Semantics for a Quantum Programming Language by Operator Algebras

Kenta Cho Radboud University Nijmegen

QPL 2014 5 June 2014

Semantics for a Quantum Programming Language by Operator Algebras

Kenta Cho Radboud University Nijmegen Master thesis University of Tokyo

QPL 2014 5 June 2014

Overview

- Semantics for a first-order functional quantum programming language QPL [Selinger 2004]
- Use the category $Wstar_{\rm CP-PU}$ of W*-algebras and normal completely positive pre-unital maps
- Wstar_{CP-PU} is a Dcppo₁-enriched SMC with Dcppo₁-enriched finite products
 - "nice" enough to give a semantics for QPL

Overview

- Semantics for a first-order functional quantum programming language QPL [Selinger 2004]
- Use the category $Wstar_{\rm CP-PU}$ of W*-algebras and normal completely positive pre-unital maps
- $Wstar_{CP-PU}$ is a $Dcppo_{\perp}$ -enriched SMC with $Dcppo_{\perp}$ -enriched finite products
 - "nice" enough to give a semantics for QPL

Overview

- Semantics for a first-order functional quantum programming language QPL [Selinger 2004]
- Use the category Wstar_{CP-PU} of W*-algebras and normal completely positive pre-unital maps quantum operations in the Heisenberg picture
- $Wstar_{CP-PU}$ is a $Dcppo_{\perp}$ -enriched SMC with $Dcppo_{\perp}$ -enriched finite products
 - "nice" enough to give a semantics for QPL

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Quantum Operation [Kraus]

 $\mathcal{H}_1, \mathcal{H}_2$: Hilbert spaces

 $\mathcal{T}(\mathbb{C}^n)\cong \mathcal{M}_n$ the set of $_{\mathsf{n} imes\mathsf{n}}$ matrices

 $\mathcal{T}(\mathcal{H}_i)$: the set of trace class operators on \mathcal{H}_i

Def. A linear map $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2)$ is a **quantum operation (QO)**

 $\stackrel{\mathrm{def}}{\longleftrightarrow}$ it is completely positive and trace-nonincreasing.

Quantum Operation [Kraus]

 $\mathcal{H}_1, \mathcal{H}_2$: Hilbert spaces

 $\mathcal{T}(\mathbb{C}^n)\cong \mathcal{M}_n$ the set of $_{\mathsf{n} imes\mathsf{n}}$ matrices

 $\mathcal{T}(\mathcal{H}_i)$: the set of trace class operators on \mathcal{H}_i

Def. A linear map $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2)$ is a **quantum operation (QO)**

 $\stackrel{\text{def}}{\iff}$ it is completely positive and trace-nonincreasing.

ρ : **state** (density operator) on \mathcal{H}_1 *i.e.* positive operator on \mathcal{H}_1 with $\operatorname{tr}(\rho) = 1$ (hence $\rho \in \mathcal{T}(\mathcal{H}_1)$ by def.)

Quantum Operation [Kraus]

 $\mathcal{H}_1, \mathcal{H}_2$: Hilbert spaces

 $\mathcal{T}(\mathbb{C}^n)\cong \mathcal{M}_n$ the set of $_{\mathsf{n} imes\mathsf{n}}$ matrices

 $\mathcal{T}(\mathcal{H}_i)$: the set of trace class operators on \mathcal{H}_i

Def. A linear map $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2)$ is a **quantum operation (QO)**

 $\stackrel{\text{def}}{\iff}$ it is completely positive and trace-nonincreasing.

 $\begin{array}{l} \rho: \textbf{state} \ (\text{density operator}) \ \text{on} \ \mathcal{H}_1 \\ \textit{i.e.} \ \text{positive operator} \ \text{on} \ \mathcal{H}_1 \ \text{with} \ \mathrm{tr}(\rho) = 1 \\ (\text{hence} \ \rho \in \mathcal{T}(\mathcal{H}_1) \ \text{by def.}) \end{array}$

 $\mapsto \mathcal{E}(\rho) : \text{positive operator on } \mathcal{H}_2 \text{ with } 0 \leq \operatorname{tr}(\mathcal{E}(\rho)) \leq 1$ *i.e.* subnormalised **state** on \mathcal{H}_2

Complete positivity

Def. A linear map $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2)$ is a *quantum operation (QO)*

 $\stackrel{\text{def}}{\iff}$ it is **completely positive** and **trace-nonincreasing**.

