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Abstract
This paper investigates the categorical semantics of conditioning in probabilistic programming
using monads. It concentrates on terminating probabilistic programs, and presents two styles of
semantics: one ‘one-deficit’ approach via the lift monad (−) + 1, and another ‘monoid’ approach
using the monad 2× (−) induced by the monoid 2. In both cases, a correctness result is proven,
showing that it suffices to normalise at the end of a program. The two semantics are shown
to be equivalent. Secondly the paper briefly, and non-exhaustively, investigates the extension
of the monadic semantics to possibly non-terminating programs. This requires a new ‘liberal’
interpretation of conditioning of substates.
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1 Introduction

Probabilistic programming with Bayesian conditioning is an active research area, see e.g. [1,
3, 7–12]. Here we concentrate on a categorical semantics, in Kleisli categories, for finite,
discrete probability. We investigate several alternative forms of semantics, concentrating on
conditioning, by involving the ‘lift’ monad and the ‘monoid’ monad.

The standard way to model partial programs uses the lift monad (−) + 1, for instance
on the category Set of sets and functions. It adds a new element ∗ from the one-element
(final) set 1 = {∗} to an arbitrary set, in X 7→ X + 1. A partial program X → Y can then be
written simply as a map X → Y in the Kleisli category K`((−) + 1) of the lift monad, that
is, as an ordinary function X → Y + 1. Sequential composition of such partial programs is
given by Kleisli composition in K`((−) + 1), and parallel composition is given by the tensor
product f ⊗ g of two maps f, g in K`((−) + 1).

This lift construction is quite flexible, and can also be used in the context of probabilistic
programming. For finite discrete probability we use the distribution monad D. The lift
monad can be defined on the Kleisli category K`(D). We can then again form the Kleisli
category of lift, which we shall write as K`D((−) + 1), with a subscript ‘D’, in order to
prevent confusion with the Kleisli category of the lift monad on the underlying category Set.
It is a basic fact that distributions in D(Y + 1) can be identified with subdistributions on Y .

What we have sketched so far is the use of the lift monad for partiality, in the context of
probabilistic programming. This article will introduce another usage of the lift monad, for

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 320571.

April 2017

http://dx.doi.org/10.4230/LIPIcs...


XX:2 Kleisli Semantics for Conditioning in Probabilistic Programming

normalisation and conditioning. In fact, we shall introduce a second monad for normalisation
and conditioning, and describe its relationship to lift. We briefly describe how this works.

A subdistribution ω ∈ D(Y + 1) can be normalised, if it is non-zero, via rescaling. If we
describe ω : Y → [0, 1] as a function with finite support and ‖ω‖ :=

∑
y ω(y) ≤ 1, then

its normalisation nrm(ω) : Y → [0, 1] is given by nrm(ω)(y) = ω(y)
‖ω‖ . The value 1− ‖ω‖ is

sometimes called the ‘one-deficit’ of ω. We shall refer to this as the one-deficit approach.
The two-element set 2 = {yes,no} is a commutative monoid with conjunction. The
mapping X 7→ 2×X is a monad on Set, and also on the Kleisli category K`(D) of the
distribution monad. We shall work in its Kleisli category, written as K`D(2× (−)). There
is a map 2×Y ∼= Y +Y → Y +1 to lift, which is actually a map of monads. A distribution
ω ∈ D(2×Y ) can also be normalised, namely via conditioning and marginalisation, written
as M2(ω|yes⊗1). Details will be given below. We refer to this description as the monoid
approach.

This paper will (abstractly) develop the semantics of probabilistic programming with
conditioning, both for the one-deficit approach and for the monoid approach, and will relate
them. It will be shown formally, for both approaches, that normalisation can be postponed
to the end of the program, since it propagates through the whole program. Both approaches
have been implemented using the EfProb library1 for probability calculations. EfProb forms
an embedded language in Python. The implementations are illustrated in a standard Bayesian
example, for finding out the number of fish in a pond by looking at a sample.

These two ‘one-deficit’ and ‘monoid’ approaches in Sections 4 and 5 form the technical
core and main contribution of the paper. In Section 7 we look at extensions of probabilistic
programming with non-termination, via an abort statement, that fails with certainty. There
are theoretically several ways to combine non-termination with the ‘one-deficit’ and ‘monoid’
approach, namely as:
1. (−) + 1 + 1, where the inner lift is used for partiality, and the outer one for conditioning;
2.
(
2× (−)

)
+ 1

3. 2×
(
(−) + 1

)
.

In this paper we do not give an exhaustive analysis. The first option is not investigated here,
because it is somewhat confusing, using lift in a double role. The second approach looks
attractive, because it can be implemented relatively easily in EfProb, using subdistributions.
However, we show that it does not satisfy the required mathematical properties, and gives the
wrong outcome in an example. Hence, in the end, the third option looks the most attractive.
We illustrate by hand that it gives the right outcomes in two examples. However, we do not
have an implementation for it.

The term ‘program’ is used in a rather loose manner. We do not formally define a
syntax and hope that the reader will accept our hints about how our semantical constructs
correspond to programming constructs. We provide several examples, which should be
self-explanatory, given a basic level of familiarity with probabilistic programming [3]. We
do not consider loops or recursion in the current setting, unlike e.g. [7, 10]. They lead
to interesting theoretical questions, but their relevance for practical examples in Bayesian
reasoning is unclear to us. The same may be said, by the way, about non-termination via an
abort statement.

