
MFPS 2017

Classical control and quantum circuits
in enriched category theory

Mathys Rennela

Institute for Computing and Information Sciences
Radboud University

Nijmegen, The Netherlands

Sam Staton
Department of Computer Science

Oxford University
Oxford, United Kingdom

Abstract

We describe categorical models of a circuit-based (quantum) functional programming language. We show
that enriched categories play a crucial role. Following earlier work on QWire by Paykin et al., we consider
both a simple first-order linear language for circuits, and a more powerful host language, such that the
circuit language is embedded inside the host language. Our categorical semantics for the host language is
standard, and involves cartesian closed categories and monads. We interpret the circuit language not in
an ordinary category, but in a category that is enriched in the host category. As an extended example, we
recall an earlier result that the category of W*-algebras is dcpo-enriched, and we use this model to extend
the circuit language with some recursive types.

Keywords: Enriched categories, categorical semantics, linear type theory, quantum circuits, relative
monad, quantum domain theory

1 Introduction

Classical Quantum

control

measurements

One of the subtle points about quantum computation

is the interaction between classical control flow and

quantum operations. One can measure a qubit, de-

stroying the qubit but producing a classical bit; this

classical bit can then be used to decide whether to

apply quantum rotations to other qubits. This kind

of classical control can be neatly described in quantum circuits, for example when

one uses the measurement outcome of a qubit a to conditionally perform a gate X

on a qubit b:

b X

a •

(1)

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Rennela, Staton

This can be understood semantically in terms of mixed states, density matrices,

and completely positive maps. However, high level languages have more elaborate

data structures than bits: they have higher order functions and mixed variance

recursive types, and associated with these are elaborate control structures such

as higher order recursive functions. These are important, paradigmatic ways of

structuring programs.

How should these high level features be integrated with quantum computation?

One option is to build a semantic domain that accommodates both quantum com-

putation and higher order features. This is an aim of some categorical semantics

of the quantum lambda calculus [17,15] and of prior work of the authors [19,21].

This is a fascinating direction, and sheds light, for example, on the structure of the

quantum teleportation algorithm (e.g. [17, Ex. 6]). However, the general connection

between physics and higher-order quantum functions is yet unclear. Although some

recent progress has been made [12], it is still unclear whether higher-order quantum

functions of this kind are useful for quantum algorithms.

Another approach is to understand a high level quantum programming language

as an ordinary higher-order functional language with extra features for building

and running quantum circuits. In this setting, quantum circuits form a first-order

embedded domain specific language within a conventional higher order language.

This fits the current state-of-the-art in interfaces to quantum hardware, and is the

basis of the languages Quipper [8] and LiQUi|〉 [25]. This is the approach that we

study in this paper.

1.1 Embedded languages and enriched categories

Our work revolves around a new calculus that we call ‘EWire’ (§2). It is a minor

generalization of the QWire language [18]. QWire idealizes some aspects of the

architecture of Quipper and LiQUi|〉. The idea is that we deal with a host language

separated from an embedded circuit language.

• The circuit language is a first order typed language. The types, called ‘wire

types’, include a type for qubits. The wire type system is linear to accommodate

the fact that qubits cannot be duplicated.

• The host language is a higher order language. The types of the host language do

not include the wire types, there is not a type of qubits, and it is not a linear

type system. However, there is a special host type Circ(W1,W2) associated to

any pair of wire types W1 and W2, whose inhabitants are the circuits with inputs

of type W1 and outputs of type W2.

Let us describe the circuit language in a nutshell: the very simple circuit (1) cor-

responds to the instruction below (2) in the circuit language. Given two qubits a

and b, it measures the qubit a, stores the result in a bit x which is later used in the

application of the classical-controlled-X gate and discards the bit x, then outputs

the resulting qubit y.

−; a, b : qubit ` C
def
= x← gate meas a; (x, y)← gate (bit-control X) (x, b);

()← gate discard x; output y : qubit (2)

2

Rennela, Staton

The interface between the host language and the circuit language is set up in terms

of boxing and unboxing. For example, the instruction

t
def
= box (a, b)⇒ C(a, b) (where C is as in (2)) (3)

creates a closed term of type Circ(qubit⊗qubit,qubit) in the host language. We

recover the instruction C in the circuit language (2) from the boxed expression t in

the host language (3) by using the instruction unbox t w for some fresh wire w of

type qubit.

