(x) + fi(y))
= uw-limi fi(x) + uw-limi fi(y)

by ultraweak continuity of addition
= f(x) + f(y) .

For x ∈M+ and t ≥ 0,

f(tx) = uw-limi(fi(tx))
= uw-limi(tfi(x))
= t uw-limi fi(x)

by ultraweak continuity of scalar multiplication
= tf(x) .

2. Let (xj)j∈J be a bounded monotone net in M+. Then

f
(
sup
j∈J

xj

)
= sup

i∈I
fi

(
sup
j∈J

xj

)
= sup

i∈I

(
sup
j∈J

fi(xj)
)
,
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where the last equality follows from the normality of each fi. Note that (fi(xj))(i,j)∈I×J

is also a bounded monotone net, because for each i ≤ i′ and j ≤ j′, fi(xj) ≤
fi(xj′) ≤ fi′(xj′). Hence, by Prop. 2.2.13,

sup
i∈I

(
sup
j∈J

fi(xj)
)

= sup
(i,j)∈I×J

fi(xj)

= sup
j∈J

(
sup
i∈I

fi(xj)
)

= sup
j∈J

f(xj) .

Therefore f is normal by Thm. 4.8.6. ■

Lemma 4.9.6. In the setting of Prop. 4.9.5, for any x ∈ M , a (not necessary
monotone) net (fi(x))i∈I converges ultraweakly to f(x). ◁

Proof. Note that any x ∈M can be decomposed as

x = x1 − x2 + ix3 − ix4 ,

where x1, x2, x3, x4 ∈ M+ (see e.g. [52, Def. 1.4.3]). Then for each xk (k ∈
{1, 2, 3, 4}), f(xk) = supj fj(xk) = uw-limj fj(xk). By ultraweak continuity of
the addition and the scalar multiplication,

f(x)
= f(x1)− f(x2) + if(x3)− if(x4)
= uw-limj fj(x1)− uw-limj fj(x2) + i uw-limj fj(x3)− i uw-limj fj(x4)
= uw-limj

(
fj(x1)− fj(x2) + ifj(x3)− ifj(x4)

)
= uw-limj fj(x) . ■

Theorem 4.9.7. In the setting of Prop. 4.9.5, f : M → N is completely posi-
tive. ◁

Proof. Consider Mn(f) : Mn(M)→Mn(N). For [xkl]kl ∈Mn(M)+,

Mn(f)([xkl]kl) = [f(xkl)]kl

= [uw-lim
i

fi(xkl)]kl by Lem. 4.9.6

= uw-lim
i

[fi(xkl)]kl by Prop. 4.3.3

= uw-lim
i
Mn(fi)([xkl]kl)

≥ 0 ,

where the last inequality holds because each fi is completely positive, hence each
Mn(fi)([xkl]kl) is positive and by Lem. 4.9.3. ■

Theorem 4.9.8. In the setting of Prop. 4.9.5, f is the supremum of (fi)i in
WstarCP(M,N):

f =
⊔
i∈I

fi .
◁
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Proof. First of all, f ∈ WstarCP(M,N) by Prop. 4.9.5 and Prop. 4.9.7. Recall
that, in the proof of Prop. 4.9.7, for each [xkl]kl ∈ (Mn(M))+

Mn(f)([xkl]kl) = uw-limiMn(fi)([xkl]kl)
= supiMn(fi)([xkl]kl) ,

because a net (Mn(fi)([xkl]kl))i is monotone. HenceMn(fi)([xkl]kl) ≤Mn(f)([xkl]kl),
so that fi ⊑ f for all i ∈ I. Now it is easy to see f is the supremum of (fi)i∈I

because f is defined as the pointwise supremum. ■

Corollary 4.9.9. Let M and N be W ∗-algebras.

1. WstarCP(M,N) is a pointed bdcpo.

2. WstarCP-PU(M,N) is a pointed dcpo. ◁

Proof. 1. Suppose (fi)i is a monotone net in WstarCP(M,N) bounded above, say
by g. Then (fi)i is norm-bounded since 0 ≤ fi(1) ≤ g(1) implies ∥fi∥ = ∥fi(1)∥ ≤
∥g(1)∥ by Prop. 3.2.6 and Cor. 3.1.23. Therefore

⊔
i fi exists by Thm. 4.9.8. It is

pointed because the zero map 0 ∈WstarCP(M,N) is the least element.
2. Suppose (fi)i is a monotone net in WstarCP-PU(M,N). It is norm-bounded

by Prop. 3.2.11, hence
⊔

i fi exists in WstarCP(M,N). Then (
⊔

i fi)(1) = supi fi(1) ≤
1 since fi(1) ≤ 1 for each i ∈ I. Therefore

⊔
i fi ∈ WstarCP-PU(M,N). It is

pointed because 0 ∈WstarCP-PU(M,N). ■

In what follows, we will show that WstarCP and WstarCP-PU are enriched
over Bdcppo⊥ and Dcppo⊥ respectively, and their categorical structures such
as categorical and monoidal products are also suitably enriched.

Proposition 4.9.10. Let M,N,L be W ∗-algebras. Let f, f ′ ∈WstarCP(M,N)
and g, g′ ∈WstarCP(N,L).

f ⊑ f ′ =⇒ g ◦ f ⊑ g ◦ f ′ (4.5)
g ⊑ g′ =⇒ g ◦ f ⊑ g′ ◦ f . (4.6)

Moreover, for norm-bounded monotone nets (fi)i in WstarCP(M,N) and (gi)i

in WstarCP(N,L), we have(⊔
i
gi

)
◦ f =

⊔
i
(gi ◦ f) (4.7)

g ◦
(⊔

i
fi

)
=
⊔

i
(g ◦ fi) . (4.8)

◁

Proof. (4.5): For each n ∈ N, let x ∈ Mn(M)+ be a positive element. Then
0 ≤Mn(f)(x) ≤Mn(f ′)(x) by f ⊑ f ′ and the complete positivity of f, f ′. Since
g is completely positive, too, we have Mn(g)(Mn(f)(x)) ≤Mn(g)(Mn(f ′)(x)),
i.e. Mn(g ◦ f)(x) ≤Mn(g ◦ f ′)(x).