The two semantics for probabilistic programs given in [11] and [12] resemble our ‘one-
deficit’ and ‘monoid’ approach: they respectively use s-finite kernels X  Y and measurable

1 Developed by the authors, see efprob.cs.ru.nl.
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functions X → G(R≥0 × Y ). The formal relationship is to be investigated. One difference is
our emphasis on monads (−) + 1 and 2× (−) and on the effectus theoretic perspective, via
predicates p and conditional state ω|p.

2 Monads

We start with some categorical generalities that capture the setting in which we work. This
section provides some background information, but is not essential for what follows.

Let T = (T, η, µ) be a monad on a symmetric monoidal category C = (C, I,⊗). We
assume that this monad is commutative (or monoidal): it comes with natural ‘double strength’
maps dst : T (X)⊗ T (Y )→ T (X ⊗ Y ) which make certain standard diagrams commute, see
e.g. [5]. We write K`(T ) for the Kleisli category of T . It is then also symmetric monoidal.

Let C have coproducts + and a final object 1. It gives rise to the ‘lift’ monad (−)+1: C→
C. There is always a distributive law of monads with components T (X) + 1→ T (X + 1).
This means that the lift monad lifts to the Kleisli category.

Let M ∈ C be a commutative monoid, via maps u : I →M and m : M ⊗M →M . The
functor M ⊗ (−) : C→ C is then a monad, which is commutative since M is commutative
as a monoid. Moreover, the strength map st : M ⊗ T (X) → T (M ⊗ X), given by st =
dst ◦ (id ⊗ η) is a distributive law of monads. As a result, tensoring with M lifts to a monad
M ⊗ (−) : K`(T )→ K`(T ) on the Kleisli category of T . We thus have the following situation,
with two (lifted) monads and their Kleisli categories.

K`T ((−) + 1)

��

K`T (M ⊗ (−))

~~

K`(T )

��

(−)+1
%%

M⊗(−)
yy

C(−)+1
88

M⊗(−)
ff

(1)

We use a subscript T for the upper Kleisli categories, in order to prevent confusion with the
Kleisli categories K`((−) + 1) and K`(M ⊗ (−)) of the monads (−) + 1 and M ⊗ (−) on C.

These Kleisli categories K`T ((−)+1) and K`T (M⊗(−)) are then also symmetric monoidal,
where for the first case we need to assume that tensors distribute over coproducts. Below we
briefly describe sequential and parallel composition, for Kleisli maps X → Y , Y → Z and
A→ B. Since programs will be interpreted in these categories later on, we will write ; and
⊗ for sequential and parallel composition in these case.

We start with K`T ((−) + 1), using composites in the underlying category C.

X
f ��

T (Y + 1)
T (g+id) ��
T (T (Z + 1) + 1)

T (st) ��
T 2((Z + 1) + 1)

µ
��

T ((Z + 1) + 1)
T ([id,κ2]) ��

T (Z + 1)

X ⊗A
f⊗g
��

T (Y + 1)⊗ T (B + 1)
dst��

T
(
(Y + 1)⊗ (B + 1)

)
o

T
(
(Y ⊗B) + (Y ⊗ 1) + (1⊗B) + (1⊗ 1)

)
[κ1,κ2◦!,κ2◦!,κ2◦!])��

T
(
(Y ⊗B) + 1

)
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Sequential and parallel composition in K`T (M ⊗ (−)) takes the following form.

X
f ��

T (M ⊗ Y )
T (id⊗g) ��

T (M ⊗ T (M ⊗ Z))
st ��

T 2(M ⊗ (M ⊗ Z))
o

T 2((M ⊗M)⊗ Z)
µ
��

T ((M ⊗M)⊗ Z)
T (m⊗id) ��
T (M ⊗ Z)

X ⊗A
f⊗g
��

T (M ⊗ Y )⊗ T (M ⊗B)
dst��

T
(
(M ⊗ Y )⊗ (M ⊗B)

)
o

T
(
(M ⊗M)⊗ (Y ⊗B)

)
T (m⊗id)
��

T
(
M ⊗ (Y ⊗B)

)

2.1 Distribution monads
We shall be using the above set-up for C = Set and commutative monoid 2 = {yes, no}
with conjunction ∧ and yes ∈ 2 as neutral element. Two monads will be considered, namely
the (finite probability) distribution monad D, and also the subdistribution monad D≤1. We
briefly describe them both.

A distribution on a set X is given by a probability mass function ω : X → [0, 1] with finite
support supp(ω) = {x | ω 6= 0} and

∑
x ω(x) = 1. For a subdistribution the latter condition

is relaxed to
∑
x ω(x) ≤ 1. Sometimes we describe a (sub)distribution via the ‘ket’ notation

as a formal sum
∑
x ω(x)|x〉.

We use the term ‘(sub)state’ as alternative for ‘(sub)distribution’. Also we call a distribu-
tion a ‘proper’ distribution if we wish to emphasise that it is a ‘non-sub’ distribution.

We write D(X) for the set of (proper) distributions on X, and D≤1(X) for the set of
subdistributions. It is well-known that both D and D≤1 are commutative monads on Set,
see e.g. [5]. It is not hard to see that D≤1(X) ∼= D(X + 1). Both D(X) and D≤1(X) are
closed under convex sums, often written as ω +r ρ = r · ω + (1− r) · ρ, for r ∈ [0, 1].

A (sub)distribution ω on a product X × Y is often called a ‘joint’ distribution. For such
an ω we can define the marginal distributions M1(ω) on X and and M2(ω) on Y as:

M1(ω)(x) :=
∑
y ω(x, y) and M2(ω)(y) :=

∑
x ω(x, y).

