Semantics for a Quantum Programming Language by Operator Algebras

Kenta Cho
Radboud University Nijmegen

QPL 2014
5 June 2014

Semantics for a Quantum Programming Language by Operator Algebras

Kenta Cho
Radboud University Nijmegen

Master thesis
University of Tokyo

QPL 2014
5 June 2014

Overview

- Semantics for a first-order functional quantum programming language QPL [Selinger 2004]
- Use the category $\mathbf{W s t a r}_{\text {CP-PU }}$ of W^{\star}-algebras and normal completely positive pre-unital maps
- Wstar $_{\text {CP-PU }}$ is a cpo ${ }_{\perp}$-enriched SMC with Dcppo $_{\perp}$-enriched finite products
- "nice" enough to give a semantics for QPL

Overview

- Semantics for a first-order functional quantum programming language QPL [Selinger 2004]
- Use the category Wstar $_{\text {CP-PU }}^{?}$ of W^{*}-algebras and normal completely positive pre-unital maps
- Wstar $_{\text {CP-PU }}$ is a cpo ${ }_{\perp}$-enriched SMC with Dcppo $_{\perp}$-enriched finite products
- "nice" enough to give a semantics for QPL

Overview

- Semantics for a first-order functional quantum programming language QPL [Selinger 2004]
?
- Use the category $\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}$ of W^{*}-algebras and normal completely positive pre-unital maps
quantum operations in the Heisenberg picture
- $\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}$ is a Dcppo ${ }_{\perp}$-enriched SMC with Dcppo $_{\perp}$-enriched finite products
- "nice" enough to give a semantics for QPL

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Quantum Operation [Kraus]
 (aka. superoperator)

$\mathcal{H}_{1}, \mathcal{H}_{2}$: Hilbert spaces

$$
\mathcal{T}\left(\mathbb{C}^{n}\right) \cong \mathcal{M}_{n} \begin{gathered}
\text { the set of } \\
\text { nan matrices }
\end{gathered}
$$

$\mathcal{T}\left(\mathcal{H}_{i}\right)$: the set of trace class operators on \mathcal{H}_{i}
Def. A linear map $\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is a quantum operation (QO)
$\stackrel{\text { def }}{\Longleftrightarrow}$ it is completely positive and trace-nonincreasing.

Quantum Operation [Kraus]
 (aka. superoperator)

$\mathcal{H}_{1}, \mathcal{H}_{2}$: Hilbert spaces
$\mathcal{T}\left(\mathbb{C}^{n}\right) \cong \mathcal{M}_{n} \begin{gathered}\text { the set of } \\ \mathrm{n} \times \text { m matrices }\end{gathered}$
$\mathcal{T}\left(\mathcal{H}_{i}\right)$: the set of trace class operators on \mathcal{H}_{i}
Def. A linear map $\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is a quantum operation (QO)
$\stackrel{\text { def }}{\Longleftrightarrow}$ it is completely positive and trace-nonincreasing.
ρ : state (density operator) on \mathcal{H}_{1} ie. positive operator on \mathcal{H}_{1} with $\operatorname{tr}(\rho)=1$ (hence $\rho \in \mathcal{T}\left(\mathcal{H}_{1}\right)$ by def.)

Quantum Operation [Kraus]
(aka. superoperator)
$\mathcal{H}_{1}, \mathcal{H}_{2}$: Hilbert spaces
$\mathcal{T}\left(\mathbb{C}^{n}\right) \cong \mathcal{M}_{n} \begin{gathered}\text { the set of } \\ n \times n \text { matrices }\end{gathered}$
$\mathcal{T}\left(\mathcal{H}_{i}\right)$: the set of trace class operators on \mathcal{H}_{i}
Def. A linear map $\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is a quantum operation (QO)
$\stackrel{\text { def }}{\Longrightarrow}$ it is completely positive and trace-nonincreasing.
ρ : state (density operator) on \mathcal{H}_{1} i.e. positive operator on \mathcal{H}_{1} with $\operatorname{tr}(\rho)=1$ (hence $\rho \in \mathcal{T}\left(\mathcal{H}_{1}\right)$ by def.)
$\longmapsto \mathcal{E}(\rho)$: positive operator on \mathcal{H}_{2} with $0 \leq \operatorname{tr}(\mathcal{E}(\rho)) \leq 1$ i.e. subnormalised state on \mathcal{H}_{2}

Complete positivity

Def. A linear map $\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is a quantum operation (QO)
$\stackrel{\text { def }}{\Longleftrightarrow}$ it is completely positive and trace-nonincreasing.

Complete positivity

Def. A linear map $\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is a quantum operation (QO)
$\stackrel{\text { def }}{\Longleftrightarrow}$ it is completely positive and trace-nonincreasing.
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is completely positive (CP)
$\stackrel{\text { def }}{\Longleftrightarrow} \forall n \in \mathbb{N}$
$\mathrm{id} \otimes \mathcal{E}: \mathcal{M}_{n} \otimes \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{M}_{n} \otimes \mathcal{T}\left(\mathcal{H}_{2}\right)$ is positive $\cong \mathcal{T}\left(\mathbb{C}^{n} \otimes \mathcal{H}_{1}\right) \quad \cong \mathcal{T}\left(\mathbb{C}^{n} \otimes \mathcal{H}_{2}\right)$