(4.6): Firstly Mn(f)(x) is positive because f is completely positive. By
g ⊑ g′, we have Mn(g)(Mn(f)(x)) ≤ Mn(g′)(Mn(f)(x)), i.e. Mn(g ◦ f)(x) ≤
Mn(g′ ◦ f)(x).
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(4.7): Recall that
⊔

i fi is defined by pointwise supremum (
⊔

i fi)(x) = supi fi(x)
for positive x. Then ((⊔

i
gi

)
◦ f
)
(x) =

(⊔
i
gi

)
(f(x))

= supi gi(f(x))
= supi(gi ◦ f)(x)

=
(⊔

i
(gi ◦ f)

)
(x)

for all x ∈M+.
(4.8): (

g ◦
(⊔

i
fi

))
(x) = g(supi fi(x))

= supi g(fi(x)) since g is normal
= supi(g ◦ fi)(x)

=
(⊔

i
(g ◦ fi)

)
(x)

for all x ∈M+. ■

Corollary 4.9.11. Let M,N,L be W ∗-algebras. The composition maps

◦ : WstarCP(N,L)×WstarCP(M,N) −→WstarCP(M,L)

and

◦ : WstarCP-PU(N,L)×WstarCP-PU(M,N) −→WstarCP-PU(M,L)

are strict and Scott-continuous. Hence WstarCP is Bdcppo⊥-enriched and
WstarCP-PU is Dcppo⊥-enriched. ◁

Proof. Proposition 4.9.10 shows the Scott-continuity (via Prop. 2.2.14). The
strictness is immediate. ■

Proposition 4.9.12. Let M,N be W ∗-algebras. Let f, f ′, g, g′ ∈WstarCP(M,N).
Then

f ⊑ f ′ =⇒ f + g ⊑ f ′ + g (4.9)
g ⊑ g′ =⇒ f + g ⊑ f + g′ .

Moreover, for norm-bounded monotone nets (fi)i and (gi)i in WstarCP(M,N),
we have ⊔

i
(fi + g) =

(⊔
i
fi
)

+ g (4.10)⊔
i
(f + gi) = f +

(⊔
i
gi
)
. ◁

Proof. We show only (4.9) and (4.10) because the addition is symmetric.
(4.9): For any n ∈ N and x ∈ (Mn(M))+,

Mn(f + g)(x) =Mn(f)(x) +Mn(g)(x)
≤Mn(f ′)(x) +Mn(g)(x) by f ⊑ f ′

=Mn(f ′ + g)(x) .
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(4.10): For each x ∈M ,(⊔
i
(fi + g)

)
(x) = uw-limi(fi(x) + g(x))

= (uw-limi fi(x)) + g(x)
since the addition is ultraweakly continuous

=
(⊔

i
fi
)
(x) + g(x)

=
((⊔

i
fi
)

+ g
)
(x) . ■

Proposition 4.9.13. Let M,N be W ∗-algebras. and f, f ′ ∈ WstarCP(M,N).
Then for each non-negative real t ∈ R+,

f ⊑ f ′ =⇒ tf ⊑ tf ′ .

Moreover, for a norm-bounded monotone net (fi)i in WstarCP(M,N), we have⊔
i
(tfi) = t

(⊔
i
fi
)
. ◁

Proof. For any n ∈ N and x ∈ (Mn(M))+,

Mn(tf)(x) = tMn(f)(x)
≤ tMn(f ′)(x) by f ⊑ f ′

=Mn(tf ′)(x) .

Hence f ⊑ f ′ implies tf ⊑ tf ′.
For each x ∈M ,(⊔

i
(tfi)

)
(x) = uw-limi(tfi(x))

= t(uw-limi fi(x))
since the scalar multiplication is ultraweakly continuous

= t
(⊔

i
fi
)
(x)

=
(
t
(⊔

i
fi
))

(x) .

Hence
⊔

i(tfi) = t(
⊔

i fi). ■

Proposition 4.9.14. Let M,N,L be W ∗-algebras and f, f ′ ∈ WstarCP(L,M),
g, g′ ∈WstarCP(L,N).

f ⊑ f ′ =⇒ ⟨f, g⟩ ⊑ ⟨f ′, g⟩
g ⊑ g′ =⇒ ⟨f, g⟩ ⊑ ⟨f, g′⟩ .

Moreover, for a bounded monotone net (fi)i in WstarCP(L,M) and (gi)i in
WstarCP(L,N) we have ⊔

i
⟨fi, g⟩ =

⟨⊔
i
fi, g

⟩
⊔

i
⟨f, gi⟩ =

⟨
f,
⊔

i
gi
⟩
. ◁
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Proof. Assume f ⊑ f ′. Note that ⟨f, g⟩ = κ1 ◦ f + κ2 ◦ g, and the composition
and addition of maps preserves the order ⊑. Hence

⟨f, g⟩ = κ1 ◦ f + κ2 ◦ g ⊑ κ1 ◦ f ′ + κ2 ◦ g = ⟨f ′, g⟩ .

Similarly g ⊑ g′ implies ⟨f, g⟩ ⊑ ⟨f, g′⟩.
We will show the latter part. Let (fi : L→M)i be a bounded monotone net.

Via the equation ⟨f, g⟩ = κ1 ◦ f + κ2 ◦ g again,⟨⊔
i
fi, g

⟩
= κ1 ◦

(⊔
i
fi
)

+ κ2 ◦ g

=
⊔

i
(κ1 ◦ fi) + κ2 ◦ g

=
⊔

i
(κ1 ◦ fi + κ2 ◦ g)

=
⊔

i
⟨fi, g⟩ .