Given two distributions ω ∈ D(X) and ρ ∈ D(Y ) we write ω⊗ ρ = dst(ω, ρ) ∈ D(X × Y ) for
the (joint) product state. It is given by (ω ⊗ ρ)(x, y) = ω(x) · ρ(y). The same construction
will be used for subdistributions. One has M1(ω ⊗ ρ) = ω and M2(ω ⊗ ρ) = ρ.

For a Kleisli map, also called a ‘channel’, f : X → D(Y ) and a state ω ∈ D(X) we write
f∗(ω) ∈ D(Y ) for the transformed state defined by f∗(ω)(y) =

∑
x ω(x) · f(x)(y). This ‘state

transformer’ f∗ will also be used for subdistributions.

3 Predicates, validity and conditioning

This section first recalls the basic notions of validity of a predicate in a state, and of
conditioning (updating, revising) a state, given a predicate. In the first part the ‘standard’
approach from effectus theory is given, together with an example illustrating its use in
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probabilistic programming. In a separate subsection a novel ‘liberal’ variation is described
for substates.

In the current context, a predicate on a set X is a function p : X → [0, 1], which may
be identified with a Kleisli map X → D(2). We write 1,0 ∈ [0, 1]X for the constant-1 and
constant-0 predicates, which are used as truth and falsity. The orthosupplement p⊥ ∈ [0, 1]X
of predicate p ∈ [0, 1]X is defined as (p⊥)(x) = 1 − p(x). Obviously, p⊥⊥ = p. For two
predicates p ∈ [0, 1]X , q ∈ [0, 1]Y we write p ⊗ q ∈ [0, 1]X×Y for the parallel conjunction,
given by (p⊗ q)(x, y) = p(x) · q(y). Conjunction with truth p⊗ 1 and 1⊗ q is weakening,
that is, moving a predicate to a bigger context.

The validity ω |= p, for ω ∈ D(X) and p ∈ [0, 1]X , is defined as the number in [0, 1]
given on the left below. If this number is non-zero, the conditioned state ω|p ∈ D(X) can be
defined as on the right.

ω |= p :=
∑
x ω(x) · p(x) ω|p(x) := ω(x) · p(x)

ω |= p
. (2)

Conditioning satisfies some basic rules (see [6]) like:

ω|1 = ω (ω ⊗ ρ)|p⊗q = (ω|p)⊗ (ρ|q) (ω|p)|q = ω|p&q,

where (p& q)(x) = p(x) · q(x), that is, p& q = (p⊗ q) ◦∆. Moreover, Bayes’ law holds:

ω|p |= q = ω |= p& q

ω |= p
. (3)

I Example 1. Consider the following program fragment.

{x := 0} +1/3 {x := 1};
{y := 0} +1/2 {y := 1};
observe (x+y = 1);

Semantically one can describe the state after the first two lines as a product ωx ⊗ ωy ∈
D({0, 1} × {0, 1}) where ωx = 1

3 |0〉 + 2
3 |1〉 and ωy = 1

2 |0〉 + 1
2 |1〉. The predicate p ∈

[0, 1]{0,1}×{0,1} used in the observe line is given by p(0, 0) = p(1, 1) = 0 and p(0, 1) =
p(1, 0) = 1. The outcome of this program is described by conditioning:

ωx ⊗ ωy = 1
6 |00〉+ 1

6 |01〉+ 1
3 |10〉+ 1

3 |11〉

ωx ⊗ ωy |= p = 1
6p(0, 0) + 1

6p(0, 1) + 1
3p(1, 0) + 1

3p(1, 1) = 1
2

(ωx ⊗ ωy)|p = 1/6
1/2
|01〉+ 1/3

1/2
|10〉 = 1

3 |01〉+ 2
3 |10〉.

These observe statements will be interpreted either as ‘instrument’, for the monoid
monad 2×(−), or as ‘assert’ maps, for the lift monad (−)+1. Instruments and asserts belong
to the standard machinery of effectus theory [2, 4]. Here we describe them in more concrete
form, for discrete probability. Each predicate gives rise to both an instrument and an assert
map, as in (4) below. These maps form morphisms in the Kleisli categories K`D(2 × (−))
and K`D((−) + 1) from (1). They are defined as the following composites in K`(D).

instrp :=
(
X

∆ // X ×X
p×id

// 2×X
)

asrtp :=
(
X

instrp
// 2×X ∼= X +X

id+!
// X + 1

)
.

(4)
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Concretely, these maps are described by:

instrp(x) = p(x)|yes, x〉+ (1− p(x))|no, x〉 and asrtp(x) = p(x)|x〉.

These instrument and assert maps satisfy:

instr1 = id instrp⊗q = instrp ⊗ instrq
asrt1 = id asrtp⊗q = asrtp ⊗ asrtq.

(5)

The identity maps and tensors on the right-hand-side of the equality signs live in the Kleisli
categories K`D(2× (−)) and K`D((−) + 1).

3.1 Liberal validity and conditioning
The above descriptions ω |= p and ω|p in (2) assume that ω is a proper distribution. What
if ω is a subdistribution? We could apply the same definitions, but then we see that
ω|p automatically becomes proper. We would like to take non-definedness into account.
This leads to the alternative approach that we sketch below. We call it ‘liberal’ since in
weakest precondition semantics the word ‘liberal’ is also used for this special treatment of
undefinedness. Our approach is ‘new’ in the sense that, as far as we know, it has not been
formulated at this general level, with substates and predicates, including a liberal version of
Bayes’ rule.