Complete positivity

Def. A linear map $\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is a quantum operation (QO)
$\stackrel{\text { def }}{\Longleftrightarrow}$ it is completely positive and trace-nonincreasing.
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ is completely positive (CP)
$\stackrel{\text { def }}{\Longleftrightarrow} \forall n \in \mathbb{N}$
$\mathrm{id} \otimes \mathcal{E}: \mathcal{M}_{n} \otimes \mathcal{T}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{M}_{n} \otimes \mathcal{T}\left(\mathcal{H}_{2}\right)$ is positive $\cong \mathcal{T}\left(\mathbb{C}^{n} \otimes \mathcal{H}_{1}\right) \quad \cong \mathcal{T}\left(\mathbb{C}^{n} \otimes \mathcal{H}_{2}\right)$
Compatibility with composition (i.e. tensor product) of systems

Dualising Quantum Operations

$\mathcal{B}\left(\mathcal{H}_{i}\right)$: the set of bounded operators on \mathcal{H}_{i}
Fact. There is a 1-1 correspondence:
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ bounded
$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ weak*-continuous (called normal)

Dualising Quantum Operations

$\mathcal{B}\left(\mathcal{H}_{i}\right)$: the set of bounded operators on \mathcal{H}_{i}
$\mathcal{T}\left(\mathcal{H}_{i}\right)$ is a Banach space
Fact. There is a 1-1 correspondence: wot. trace norm, and
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ bounded $\quad \mathcal{T}\left(\mathcal{H}_{i}\right)^{*} \cong \mathcal{B}\left(\mathcal{H}_{i}\right)$
$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ weak*-continuous (called normal)

Dualising Quantum Operations

$\mathcal{B}\left(\mathcal{H}_{i}\right)$: the set of bounded operators on \mathcal{H}_{i}
$\mathcal{T}\left(\mathcal{H}_{i}\right)$ is a Banach space
Fact. There is a 1-1 correspondence: wry. trace norm, and
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ bounded $\quad \mathcal{T}\left(\mathcal{H}_{i}\right)^{*} \cong \mathcal{B}\left(\mathcal{H}_{i}\right)$
$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ weak*-continuous (called normal)

This correspondence restricts to:
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ QO, ie. CP trace-nonincreasing
$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ normal CP $\underset{\text { (sub-unital) }}{\text { pre-unital }}<\mathcal{E}^{*}(\mathcal{I}) \leq \mathcal{I}$

Schrödinger vs Heisenberg picture

QOs arise in two equivalent (dual) forms:
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ CP trace-nonincreasing
$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ normal CP pre-unital

Schrödinger vs Heisenberg picture

QOs arise in two equivalent (dual) forms:

span of density operators

$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ CP trace-nonincreasing
$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ normal CP pre-unital

Schrödinger vs Heisenberg picture

DOs arise in two equivalent (dual) forms:
$\quad \begin{aligned} & \text { span of density operators } \\ & \text { space of states }\end{aligned}$
$\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)$ CP trace-nonincreasing

Schrödinger vs Heisenberg picture

QOs arise in two equivalent (dual) forms:

$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ normal CP pre-unital

span of self-adjoint operators

Schrödinger vs Heisenberg picture

QOs arise in two equivalent (dual) forms:

$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ normal CP pre-unital
span of self-adjoint operators
algebra of observables

Schrödinger vs Heisenberg picture

DOs arise in two equivalent (dual) forms:

$\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ normal CP pre-unital
span of self-adjoint operators
algebra of observables
\mathcal{E} is a QO in the Schrödinger picture (states evolve)
\mathcal{E}^{*} is a QO in the Heisenberg picture (observables evolve)

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Selinger's QPL

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"

- Data types: qbit, bit
- Written as a flow chart

Selinger's QPL

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"

- Data types: qbit, bit
- Written as a flow chart

Selinger's QPL

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"

- Data types: qbit, bit
- Written as a flow chart

Selinger's QPL

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

Selinger's QPL

- QPL (QFC) [Selinger 2004]
- First-order functional quantum programming language
- Loop and recursion
- "Quantum data, Classical control"
- Data types: qbit, bit
- Written as a flow chart

Semantics for QPL

Semantics for QPL

Semantics for QPL

$$
\mathcal{T}\left(\mathbb{C}^{n}\right) \cong \mathcal{M}_{n} \begin{gathered}
\text { the set of } \\
n \times n \text { matrices }
\end{gathered}
$$

Kraus' "simple" QO is not suitable for classical control/data

Selinger's QO

Selinger's solution: generalise QOs into maps of type

$$
\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \quad \underbrace{\substack{\text { a }}}_{\begin{array}{c}
\text { direct sum } \\
\text { (of vector spaces) }
\end{array}}
$$

Def.
A linear map $\mathcal{E}: \bigoplus^{\bullet} \mathcal{M}_{n_{j}} \longrightarrow \stackrel{l}{\bigoplus} \mathcal{M}_{m_{i}}$ is a $\mathbf{Q} \mathbf{O}$

$$
j=1 \quad i=1 \quad \text { (in the Schrödinger pic.) }
$$

$\stackrel{\text { def }}{\Longleftrightarrow}$ it is CP and trace-nonincreasing.

Selinger's QO

Selinger's solution: generalise QOs into maps of type

$$
\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}}
$$

\oplus direct sum (of vector spaces)

Def.