Also, it is possible to write a program that composes two circuits C1 and C2

with the right input/output types, for example:

C1 C2

w1 w2 w3

This is a program

comp
def
= λ(C1, C2). box w1 ⇒

(
w2 ← unbox C1w1;w3 ← unbox C2w2; output w3

)
in the host language, associated with the type

comp : Circ(W1,W2)× Circ(W2,W3)→ Circ(W1,W3) (4)

where Wi is the type of the wire wi for i ∈ {1, 2, 3}.
Now, recall the idea of an enriched category, which is informally a category such

that the morphisms from A to B form an object of another category. In Section 3,

once we conceptualize types as objects and terms as morphisms, we show that the

embedding of the circuit language in the host language is an instance of

enriched category theory : the circuits (morphisms) between wire types (objects)

form a type (object) of the host language. The host composition term in (4) is

precisely composition in the sense of enriched categories. (See §3 for details.)

For a simple version of the model, wire types are understood as finite-dimensional

C*-algebras, and circuits are completely positive unital maps – the accepted model

of quantum computation. Host types are interpreted as sets, and the type of all

circuits is interpreted simply as the set of all circuits. The category of sets supports

higher order functions, which shows that it is consistent for the host language to

have higher order functions.

As with any higher order language, the set-theoretic model is not sufficient

to fully understand the nature of higher order functions. We envisage that other

semantic models (e.g. based on game semantics or realizability) will also fit the

same framework of enriched categories, so that our categorical framework provides

a sound description of the basic program equivalences that should hold in all models.

These equivalences play the same role that the β and η equivalences play in the pure

lambda calculus. In other words, we are developing a basic type theory for quantum

computation.

3

Rennela, Staton

1.2 Recursive types and recursive terms

Within this semantic model, based on enriched categories, we can freely accom-

modate various additional features in the host language, while keeping the circuit

language the same. For example, we could add recursion to the host language, to

model the idea of repeatedly trying quantum experiments, or recursive types, to

model arbitrary data types. This can be shown to be consistent by modifying the

simple model so that host types are interpreted as directed complete partial orders

(dcpo’s).

Many quantum algorithms are actually parameterized in the number of qubits

that they operate on. For example, the Quantum Fourier Transform (QFT) has

a uniform definition for any number of qubits, where H is the Hadamard gate
1√
2

(
1 1
1 −1

)
and Rθ is the controlled phase gate

(
1 0
0 eiθ

)
.

We formalize this by extending

the circuit language with a wire type

QList of qubit-lists for which the fol-

lowing equivalence of types holds:

QList ∼= qubit⊗QList⊕ 1

so that we can define a function

fourier : Nat→ Circ(QList,QList)

so that, for instance, (fourier 6) : Circ(QList,QList) is the QFT for 6 qubits.

In Section 4, we part away from the canonical intuition of circuits by considering

them as first-order and linear (in the linear logic sense of the term) instructions. (In

practice, it will be useful for a circuit layout engine to know the number of qubits

in the lists, suggesting a dependent type such as

fourier : (n : Nat)→ Circ(QList(n),QList(n))

but we leave these kinds of elaboration of the type system to future work.)

The categorical essence of recursive data types is algebraic compactness. In

short, one says that a category C is algebraically compact (for a specific class of

endofunctors) when every endofunctor F : C → C has a canonical fixpoint, which

is the initial F-algebra [2]. In earlier work [19], the first author has shown that the

category of W*-algebras is algebraically compact and enriched in dcpo’s, and so

this is a natural candidate for a semantics of the language. In brief: circuit types

are interpreted as W*-algebras, and circuits are interpreted as completely positive

sub-unital maps; host types are interpreted as dcpo’s; in particular the collection

of circuits Circ(W,W ′) is interpreted as the dcpo of completely positive sub-unital

maps, with the Löwner order. In this way, we provide a basic model for a quantum

type theory with recursive types. We conclude the present work with what is, to

our knowledge, the first categorical semantics of a language that can accommodate

QFT in this parameterized way.

4

Rennela, Staton

2 Functional programming and quantum circuits

We introduce a new calculus called EWire as a basis for analysing the basic ideas

of embedding a circuit language inside a host functional programming language.