Complete positivity

Def. A linear map $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2)$ is a *quantum operation (QO)*

 $\stackrel{\text{def}}{\iff}$ it is **completely positive** and **trace-nonincreasing**.

$\begin{array}{l} \mathcal{E} \colon \mathcal{T}(\mathcal{H}_{1}) \to \mathcal{T}(\mathcal{H}_{2}) \text{ is completely positive (CP)} \\ \stackrel{\text{def}}{\iff} \forall n \in \mathbb{N} \\ \quad \text{id} \otimes \mathcal{E} \colon \mathcal{M}_{n} \otimes \mathcal{T}(\mathcal{H}_{1}) \to \mathcal{M}_{n} \otimes \mathcal{T}(\mathcal{H}_{2}) \text{ is positive} \\ \quad \cong \mathcal{T}(\mathbb{C}^{n} \otimes \mathcal{H}_{1}) \qquad \cong \mathcal{T}(\mathbb{C}^{n} \otimes \mathcal{H}_{2}) \end{array}$

Complete positivity

Def. A linear map $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2)$ is a *quantum operation (QO)*

 $\stackrel{\text{def}}{\iff}$ it is **completely positive** and **trace-nonincreasing**.

$$\begin{array}{l} \mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \to \mathcal{T}(\mathcal{H}_2) \text{ is completely positive (CP)} \\ \stackrel{\text{def}}{\iff} \forall n \in \mathbb{N} \\ \quad \text{id} \otimes \mathcal{E} \colon \mathcal{M}_n \otimes \mathcal{T}(\mathcal{H}_1) \to \mathcal{M}_n \otimes \mathcal{T}(\mathcal{H}_2) \text{ is positive} \\ \quad \cong \mathcal{T}(\mathbb{C}^n \otimes \mathcal{H}_1) \qquad \cong \mathcal{T}(\mathbb{C}^n \otimes \mathcal{H}_2) \end{array}$$

Dualising Quantum Operations

 $\mathcal{B}(\mathcal{H}_i)$: the set of bounded operators on \mathcal{H}_i

Fact. There is a 1-1 correspondence:

 $\mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ bounded

 $\mathcal{E}^* : \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ weak*-continuous (called **normal**)

Dualising Quantum Operations

 $\mathcal{B}(\mathcal{H}_i)$: the set of bounded operators on \mathcal{H}_i

Fact. There is a 1-1 correspondence:

 $\mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ bounded

 $\mathcal{T}(\mathcal{H}_i)$ is a Banach space wrt. trace norm, and $\mathcal{T}(\mathcal{H}_i)^* \cong \mathcal{B}(\mathcal{H}_i)$

 $\mathcal{E}^*: \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ weak*-continuous (called **normal**)

Dualising Quantum Operations

 $\mathcal{B}(\mathcal{H}_i)$: the set of bounded operators on \mathcal{H}_i

Fact. There is a 1-1 correspondence:

 $\mathcal{T}(\mathcal{H}_i)$ is a Banach space wrt. trace norm, and $\mathcal{T}(\mathcal{H}_i)^* \cong \mathcal{B}(\mathcal{H}_i)$

 $< \mathcal{E}^*(\mathcal{I}) \leq \mathcal{I}$

 $\mathcal{E}^*: \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ weak*-continuous (called **normal**)

This correspondence restricts to:

 $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ bounded

 $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ QO, i.e. CP trace-nonincreasing

 $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1) \text{ normal CP pre-unital}$ (sub-unital)

QOs arise in two equivalent (dual) forms:

$$\mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$$
 CP trace-nonincreasing

 $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ normal CP pre-unital

QOs arise in two equivalent (dual) forms:

span of density operators

 $\mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ CP trace-nonincreasing

 $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ normal CP pre-unital

QOs arise in two equivalent (dual) forms:

span of density operators space of states $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ CP trace-nonincreasing

 $\mathcal{E}^*: \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ normal CP pre-unital

QOs arise in two equivalent (dual) forms:

span of density operators space of states

 $\mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2) \text{ CP trace-nonincreasing}$

 $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ normal CP pre-unital

span of self-adjoint operators

QOs arise in two equivalent (dual) forms:

span of density operators space of states

 $\mathcal{E} \colon \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2) \text{ CP trace-nonincreasing}$

 $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ normal CP pre-unital

span of self-adjoint operators

algebra of observables

QOs arise in two equivalent (dual) forms:

span of density operators

 $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$ CP trace-nonincreasing

 $\mathcal{E}^*: \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ normal CP pre-unital

span of self-adjoint operators

algebra of observables

 \mathcal{E} is a QO in the **Schrödinger** picture (**states** evolve)