A linear map $\mathcal{E}: \bigoplus^{\bullet} \mathcal{M}_{n_{j}} \longrightarrow \stackrel{l}{\bigoplus} \mathcal{M}_{m_{i}}$ is a $\mathbf{Q} \mathbf{O}$

$$
\begin{aligned}
& j=1 \\
& d \text { trace-nonincreasing. }
\end{aligned}
$$

$$
\left.\prod_{\mathrm{q}: \text { qbit } \downarrow} \begin{array}{l}
\downarrow \mathrm{q}: \text { qbit }
\end{array}\right]: \mathcal{M}_{2} \longrightarrow \mathcal{M}_{2} \oplus \mathcal{M}_{2}
$$

The category \mathbf{Q}

Def. The category \mathbf{Q} is defined as follows.
Objects: $\bigoplus_{\bigoplus}^{k} \mathcal{M}_{n_{j}}$ for each sequence of natural numbers

$$
{ }_{j=1} \quad l
$$

$$
\left(n_{1}, \ldots, n_{k}\right)
$$

Arrows: $\mathcal{E}: \bigoplus_{j=1} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1} \mathcal{M}_{m_{i}}$ Selinger's QO

Categorical Property of \mathbf{Q}

\mathbf{Q} is an
$\operatorname{SMC}(\mathbf{Q}, \otimes, \mathbb{C})$ with
finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.

Categorical Property of \mathbf{Q}

tensor product

\mathbf{Q} is an $\operatorname{SMC}(\mathbf{Q}, \otimes, \mathbb{C})$ with finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.

Categorical Property of \mathbf{Q}

tensor product

\mathbf{Q} is an $\operatorname{SMC}(\mathbf{Q}, \otimes, \mathbb{C})$ with
finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
direct sum
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.

Categorical Property of \mathbf{Q}

\mathbf{Q} is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
direct sum
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.

Categorical Property of \mathbf{Q}

the category of pointed wcpos and w-continuous maps

tensor product

\mathbf{Q} is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
direct sum
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.

Categorical Property of \mathbf{Q}

each $\mathrm{Q}(A, B)$ is a pointed ωc po and composition is ω-continuous
the category of pointed wcpos and w-continuous maps
tensor product
\mathbf{Q} is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.

Categorical Property of \mathbf{Q}

each $\mathbf{Q}(A, B)$ is a pointed ωc cpo and composition is ω-continuous
the category of pointed wcpos and w-continuous maps
tensor product
\mathbf{Q} is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
direct sum
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.
Thm. With the interpretation of types

$$
\begin{aligned}
\llbracket q \mathrm{qbit} \rrbracket & =\mathcal{M}_{2} \\
\llbracket \mathrm{bit} \rrbracket & =\mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

Q gives a semantics for QPL.

Categorical Property of \mathbf{Q}

each $\mathrm{Q}(A, B)$ is a pointed ω cpo and composition is ω-continuous
for loop and recursion
the category of pointed wcpos and w-continuous maps
tensor product
\mathbf{Q} is an ω Cppo-enriched SMC $(\mathbf{Q}, \otimes, \mathbb{C})$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that
\otimes distributes over $(\oplus, 0)$:
direct sum
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.
Thm. With the interpretation of types

$$
\begin{aligned}
\llbracket q \mathrm{qbit} \rrbracket & =\mathcal{M}_{2} \\
\llbracket \mathrm{bit} \rrbracket & =\mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

Q gives a semantics for QPL.

Sufficient condition to give a semantics for QPL

- \mathbf{C} is an ω Cppo-enriched $\operatorname{SMC}(\mathbf{C}, \otimes, I)$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:

$$
A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0
$$

- An object $\llbracket q b i t \rrbracket \in \mathbf{C}$

$$
(\llbracket \mathrm{bit} \rrbracket=I \oplus I)
$$

- Some additional conditions...

$$
\begin{aligned}
& f \circ \perp=\perp \\
& f \otimes \perp=\perp \\
& \iota: I \oplus I \rightarrow \llbracket q \text { qit } \rrbracket \\
& p: \llbracket q b i t \rrbracket \rightarrow I \oplus I \\
& p \circ \iota=\mathrm{id}
\end{aligned}
$$

Thm. Such C gives a semantics for QPL.

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W^{*}-algebras
- Future work and Conclusions

Operator Algebras

Concrete (*-subalgebra of $\boldsymbol{B}(\mathcal{H}))$	Abstract (Hilbert space-free)
norm-closed	C'-algebra *
weakly closed, unital = von Neumann algebra	W *-algebra

- First, von Neumann algebras are introduced by von Neumann, motivated by quantum theory
- In the context of quantum theory, operator algebras are seen as algebras of observables
- Algebraic quantum theory
- Emphasis on operator algebras, rather than Hilbert spaces
- Successful in quantum field theory, quantum statistical mechanics

W*-algebra

Def. (Sakai's characterisation)
A W^{*}-algebra is a C*-algebra M that has a predual M_{*},
i.e. $M \cong\left(M_{*}\right)^{*}$.

W*-algebra

Def. (Sakai's characterisation)
A W^{*}-algebra is a C*-algebra M that has a predual M_{*},
i.e. $M \cong\left(M_{*}\right)^{*}$.

Eg. $\mathcal{B}(\mathcal{H}) \cong \mathcal{T}(\mathcal{H})^{*}$ is a W^{*}-algebra for a Hilbert space \mathcal{H}

W*-algebra

Def. (Sakai's characterisation)
A W^{*}-algebra is a C*-algebra M that has a predual M_{*},
i.e. $M \cong\left(M_{*}\right)^{*}$.

Eg. $\mathcal{B}(\mathcal{H}) \cong \mathcal{T}(\mathcal{H})^{*}$ is a W^{*}-algebra for a Hilbert space \mathcal{H}

Def. A map between W^{*}-algebras is normal $\stackrel{\text { def }}{\Longleftrightarrow}$ it is weak ${ }^{*}$-continuous.