EWire (for ‘embedded wire language’) is based on QWire [18] (‘quantum wire lan-

guage’), and we make the connection precise in Section 2.2. One may add other

features, for instance as discussed in Section 4.1.

We assume two classes of basic wire types.

• Classical wire types, ranged over by a,b, The wire types exist in both the

circuit language and the host language. For example, the type of classical bits,

or Booleans.

• Circuit-only wire types, ranged over by α, β, These wire types only exist in

the circuit language. For example, the type of qubits.

From these basic types we build all wire types:

W,W ′ ::= I |W ⊗W ′ | a | b | α | β . . .

We isolate the classical wire types, which are the types not using any circuit-only

basic types:

V, V ′ ::= I | V ⊗ V ′ | a | b . . .
We also assume a collection G of basic gates, each assigned an input and an output

wire type. We write G(Win,Wout) for the collection of gates of input type Win and

output type Wout.

In addition to the embedded circuit language, we consider a host language. This

is like Moggi’s monadic metalanguage [16] but with special types for the classical

wire types a, b and a type Circ(W,W ′) of circuits for any wire types W and W ′.

So the host types are

A,B ::= A×B | 1 | A→ B | T (A) | Circ(W,W ′) | a | b

The monad T is primarily to allow probabilistic computations, although one might

also add other side effects to the host language. Notice that every classical wire

type V can be understood as a first order host type |V |, according to the simple

translation, called lifting :∣∣V ⊗ V ′∣∣ def
= |V | ×

∣∣V ′∣∣ |I| def
= 1 |a| def

= a

2.1 Circuit typing and host typing

A well-formed circuit judgement Γ; Ω ` C : W describes a circuit with input context

Ω = (w1 : W1 · · ·wn : Wn) (for n ∈ N) and output wire type W under the context of

host language variables Γ = (x1 : A1 · · ·xm : Am) (for m ∈ N). Wires are organised

in patterns given by the grammar p ::= w | () | (p, p) associated to the following set

of rules:

−

· =⇒ () : 1

−

w : W =⇒ w : W

Ω1 =⇒ p1 : W1 Ω2 =⇒ p2 : W2

Ω1,Ω2 =⇒ (p1, p2) : W1 ⊗W2

5

Rennela, Staton

Linear type theory for circuits

The first five term formation rules are fairly standard for a linear type theory.

These are the constructions for sequencing circuits, one after another, and ending by

outputting the wires, and for splitting a tensor-product type into its constituents.

The fifth rule includes the basic gates in the circuit language.

Γ; Ω1 ` C1 : W1 Ω =⇒ p : W1 Γ; Ω,Ω2 ` C2 : W2

Γ; Ω1,Ω2 ` p← C1;C2 : W2

Ω =⇒ p : W

Γ; Ω ` output p : W

Ω =⇒ p : 1 Γ; Ω′ ` C : W

Γ; Ω,Ω′ ` ()← p;C : W

Ω =⇒ p : W1 ⊗W2 Γ;w1 : W1, w2 : W2,Ω
′ ` C : W

Γ; Ω,Ω′ ` (w1, w2)← p;C : W

Ω1 =⇒ p1 : W1 Ω2 =⇒ p2 : W2 Γ; Ω2,Ω ` C : W
g ∈ G(W1,W2)

Γ; Ω1,Ω ` p2 ← gate g p1;C : W

For example, coin flipping is given by the following circuit:

flip
def
= a← gate init0 (); a′ ← gate H a; b← gate meas a′; output b

Interaction between the circuits and the host

A well-formed host judgement Γ ` tA describes a host-language program of type

A in the context of host language variables Γ. The next set of typing rules describe

the interaction between the host language and the circuit language. The host can

run a circuit and get the result. Since this may have side effects, for example

probabilistic behaviour, it returns a monadic type.

Γ; · ` C : W
W classical

Γ ` run C : T (|W |)

The next two rules concern boxing a circuit as data in the host language, and

then unboxing the data to form a circuit fragment in the circuit language. Notice

that unboxing requires a pure program of type Circ(W1,W2), rather than effectful

program of type T (Circ(W1,W2)). For example, you cannot unbox a probabilistic

combination of circuits. The monadic notation clarifies this point.