In a similar way
⊔

i⟨f, gi⟩ = ⟨f,
⊔

i gi⟩ is showed. ■

Corollary 4.9.15. Let M,N,L be W ∗-algebras. The canonical isomorphisms

WstarCP(L,M)×WstarCP(L,N) ∼= WstarCP(L,M ⊕N)

and

WstarCP-PU(L,M)×WstarCP-PU(L,N) ∼= WstarCP-PU(L,M ⊕N)

are strict and Scott-continuous in both directions. Consequently, WstarCP and
WstarCP-PU have Bdcppo⊥-enriched and Dcppo⊥-enriched binary products re-
spectively. The nullary product, i.e. the terminal object, is trivially enriched in
both categories, so that they have enriched finite products. ◁

Proof. Proposition 4.9.14 shows the direction WstarCP(L,M)×WstarCP(L,N)→
WstarCP(L,M ⊕ N) is Scott-continuous, while the other direction is obtained
by composing the projections, so that it is also Scott-continuous. The strictness
is easy. The case of WstarCP-PU is showed for the same reason. ■

Proposition 4.9.16. Let M,M ′, N,N ′ be W ∗-algebras, and f, f ′ ∈WstarCP(M,M ′),
g, g′ ∈WstarCP(N,N ′). Then

f ⊑ f ′ =⇒ f ⊗ g ⊑ f ′⊗ g
g ⊑ g′ =⇒ f ⊗ g ⊑ f ⊗ g′ . ◁

Proof. Assume f ⊑ f ′. By definition f ′ − f is completely positive. Then (f ′ −
f)⊗ g = f ′⊗ g− f ⊗ g is completely positive, too, by Thm. 4.5.6. Hence f ⊗ g ⊑
f ′⊗ g. The other one is showed in a similar way. ■

Theorem 4.9.17. Let M,M ′, N,N ′ be W ∗-algebras. Then we have

f ⊗
(⊔

i
gi

)
=
⊔

i
(f ⊗ gi)

for f ∈WstarCP(M,M ′) and a norm-bounded monotone net (gi)i in WstarCP(N,N ′),
and (⊔

i
fi

)
⊗ g =

⊔
i
(fi⊗ g)

for a norm-bounded monotone net (fi)i in WstarCP(M,M ′) and g ∈WstarCP(N,N ′).
◁
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Proof. Because the tensor product is symmetric, we show only the first equation.
Since both f ⊗

(⊔
i gi

)
and

⊔
i(f ⊗ gi) are normal, i.e. ultraweakly continuous, it

suffices to show they coincides on ultraweakly dense subset M ⊙N of the domain
M ⊗N (by Prop. 4.5.3). For this, it is sufficient to show (f ⊗

(⊔
i gi

)
)(x ⊗ y) =

(
⊔

i(f ⊗ gi))(x⊗ y) for all x ∈ M and y ∈ N . By Lem. 4.9.6, what we will show
is:

f(x)⊗
(
uw-lim

i
gi(y)

)
= uw-lim

i

(
f(x)⊗ gi(y)

)
.

Let b := uw-limi gi(y). Below, we assume M ′
∗ and N ′

∗ are embedded into M ′∗ and
N ′∗ respectively. For φ⊗ ψ ∈M ′

∗ ⊙N ′
∗ ⊆M ′

∗ ⊗N ′
∗ = (M ′⊗N ′)∗,

(φ⊗ ψ)(f(x)⊗ gi(y)) = φ(f(x)) · ψ(gi(y))
→ φ(f(x)) · ψ(b)
= (φ⊗ ψ)(f(x)⊗ b) ,

because ψ(gi(y))→ ψ(b). Hence for all χ ∈M ′
∗⊙N ′

∗, we have χ(f(x)⊗ gi(y))→
χ(f(x)⊗ b). Let (χj)j be a net in M ′

∗ ⊙N ′
∗ (norm-)convergent to ξ ∈ M ′

∗ ⊗N ′
∗.

Note that the norm comes from the dual norm of the spatial C∗-norm:

M ′
∗ ⊙N ′

∗ ⊆M ′∗ ⊙N ′∗ ⊆ (M ′ ⊙N ′)∗ ∼= (M ′ ⊗N ′)∗ .

Then

|ξ(f(x)⊗ b)− ξ(f(x)⊗ gi(y))|
≤ |ξ(f(x)⊗ b)− χj(f(x)⊗ b)|

+ |χj(f(x)⊗ b)− χj(f(x)⊗ gi(y))|
+ |χj(f(x)⊗ gi(y))− ξ(f(x)⊗ gi(y))|

≤ ∥ξ − χj∥∥f(x)⊗ b∥
+ |χj(f(x)⊗ b)− χj(f(x)⊗ gi(y))|

+ ∥ξ − χj∥∥f(x)⊗ gi(y)∥
= ∥ξ − χj∥∥f(x)∥∥b∥

+ |χj(f(x)⊗ b)− χj(f(x)⊗ gi(y))|
+ ∥ξ − χj∥∥f(x)∥∥gi(y)∥

= |χj(f(x)⊗ b)− χj(f(x)⊗ gi(y))|+ ∥ξ − χj∥∥f(x)∥(∥b∥+ ∥gi(y)∥) .

Because supi∥gi(y)∥ <∞ and χj → ξ, for large enough j we have

|ξ(f(x)⊗ b)− ξ(f(x)⊗ gi(y))| < |χj(f(x)⊗ b)− χj(f(x)⊗ gi(y))|+ ε

for arbitrary ε > 0. Then, since χj(f(x)⊗ gi(y))→ χj(f(x)⊗ b), we have

|ξ(f(x)⊗ b)− ξ(f(x)⊗ gi(y))| < 2ε

for sufficiently large i. It follows that

uw-lim
i

(
f(x)⊗ gi(y)

)
= f(x)⊗ b . ■

Corollary 4.9.18. Let M,M ′, N,N ′ be W ∗-algebras. The maps

⊗ : WstarCP(M,M ′)×WstarCP(N,N ′) −→WstarCP(M ⊗N,M ′⊗N ′)
⊗ : WstarCP-PU(M,M ′)×WstarCP-PU(N,N ′) −→WstarCP-PU(M ⊗N,M ′⊗N ′)
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are strict and Scott-continuous. Consequently, the functors

⊗ : WstarCP ×WstarCP −→WstarCP

⊗ : WstarCP-PU ×WstarCP-PU −→WstarCP-PU

are Bdcppo⊥-enriched and Dcppo⊥-enriched respectively. ■

Proposition 4.9.19. There exist C∗-algebras A,B and a bounded-above mono-
tone sequence (fn)n in CstarCP-PU(A,B) such that (fn)n does not have the supre-
mum. Hence CstarCP-PU(A,B) is not an ωcpo and CstarCP(A,B) is not a
bωcpo. ◁

Proof. Take A := C. Notice that there is a bijective correspondence between
linear maps f : C → B and elements b ∈ B; the mapping is given by f 7→ f(1).
Moreover, f is (completely) positive and pre-unital if and only if f(1) ∈ Ef(B).
For f, g ∈ CstarCP-PU(C, B),

f ⊑ g def⇐⇒ g − f is completely positive
⇐⇒ g − f is positive by Thm. 3.4.11
⇐⇒ (g − f)(1) ≥ 0
⇐⇒ f(1) ≤ g(1) .