 \mathcal{E}^* is a QO in the **Heisenberg** picture (**observables** evolve)

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

Selinger's QO

Selinger's solution: generalise QOs into maps of type

$$\begin{array}{ll} \text{Def.} & k & l \\ \text{A linear map} & \mathcal{E} \colon \bigoplus_{j=1}^k \mathcal{M}_{n_j} \longrightarrow \bigoplus_{i=1}^l \mathcal{M}_{m_i} \text{ is a } \textbf{QO} \\ & \text{(in the Schrödinger pic.)} \\ & \stackrel{\text{def}}{\iff} & \text{it is CP and trace-nonincreasing.} \end{array}$$

Selinger's QO

Selinger's solution: generalise QOs into maps of type

$$\begin{array}{lll} \begin{array}{lll} \text{Def.} & k & l\\ \text{A linear map} & \mathcal{E} \colon \bigoplus_{j=1}^k \mathcal{M}_{n_j} \longrightarrow \bigoplus_{i=1}^l \mathcal{M}_{m_i} \text{ is a } \textbf{QO} \\ & \text{(in the Schrödinger pic.)} \end{array} \\ \stackrel{\text{def}}{\iff} & \text{it is CP and trace-nonincreasing.} \end{array}$$

$$\begin{bmatrix} & q : qbit \\ & q : qbit \\ & q : qbit \end{bmatrix} : \mathcal{M}_2 \longrightarrow \mathcal{M}_2 \oplus \mathcal{M}_2$$

The category Q

Def. The category \mathbf{Q} is defined as follows. **Objects**: $\bigoplus_{j=1}^{k} \mathcal{M}_{n_j}$ for each sequence of natural numbers (n_1, \ldots, n_k) **Arrows**: \mathcal{E} : $\bigoplus_{j=1}^{k} \mathcal{M}_{n_j} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_i}$ Selinger's QO

Categorical Property of Q

Categorical Property of Q tensor product SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with Q is an finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$: $A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C), \quad A \otimes 0 \cong 0$

Categorical Property of Q tensor product SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with Q is an finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$: direct sum $A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C), \quad A \otimes 0 \cong 0$

Categorical Property of Q

tensor product

Q is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:

 $A\otimes (B\oplus C)\cong (A\otimes B)\oplus (A\otimes C), \quad A\otimes 0\cong 0 \ .$

Categorical Property of Q

the category of pointed ω cpos and ω -continuous maps

Q is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:

 $A\otimes (B\oplus C)\cong (A\otimes B)\oplus (A\otimes C), \quad A\otimes 0\cong 0$.

tensor product

Q gives a semantics for QPL.

Cho

 ${\bf Q}\,$ gives a semantics for QPL.

Sufficient condition to give a semantics for QPL

C is an ωCppo-enriched SMC (C, ⊗, I) with
 ωCppo-enriched finite coproducts (⊕, 0) such that
 ⊗ distributes over (⊕, 0) :

 $A\otimes (B\oplus C)\cong (A\otimes B)\oplus (A\otimes C), \quad A\otimes 0\cong 0$.

- An object $\llbracket qbit \rrbracket \in \mathbf{C}$ $(\llbracket bit \rrbracket = I \oplus I)$
- Some additional conditions...

$$f \circ \bot = \bot$$
$$f \otimes \bot = \bot$$
$$\iota \colon I \oplus I \to \llbracket \text{qbit} \rrbracket$$
$$p \colon \llbracket \text{qbit} \rrbracket \to I \oplus I$$
$$p \circ \iota = \text{id}$$

Thm. Such C gives a semantics for QPL.

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Operator Algebras

Concrete (*-subalgebra of $\mathcal{B}(\mathcal{H})$)	Abstract (Hilbert space-free)
norm-closed	C*-algebra
weakly closed, unital = von Neumann algebra	W*-algebra

- First, von Neumann algebras are introduced by von Neumann, motivated by quantum theory
- In the context of quantum theory, operator algebras are seen as algebras of observables
- Algebraic quantum theory
 - Emphasis on operator algebras, rather than Hilbert spaces
 - Successful in quantum field theory, quantum statistical mechanics

W*-algebra

Def. (Sakai's characterisation) A *W**-algebra is a C*-algebra *M* that has a predual M_* , i.e. $M \cong (M_*)^*$.