Ω =⇒ p : W1 Γ; Ω ` C : W2

Γ ` box (p : W1)⇒ C : Circ(W1,W2)

Γ ` t : Circ(W1,W2) Ω =⇒ p : W1

Γ; Ω ` unbox t p : W2

Finally we consider dynamic lifting, which, informally, allows us to send classical

data to and from the host program while the quantum circuit is running.

Γ ` t : |W |
W classical

Γ;− ` init t : W

Ω =⇒ p : |W | Γ, x : W ; Ω′ ` C : W ′

W classical
Γ; Ω,Ω′ ` x⇐ lift p;C : W ′

These rules are in addition to the standard typing rules for the host language,

following Moggi [16] (see Appendix A).

6

Rennela, Staton

In Appendix B we recall a reduction relation on circuits, based on [18], which

reduces a circuit with no free host variables to an expression in the following gram-

mar

N ::= output p | w ← gate g p;N | x⇐ lift p;N | ()← w;N | (w1, w2)← w;N

The reduction works by rearranging patterns and resolving unboxed boxes.

2.2 QWire

The language QWire of Paykin, Rand and Zdancewic [18] is an instance of EWire

where:

• there is one classical wire type, bit, and one circuit-only wire type, qubit.

• there are basic gates meas ∈ G(qubit,bit) and new ∈ G(bit, qubit).

A subtle difference between EWire and QWire is that in QWire one can directly

run a circuit of type qubit, and it will produce a bit, automatically measuring the

qubit that results from the circuit. To run a circuit of type qubit in EWire, one

must append an explicit measurement at the end of the circuit. These explicit

measurements can be appended automatically, to give a translation from QWire

proper to this instantiation of EWire. We now summarize how this is done. We

first define a translation (−) from all wire types to classical wire types:

W ⊗W ′ def
= W ⊗W ′ I

def
= I bit

def
= bit qubit

def
= bit

Then, from an arbitrary wire type W , we can extract a host type
∣∣W ∣∣.

From the basic gates meas and new we can define circuits measW : Circ(W,W)

and newW : Circ(W,W) for all wires W . These are defined by induction on W . For

example,

measI
def
= id measbit

def
= id

measqubit
def
= box p⇒ p′ ← gate meas p; output p′

measW⊗W ′
def
= box (w,w′)⇒ x← unbox measW w; x′ ← unbox measW ′ w′;

output (x, x′)

and newW is defined using new G(bit, qubit) similarly. Then we define the following

derived syntax, so that run and lift can be used at all wire types, not just the

classical ones:

qwire-run(C)
def
= run(x← C; unbox meas x)

(x⇐ qwire-lift p ; C)
def
= y ⇐ lift p ; x← unbox new y ; C

3 Categorical models of EWire

Let us define a sufficient set of properties which ensure that a pair of categories

corresponds to a categorical model in which one can interpret EWire, in order to

7

Rennela, Staton

reason about circuits and identify their denotational meaning. We assume that the

circuit language is parametrized by a fixed collection of gates, noted G.

Enriched categories. Our development is based on the theory of enriched cat-

egories, which are increasingly widely used in programming language theory. We

recall some basics. If H is a category with finite products ×, then a category C

enriched in H is given by a collection of objects together with

• for each pair of objects A and B in C, an object C(A,B) of H;

• for each object A of C, a morphism 1→ C(A,A) in H;

• for objects A, B, C of C, a morphism C(A,B)×C(B,C)→ C(A,C) in H

such that composition satisfies the identity and unit laws. If C and D are enriched

in H, an enriched functor F is a mapping from the collection of objects of C to

the collection of objects of D together with, for objects A and B of C, a morphism

C(A,B)→ D(F (A), F (B)), respecting composition and identities in a suitable way.

For a first example, a locally small category is a category for which the collection

of morphisms C(A,B) is a set; this is a category enriched in the category Set of

sets and functions.

As a first illustration of the importance of enriched categories in computer

science, recall that a model of the typed lambda calculus is a cartesian closed

category, which is a category H with finite products that is enriched in itself.

Symmetric monoidal enriched categories. Recall that a symmetric monoidal

category is a category C together with a distinguished object I and a functor

⊗ : C × C → C together with coherent associativity, identity and symmetry

natural isomorphisms. Any category with products is an example of this, but

more generally symmetric monoidal categories model linear type theories where

weakening and contraction might not hold. An H-enriched symmetric monoidal

category is defined in a similar way except that the functor must be an enriched

functor and the isomorphisms must also be enriched natural transformations.