A non-zero subdistribution ω ∈ D≤1(X) can be turned into a (proper) distribution
nrm(ω) ∈ D(X) via normalisation. One takes:

‖ω‖ :=
∑
x ω(x) and then nrm(ω)(x) := ω(x)

‖ω‖
. (6)

The difference ‖ω‖⊥ = 1− ‖ω‖ is sometimes called the ‘one-deficit’ of ω. It is describes the
extent to which ω is undefined, as a number in the unit interval [0, 1].

Subdistributions, unlike proper distributions, are closed under multiplication with a
number r ≥ 0. This operation satisfies ‖r · ω‖ = r · ‖ω‖. This shows that we need to impose
the requirement that r ≤ 1

‖ω‖ . State transformation preserves such scalar multiplication:
f∗(r · ω) = r · f∗(ω). More generally, subdistributions can be multiplied pointwise with a
predicate. We write p · ω for the subdistribution (p · ω)(x) = p(x) · ω(x).

Let ω ∈ D≤1(X) now be a subdistribution and p ∈ [0, 1]X be a predicate. We define
‘liberal’ versions of validity ω |=` p and conditioning ω|`p as:

ω |=` p :=
(∑

x ω(x) · p(x)
)

+ ‖ω‖⊥ ω|`p(x) := ω(x) · p(x)
ω |=` p

. (7)

We note that if ω happens to be a proper distribution, then ‖ω‖ = 1, so that these definitions
reduce to the earlier ones (2). Hence we could drop the distinction sub/proper and use the
liberal versions everywhere. But we prefer to keep the distinction for conceptual clarity.

These liberal versions of validity and conditioning will be used later on, in Section 7. For
now we show that they satisfy a liberal version of Bayes’ rule (3).

I Lemma 2. For ω ∈ D≤1(X) and p, q ∈ [0, 1]X ‘liberal Bayes’ holds:

ω|`p |= q = ω |=` p& q

ω |=` p
.
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Proof.
ω|`p |=

` q
(7)=
∑
x(ω|`p(x) · q(x)) + (1− ‖ω|`p‖)

=
∑
x

ω(x) · p(x)
ω |=` p

· q(x) +
(
1−

∑
x

ω(x) · p(x)
ω |=` p

)
=
∑
x ω(x) · p(x) · q(x)

ω |=` p
+
ω |=` p−

∑
x ω(x) · p(x)

ω |=` p
(7)=
∑
x ω(x) · (p& q)(x)

ω |=` p
+ ‖ω‖

⊥

ω |=` p
(7)= ω |=` p& q

ω |=` p
. J

4 The one-deficit interpretation

In this section we use the Kleisli category K`D((−) + 1) of the lift monad (−) + 1 on K`(D)
for program semantics. Its maps X → D(Y + 1) will be described in the form X → D≤1(Y ),
producing subdistributions. At this stage partiality comes from the weights introduced by
predicates, and not in the traditional way from ‘abort’ or from endless loops.

I Definition 3. For a Kleisli map c : X → D≤1(Y ), seen as a program, and a state ω ∈ D(X),
we write c ⇓ ω for the (final) state after running program c in the (initial) state ω.

c ⇓ ω := nrm
(
c∗(ω)

)
∈ D(Y ).

Thus, a ‘run’ applies the program c to the state ω via state transformation, giving a
subdistribution c∗(ω) ∈ D≤1(Y ); subsequently, this subdistribution is normalised to a proper
distribution. This ‘run’ is a partial operation, since the state c∗(ω) may be zero.

More concretely, c ⇓ ω ∈ D(Y ) is the distribution with probability at y ∈ Y given by:

(
c ⇓ ω

)
(y) = nrm

(
c∗(ω)

)
(y) = c∗(ω)(y)

‖c∗(ω)‖ =
∑
x c(x)(y) · ω(x)∑
x,y c(x)(y) · ω(x) . (8)

In a next step we apply run to a sequence of program statements and show how we can go
through the sequence iteratively. We consider the following program statements, for observe,
if-then-else, and embed (including discard and assign). They will be closed under sequential
and parallel composition ; and ⊗.
1. Observation of a predicate p on X is translated into an asrtp endomap X → X, that is,

into a Kleisli map asrtp : X → D≤1(X).
2. The statement if p then f else g : X → D≤1(Y ), for p ∈ [0, 1]X and f, g : X → D≤1(Y ),

is defined as composite:

if p then f else g :=
(
X

instrp
// 2×X ∼= X +X

[f,g]
// Y
)
.

Then (if p then f else g)(x)(y) = p(x) · f(x)(y) + (1− p(x)) · g(x)(y). As special case this
construction includes a convex combination of f, g, namely when p is a constant predicate,
that is, a scalar in the unit interval [0, 1].

3. The embedding statement emb(h) : X → D≤1(Y ), for a ‘pure’ map h : X → D(Y ) in
K`(D) is simply the inclusion. We make two special cases of this construction explicit.
a. Embedding can be applied in particular to ‘discard’ X → 1 or to ‘projection’ maps
X1 ×X2 → Xi, with which the context can be reduced, that is, with which variables
can be removed.
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b. Assignment is included as an embedding of a pure map. We only describe assignment
to new variables, but assignment to existing variables can be done in a similar manner.
Let X describe the current state. For a pure map v : X → D(Y ) we would like to
extend the state X to X×Y by assigning a value sampled from a distribution to a new
variable of type Y . This could be described as new y ← v(x), where v is a collection
of proper distributions on Y , indexed by the existing state X. This leads to a ‘graph’
Kleisli map that extends the state from X to X × Y .

assign(v) :=
(
X

∆ // X ×X
id⊗v

// X × Y
)
.