W*-algebra

Def. (Sakai's characterisation) A *W*^{*}-algebra is a C^{*}-algebra *M* that has a predual M_* , i.e. $M \cong (M_*)^*$.

Eg. $\mathcal{B}(\mathcal{H}) \cong \mathcal{T}(\mathcal{H})^*$ is a W*-algebra for a Hilbert space \mathcal{H}

W*-algebra

Def. (Sakai's characterisation) A *W*^{*}-algebra is a C^{*}-algebra *M* that has a predual M_* , i.e. $M \cong (M_*)^*$.

Eg. $\mathcal{B}(\mathcal{H}) \cong \mathcal{T}(\mathcal{H})^*$ is a W*-algebra for a Hilbert space \mathcal{H}

Def. A map between W*-algebras is *normal* $\stackrel{\text{def}}{\iff}$ it is weak*-continuous.

W*-algebra

Def. (Sakai's characterisation) A *W**-algebra is a C*-algebra *M* that has a predual M_* , i.e. $M \cong (M_*)^*$.

Eg. $\mathcal{B}(\mathcal{H}) \cong \mathcal{T}(\mathcal{H})^*$ is a W*-algebra for a Hilbert space \mathcal{H}

Def. A map between W*-algebras is *normal* $\stackrel{\text{def}}{\iff}$ it is weak*-continuous.

Eg. $\mathcal{E}^*: \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ QO in the Heisenberg picture is (by def.) a normal CP pre-unital map betw. W*-alg.

The category $Wstar_{CP-PU}$

Def. The category Wstar_{CP-PU} is defined as follows.
 Objects: W*-algebras
 Arrows: normal CP pre-unital maps

QO $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ is an arrow in $Wstar_{CP-PU}$

The category $Wstar_{\rm CP-PU}$

Def. The category Wstar_{CP-PU} is defined as follows.
 Objects: W*-algebras
 Arrows: normal CP pre-unital maps

QO $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ is an arrow in $Wstar_{CP-PU}$

Moreover, there is one-to-one correspondence:

$$\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \text{ Selinger's QO, i.e. arrow in } \mathbf{Q}$$
$$\overline{\mathcal{E}^{*}: \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \longrightarrow \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \text{ arrow in } \mathbf{Wstar}_{\mathrm{CP-PU}}}$$

The category $Wstar_{\rm CP-PU}$

Def. The category Wstar_{CP-PU} is defined as follows.
 Objects: W*-algebras
 Arrows: normal CP pre-unital maps

QO $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$ is an arrow in $Wstar_{CP-PU}$

Moreover, there is one-to-one correspondence:

$$\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \text{ Selinger's QO, i.e. arrow in } \mathbf{Q}$$
$$\overline{\mathcal{E}^{*}: \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \longrightarrow \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \text{ arrow in } \mathbf{Wstar}_{\mathrm{CP-PU}}}$$

This gives a full embedding $\, {\bf Q} \longrightarrow ({\bf Wstar}_{\rm CP-PU})^{\rm op}$

Kraus' (simple) QO $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$

 $\mathcal{E}^* \colon \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$

Selinger's QO

$$\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_j} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_i}$$

Kraus' (simple) QO $\mathcal{E}: \mathcal{T}(\mathcal{H}_1) \longrightarrow \mathcal{T}(\mathcal{H}_2)$

$$\mathcal{E}^*\colon \mathcal{B}(\mathcal{H}_2)\longrightarrow \mathcal{B}(\mathcal{H}_1)$$

Selinger's QO

$$\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_j} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_i}$$

normal CP pre-unital map between W*-algebras $f: M \longrightarrow N$ in $\mathbf{Wstar}_{\text{CP-PU}}$

 $Wstar_{CP-PU}$ naturally arises as the category whose arrows are **quantum operations** (in the Heisenberg picture)

 $Wstar_{CP-PU}$ naturally arises as the category whose arrows are **quantum operations** (in the Heisenberg picture)

The present work shows:

 $Wstar_{\mathrm{CP-PU}}$ is "nice" enough to give a sem. for QPL

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Sufficient condition to give a semantics for QPL

C is an ωCppo-enriched SMC (C, ⊗, I) with
 ωCppo-enriched finite coproducts (⊕, 0) such that
 ⊗ distributes over (⊕, 0) :

 $A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C), \quad A \otimes 0 \cong 0$

An object [[qbit]] ∈ C

([[bit]] = I ⊕ I)

Some additional conditions...