(Recall that for H-enriched functors F,G : C → D between H-enriched categories

C and D, an enriched natural transformation η : F ⇒ G is a family of morphisms

{ηc : 1 → D(Fc,Gc)}c∈Obj(C) in the category H which satisfy a straightforward

naturality condition. See [11] for more details.)

Computational effects. Embedding the circuit language requires the use of some

computational effects in the host language. When the circuit language involves

quantum measurement, then the closed host term ` run
(
flip
)

: T (bit) is a coin

toss, and so the semantics of the host language must accommodate probabilistic

features.

Following Moggi, we model this by considering a cartesian closed category H

with an enriched monad on it. Recall that an enriched monad is given by an

endofunctor T on H together with a unit morphism η : X → T (X) for each X

in H, and a bind morphism H(X,T (Y)) → H(T (X), T (Y)) for objects X and Y ,

subject to the monad laws [16].

The idea is that deterministic, pure programs in the host language are inter-

8

Rennela, Staton

preted as morphisms in H. Probabilistic, effectful programs in the host language

are interpreted as Kleisli morphisms, i.e. morphisms X → T (Y).

Relative monads. The monads of Moggi are a slightly higher order notion. In a

truly first order language, this type arguably should not exist. In particular, there is

no wire type T (A) of all quantum computations. To resolve this mismatch, authors

have proposed alternatives such as relative monads [1] and monads with arities [3].

A relative adjunction is given by three functors J : B → D, L : B → C and

R : C → D such that there is a natural isomorphism C(L(b), c) ∼= D(J(b), R(c)).

We write L J a R and call relative monad the functor RL : B→ D.

Enriched relative adjunctions and enriched relative monads are defined in the

obvious way, by requiring J , L and R to be enriched functors and the adjunction

to be an enriched adjunction. In an enriched relative monad T = RL, the bind

operation is a morphism of type D(J(X), T (Y))→ D(T (X), T (Y)).

Copowers. A copower is a generalization of an n-fold coproduct. Let n be a

natural number, and let A be an object of a category C with sums, the copower

n�A is the n fold coproduct A+ · · ·+A. This has the universal property that to

give a morphism n�A→ B is to give a family of n morphisms A→ B. In general,

if C is a category enriched in a category H, and A is an object of C and h an object

of H, then the copower is an object h� A together with a family of isomorphisms

C(h�A,B) ∼= H(h,C(A,B)), natural in B.

The relevance of Set-enriched copowers to quantum algorithms has previously

been suggested by Jacobs [9]. On the other hand, copowers and enrichment play a

key role in the non-quantum enriched effect calculus [5,?] and other areas [14,?,?,?].

Nonetheless, our connection with the EWire syntax appears to be novel.

Definition 3.1 A categorical model of EWire (H,H0,C, T) is given by the follow-

ing data:

(i) A cartesian closed category H with a strong monad T on H. This is needed

to interpret the host language.

(ii) A small full subcategory j : H0 ⊆ H. The idea is that the objects of H0

interpret the first order host types, equivalently, the classical wire types: the

types that exist in both the host language and the circuit language.

(iii) An H-enriched symmetric monoidal category (C,⊗, I). This allows us to in-

terpret the circuit language, and the H-enrichment allows us to understand

the host types Circ(W,W ′).

(iv) The category C has copowers by the objects of H0. The copower induces

a functor J : H0 → C defined by J(h) = h � I. Then, we have a natural

isomorphism

C(J(h), C) = C(h� I, C) ∼= H(j(h),C(I, C))

and therefore a j-relative adjunction J ja C(I,−) between circuits and (host)

terms. This functor J : H0 → C interprets the translation between first order

host types and classical wire types.

9

Rennela, Staton

(v) For each object A of C, the functor A⊗− : C→ C preserves copowers. This

makes the functor J symmetric monoidal, and makes the relative adjunction

an enriched relative adjunction.

(vi) There is an enriched relative monad morphism

runh : C(I, J(h))→ T (j(h))

where the enriched relative monad C(I, J(−)) : H0 → H is induced by the

enriched j-relative adjunction J ja C(I,−). This is the interpretation of

running a quantum circuit, producing some classical probabilistic outcome.