W*-algebra

Def. (Sakai's characterisation)
A W^{*}-algebra is a C*-algebra M that has a predual M_{*}, i.e. $M \cong\left(M_{*}\right)^{*}$.

Eg. $\mathcal{B}(\mathcal{H}) \cong \mathcal{T}(\mathcal{H})^{*}$ is a W^{\star}-algebra for a Hilbert space \mathcal{H}

Def. A map between W^{*}-algebras is normal $\stackrel{\text { def }}{\Longleftrightarrow}$ it is weak ${ }^{*}$-continuous.

Eg. $\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right) \mathrm{QO}$ in the Heisenberg picture is (by def.) a normal CP pre-unital map betw. W^{*}-alg.

The category $\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{Pu}}$

Def. The category Wstar $_{\text {CP-PU }}$ is defined as follows.
Objects: ${ }^{*}$-algebras
Arrows: normal CP pre-unital maps
$\mathrm{QO} \mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ is an arrow in \mathbf{W} star $_{\text {CP-PU }}$

The category $\mathbf{W s t a r}_{\text {CP-pu }}$

Def. The category Wstar $_{\text {CP-PU }}$ is defined as follows.
Objects: W*-algebras
Arrows: normal CP pre-unital maps
$\mathrm{QO} \mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ is an arrow in \mathbf{W} star $_{\text {CP-PU }}$
Moreover, there is one-to-one correspondence:
$\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}}$ Selinger's QO, i.e. arrow in \mathbf{Q}
$\overline{\mathcal{E}^{*}:} \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \longrightarrow \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}}$ arrow in \mathbf{W} star $_{\mathrm{CP}-\mathrm{PU}}$

The category Wstar ${ }_{\text {CP-PU }}$

Def. The category Wstar $_{\text {CP-PU }}$ is defined as follows.
Objects: W^{*}-algebras
Arrows: normal CP pre-unital maps
$\mathrm{QO} \mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ is an arrow in \mathbf{W} star $_{\text {CP-PU }}$
Moreover, there is one-to-one correspondence:
$\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}}$ Selinger's QO, i.e. arrow in \mathbf{Q}
$\mathcal{E}^{*}: \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}} \longrightarrow \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}}$ arrow in Wstar $_{\mathrm{CP}-\mathrm{PU}}$

This gives a full embedding $\mathbf{Q} \longrightarrow\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$

Various Quantum Operations

> Kraus' (simple) QO ${\underset{\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)}{ }{ }^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)} }$

Various Quantum Operations

> Kraus' (simple) QO ${\underset{\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)}{ }: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)} }$

Selinger's QO

normal CP pre-unital map between W^{*}-algebras $f: M \longrightarrow N$ in Wstar $_{\text {CP-PU }}$

Various Quantum Operations

$$
\begin{gathered}
\text { Kraus' (simple) QO } \\
\stackrel{\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)}{\overline{\mathcal{E}^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)}}
\end{gathered}
$$

normal CP pre-unital map between W^{*}-algebras $f: M \longrightarrow N$ in Wstar $_{\text {CP-PU }}$

Wstar ${ }_{\text {CP-Pu }}$ naturally arises as the category whose arrows are quantum operations (in the Heisenberg picture)

Various Quantum Operations

$$
\begin{gathered}
\text { Kraus' (simple) QO } \\
{\underset{\mathcal{E}: \mathcal{T}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{T}\left(\mathcal{H}_{2}\right)}{ }{ }^{*}: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)} }
\end{gathered}
$$

Selinger's QO

$$
\mathcal{E}: \bigoplus_{j=1}^{k} \mathcal{M}_{n_{j}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{M}_{m_{i}}
$$

$$
f: M \longrightarrow N \quad \text { in } \quad \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}
$$

Wstar ${ }_{\text {CP-Pu }}$ naturally arises as the category whose arrows are quantum operations (in the Heisenberg picture)
The present work shows:
Wstar $_{\text {CP-PU }}$ is "nice" enough to give a sem. for QPL

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W*-algebras
- Future work and Conclusions

Sufficient condition to give a semantics for QPL

- \mathbf{C} is an $\boldsymbol{\omega}$ Cppo-enriched $\operatorname{SMC}(\mathbf{C}, \otimes, I)$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:

$$
A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0
$$

- An object $\llbracket q b i t \rrbracket \in \mathbf{C}$

$$
(\llbracket \mathrm{bit} \rrbracket=I \oplus I)
$$

- Some additional conditions...

```
f\circ\perp=\perp
f\otimes\perp=\perp
\iota:I\oplusI->\llbracketqbit\rrbracket
p:\llbracketqbit\rrbracket}->I\oplus
p\circ\iota= id
```

Thm. Such C gives a semantics for QPL.

Sufficient condition to give a semantics for QPL

- \mathbf{C} is an $\boldsymbol{\omega} \mathbf{C p p o - e n r i c h e d ~} \operatorname{SMC}(\mathbf{C}, \otimes, I)$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:

$$
A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0
$$

- An object $\llbracket q b i t \rrbracket \in \mathbf{C}$

$$
(\llbracket \mathrm{bit} \rrbracket=I \oplus I)
$$

- Some additional conditions...

$$
\begin{gathered}
f \circ \perp=\perp \\
f \otimes \perp=\perp \\
\iota: I \oplus I \rightarrow \llbracket \text { qbit】 } \\
p: \llbracket q b i t \rrbracket \\
p \circ I \oplus I \\
p \circ \iota=\mathrm{id}
\end{gathered}
$$

Thm. Such C gives a semantics for QPL.