Since we require that the map v is pure, this composite is also pure, and can thus be
described as emb(assign(v)) : X → D≤1(X × Y ).

We can now list the basic computations rules, including compositionality in the first
point.

I Lemma 4. The ‘run’ operation − ⇓ ω from Definition 3 satisfies, for appropriately typed
maps and predicates:
1. (f ; g) ⇓ ω = g ⇓ (f ⇓ ω), i.e.

(
D(X) (f ;g)⇓−−−−−−→ D(Z)

)
=
(
D(X) f⇓−−−−→ D(Y ) g⇓−−−−→ D(X)

)
2. asrtp ⇓ ω = ω|p
3. emb(h) ⇓ ω = h∗(ω), where h is a ‘pure’ map in K`(D)
4. (if p then f else g) ⇓ ω = r

r+s ·
(
f ⇓ ω|p

)
+ s

r+s ·
(
g ⇓ ω|p⊥

)
, for r = ‖f∗(p · ω)‖ and

s = ‖g∗(p⊥ · ω)‖.

Proof. We prove the first two equations.

(
g ⇓ (f ⇓ ω)

)
(z) (8)=

∑
y g(y)(z) · (f ⇓ ω)(y)∑
y,z g(y)(z) · (f ⇓ ω)(y)

=
∑
y g(y)(z) · f∗(ω)(y)

‖f∗(ω)‖∑
y,z g(y)(z) · f∗(ω)(y)

‖f∗(ω)‖

=
∑
x,y g(y)(z) · f(x)(y) · ω(x)∑
x,y,z g(y)(z) · f(x)(y) · ω(x)

=
∑
x(f ; g)(x)(z) · ω(x)∑
x,z(f ; g)(x)(z) · ω(x) =

(
(f ; g) ⇓ ω

)
(z).

In the same way:

(
asrtp ⇓ ω

)
(x) (8)=

∑
x′ asrtp(x′)(x) · ω(x′)∑
x,x′ asrtp(x′)(x) · ω(x′) = p(x) · ω(x)∑

x p(x) · ω(x)
(2)= ω|p(x). J

The point of Lemma 4 is that the normalisation effect of the run operation is pushed
through the whole program. This provides a formal justification of the fact that normalisation
can be postponed to the end of a program. We briefly illustrate more concretely how this
works.

I Example 5. Consider the program fragment observe p; h; observe q, represented
categorically as:

c = asrtp ; emb(h) ; asrtq, where h is pure.
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Running c in a proper state ω gives by Lemma 4:

c ⇓ ω = (asrtp ; emb(h) ; asrtq) ⇓ ω = (emb(h) ; asrtq) ⇓ (asrtp ⇓ ω)
= (emb(h) ; asrtq) ⇓ ω|p
= asrtq ⇓ (emb(h) ⇓ ω|p)
= asrtq ⇓ h∗(ω|p)
= h∗(ω|p)|q.

Similarly, for a program with parallelism:

d = (asrtp ⊗ id) ; asrtq ; (id ⊗ emb(h)),

we get by using the assert-equations (5):

d ⇓ ω =
(
(asrtp ⊗ id) ; asrtq ; (id ⊗ emb(h))

)
⇓ ω

=
(
(asrtp ⊗ asrt1) ; asrtq ; (emb(id)⊗ emb(h))

)
⇓ ω

=
(
asrtp⊗1 ; asrtq ; emb(id ⊗ h)

)
⇓ ω

= (id ⊗ h)∗
(
(ω|p⊗1)|q

)
= (id ⊗ h)∗

(
ω|(p⊗1)&q

)
.

5 The monoid interpretation

This section describes an alternative semantics for probabilistic programs in the Kleisli
category K`D(2 × (−)) on K`(D). A program is this a map of the form X → D(2 × Y ),
producing proper distributions.

I Definition 6. For a Kleisli map c : X → D(2 × Y ), seen as a program, and an (initial)
state ω ∈ D(X) we define:

c ⇓ ω := M2(c∗(ω)|yes⊗1) ∈ D(Y ).

This ‘run’ starts from the transformed state c∗(ω) ∈ D(2× Y ). It is conditioned with the
weakened predicate yes⊗ 1 ∈ [0, 1]2×Y , where we write yes ∈ [0, 1]2 for the predicate given
by yes 7→ 1 and no 7→ 0. Subsequently, the second marginal yields a proper distribution on
Y . Here we use what is called ‘crossover’ influence, where conditioning in one component of
a product has an effect in the other component.

More concretely, the distribution c ⇓ ω can be computed as:(
c ⇓ ω

)
(y) = M2(c∗(ω)|yes⊗1)(y) =

∑
b∈2(c∗(ω)|yes⊗1)(b, y)

=
∑
b∈2

c∗(ω)(b, y) · (yes⊗ 1)(b, y)
c∗(ω) |= yes⊗ 1

= c∗(ω)(yes, y)∑
y,b c∗(ω)(b, y) · (yes⊗ 1)(b, y)

=
∑
x c(x)(yes, y) · ω(x)∑
x,y c(x)(yes, y) · ω(x) .

(9)

The same basic programs as in the previous section can be interpreted as Kleisli maps in
K`D(2× (−)). This is briefly described below.
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1. Observation of a predicate p on X is now translated into an instrument map instrp : X →
D(2×X).