If the category C has a given object [[α]] for each basic quantum wire type α, and

H0 has a given object [[a]] for each basic classical wire type a, then we can interpret

all wire types W as objects of C:

[[1]]
def
= I [[a]]

def
= J([[a]]) [[W ⊗W ′]] def

= [[W]]⊗ [[W ′]].

If the category C also has a given morphism [[g]] : [[W1]] → [[W2]] for every gate

g ∈ G(W1,W2), then we can interpret the circuit langauge inside C.

In light of those axioms, and to every categorical model of EWire, we associate

the following denotational semantics. First, we define as promised the denotation of

the host type Circ(W,W ′) by [[Circ(W,W ′)]]
def
= C(W,W ′), an object of the category

H. The semantics of the other host types is given as follows:

[[1]]
def
= 1 [[A×A′]] def

= [[A]]× [[A′]] [[A→ A′]]
def
= ([[A]]→ [[A′]]) [[T (A)]]

def
= T ([[A]]).

Ordered context of wires Ω have the following semantics:

[[〈·〉]] = I [[w : W]] = [[W]] [[Ω,Ω′]] = [[Ω]]⊗ [[Ω′]]

A circuit judgement Γ; Ω ` t : W is denoted by

[[Γ; Ω ` t : W]] ∈ H([[Γ]],C([[Ω]], [[W]]))

relying on the assumption that the category H is a model of the host language.

A host type Circ(W,W ′) is interpreted as the hom-object C([[W]], [[W ′]]), in the

category H. In this setting, denotations of boxing and unboxing instructions are

trivial. Indeed, notice that whenever Ω =⇒ p : W1 holds, we have [[Ω]] ∼= [[W1]],

and we put

[[Γ ` box (p : W1)⇒ C : Circ(W1,W2)]] = [[Γ; Ω ` C : W2]]

[[Γ; Ω ` unbox t p : W2]] = [[Γ ` t : Circ(W1,W2)]]

The denotation of output p : W is the identity when the type of the pattern p

is not a sum type, and is the i-th projection when p is of the form ini p
′. Moreover,

instructions Γ; Ω,Ω′ ` ()← p;C : W and Γ; Ω′ ` C : W (resp. Γ; Ω,Ω′ ` (w1, w2)←
p;C : W and Γ;w1 : W1, w2 : W2,Ω

′ ` C : W) have isomorphic denotations

whenever Ω =⇒ p : 1 holds (resp. Ω =⇒ p : W1 ⊗W2 holds).

10

Rennela, Staton

The lift construction is interpreted by the copower. In detail, for every object h

of H, and every object h′ of H0, we consider the isomorphism

lifth : H(h× h′,C(X,Y)) ∼= H(h,H(h′,C(X,Y))) ∼= H(h,C(h′ �X,Y))

Since we’re enforcing explicit measurement here, the denotation of the operation

run for a circuit C whose output wire type is the type W is given by Def. 3.1(vi).

The denotations of the remaining instructions are given as follows.

[[Γ; Ω1,Ω ` p2 ← gate g p1;C : W]] = [[Γ; Ω2,Ω ` C : W]] ◦ ([[g]]⊗ id)

[[Γ; Ω1,Ω2 ` p← C;C ′ : W ′]] = [[Γ; Ω,Ω2 ` C ′ : W ′]] ◦ ([[Ω1 ` C : W]]⊗ id)

Consider the operational semantics given in Appendix B. Assuming that H is

a sound categorical model of the host language, one obtains the following theorem

by straightforward induction on typing judgements. (This is similar to the proof in

[18, App. B].)

Theorem 3.2 (Soundness) For every denotational semantics induced by a cate-

gorical model of EWire, if the circuit judgement ·; Ω ` C : W holds and the circuit

C reduces to a circuit C ′, then [[·; Ω ` C : W]] = [[·; Ω ` C ′ : W]].

It is now time to elaborate an example. Our view on the semantics of quantum

computing relies on the theory of C*-algebras. The positive elements of C*-algebras

correspond to observables in quantum theory, and we understand quantum compu-

tations as linear maps that preserve positive elements, in other words, ‘observable

transformers’. Circuits (·; (x : W) ` C : W ′) will be interpreted as completely posi-

tive unital maps [[W ′]] → [[W]]. The reverse direction is in common with predicate

transformer semantics for conventional programming.