Thm. Such C gives a semantics for QPL.

Cho

15

Sufficient condition to give a semantics for QPL

C is an ωCppo-enriched SMC (C, ⊗, I) with
 ωCppo-enriched finite coproducts (⊕, 0) such that
 ⊗ distributes over (⊕, 0) :

 $A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C), \quad A \otimes 0 \cong 0$.

An object [[qbit]] ∈ C ([[bit]] = I ⊕ I)
Some additional conditions...
Thm. Such C gives a semantics for QPL.

Cho

Goal: $(Wstar_{CP-PU})^{op}$ satisfies these conditions

15

Categorical Property of $Wstar_{\mathrm{CP-PU}}$

Wstar_{CP-PU} is an SMC (Wstar_{CP-PU}, $\overline{\otimes}$, \mathbb{C}) with finite products (\oplus , 0) such that $\overline{\otimes}$ distributes over (\oplus , 0):

 $M \overline{\otimes} (N \oplus L) \cong (M \overline{\otimes} N) \oplus (M \overline{\otimes} L), \quad M \overline{\otimes} 0 \cong 0$

spatial W*-tensor product

Wstar_{CP-PU} is an SMC (Wstar_{CP-PU}, $\overline{\otimes}$, \mathbb{C}) with finite products (\oplus , 0) such that $\overline{\otimes}$ distributes over (\oplus , 0):

 $M \overline{\otimes} (N \oplus L) \cong (M \overline{\otimes} N) \oplus (M \overline{\otimes} L), \quad M \overline{\otimes} 0 \cong 0$

spatial W*-tensor product

Wstar_{CP-PU} is an SMC (Wstar_{CP-PU}, $\overline{\otimes}$, \mathbb{C}) with finite products (\oplus , 0) direct sum of W*-algebras such that $\overline{\otimes}$ distributes over (\oplus , 0) :

 $M \overline{\otimes} (N \oplus L) \cong (M \overline{\otimes} N) \oplus (M \overline{\otimes} L), \quad M \overline{\otimes} 0 \cong 0$

spatial W*-tensor product

Wstar_{CP-PU} is an SMC (Wstar_{CP-PU}, $\overline{\otimes}$, \mathbb{C}) with finite products (\oplus , 0) direct sum of W*-algebras such that $\overline{\otimes}$ distributes over (\oplus , 0) :

 $M \overline{\otimes} (N \oplus L) \cong (M \overline{\otimes} N) \oplus (M \overline{\otimes} L), \quad M \overline{\otimes} 0 \cong 0$

Main problem. Wstar_{\rm CP-PU} is $\omega Cppo$ -enriched?

spatial W*-tensor product

Wstar_{CP-PU} is an SMC (Wstar_{CP-PU}, $\overline{\otimes}$, \mathbb{C}) with finite products (\oplus , 0) direct sum of W*-algebras such that $\overline{\otimes}$ distributes over (\oplus , 0) :

 $M \overline{\otimes} (N \oplus L) \cong (M \overline{\otimes} N) \oplus (M \overline{\otimes} L), \quad M \overline{\otimes} 0 \cong 0$

Main problem. Wstar_{CP-PU} is ω Cppo-enriched?

Yes! In fact, $Wstar_{CP-PU}$ is $Dcppo_{\perp}$ -enriched

the category of pointed dcpos and strict Scott-continuous maps

Thm. Every W*-algebra is **monotone closed**, *i.e.* every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Thm. Every W*-algebra is **monotone closed**, *i.e.* every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W*-algebra. (Kadison's characterisation)

Thm. Every W*-algebra is **monotone closed**, *i.e.* every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W*-algebra. (Kadison's characterisation)

cf. A poset is *directed complete* $\stackrel{\text{def}}{\iff}$ every directed subset has a supremum.

Thm. Every W*-algebra is **monotone closed**, *i.e.* every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W*-algebra. (Kadison's characterisation)

cf. A poset is *directed complete* $\stackrel{\text{def}}{\iff}$ every directed subset has a supremum.

Prop. A C*-algebra A is monotone closed $\iff [0,1]_A = \{a \in A \mid 0 \le a \le 1\}$ is directed complete.

the set of effects

Thm. Every W*-algebra is **monotone closed**, *i.e.* every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W*-algebra. (Kadison's characterisation)

cf. A poset is *directed complete* $\stackrel{\text{def}}{\iff}$ every directed subset has a supremum.