Goal: $\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$ satisfies these conditions

Categorical Property of Wstar ${ }_{\text {CP-Pu }}$

$\mathbf{W s t a r}_{\text {CP-PU }}$ is an SMC $\left(\mathbf{W s t a r}_{\text {CP-PU }}, \bar{\otimes}, \mathbb{C}\right)$
with finite products $(\oplus, 0)$
such that $\bar{\otimes}$ distributes over $(\oplus, 0)$:

$$
M \bar{\otimes}(N \oplus L) \cong(M \bar{\otimes} N) \oplus(M \bar{\otimes} L), \quad M \bar{\otimes} 0 \cong 0
$$

Categorical Property of Wstar CP-PU spatial
 W*-tensor product

$\mathbf{W s t a r}_{\text {CP-PU }}$ is an SMC $\left(\mathbf{W s t a r}_{\text {CP-PU }}, \bar{\otimes}, \mathbb{C}\right)$
with finite products $(\oplus, 0)$ such that $\bar{\otimes}$ distributes over $(\oplus, 0)$:

$$
M \bar{\otimes}(N \oplus L) \cong(M \bar{\otimes} N) \oplus(M \bar{\otimes} L), \quad M \bar{\otimes} 0 \cong 0
$$

Categorical Property of Wstar CP-PU spatial
 W*-tensor product

$\mathbf{W s t a r}_{\text {CP-PU }}$ is an SMC $\left(\mathbf{W s t a r}_{\text {CP-PU }}, \bar{\otimes}, \mathbb{C}\right)$ with finite products $(\oplus, 0) \longrightarrow$ direct sum of W^{*}-algebras such that $\bar{\otimes}$ distributes over $(\oplus, 0)$:

$$
M \bar{\otimes}(N \oplus L) \cong(M \bar{\otimes} N) \oplus(M \bar{\otimes} L), \quad M \bar{\otimes} 0 \cong 0
$$

Categorical Property of Wstar CP-PU $^{\text {Wen }}$ spatial
 W*-tensor product

$\mathbf{W s t a r}_{\text {CP-PU }}$ is an SMC $\left(\mathbf{W s t a r}_{\text {CP-PU }}, \bar{\otimes}, \mathbb{C}\right)$ with finite products $(\oplus, 0) \longrightarrow$ direct sum of W^{*}-algebras such that $\bar{\otimes}$ distributes over $(\oplus, 0)$:

$$
M \bar{\otimes}(N \oplus L) \cong(M \bar{\otimes} N) \oplus(M \bar{\otimes} L), \quad M \bar{\otimes} 0 \cong 0
$$

Main problem.

Wstar $_{\text {CP-PU }}$ is ω Cppo-enriched?

Categorical Property of Wstar ${ }_{\text {CP-PU }}$

$\mathbf{W s t a r}_{\text {CP-PU }}$ is an SMC $\left(\mathbf{W s t a r}_{\text {CP-PU }}, \bar{\otimes}, \mathbb{C}\right)$ with finite products $(\oplus, 0)$ direct sum of W^{*}-algebras such that $\bar{\otimes}$ distributes over $(\oplus, 0)$:

$$
M \bar{\otimes}(N \oplus L) \cong(M \bar{\otimes} N) \oplus(M \bar{\otimes} L), \quad M \bar{\otimes} 0 \cong 0
$$

Main problem.

Wstar $_{\text {CP-PU }}$ is ω Cppo-enriched?
Yes! In fact, Wstar $_{\text {CP-Pu }}$ is Dcppo $_{\perp}$-enriched

Monotone closedness of W^{*}-algebras

Thm. Every W^{*}-algebra is monotone closed, i.e.
every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Monotone closedness of W^{*}-algebras

Thm. Every W^{*}-algebra is monotone closed, i.e.
every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W^{\star}-algebra. (Kadison's characterisation)

Monotone closedness of W^{*}-algebras

Thm. Every W^{*}-algebra is monotone closed, i.e. every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W^{*}-algebra. (Kadison's characterisation)
cf. A poset is directed complete $\stackrel{\text { def }}{\Longleftrightarrow}$ every directed subset has a supremum.

Monotone closedness of W^{*}-algebras

Thm. Every W^{*}-algebra is monotone closed, i.e. every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W^{\star}-algebra. (Kadison's characterisation)
cf. A poset is directed complete $\stackrel{\text { det }}{\Longleftrightarrow}$ every directed subset has a supremum.
Prop. A C*-algebra A is monotone closed
$\Longleftrightarrow[0,1]_{A}=\{a \in A \mid 0 \leq a \leq 1\}$ is directed complete.
the set of effects

Monotone closedness of W^{\star}-algebras

Thm. Every W^{*}-algebra is monotone closed, i.e. every norm-bounded directed set of self-adjoint elements has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies certain condition is a W^{\star}-algebra. (Kadison's characterisation)
cf. A poset is directed complete $\stackrel{\text { def }}{\Longleftrightarrow}$ every directed subset has a supremum.
Prop. A C*-algebra A is monotone closed
$\Longleftrightarrow[0,1]_{A}=\{a \in A \mid 0 \leq a \leq 1\}$ is directed complete.
the set of effects
For every W^{\star}-algebra $M,[0,1]_{M}$ is a (pointed) dcpo.