2. The statement if p then f else g : X → D≤1(Y ), for p ∈ [0, 1]X and f, g : X → D(2× Y ),
is interpreted basically in the same way as in the one-deficit case, namely in K`(D) as:

if p then f else g :=
(
X

instrp
// 2×X ∼= X +X

[f,g]
// 2× Y

)
.

3. The embedding statement emb(h) : X → D(2 × Y ), for a ‘pure’ map h : X → D(Y ) is
obtained via post-composition with the unit Y → 2× Y , given by y 7→ 1|yes, y〉 of the
monad 2× (−) on K`(D).

We can prove the analogue of Lemma 4.

I Lemma 7. The ‘run’ operation − ⇓ ω from Definition 6 satisfies:
1. (f ; g) ⇓ ω = g ⇓ (f ⇓ ω)
2. instrp ⇓ ω = ω|p
3. emb(h) ⇓ ω = h∗(ω), where h is ‘pure’
4. (if p then f else g) ⇓ ω = r

r+s ·
(
f ⇓ ω|p

)
+ s

r+s ·
(
g ⇓ ω|p⊥

)
, for r =

∑
y f∗(p · ω)(yes, y)

and s =
∑
y g∗(p⊥ · ω)(yes, y).

Proof. We do the first two cases:(
g ⇓ (f ⇓ ω)

)
(z) (9)=

∑
y g(y)(yes, z) · (f ⇓ ω)(y)∑
y,z g(y)(yes, z) · (f ⇓ ω)(y)

=
∑
y g(y)(yes, z) ·

∑
x
f(x)(yes,y)·ω(x)
f∗(ω)|=yes⊗1∑

y g(y, z)(yes, z) ·
∑

x
f(x)(yes,y)·ω(x)
f∗(ω)|=yes⊗1

=
∑
x,y g(y)(yes, z) · f(x)(yes, y) · ω(x)∑
x,y,z g(y)(yes, z) · f(x)(yes, y) · ω(x)

(∗)=
∑
x(f ; g)(x)(yes, z) · ω(x)∑
x,z(f ; g)(x)(yes, z) · ω(x)

(9)=
(
(f ; g) ⇓ ω

)
(z).

In the marked equation (∗)= we make crucial use of the fact that the Boolean monoid 2 satisfies
b1 ∧ b2 = yes implies b1 = b2 = yes. Next:(

instrp ⇓ ω
)
(x) (9)=

∑
x′ instrp(x′)(yes, x) · ω(x′)∑
x,x′ instrp(x′)(yes, x) · ω(x′) = p(x) · ω(x)∑

x p(x) · ω(x) = ω|p(x). J

5.1 Relating the one-deficit and the monoid interpretations
The following result relates our two program interpretations.
I Proposition 8. There is a functor Y, for ‘yes’, between the categories for the monoid and
the one-deficit interpretations, in a commuting diagram:

K`D(2× (−)) Y
// K`D((−) + 1)

K`(D)

ff 88

(10)

On objects it is the identity: Y(X) = X, and on morphisms it is:(
X

f
// 2× Y

)
� Y //

(
X

f
// 2× Y ∼= Y + Y

id+!
// Y + 1

)
.
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More explicitly, Y(f)(x)(y) = f(x)(yes, y).
This Y is a strictly monoidal functor, thus preserving sequential and parallel composition.

The commutativity of (10) means that Y preserves embed: Y(emb(h)) = emb(h). Moreover
it preserves the basic program constructs for observe and if-then-else:

Y(instrp) = asrtp Y(if p then f else g) = if p then Y(f) else Y(g).

In addition, ‘run’ is preserved: Y(c) ⇓ ω = c ⇓ ω, for each c : X → D(2× Y ) and ω ∈ D(X).

With this result, Lemma 7 follows in fact from Lemma 4.

Proof. A basic observation that simplifies the proof at an abstract level is that the composite:

2× Y ∼= Y + Y
id+!
// Y + 1 in K`(D) is 2× Y yes⊗id

// 1× Y ∼= Y in K`D((−) + 1)

where yes : 2→ 1 is the ‘yes’ predicate, as a map in K`D((−)+1). Let us write ? and ◦· for the
compositions in K`D(2×(−)) and K`D((−)+1), respectively, and ‹−› : K`(D)→ K`D((−)+1)
for the embedding functor. We then have Y(f) = (yes⊗idY )◦f = (yes⊗idY )◦· ‹f›, suppressing
the coherence isomorphism, and for f : X → 2× Y and g : Y → 2× Z,

Y(g ? f) = (yes⊗ idY ) ◦· ‹g ? f› = (yes⊗ idY ) ◦· ‹(∧ ⊗ idZ) ◦ (id2 ⊗ g) ◦ f)›
= (yes⊗ idY ) ◦· (‹∧›⊗ idZ) ◦· (id2 ⊗ ‹g›) ◦· ‹f›

= (yes⊗ yes⊗ idZ) ◦· (id2 ⊗ ‹g›) ◦· ‹f›

= (yes⊗ idZ) ◦· ‹g› ◦· (yes⊗ idY ) ◦· ‹f›

= Y(g) ◦· Y(f),

where we use yes ◦· ‹∧› = yes⊗ yes for the conjunction map ∧ : 2× 2→ 2. Similarly we prove
that Y(id) = id and Y(f ⊗ g) = Y(f)⊗ Y(g), and that diagram (10) commutes.