Prop. A C*-algebra A is monotone closed $\iff [0,1]_A = \{a \in A \mid 0 \le a \le 1\}$ is directed complete.

the set of effects

For every W*-algebra M, $[0,1]_M$ is a (pointed) dcpo.

W*-algebras and Domain theory

Prop. $f: M \to N$ positive pre-unital map betw. W*-alg. f is normal (i.e. weak*-continuous) \iff the restriction $f: [0,1]_M \to [0,1]_N$ is Scott-continuous

W*-algebras and Domain theory

Prop. $f: M \to N$ positive pre-unital map betw. W*-alg. f is normal (i.e. weak*-continuous)

 \iff the restriction $f: [0,1]_M \rightarrow [0,1]_N$ is Scott-continuous

W*-algebras behave well domain-theoretically

W*-algebras and Domain theory

Prop. $f: M \to N$ positive pre-unital map betw. W*-alg. *f* is normal (i.e. weak*-continuous)

 \iff the restriction $f: [0,1]_M \rightarrow [0,1]_N$ is Scott-continuous

W*-algebras behave well domain-theoretically

Dcpo structure of W*-algebras "lifts" to hom-set with an ordering: $f \sqsubseteq g \iff g - f$ is CP

Thm. $M, N : W^*$ -algebras. Wstar_{CP-PU}(M, N) is a pointed dcpo.

Moreover, the composition of arrows $\mathbf{Wstar}_{\mathrm{CP-PU}}(N,L) \times \mathbf{Wstar}_{\mathrm{CP-PU}}(M,N) \rightarrow \mathbf{Wstar}_{\mathrm{CP-PU}}(M,L)$ $(g,f) \mapsto g \circ f$

is strict Scott-continuous. Therefore:

Thm. $Wstar_{CP-PU}$ is a $Dcppo_{\perp}$ -enriched category

Moreover, the composition of arrows $\mathbf{W}\mathbf{star}_{\mathrm{CP-PU}}(N,L) \times \mathbf{W}\mathbf{star}_{\mathrm{CP-PU}}(M,N) \rightarrow \mathbf{W}\mathbf{star}_{\mathrm{CP-PU}}(M,L)$ $(g,f) \mapsto g \circ f$

is strict Scott-continuous. Therefore:

Thm. $Wstar_{CP-PU}$ is a $Dcppo_{\perp}$ -enriched category

We can also show:

 $\begin{aligned} \mathbf{Wstar}_{\mathrm{CP-PU}}(M,N) \times \mathbf{Wstar}_{\mathrm{CP-PU}}(M',N') \to \mathbf{Wstar}_{\mathrm{CP-PU}}(M \overline{\otimes} M',N \overline{\otimes} N') \\ (f,g) \mapsto f \overline{\otimes} g \end{aligned}$

$$\begin{split} \mathbf{Wstar}_{\mathrm{CP-PU}}(M,N) \times \mathbf{Wstar}_{\mathrm{CP-PU}}(M,L) \to \mathbf{Wstar}_{\mathrm{CP-PU}}(M,N\oplus L) \\ & (f,g) \mapsto \langle f,g \rangle \end{split}$$

are strict Scott-continuous. Therefore:

Thm. (Wstar_{CP-PU}, $\overline{\otimes}$, \mathbb{C}) is a Dcppo₁-enriched SMC with Dcppo₁-enriched finite products.

$(Wstar_{CP-PU})^{op}$ satisfies all conditions of the following.

Sufficient condition to give a semantics for QPL

C is an *w*Cppo-enriched SMC (C, ⊗, I) with
 *w*Cppo-enriched finite coproducts (⊕, 0) such that
 ⊗ distributes over (⊕, 0) :

 $A\otimes (B\oplus C)\cong (A\otimes B)\oplus (A\otimes C), \quad A\otimes 0\cong 0$.

- An object $\llbracket qbit \rrbracket \in \mathbf{C}$ $(\llbracket bit \rrbracket = I \oplus I)$
- Some additional conditions...

 $f \circ \bot = \bot$ $f \otimes \bot = \bot$ $\iota \colon I \oplus I \to \llbracket \text{qbit} \rrbracket$ $p \colon \llbracket \text{qbit} \rrbracket \to I \oplus I$ $p \circ \iota = \text{id}$

15

Thm. Such C gives a semantics for QPL.

Cho

$(Wstar_{CP-PU})^{op}$ satisfies all conditions of the following.

Note. $Dcppo_{\perp}$ -enrichment implies $\omega Cppo$ -enrichment.