Hence there is an order-isomorphism CstarCP-PU(C, B) ∼= Ef(B). By Prop. 4.8.7,
there exists a C∗-algebra B such that Ef(B) is not an ωcpo (take B := C ([0, 1])
for example). Hence the claim follows. ■

We can summarize the results in this section as follows. The category WstarCP
(resp. WstarCP-PU) is a symmetric monoidal Bdcppo⊥-enriched (resp. Dcppo⊥-
enriched) category with (enriched) finite products.
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Chapter 5

Semantics for a quantum programming
language

In this chapter, we will give a denotational semantics for a quantum program-
ming language by operator algebras. We first review an elementary quantum
mechanics and, in particular, a notion of quantum operation. We then briefly
explain Selinger’s quantum programming language QPL and his original denota-
tional semantics. Next, we show the category WstarCP-PU is traced monoidal,
and the opposite category of WstarCP-PU is an elementary quantum flow chart
category. Therefore it gives a denotational semantics for the language QPL. Then
we compare Selinger’s and our model. It turns out that Selinger’s category Q
can be (contravariantly) embedded into our category WstarCP-PU, and moreover
Q coincides with (up to equivalence of categories) the finite dimensional part
of WstarCP-PU. Hence our model can be thought of as an infinite dimensional
extension of his model. Finally, we discuss infinite types in QPL. Especially, we
show our model can accommodate any (countable) classical types and function
between them.

5.1 Quantum operation

According to the quantum mechanics, a quantum system is associated with a
Hilbert space H. A (mixed, subnormalized) quantum state of the system is rep-
resented by a positive trace class operator ρ on H with tr(ρ) ≤ 1. We denote
the set of quantum states by St(H). A quantum operation, which transforms one
quantum state to another, is defined mathematically as follows.

Definition 5.1.1. A quantum operation from a system associated with a Hilbert
space H to another with K is a trace-decreasing completely positive linear map
E : T (H) → T (K) between the sets of trace class operators. Here, “trace-
decreasing” means tr(E(T )) ≤ tr(T ) for all positive trace class operators T ∈
T (H). ◁

It is easy to see that a quantum operation E : T (H)→ T (K) can be restricted
to a map E : St(H)→ St(K), that is, it indeed maps quantum states to quantum
states. If Hilbert spaces are finite dimensional, say H = Cn and K = Cm,
then the set T (Cn) of trace class operators coincides with the set of all linear
operators. Hence it is identified with the set Mn :=Mn(C) = Cn×n of complex
n×n-matrices. Therefore, a quantum operation is a trace-decreasing completely
positive map E : Mn →Mm between the sets of matrices.

The class of quantum operations contains fundamental operations such as uni-
tary transformations, measurements and preparations of quantum states. Con-
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versely, every quantum operation can be realized by a combination of such oper-
ations. For further details, see e.g. [44, §8.2], [26, Chap. 4].

5.2 Selinger’s QPL

In [53], Selinger proposed a quantum programming language QPL and its deno-
tational semantics. The language QPL is a first-order functional language with
loop and recursion. Then an interpretation of a program P : Γ→ Γ′ will be given
as a certain function JP K : JΓK → JΓ′K. However, the function JP K cannot be
just a quantum operation since the program involves not only quantum but also
classical data. To give denotation of programs, Selinger constructed the category
Q as follows.

Definition 5.2.1. The category CPMs is defined as follows.

• An object is a natural number.

• An arrow f : n→ m is a completely positive linear map f : Mn →Mm. ◁

Definition 5.2.2. The category CPM is the finite biproduct completion of
CPMs. Specifically:

• An object is a sequence n⃗ = (n1, . . . , nk) of natural numbers.

• An arrow f : n⃗→ m⃗ is a matrix (fij) of arrows fij : nj → mi in CPMs. ◁

Definition 5.2.3. The category Q is a subcategory of CPM such that

• Objects are the same as CPM.

• An arrow is f : n⃗→ m⃗ in CPM which is trace-decreasing, i.e.∑
i

∑
j

tr(fij(Aj)) ≤
∑

j
tr(Aj)

for all positive Aj ∈Mnj . ◁

Note. The category CPM appears originally in [53] as W with an explicit defi-
nition, but later in [38, Def. 2.3] and [45, §2.3] as the finite biproduct completion
of CPMs. See [54, §5] for finite biproduct completion. ◁

Selinger’s idea in interpreting a program with classical and quantum data
is the identification of classical data with (classical) controls. Each entry of a
sequence n⃗ = (n1, . . . , nk) represents a control. For example, having one bit
is identified with having two choices, hence an interpretation of a type bit isJbitK = (1, 1) ∈ Q, while an interpretation of a type qbit is JqbitK = (2) ∈ Q.

For the category Q, we have the following facts.

• Q has finite coproducts (⊕, 0).

• Q has a symmetric monoidal structure (⊗, I), which distribute over coprod-
ucts ⊕.

• Q is ωCppo-enriched. The finite coproducts and the tensor products are
suitably enriched.
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• The ωCppo-enriched structure with coproducts (⊕, 0) induces the monoidal
trace wrt. (⊕, 0).

Consequently, the category Q is structured enough to interpret the language QPL.
Furthermore, Selinger has axiomatized a category which can interpret QPL.
Definition 5.2.4 ([53, §6.6]). An elementary quantum flow chart category is a
symmetric monoidal category (C,⊗, I) such that

• C has finite coproducts (⊕, 0).