It is easy to see that the program constructs for observe and if-then-else are preserved by
the functor Y, and so we concentrate on preservation of run:

(
Y(c) ⇓ ω

)
(y) (8)=

∑
x Y(c)(x)(y) · ω(x)∑
x,y Y(c)(x)(y) · ω(x) =

∑
x c(x)(yes, y) · ω(x)∑
x,y c(x)(yes, y) · ω(x)

(9)=
(
c ⇓ ω

)
(y) J

6 Fish-in-a-pond example

Both the one-deficit and the monoid semantics that we described in the previous two sections
have been elaborated in an experimental implementation in Python, via the EfProb library2

for probabilistic computation. Below we give an impression of how this works. We present
the example first via informal pseudo code, as in Example 1, and then discuss the semantics.
We shall describe the monoid form below. The one-deficit implementation works similarly.
Interestingly, the one-deficit implementation runs considerably faster since it does not double
the state space via multiplication with 2. The translation of the code to EfProb is done
by hand. In follow-up work we will do this more systematically. We emphasise that our
implementation precisely calculates distributions, in contrast to sample based computations
that approximate the result.

2 Available via efprob.cs.ru.nl; the whole representation of the examples will be made available there.

efprob.cs.ru.nl


XX:12 Kleisli Semantics for Conditioning in Probabilistic Programming

Imagine we are looking at a pond and we wish to learn the number of fish in it. We catch
twenty fish, mark them, and throw them back. Subsequently we catch another twenty, and
find out that five of them are marked. What do we learn about the number of fish? This
technique is used to count populations and is known as mark-and-recapture.

The problem can be modelled by the following probabilistic program.

x <- uniform(fish_dom);
y <- binomial(20, 20 / x);
observe (y = 5);
discard y

(11)

Here fish_dom is a set of possible numbers of fish that we consider, say fish_dom =
{20, 30, 40, . . . , 250} with units of 10 fish. Then uniform(fish_dom) is the uniform distri-
bution on this set. The variable x takes a value sampled from the distribution. We use
a uniform distribution because we assume no prior knowledge about the number of fish
in the pond. Next, binomial(20, 20 / x) is the binomial distribution with parameters
n = 20 and probability p = 20/x. It can be described explicitly as

∑
k<21 p

k(1− p)n−k|k〉 in
D({0, 1, . . . , 20}). It gives for each k the probability of getting k marked fish among the 20
that we catch (the second time). We use a binomial distribution here, assuming for simplicity
that we catch these 20 fish one by one, check if they are marked, and then throw them back.
Because the variable y is discarded, this program returns only x and thus is interpreted as a
function 1→ D(2× fish_dom).

We compute the interpretation and its ‘run’ in a systematic way using Python with the
EfProb library. The program (11) is translated (manually) into the following python code.
seq(assign(uniform_state(fish_dom)),

assign(chan_fromklmap(lambda x: binomial(20, 20 / x),

fish_dom , range(21))),

observe(truth(fish_dom) @ point_pred(5, range(21))),

idn(fish_dom) @ discard(range(21)))

Here seq(f, g, ...) is sequential composition f ; g; · · · , and f @ g is parallel composition
f ⊗ g. The code is evaluated into a ‘channel’ in the EfProb library, of type 1→ 2×fish_dom.
We can then compute its ‘run’ by conditioning and marginalisation from Definition 6, which
are basic operations in EfProb. The final state on fish_dom is plotted in Figure 1. The
expected value of this state, i.e. the number of fish in the pond, is 112.

7 Combining the partial and the monoid interpretations

So far we have seen two interpretations for conditioning, namely the one-deficit interpretation
using the lift monad (−) + 1 and asserts, and the monoid interpretation using the monoid
monad 2 × (−) and instruments. In this final section we briefly look at the options for
extending our language with partiality, via an abort statement that never terminates. For
this purpose we use the lift monad (−) + 1 for its original purpose, namely partiality.

We shall look at the following two combinations of monoid and lift:
1. “inner monoid”, of the form (2×−) + 1;
2. “outer monoid”, of the form 2× (−+ 1).
We start with the first option, and illustrate why it does not work. For the second approach
we show that the examples work well, and that the analogue of Lemma 7 holds. We have
no implementation of the outer monoid approach since EfProb does not support lift (or
coproducts).
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Figure 1 The state after the program runs

7.1 The inner monoid approach
We consider the combination (2×−)+1. It will be used in the form of the monad D≤1(2×(−))
on Set. The interpretation of our internal language, with observe (via instruments), embed,
if-then-else, is basically as described in Section 5, but now we have an additional statement
abort : X → D≤1(2× Y ), given by abort(x)(b, y) = 0 for all x ∈ X, b ∈ 2, y ∈ Y . Notice that
abort ; f = abort = g ; abort and also abort⊗ f = abort = g ⊗ abort.

In the current combined setting we have to define a ‘run’, just like in Definitions 3 and 6.
For a Kleisli map c : X → D≤1(2× Y ), seen as a program, and an (initial) state ω ∈ D(X)
we define, using ‘liberal’ conditioning |` from Subsection 3.1:

c ⇓ ω := M2
(
c∗(ω)|`yes⊗1

)
∈ D≤1(Y ). (12)

Following Equations (8) and (9) it is not hard to see that:(
c ⇓ ω

)
(y) =

∑
x c(x)(yes, y) · ω(x)

1−
∑
x,y c(x)(no, y) · ω(x) . (13)

We shall illustrate this inner monoid approach in two examples, one where it works well,
and one where it does not.