W*-algebras and Domain theory

Prop. $f: M \rightarrow N$ positive pre-unital map betw. W^{\star}-alg. f is normal (i.e. weak*-continuous)
\Longleftrightarrow the restriction $f:[0,1]_{M} \rightarrow[0,1]_{N}$ is Scott-continuous

W*-algebras and Domain theory

Prop. $\quad f: M \rightarrow N$ positive pre-unital map betw. W^{\star}-alg. f is normal (i.e. weak*-continuous)
\Longleftrightarrow the restriction $f:[0,1]_{M} \rightarrow[0,1]_{N}$ is Scott-continuous

W*-algebras behave well domain-theoretically

W*-algebras and Domain theory

Prop. $\quad f: M \rightarrow N$ positive pre-unital map betw. W^{\star}-alg. f is normal (i.e. weak*-continuous)
\Longleftrightarrow the restriction $f:[0,1]_{M} \rightarrow[0,1]_{N}$ is Scott-continuous

W*-algebras behave well domain-theoretically
Dcpo structure of W^{*}-algebras "lifts" to hom-set with an ordering: $f \sqsubseteq g \stackrel{\text { def }}{\Longleftrightarrow} g-f$ is CP

Thm. $M, N: \mathrm{W}^{*}$-algebras.
$\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, N)$ is a pointed dcpo.

Moreover, the composition of arrows $\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(N, L) \times \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, N) \rightarrow \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, L)$ $(g, f) \mapsto g \circ f$
is strict Scott-continuous. Therefore:
Thm. Wstar ${ }_{\text {CP-PU }}$ is a Dcppo $_{\perp}$-enriched category

Moreover, the composition of arrows
$\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(N, L) \times \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, N) \rightarrow \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, L)$

$$
(g, f) \mapsto g \circ f
$$

is strict Scott-continuous. Therefore:
Thm. Wstar ${ }_{\text {CP-PU }}$ is a Dcppo $_{\perp}$-enriched category
We can also show:
$\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, N) \times \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\left(M^{\prime}, N^{\prime}\right) \rightarrow \mathbf{W} \operatorname{star}_{\mathrm{CP}-\mathrm{PU}}\left(M \bar{\otimes} M^{\prime}, N \bar{\otimes} N^{\prime}\right)$

$$
(f, g) \mapsto f \bar{\otimes} g
$$

$\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, N) \times \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}(M, L) \rightarrow \mathbf{W} \operatorname{star}_{\mathrm{CP}-\mathrm{PU}}(M, N \oplus L)$

$$
(f, g) \mapsto\langle f, g\rangle
$$

are strict Scott-continuous. Therefore:
Thm. $\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}, \bar{\otimes}, \mathbb{C}\right)$ is a Dcppo $_{\perp}$-enriched SMC with $\mathbf{D c p p o}_{\perp}$-enriched finite products.

$\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$ satisfies all conditions of the following.

Sufficient condition to give a semantics for QPL

- \mathbf{C} is an $\boldsymbol{\omega} \mathbf{C p p o - e n r i c h e d ~} \operatorname{SMC}(\mathbf{C}, \otimes, I)$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.
- An object $\llbracket q b i t \rrbracket \in \mathbf{C}$ $(\llbracket \mathrm{bit} \rrbracket=I \oplus I)$
- Some additional conditions
$f \circ \perp=\perp$
$f \otimes \perp=\perp$ $\iota: I \oplus I \rightarrow \llbracket q b i t \rrbracket$ $p: \llbracket q b i t \rrbracket \rightarrow I \oplus I$
$p \circ \iota=\mathrm{id}$

Thm. Such \mathbf{C} gives a semantics for QPL.

$\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$ satisfies all conditions of the following.

Note. Dcppo \perp_{\perp}-enrichment implies ω Cppo-enrichment.

Sufficient condition to give a semantics for QPL

- \mathbf{C} is an ω Cppo-enriched $\operatorname{SMC}(\mathbf{C}, \otimes, I)$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.
- An object $\llbracket q b i t \rrbracket \in \mathbf{C}$ $(\llbracket \mathrm{bbi} \rrbracket=I \oplus I)$
- Some additional conditions.
$f \circ \perp=\perp$
$f \otimes \perp=\perp$ $\iota: I \oplus I \rightarrow$ 【qbit】 $p: \llbracket q b i t \rrbracket \rightarrow I \oplus I$
$p \circ \iota=\mathrm{id}$

Thm. Such \mathbf{C} gives a semantics for QPL.

$\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$ satisfies all conditions of the following.

Note. Dcppo ${ }_{\perp}$-enrichment implies $\boldsymbol{\omega}$ Cppo-enrichment.

Sufficient condition to give a semantics for QPL

- \mathbf{C} is an $\boldsymbol{\omega} \mathbf{C p p o - e n r i c h e d ~} \operatorname{SMC}(\mathbf{C}, \otimes, I)$ with ω Cppo-enriched finite coproducts $(\oplus, 0)$ such that \otimes distributes over $(\oplus, 0)$:
$A \otimes(B \oplus C) \cong(A \otimes B) \oplus(A \otimes C), \quad A \otimes 0 \cong 0$.
- An object $\llbracket q b i t \rrbracket \in \mathbf{C}$ $(\llbracket \mathrm{bbi} \rrbracket=I \oplus I)$
- Some additional conditions..

$$
\begin{gathered}
f \circ \perp=\perp \\
f \otimes \perp=\perp \\
\iota: I \oplus I \rightarrow \llbracket \text { qbit } \\
p: \llbracket q b i t \rrbracket \\
p \circ I \oplus I \\
p \circ \iota=\mathrm{id}
\end{gathered}
$$