• C has a monoidal trace wrt. finite coproducts (⊕, 0).

• For each A ∈ C, A⊗ (−) is a traced monoidal functor.

• C has a distinguished object qbit with arrows ι : I⊕I → qbit and p : qbit→
I ⊕ I such that p ◦ ι = id. ◁

Given an elementary quantum flow chart category C and an assignment of built-
in unitary operators, we can interpret QPL programs without recursion as arrows
in C. If an elementary quantum flow chart category C is ωCppo-enriched, we
can interpret QPL programs with recursion.

In the remain of this chapter, we will show that the opposite category of
WstarCP-PU is an elementary quantum flow chart category, hence we can give
the denotation of the language QPL by W ∗-algebras.

5.3 Monoidal trace

The monoidal trace of the category Q is induced by its ωCppo-enriched struc-
ture with finite coproducts. The construction is valid for any ωCppo-enriched
category with finite coproducts [53, §6.4]. A rigorous discussion for this point
is found in Appendix A. As we showed (Cor. 4.9.11, Cor. 4.9.15), the category
WstarCP-PU is a Dcppo⊥-enriched category with finite products. Applying the
construction to the opposite category to WstarCP-PU, we obtained a monoidal
trace wrt. coproducts in the opposite category, and hence a monoidal trace wrt.
products in WstarCP-PU.

Here we will sketch the (dual) construction explicitly. Let M,N,L be W ∗-
algebras, and f : M ⊕ L → N ⊕ L a normal completely positive pre-unital map.
We shall define a sequence (fn)n∈N in WstarCP-PU(M,N ⊕ L) inductively by

f0 := ⊥
fn+1 := f ◦ ⟨idM , π2 ◦ fn⟩ .

For the second formula, see the diagram:

M

M

idM

99

//

fn

��

M ⊕ L

OO

f
//

��

N ⊕ L

N ⊕ L π2 // L

Then clearly ⊥ = f0 ⊑ f1, and fn ⊑ fn+1 implies f ◦⟨idM , π2◦fn⟩ ⊑ f ◦⟨idM , π2◦
fn+1⟩, i.e. fn+1 ⊑ fn+2. Hence fn ⊑ fn+1 for all n ∈ N, that is, (fn)n∈N is an
ω-chain, and so a monotone net. Therefore we obtain⊔

n∈N
fn : M −→ N ⊕ L ,
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and define
Tr(f) := π1 ◦

( ⊔
n∈N

fn

)
: M −→ N .

We have now defined a family of functions

Tr: WstarCP-PU(M ⊕ L,N ⊕ L) −→WstarCP-PU(M,N)

for M,N,L ∈WstarCP-PU, which indeed satisfies axioms for a monoidal trace.

Theorem 5.3.1. The category WstarCP-PU has a monoidal trace wrt. finite
products (⊕, 0). ◁

Proof. We can apply Thm. A.0.1. By Cor. 4.9.11 and Cor. 4.9.15, WstarCP-PU
is a Dcppo⊥-enriched (hence ωCppo-enriched) cartesian category. It is easy to
see that the composition is left-strict. ■

Moreover, the monoidal trace is nicely related to tensor products.

Theorem 5.3.2. For each M ∈WstarCP-PU, a functor (−)⊗M : WstarCP-PU →
WstarCP-PU is a traced monoidal functor. ◁

Proof. We can apply Thm. A.0.2. The functor (−)⊗M preserves finite prod-
ucts because of distribution of tensor products over finite products (Prop. 4.6.1,
Prop. 4.6.2 and Prop. 4.6.3). Moreover it is Dcppo⊥-enriched by Cor. 4.9.18. It
is easy to see ⊥⊗ idM = ⊥. ■

5.4 Semantics by W ∗-algebras

We finally show that the opposite category of WstarCP-PU is an elementary
quantum flow chart category. A distinguished object qbit in Def. 5.2.4 is M2,
i.e. the algebra of 2× 2-matrices. We define two maps

ι : M2 −→ C⊕ C
p : C⊕ C −→M2

by

ι

([
x y
z w

])
= (x,w)

and

p(x, y) =
[
x 0
0 y

]
It is straightforward to see the two maps are positive, hence completely positive
by Thm. 3.4.11 (notice that C⊕C is commutative). They are also normal because
the dimensions are finite. Moreover they are clearly unital. Therefore ι and p
are arrows in WstarCP-PU. It is clear that ι ◦ p = id, hence p ◦ ι = id in
(WstarCP-PU)op.

Theorem 5.4.1. The opposite category of WstarCP-PU is an elementary quan-
tum flow chart category with a distinguished object qbit =M2 and arrows ι and
p defined above. ■
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5.5 Schrödinger vs. Heisenberg picture

Recall that for a Hilbert space H, B(H) is a W ∗-algebra with the predual T (H)
(Example 4.1.4). By Prop. 4.1.6, for every normal map E : B(H) → B(K), there
exists a corresponding bounded map E∗ : T (K)→ T (H) between preduals. They
are related in the following way:

tr(E(S) · T ) = tr(S · E∗(T ))

for all S ∈ B(H) and T ∈ T (K). Furthermore the following hold.

Proposition 5.5.1. Let H and K be Hilbert spaces. Suppose a normal map
E : B(H)→ B(K) and a bounded map E∗ : T (K)→ T (H) correspond in the sense
of Prop. 4.1.6. Then

1. E is completely positive if and only if E∗ is completely positive.

2. E is unital if and only if E∗ preserves trace.

3. E is pre-unital if and only if E∗ decreases trace. ◁

Proof. See [26, §4.1.2]. ■

Hence, a normal completely positive pre-unital map E : B(H) → B(K), i.e.
an arrow in WstarCP-PU, corresponds to a completely positive trace-decreasing
map E∗ : T (K) → T (H), i.e. a quantum operation defined in Def. 5.1.1. This is
the well-known duality between the Heisenberg and Schrödinger pictures: one
transforms observables (or effects), whereas another transforms states.