Sufficient condition to give a semantics for QPL

C is an ωCppo-enriched SMC (C, ⊗, I) with ωCppo-enriched finite coproducts (⊕, 0) such that ⊗ distributes over (⊕, 0) :

 $A\otimes (B\oplus C)\cong (A\otimes B)\oplus (A\otimes C), \quad A\otimes 0\cong 0$.

- An object $\llbracket qbit \rrbracket \in \mathbf{C}$ $(\llbracket bit \rrbracket = I \oplus I)$
- Some additional conditions...

 $f \circ \bot = \bot$ $f \otimes \bot = \bot$ $\iota \colon I \oplus I \to \llbracket \text{qbit} \rrbracket$ $p \colon \llbracket \text{qbit} \rrbracket \to I \oplus I$ $p \circ \iota = \text{id}$

15

Thm. Such C gives a semantics for QPL.

Cho

$(Wstar_{CP-PU})^{op}$ satisfies all conditions of the following.

Note. $Dcppo_{\perp}$ -enrichment implies $\omega Cppo$ -enrichment.

Sufficient condition to give a semantics for QPL

C is an ωCppo-enriched SMC (C, ⊗, I) with ωCppo-enriched finite coproducts (⊕, 0) such that ⊗ distributes over (⊕, 0) :

 $A\otimes (B\oplus C)\cong (A\otimes B)\oplus (A\otimes C), \quad A\otimes 0\cong 0$.

• An object $\llbracket qbit \rrbracket \in \mathbf{C}$ $(\llbracket bit \rrbracket = I \oplus I)$

• Some additional conditions...

 $f \otimes \bot = \bot$ $\iota \colon I \oplus I \to \llbracket \text{qbit} \rrbracket$ $p \colon \llbracket \text{qbit} \rrbracket \to I \oplus I$ $p \circ \iota = \text{id}$

15

 $f \circ \bot = \bot$

Thm. Such C gives a semantics for QPL.

Cho

• Recall that there is a full embedding:

 $\mathbf{Q} \longrightarrow (\mathbf{Wstar}_{\mathrm{CP-PU}})^{\mathrm{op}}$

C* vs W*

• The category $Cstar_{CP-PU}$ of C*-algebras and CP pre-unital maps does not work.

C* vs W*

- The category $Cstar_{\rm CP-PU}$ of C*-algebras and CP pre-unital maps does not work.
- Because $Cstar_{CP-PU}$ is neither $Dcppo_{\perp}$ -enriched nor $\omega Cppo$ -enriched.

C* vs W*

- The category $Cstar_{\rm CP-PU}$ of C*-algebras and CP pre-unital maps does not work.
- Because $Cstar_{CP-PU}$ is neither $Dcppo_{\perp}$ -enriched nor $\omega Cppo$ -enriched.

W*-algebras are the appropriate setting

C* vs W*

- The category $Cstar_{\rm CP-PU}$ of C*-algebras and CP pre-unital maps does not work.
- Because $Cstar_{CP-PU}$ is neither $Dcppo_{\perp}$ -enriched nor $\omega Cppo$ -enriched.

W*-algebras are the appropriate setting

(Note: $\mathbf{FdCstar}_{\mathrm{CP-PU}} = \mathbf{FdWstar}_{\mathrm{CP-PU}} \simeq \mathbf{Q}^{\mathrm{op}}$)

$$\llbracket bit \rrbracket = \mathbb{C} \oplus \mathbb{C}$$

Example 1

 $\llbracket \text{bit} \rrbracket = \mathbb{C} \oplus \mathbb{C}$ $\llbracket \text{trit} \rrbracket = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$

Example 1

Example 1

Example 2

 $\llbracket qbit \rrbracket = \mathcal{M}_2 \cong \mathcal{B}(\mathbb{C}^2)$

Example 1

Example 2

 $\llbracket qbit \rrbracket = \mathcal{M}_2 \cong \mathcal{B}(\mathbb{C}^2)$ $\llbracket qtrit \rrbracket = \mathcal{M}_3 \cong \mathcal{B}(\mathbb{C}^3)$

Example 1

Example 2

 $\llbracket qbit \rrbracket = \mathcal{M}_2 \cong \mathcal{B}(\mathbb{C}^2)$ $\llbracket qtrit \rrbracket = \mathcal{M}_3 \cong \mathcal{B}(\mathbb{C}^3)$

 $\llbracket qnat \rrbracket = \mathcal{B}(\mathcal{H})$ where \mathcal{H} is countable dim.