Thm. Such \mathbf{C} gives a semantics for QPL.
$\left(\mathbf{W s t a r}_{\text {CP-PU }}\right)^{\text {op }}$ gives a semantics for QPL

Comparison with Selinger's original semantics

- Recall that there is a full embedding:
$\mathbf{Q} \longrightarrow\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$

Comparison with Selinger's original semantics

- Recall that there is a full embedding:
$\mathbf{Q} \longrightarrow\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$

Comparison with Selinger's original semantics

- Recall that there is a full embedding:
$\mathbf{Q} \longrightarrow\left(\text { Wstar }_{\text {CP-PU }}\right)^{\text {op }}$
UI
$\left(\mathbf{F d W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$
the category of finite dimensional W^{*}-algebras

Comparison with Selinger's original semantics

- Recall that there is a full embedding:
$\mathbf{Q} \longrightarrow\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$

the category of finite dimensional W^{*}-algebras

Comparison with Selinger's original semantics

- Recall that there is a full embedding:

in the Schrödinger picture

$\mathbf{Q} \longrightarrow\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$

the category of finite dimensional W^{*}-algebras
$\left(\mathbf{W s t a r}_{\text {CP-Pu }}\right)^{\text {op }}$ can be seen as an infinite dimensional extension of \mathbf{Q}

C* vs W*

- The category Cstar ${ }_{\text {CP-PU }}$ of C^{*}-algebras and CP pre-unital maps does not work.

C* vs W*

- The category Cstar $_{\text {CP-PU }}$ of C^{*}-algebras and CP pre-unital maps does not work.
- Because Cstar ${ }_{\text {CP-PU }}$ is neither Dcppo ${ }_{\perp}$-enriched nor $\boldsymbol{\omega}$ Cppo-enriched.

C* vs W*

- The category Cstar $_{\text {CP-PU }}$ of C^{*}-algebras and CP pre-unital maps does not work.
- Because Cstar CP-PU is neither Dcppo ${ }_{\perp}$-enriched nor $\boldsymbol{\omega}$ Cppo-enriched.

W*-algebras are the appropriate setting

C* vs W*

- The category Cstar $_{\text {CP-PU }}$ of C^{*}-algebras and CP pre-unital maps does not work.
- Because Cstar ${ }_{\text {CP-PU }}$ is neither Dcppo ${ }_{\perp}$-enriched nor $\boldsymbol{\omega}$ Cppo-enriched.

W*-algebras are the appropriate setting
$\left(\right.$ Note: FdCstar $_{\mathrm{CP}-\mathrm{PU}}=$ FdWstar $\left._{\mathrm{CP}-\mathrm{PU}} \simeq \mathbf{Q}^{\mathrm{op}}\right)$

QPL with infinite types

Example 1

QPL with infinite types

Example 1

$$
\llbracket \mathrm{bit} \rrbracket=\mathbb{C} \oplus \mathbb{C}
$$

QPL with infinite types

Example 1

$$
\begin{aligned}
\llbracket \text { bit } & =\mathbb{C} \oplus \mathbb{C} \\
\llbracket \text { trit } & =\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

QPL with infinite types

Example 1

$$
\begin{aligned}
& \llbracket \text { bit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \\
& \llbracket \text { trit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \\
& \vdots \\
& \\
& \llbracket \text { nat } \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C}
\end{aligned}
$$

QPL with infinite types

Example 1

$$
\begin{aligned}
& \llbracket \text { bit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \\
& \llbracket \text { trit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \\
& \vdots
\end{aligned}
$$

$\in \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}$
but $\notin \mathbf{Q}$

QPL with infinite types

Example 1

$$
\begin{aligned}
\llbracket \mathrm{bit} \rrbracket & =\mathbb{C} \oplus \mathbb{C} \\
\llbracket \operatorname{trit} \rrbracket & =\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

$$
\llbracket \mathrm{nat} \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C}
$$

$\in \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}$
but $\notin \mathbf{Q}$

QPL with infinite types

Example 1

$$
\llbracket \mathrm{bit} \rrbracket=\mathbb{C} \oplus \mathbb{C}
$$

$$
\llbracket \text { trit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
$$

$$
\bullet
$$

$$
\llbracket \text { nat } \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C}
$$

$\in \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}$
but $\notin \mathbf{Q}$

QPL with infinite types

Example 1

$$
\begin{aligned}
\llbracket b i t \rrbracket & =\mathbb{C} \oplus \mathbb{C} \\
\llbracket \operatorname{trit} \rrbracket & =\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

$$
\llbracket \text { nat } \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C}
$$

$\in \mathbf{W s t a r}_{\text {CP-PU }}$
but $\notin \mathbf{Q}$

QPL with infinite types

Example 1

$$
\begin{aligned}
\llbracket \mathrm{bit} \rrbracket & =\mathbb{C} \oplus \mathbb{C} \\
\llbracket \operatorname{trit} \rrbracket & =\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

$$
\stackrel{\bullet}{\bullet}
$$

$$
\llbracket \text { nat } \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C}
$$

\in Wstar $_{\text {CP-PU }}$
but $\notin \mathbf{Q}$

Example 2

$$
\begin{array}{r}
\llbracket q b i t \rrbracket=\mathcal{M}_{2} \cong \mathcal{B}\left(\mathbb{C}^{2}\right) \\
\llbracket q \text { qrit } \rrbracket=\mathcal{M}_{3} \cong \mathcal{B}\left(\mathbb{C}^{3}\right)
\end{array}
$$

\llbracket qnat $\rrbracket=\mathcal{B}(\mathcal{H})$
where \mathcal{H} is countable dim.