In other words, our semantics of the language QPL in WstarCP-PU is the
Heisenberg picture, while Selinger’s semantics in Q is the Schrödinger picture.
In the words of [15], our semantics can be thought of as the weakest precondition
semantics. This is because a positive pre-unital map E : B(H) → B(K) can be
restricted to a map E : Ef(H) → Ef(K) between their effects, where Ef(H) :=
Ef(B(H)) is the set of effects on H, and coincides with the set of predicates in
[15].

5.6 Embedding Q into WstarCP-PU

As seen in the previous section, the two semantics of the language QPL in
WstarCP-PU and Q are different viewpoints for essentially the same thing. In
fact, the category Q can be contravariantly embedded into WstarCP-PU.

First, we shall embed CPM into WstarCP. Notice that the following bijective
correspondence.

f : (n1, . . . , nk) −→ (m1, . . . ,ml) in CPM

fij : nj −→ mi in CPMs, for each i, j

fij : Mnj −→Mmi completely positive, for each i, j

(fij)∗ : Mmi −→Mnj in WstarCP, for each i, j

I(f) :
⊕l

i=1Mmi −→
⊕k

j=1Mnj in WstarCP

Here we use the self-duality:

Mnj
∼= B(Cnj ) ∼= T (Cnj )∗ ∼= (Mnj )∗ .
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by the finite dimensional case of Prop. 2.1.16. Then the mapping I(n1, . . . , nk) =⊕k
j=1Mnj defines a contravariant functor I : CPM → (WstarCP)op, which is

full and faithful by definition, and clearly injective on objects.

Theorem 5.6.1. There is a (full) embedding I : CPM→ (WstarCP)op. ■

Finally, we will show the functor restricts to a full and faithful functor I ′ : Q→
(WstarCP-PU)op as follows.

I(f) :
l⊕

i=1
Mmi −→

k⊕
j=1
Mnj is pre-unital

⇐⇒ I(f)
(
(1)l

i=1
)
≤ (1)k

j=1

⇐⇒
l∑

i=1
(fij)∗(1) ≤ 1 for each j

⇐⇒ 1−
l∑

i=1
(fij)∗(1) ≥ 0 for each j

⋆⇐⇒ (tr−
l∑

i=1
tr ◦fij)(A) ≥ 0 for each positive A ∈Mnj , for each j

⇐⇒
k∑

j=1
(tr−

l∑
i=1

tr ◦fij)(Aj) ≥ 0 for each positive Aj ∈Mnj

⇐⇒
l∑

i=1

k∑
j=1

tr(fij(Aj)) ≤
k∑

j=1
tr(Aj)

⇐⇒ f : n⃗→ m⃗ is trace-decreasing (Def. 5.2.3)

For the equivalence ⋆⇐⇒, we use Lem. 2.1.17. Hence we have shown the next
theorem.

Theorem 5.6.2. There is a (full) embedding I ′ : Q→ (WstarCP-PU)op. ■

In fact, we can say more about the embedding. Notice that I(n⃗) is a finite
dimensionalW ∗-algebra for each n⃗ ∈ CPM. Hence the embedding gives a functor
I : CPM → (FdWstarCP)op, where FdWstarCP denotes the category of finite
dimensional W ∗-algebras and normal completely positive maps.

Theorem 5.6.3. The embeddings

I : CPM→ (FdWstarCP)op

I ′ : Q→ (FdWstarCP-PU)op

give equivalences of categories:

CPM ≃ (FdWstarCP)op

Q ≃ (FdWstarCP-PU)op ◁

Proof. By Lem. 5.6.4 below, I and I ′ are essentially surjective. By the theorem
in category theory [37, Thm. IV.4.1], a full, faithful and essentially surjective
functor is a part of equivalence. ■
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Lemma 5.6.4 ([60, Thm. I.11.2]). Let A be a finite dimensional C∗-algebra (hence
W ∗-algebra, see Rem. 4.1.9). There exists a (unique up to permutations) sequence
(n1, . . . , nk) of positive integers and a ∗-isomorphism:

A ∼=
k⊕

j=1
Mnj .

■

Remark 5.6.5. By Rem. 4.1.9, FdWstarCP = FdCstarCP and FdWstarCP-PU =
FdCstarCP-PU. ◁

5.7 QPL with infinite types

We have defined the category WstarCP-PU to give the denotational semantics of
the language QPL. Because Selinger’s category Q is contravariantly embedded
into WstarCP-PU, the category WstarCP-PU can be thought of as an infinite
dimensional extension of Q. Working in the category WstarCP-PU rather than
Q enables us to handle infinite types. For example, as Selinger suggested in [53,
§7.3], a type int should be interpreted as JintK = ℓ∞(N) =

⊕
n∈NC, which is

indeed in WstarCP-PU, but not in Q.
We will present slightly more general statements.

Definition 5.7.1. Let S be an at most countable set. We define:

ℓ1(S) :=
{
φ : S → C

∣∣∣ ∑
s∈S

|φ(s)| <∞
}

ℓ2(S) :=
{
φ : S → C

∣∣∣ ∑
s∈S

|φ(s)|2 <∞
}

ℓ∞(S) :=
{
φ : S → C

∣∣∣ sup
s∈S
|φ(s)| <∞

}
. ◁

Proposition 5.7.2. Let S and T be at most countable sets.

1. ℓ2(S) is a Hilbert space.

2. ℓ∞(S) is a W ∗-algebra with the predual ℓ1(S). Moreover it has a canonical
normal unital faithful representation π : ℓ∞(S) → B(ℓ2(S)) by π(φ)(ψ) =
φψ (pointwise multiplication).