 $\in \mathbf{Wstar}_{\mathrm{CP-PU}}$ but $otin \mathbf{Q}$

Example 1

but $\notin \mathbf{Q}$

Example 2

 $\llbracket qbit \rrbracket = \mathcal{M}_2 \cong \mathcal{B}(\mathbb{C}^2)$ $\llbracket qtrit \rrbracket = \mathcal{M}_3 \cong \mathcal{B}(\mathbb{C}^3)$

$$\begin{split} \llbracket qnat \rrbracket &= \mathcal{B}(\mathcal{H}) \\ \text{where } \mathcal{H} \text{ is countable dim.} \\ &\in \mathbf{Wstar}_{\mathrm{CP-PU}} \\ &\text{but } \notin \mathbf{Q} \end{split}$$

Example 1

$$\ell^{\infty}(X) \coloneqq \left\{ \varphi \colon X \to \mathbb{C} \mid \sup_{x \in X} |\varphi(x)| < \infty \right\}$$

 $\llbracket \text{bit} \rrbracket = \mathbb{C} \oplus \mathbb{C}$ $\llbracket \text{trit} \rrbracket = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$

 $\in \mathbf{Wstar}_{\mathrm{CP-PU}}$ but $otin \mathbf{Q}$

Example 1

$$\ell^{\infty}(X) \coloneqq \left\{ \varphi \colon X \to \mathbb{C} \mid \sup_{x \in X} |\varphi(x)| < \infty \right\}$$

 $\llbracket \text{bit} \rrbracket = \mathbb{C} \oplus \mathbb{C} \cong \ell^{\infty}(2)$ $\llbracket \text{trit} \rrbracket = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \cong \ell^{\infty}(3)$

 $\in \mathbf{Wstar}_{\mathrm{CP-PU}}$ but $otin \mathbf{Q}$

Classical computation in commutative W*-algebras

Thm.the category of commutative W*-algebrasThere is an embedding $\ell^{\infty}: \mathbf{Set} \longrightarrow (\mathbf{CWstar}_{M-I-U})^{\mathrm{op}} \subseteq (\mathbf{Wstar}_{CP-PU})^{\mathrm{op}}$ with $\ell^{\infty}(X \times Y) \cong \ell^{\infty}(X) \boxtimes \ell^{\infty}(Y)$

Classical computation in commutative W*-algebras

Thm.the category of commutative W*-algebrasThere is an embedding $\ell^{\infty} : \mathbf{Set} \longrightarrow (\mathbf{CWstar}_{M-I-U})^{\mathrm{op}} \subseteq (\mathbf{Wstar}_{CP-PU})^{\mathrm{op}}$ with $\ell^{\infty}(X \times Y) \cong \ell^{\infty}(X) \boxtimes \ell^{\infty}(Y)$

Classical (deterministic) computation in **Set** arises as a map between **commutative** W*-algebras

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Future work

 Semantics by operator algebras for higher-order quantum programming languages, or quantum lambda calculi

Future work

 Semantics by operator algebras for higher-order quantum programming languages, or quantum lambda calculi

Q. Is $(Wstar_{CP-PU})^{op}$ monoidal closed?

Future work

- Semantics by operator algebras for higher-order quantum programming languages, or quantum lambda calculi
 - **Q.** Is $(Wstar_{CP-PU})^{op}$ monoidal closed?

 Exploit the duality between commutative W*-algebras and measurable space

cf. Gelfand duality $(\mathbf{CCstar}_{M-I-U})^{op} \simeq \mathbf{CompHaus}$

Conclusions

- Normal CP pre-unital maps between W*-algebras generalise Kraus' and Selinger's QO
- $Wstar_{CP-PU}$ is a $Dcppo_{\perp}$ -enriched SMC with $Dcppo_{\perp}$ -enriched finite products
 - "nice" enough to give a semantics for Selinger's QPL

Conclusions

- Normal CP pre-unital maps between W*-algebras generalise Kraus' and Selinger's QO
- $Wstar_{CP-PU}$ is a $Dcppo_{\perp}$ -enriched SMC with $Dcppo_{\perp}$ -enriched finite products
 - "nice" enough to give a semantics for Selinger's QPL
- W*-algebras give a flexible model for quantum computation
 - accommodate infinite dim. structures and classical (= commutative) computation
- The present work is the first step. A lot of things to do!
 - cf. Mathys Rennela's work (MFPS XXX, 2014)