QPL with infinite types

Example 1

$$
\begin{aligned}
\llbracket b i t \rrbracket & =\mathbb{C} \oplus \mathbb{C} \\
\llbracket \operatorname{trit} \rrbracket & =\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

$$
\stackrel{\bullet}{\bullet}
$$

$$
\begin{aligned}
\llbracket \text { nat } \rrbracket & =\bigoplus_{n \in \mathbb{N}} \mathbb{C} \\
& \in \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}
\end{aligned}
$$

but $\notin \mathbf{Q}$

Example 2

$$
\begin{array}{r}
\llbracket q b i t \rrbracket=\mathcal{M}_{2} \cong \mathcal{B}\left(\mathbb{C}^{2}\right) \\
\llbracket q \text { qrit } \rrbracket=\mathcal{M}_{3} \cong \mathcal{B}\left(\mathbb{C}^{3}\right)
\end{array}
$$

\llbracket qnat $\rrbracket=\mathcal{B}(\mathcal{H})$
where \mathcal{H} is countable dim.
$\in \mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}$
but $\notin \mathbf{Q}$

QPL with infinite types

Example $1 \quad \ell^{\infty}(X):=\left\{\varphi: X \rightarrow \mathbb{C}\left|\sup _{x \in X}\right| \varphi(x) \mid<\infty\right\}$

$$
\llbracket b i t \rrbracket=\mathbb{C} \oplus \mathbb{C}
$$

$$
\llbracket \text { trit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
$$

$$
\llbracket \text { nat } \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C}
$$

\in Wstar $_{\text {CP-PU }}$
but $\notin \mathbf{Q}$

QPL with infinite types

Example $1 \quad \ell^{\infty}(X):=\left\{\varphi: X \rightarrow \mathbb{C}\left|\sup _{x \in X}\right| \varphi(x) \mid<\infty\right\}$

$$
\llbracket \mathrm{bit} \rrbracket=\mathbb{C} \oplus \mathbb{C} \cong \ell^{\infty}(2)
$$

$$
\llbracket \text { trit } \rrbracket=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \cong \ell^{\infty}(3)
$$

$$
\llbracket \text { nat } \rrbracket=\bigoplus_{n \in \mathbb{N}} \mathbb{C} \cong \ell^{\infty}(\mathbb{N})
$$

\in Wstar $_{\text {CP-PU }}$
but $\notin \mathbf{Q}$

Classical computation in commutative W^{*}-algebras

Thm.
the category of commutative W^{*}-algebras
There is an embedding
$\ell^{\infty}:$ Set $\longrightarrow\left(\mathbf{C W s t a r}_{\text {M-I-U }}\right)^{\text {op }} \subseteq\left(\mathbf{W s t a r}_{\text {CP-PU }}\right)^{\text {op }}$
with $\ell^{\infty}(X \times Y) \cong \ell^{\infty}(X) \bar{\otimes} \ell^{\infty}(Y)$

Classical computation in commutative W^{*}-algebras

Thm.
the category of commutative W^{*}-algebras
There is an embedding

$$
\begin{aligned}
& \ell^{\infty}: \text { Set } \longrightarrow\left(\mathbf{C W s t a r}_{\mathrm{M}-\mathrm{I-U}}\right)^{\mathrm{op}} \subseteq\left(\text { Wstar }_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}} \\
& \text { with } \ell^{\infty}(X \times Y) \cong \ell^{\infty}(X) \bar{\otimes} \ell^{\infty}(Y)
\end{aligned}
$$

Classical (deterministic) computation in Set arises as a map between commutative W^{*}-algebras

Outline

- Quantum Operation
- Selinger's QPL
- Operator Algebras and Quantum Operation
- Semantics for QPL by W^{*}-algebras
- Future work and Conclusions

Future work

- Semantics by operator algebras for higher-order quantum programming languages, or quantum lambda calculi

Future work

- Semantics by operator algebras for higher-order quantum programming languages, or quantum lambda calculi
Q. Is $\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$ monoidal closed?

Future work

- Semantics by operator algebras for higher-order quantum programming languages, or quantum lambda calculi
Q. Is $\left(\mathbf{W s t a r}_{\mathrm{CP}-\mathrm{PU}}\right)^{\mathrm{op}}$ monoidal closed?
- Exploit the duality between commutative W^{*}-algebras and measurable space
cf. Gelfand duality $\quad\left(\text { CCstar }_{\text {M-I-U }}\right)^{\mathrm{op}} \simeq$ CompHaus

Conclusions

- Normal CP pre-unital maps between W^{*}-algebras generalise Kraus' and Selinger's QO
- Wstar CP-PU is a Dcppo ${ }_{\perp}$-enriched SMC with Dcppo $_{\perp}$-enriched finite products
- "nice" enough to give a semantics for Selinger's QPL

Conclusions

- Normal CP pre-unital maps between W^{*}-algebras generalise Kraus' and Selinger's QO
- Wstar CP-PU is a Dcppo ${ }_{\perp}$-enriched SMC with Dcppo $_{\perp}$-enriched finite products
- "nice" enough to give a semantics for Selinger's QPL
- W*-algebras give a flexible model for quantum computation
- accommodate infinite dim. structures and classical (= commutative) computation
- The present work is the first step. A lot of things to do!
- cf. Mathys Rennela’s work (MFPS XXX, 2014)