3. There is a ∗-isomorphism: ℓ∞(S)⊗ ℓ∞(T ) ∼= ℓ∞(S × T )

4. Any function f : S → T induces a normal unital ∗-homomorphism ℓ∞(f) : ℓ∞(T )→
ℓ∞(S) by ℓ∞(f)(φ) = φ ◦ f . ◁

Proof. We will just sketch the proof of 3. By Thm. 4.5.2, we identify ⊗ as the
tensor product of von Neumann algebras. Note the isomorphism ℓ2(S)⊗ ℓ2(T ) ∼=
ℓ2(S×T ) of Hilbert spaces. By the identification B(ℓ2(S)⊗ℓ2(T )) ∼= B(ℓ2(S×T )),
we have inclusion ℓ∞(S)⊙ ℓ∞(T ) ⊆ ℓ∞(S×T ). The (ultra)weak denseness of the
inclusion proves ℓ∞(S)⊗ ℓ∞(T ) ∼= ℓ∞(S × T ). ■

These statements mean that at most countable sets S1, . . . , Sn, T and a function
f : S1 × · · · × Sn → T inhabit in WstarM-I (hence in WstarCP-PU) as:

ℓ∞(f) : ℓ∞(T ) −→ ℓ∞(S1 × · · · × Sn) ∼= ℓ∞(S1)⊗ · · ·⊗ ℓ∞(Sn) .
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In other words, we can interpret any (countable) classical data type and function
between them in WstarCP-PU. For example, when we interpret the type nat byJnatK = ℓ∞(N), we can build in any function f : Nn → N into the language.

The inhabitancy of classical data in W ∗-algebras is in fact described more
generally. It is known that there is the following dual equivalence of categories

CWstarM-I-U ≃ LocMeasop

between the category of commutativeW ∗-algebras and normal unital ∗-homomorphisms
and the category of localizable measurable spaces and measurable functions [33,
§5.8] (see also [52, Prop. 1.18.1] and [60, Thm. III.1.18]). Then, Prop. 5.7.2
should be generalized for localizable measurable spaces and measurable functions
(cf. [7, Example III.1.5.6]). This will be future work.
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Chapter 6

Conclusions and future work

6.1 Conclusions

We can summarize the results of the thesis as follows. As a mathematical
result, we have shown that the category WstarCP is Bdcppo⊥-enriched and
WstarCP-PU is Dcppo⊥-enriched. Moreover, both categories have suitably en-
riched finite products. Tensor products ofW ∗-algebras make both categories sym-
metric monoidal in a compatible way with enriched structure. As a contribution
to quantum computation, we have shown the opposite category of WstarCP-PU
is an elementary quantum flow chart category. Hence the category WstarCP-PU
gives rise to a denotational semantics for the quantum programming language
QPL. This semantics can be seen as an extension of Selinger’s original semantics,
and can accommodate infinite data and classical data well. We hope our results
demonstrate that operator algebras are useful and meaningful in the area of quan-
tum computation as well as other areas where operator algebras are successfully
used.

6.2 Future work

An unpublished paper [32] claims that the functor (−)⊗M on the category
WstarM-I-U has a left adjoint for each W ∗-algebra M . It means that the oppo-
site category of WstarM-I-U is a closed symmetric monoidal category. The fact
suggest that W ∗-algebras model a higher-order functional quantum program-
ming language (or a quantum lambda calculus), not only a first-order language.
A recent work [45] gives a denotational semantics for a “full” quantum lambda
calculus by extending the category CPM into the category that can accommo-
date infinite structures. It also suggest that W ∗-algebras can also model a “full”
quantum lambda calculus because they can accommodate infinite structures. An
investigation of this line is one of future works.

Another future work is to make use of the dual equivalence of the category
of commutative W ∗-algebras and the category of localizable measurable space.
Following the line of §5.7, we want to show that via the dual equivalence, any
morphism between localizable measurable space (i.e. a certain “classical” func-
tion) can be used as a build-in function in the language QPL.

Moreover, I conjecture that Furber and Jacobs’ work [18] about the Gelfand
duality holds for commutative W ∗-algebras and localizable measurable space.
Specifically, my conjecture is that the Kleisli category of the Giry monad on the
category of localizable measurable space is dual to the category of commutative
W ∗-algebras and normal (completely) positive unital maps. It follows that any
probabilistic function between localizable measurable spaces can be embedded
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into WstarCP-PU. Then we will be able to use any probabilistic function as a
built-in function in the language QPL.

Yet another direction is to examine the effect logic (see e.g. [28, 29]) of W ∗-
algebras. For example, Furber and Jacobs [18] established the following “state-
and-effect” triangles about commutative C∗-algebras.

EModop --⊤ EM(R)mm

(CCstarP-U)op

ff 88

Here, states are described by the Eilenberg-Moore category EM(R) of the Radon
monad R, and effects (predicates) by the category EMod of effect modules. The
adjunction between them describes the duality between states and effects. It
seems that a similar result can be obtained for W ∗-algebras.
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Appendix A

Monoidal traces on ωCppo-enriched
cartesian categories

The goal of this appendix is to establish the following two theorems, which are
stated informally in [53, §6.4]1.

Theorem A.0.1. Every ωCppo-enriched cartesian category with left-strict com-
position (i.e. ⊥◦f = ⊥) is traced. For f : A×X → B×X, the trace Tr(f) : A→ B
is given by

Tr(f) := π1 ◦
⊔

n∈N
Tr(n)(f) , (A.1)

where Tr(n)(f) : A→ B ×X is defined by

Tr(0)(f) = ⊥
Tr(n+1)(f) = f ◦

⟨
idA, π2 ◦ Tr(n)(f)

⟩
. ◁

Theorem A.0.2. Let C and D be ωCppo-enriched cartesian categories, which
are traced by Thm. A.0.1. Then, every ωCppo-enriched cartesian functor be-
tween C and D satisfying F⊥ = ⊥ is traced. ◁

Let us clarify terminology. A cartesian category refers to a (symmetric)
monoidal category whose monoidal structure is given by finite products. In other
words, it is a category with a choice of a terminal object and binary products. For
an ωCppo-enriched cartesian category, note that its cartesian product functor is
required to be ωCppo-enriched. It is equivalent to saying that the tupling ⟨·, ·⟩
is ω-continuous. A functor between cartesian categories is said to be cartesian if
it is strong monoidal (equivalently, if it preserves finite products).

A.1 Proof of Theorem A.0.1

Theorem A.0.1 is showed via the following two theorems.