I Example 9. Consider the following simple probabilistic program with non-termination in
a convex sum, taken from [7].

{ abort } +1/2 { { x := 0 } +1/2 { x := 1 };
{ y := 0 } +1/2 { y := 1 };
observe (x = 0 ∨ y = 0) }

The question is: what is the probability that y is zero in the final state?
We simply use the set N = {0, 1} as domain of the variables x, y, since the program

involves only the two numbers 0 and 1. The program is interpreted as a Kleisli map 1→ N×N
for the monad D≤1(2× (−)), i.e. as a function c : 1→ D≤1(2×N ×N). Identified with a
subdistribution, this c is given as:

1
8 |yes, 0, 0〉+ 1

8 |yes, 0, 1〉+ 1
8 |yes, 1, 0〉+ 1

8 |no, 1, 1〉 ∈ D≤1(2×N ×N)

By applying ‘run’ from (12), formally by computing c ⇓ ω with trivial initial state ω = 1|∗〉,
the unique state on 1, we obtain the state:

1
7 |0, 0〉+ 1

7 |0, 1〉+ 1
7 |1, 0〉 (14)
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In [7] the so-called cwp-semantics yields that the probability of y = 0 after execution of the
program is 2

7 . Indeed we obtain 2
7 |0〉+ 1

7 |1〉 by marginalising the first component of (14).

I Example 10. In the next example we use abort inside an if-then-else:

observe (x = 0);
if (x = 0) { skip } else { abort }

Imagine that this program is run with initial state ω = 1
2 |0〉 + 1

2 |1〉. What should be the
outcome? Surely the state 1|0〉.

Suppose that the domain of the variable x is the set N = {0, 1}. The interpretation of the
first and second line will be described as channels f1, f2 : N → D((2×N) + 1). The first line
gives f1(0) = 1|yes, 0〉 and f2(1) = 1|no, 1〉. The second line is interpreted as f2(0) = 1|yes, 0〉
and f2(1) = 1|∗〉. The whole program is then interpreted as the Kleisli composition f , where:

f(x) = (f2 ◦ f1)(x) =
{

1|yes, 0〉 if x = 0
1|∗〉 if x = 1.

The problem of this interpretation is that one loses the information that the diverging run
is blocked by the observe command. Indeed, if we compute the run (12) with initial state
ω = 1

2 |0〉 + 1
2 |1〉, we obtain f ⇓ ω = 1

2 |0〉 + 1
2 |∗〉, and not 1|0〉 as it should be. Hence the

inner monoid semantics is wrong.

There is another aspect that is problematic with the inner monoid semantics, namely the
equation g ⇓ (f ⇓ ω) = (f ; g) ⇓ ω, see Lemmas 4 and 7, fails. The channels f1 and f2 in
Example 10 give a counterexample.

7.2 The outer monoid approach
We check that the outer monoid approach does properly handle the programs from Examples 9
and 10. The statement abort : X → D(2 × (X + 1)) is interpreted as abort(x) = 1|yes, ∗〉,
where ∗ is the sole element of 1.

For a function c : X → D(2× (Y + 1)) and a state ω ∈ D(X) we now define:

c ⇓ ω := M2
(
c∗(ω)|yes⊗1

)
∈ D(Y + 1). (15)

I Example 11. Under the outer interpretation the program from Example 9 yields a state:

1
2 |yes, ∗〉+ 1

8 |yes, 0, 0〉+ 1
8 |yes, 0, 1〉+ 1

8 |yes, 1, 0〉+ 1
8 |no, 1, 1〉.

Following the description of ‘run’ in (15) we normalise the ‘yes’ occurrences and take the
second marginal, resulting in:

M2

(
1/2
7/8
|∗〉+ 1/8

7/8
|0, 0〉+ 1/8

7/8
|, 0, 1〉+ 1/8

7/8
|1, 0〉

)
= M2

(
4
7 |∗〉+ 1

7 |0, 0〉+ 1
7 |0, 1〉+ 1

7 |1, 0〉
)

= 4
7 |∗〉+ 2

7 |0〉+ 1
7 |1〉.

I Example 12. Let’s now write g1, g2 : N → D(2×(N+1)) for the interpretations of the first
and second line of the program in Example 10. Then: g1(0) = 1|yes, 0〉, g1(1) = 1|no, 1〉 and
g2(0) = 1|yes, 0〉, g2(1) = 1|yes, ∗〉. The composite g = g2 ◦ g1 then satisfies g(0) = 1|yes, 0〉
and g(1) = 1|no, ∗〉. Applying it to the initial state ω = 1

2 |0〉 + 1
2 |1〉 we get the desired

outcome, since, according to (15),

g ⇓ ω = M2

(( 1
2 |yes, 0〉+ 1

2 |no, ∗〉
)
|yes⊗1

)
= M2

(
1/2
1/2
|yes, 0〉

)
= 1|0〉.
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In this outer monoid approach the ‘run’ operation satisfies the ‘computation rules’.

I Lemma 13. The analogue of Lemma 7 holds for the outer monoid approach. J

The details will appear in follow-up work.

8 Conclusions

This papers describes several ways of interpreting probabilistic programs with conditioning
in Kleisli categories. The two main approaches are the ‘one-deficit’ approach using the lift
monad (−) + 1, and the ‘monoid approach’ using the monad 2 × (−). These approaches
are described abstractly in categorical terms, but ultimately also produce running code in
Python. Finally, the subtleties of including non-termination are briefly discussed.
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