Theorem A.1.1 (Hyland/Hasegawa). A cartesian category is traced if and only
if it has a Conway operator. Moreover, a trace operator Tr and a Conway operator
Fix are related bijectively as follows:

Tr(f) = π1 ◦ f ◦
⟨
idA,Fix(π2 ◦ f)

⟩
(A.2)

for f : A×X → B ×X, and

Fix(g) = Tr(∆X ◦ g)

for g : A×X → X, where ∆X = ⟨idX , idX⟩ is the diagonal map. ◁
1In fact, their dual are stated there.
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Proof. See [24, Thm. 7.1.1]. ■

Theorem A.1.2. Every ωCppo-enriched cartesian category with left-strict com-
position (i.e. ⊥ ◦ f = ⊥) has a Conway operator Fix. For g : A × X → X,
Fix(g) : A→ X is given by

Fix(g) :=
⊔

n∈N
Fix(n)(g) , (A.3)

where Fix(n)(g) : A→ X is defined by

Fix(0)(g) = ⊥
Fix(n+1)(g) = g ◦

⟨
idA,Fix(n)(g)

⟩
. ◁

Proof. See [27, Lem. A.1 in Appendix]. ■

Now we will prove Thm A.0.1.

Proof of Theorem A.0.1. Let C be an ωCppo-enriched cartesian category with
left-strict composition. Then, by Thm. A.1.1 and Thm. A.1.2, C is traced. We
have just to check the equation (A.1). For f : A×X → B ×X,

Tr(f) = π1 ◦ f ◦
⟨
idA,Fix(π2 ◦ f)

⟩
by (A.2)

= π1 ◦ f ◦
⟨
idA,

⊔
n∈N

Fix(n)(π2 ◦ f)
⟩

by (A.3)

= π1 ◦
⊔

n∈N

(
f ◦

⟨
idA,Fix(n)(π2 ◦ f)

⟩)
.

It is easy to see, by induction on n,

Tr(n)(f) ≤ f ◦
⟨
idA,Fix(n)(π2 ◦ f)

⟩
≤ Tr(n+1)(f)

for all n ∈ N. It follows that⊔
n∈N

(
f ◦

⟨
idA,Fix(n)(π2 ◦ f)

⟩)
=
⊔

n∈N
Tr(n)(f) .

Hence we have
Tr(f) = π1 ◦

⊔
n∈N

Tr(n)(f) .
■

A.2 Proof of Theorem A.0.2

In this section, we will prove Thm. A.0.2.

Proof of Theorem A.0.2. What we have to show is:

F Tr(f) = Tr(ϕB ◦ Ff ◦ ϕ−1
A )

for f : A×X → B ×X in C, where

ϕA : F (A×X)
∼=−→ FA× FX

ϕB : F (B ×X)
∼=−→ FB × FX
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are canonical (coherence) isomorphisms. First note that ϕA makes the following
diagrams commute.

F (A×X)
F π1

yy

ϕA
∼=
��

F π2

%%

FA FA× FXπ1
oo

π2
// FX

FW

F ⟨k,l⟩
��

⟨F k,F l⟩

''

F (A×X)
ϕA

∼= // FA× FX

In the right diagram, k : W → A and l : W → X are arbitrary arrows in C.
Similar diagrams commute for ϕB. Now,

F Tr(f) = F
(
π1 ◦

⊔
n∈N

Tr(n)(f)
)

= Fπ1 ◦
⊔

n∈N
F Tr(n)(f)

= π1 ◦ ϕB ◦
⊔

n∈N
F Tr(n)(f)

= π1 ◦
⊔

n∈N

(
ϕB ◦ F Tr(n)(f)

)
,

while
Tr(ϕB ◦ Ff ◦ ϕ−1

A ) = π1 ◦
⊔

n∈N
Tr(n)(ϕB ◦ Ff ◦ ϕ−1

A ) .

Then, to show ⊔
n∈N

(
ϕB ◦ F Tr(n)(f)

)
=
⊔

n∈N
Tr(n)(ϕB ◦ Ff ◦ ϕ−1

A ) ,

it suffices to show

Tr(n)(ϕB ◦ Ff ◦ ϕ−1
A ) ≤ ϕB ◦ F Tr(n)(f) ≤ Tr(n+1)(ϕB ◦ Ff ◦ ϕ−1

A )

for all n ∈ N. We will prove it by induction on n.

(i) Base case (n = 0):

Tr(0)(ϕB ◦ Ff ◦ ϕ−1
A ) = ⊥ ≤ ϕB ◦ F Tr(0)(f)

shows the first inequality, and

Tr(1)(ϕB ◦ Ff ◦ ϕ−1
A )

= ϕB ◦ Ff ◦ ϕ−1
A ◦

⟨
idF A, π2 ◦ Tr(0)(ϕB ◦ Ff ◦ ϕ−1

A )
⟩

≥ ϕB ◦ ⊥
= ϕB ◦ F⊥ by strictness of F
= ϕB ◦ F Tr(0)(f)

shows the second inequality.

(ii) Induction step:

ϕB ◦ F Tr(n+1)(f)
= ϕB ◦ F

(
f ◦

⟨
idA, π2 ◦ Tr(n)(f)

⟩
= ϕB ◦ Ff ◦ ϕ−1

A ◦
⟨
F idA, F

(
π2 ◦ Tr(n)(f)

)⟩
= ϕB ◦ Ff ◦ ϕ−1

A ◦
⟨
idF A, π2 ◦ ϕB ◦ Tr(n)(f)

⟩
≥ ϕB ◦ Ff ◦ ϕ−1

A ◦
⟨
idF A, π2 ◦ Tr(n)(ϕB ◦ Ff ◦ ϕ−1

A )
⟩

by I.H.
= Tr(n+1)(ϕB ◦ Ff ◦ ϕ−1

A )
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shows the first inequality, and similarly

ϕB ◦ F Tr(n+1)(f)
= ϕB ◦ Ff ◦ ϕ−1

A ◦
⟨
idF A, π2 ◦ ϕB ◦ Tr(n)(f)

⟩
≤ ϕB ◦ Ff ◦ ϕ−1

A ◦
⟨
idF A, π2 ◦ Tr(n+1)(ϕB ◦ Ff ◦ ϕ−1

A )
⟩

by I.H.
= Tr(n+2)(ϕB ◦ Ff ◦ ϕ−1

A )

shows the second inequality.

Therefore we have
F Tr(f) = Tr(ϕB ◦ Ff ◦ ϕ−1

A ) . ■
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