In short, a (unital) C*-algebra (e.g. [22]) is a vector space over the field of

complex numbers that also has multiplication, a unit and an involution, satisfying

associativity and unit laws for multiplication, involution laws (e.g. x∗∗ = x, (xy)∗ =

y∗x∗, (αx)∗ = ᾱ(x∗)) and such that the spectral radius provides a norm making it

a Banach space.

There are two crucial constructions of C*-algebras: matrix algebras and direct

sums. Matrix algebras provide a crucial example of C*-algebras. For example, the

algebra M2 of 2× 2 complex matrices represents the type of qubits. The direct sum

of two C*-algebras, A⊕B, is the set of pairs with componentwise algebra structure.

For instance, C ⊕ C represents the type of classical bits. Every finite-dimensional

C*-algebra is a direct sum of matrix algebras.

The tensor product ⊗ of finite dimensional C*-algebras is uniquely determined

by two properties: (i) that Mk ⊗Ml
∼= Mk×l, and (ii) that A ⊗ (−) and (−) ⊗ B

preserve direct sums. In particular Mk ⊗A is isomorphic to the algebra of (k × k)-

matrices valued in A.

We do not focus here on linear maps that preserve all of the C*-algebra structure,

but rather on completely positive maps. An element x ∈ A is positive if it can be

written in the form x = y∗y for y ∈ A. These elements correspond to quantum

observables. A map f : A → B, linear between the underlying vector spaces, is

11

Rennela, Staton

positive if it preserves positive elements. A linear map is unital if it preserves the

multiplicative unit. A linear map f is completely positive if the map (Mk ⊗ f) :

Mk⊗A→Mk⊗B is positive for every k. This enables us to define a functor C⊗(−)

for every finite dimensional C*-algebra C. Thus finite dimensional C*-algebras and

completely positive unital linear maps form a symmetric monoidal category. There

are completely positive unital maps corresponding to initializing quantum data,

performing unitary rotations, and measurement, and in fact all completely positive

unital maps arise in this way (e.g. [23,24]).

Proposition 3.3 The triplet (FdC∗-Algop
CPU,Set,D) is a model of EWire, formed

by the category FdC∗-AlgCPU of finite-dimensional C*-algebras and completely pos-

itive unital maps, the cartesian closed category Set of sets and functions, and the

probability distribution monad D over Set. In fact it is a model of QWire, with

[[qubit]]
def
= M2 and [[bit]]

def
= C⊕ C.

Proof. See Appendix C. 2

Steps towards subsets and variations on quantum computation

Completely positive maps between C*-algebras allow for all quantum opera-

tions, but sometimes one would focus on a variation of quantum computation, or a

restricted set of gates, such as the stabiliser gates.

Definition 3.4 A category of quantum computation is a subcategory Q of the cate-

gory C∗-AlgCPU of C*-algebras together with completely positive unital maps. For

the sake of coherence, we also require:

(i) Initiality: the C*-algebra C of complex numbers is in Q.

(ii) Closure under matrix algebras: if A is in Q then so is Mn ⊗A (n ∈ N).

(iii) Closure under matrices of morphisms: for every pair (A,B) of C*-algebras in

Q, if the map f in Q(A,B) then the map (Mn ⊗ f) in Q(Mn ⊗A,Mn ⊗B).

Different choices for the category Q give different classes of states and unitaries

for our language, making Q the ‘categorical signature’ of the subset of quantum

mechanics associated with the collection G of gates which parametrize QWire.

4 A step towards quantum domain theory

A W*-algebra is an unital C*-algebra A whose unit interval is a dcpo, with suffi-

ciently many normal states, i.e. normal completely positive unital maps A → C.

We write W∗-AlgCPSU for the category of W*-algebras and completely positive

subunital maps, which is known for being Dcpo-enriched (see e.g. [19]). In fact, its

opposite category is part of a categorical model of QWire (as shown in Appendix C).

Proposition 4.1 (W∗-Algop
CPSU,Dcpo, V) is a categorical model of QWire.

The remaining part of this section is devoted to an investigation of the extra

syntax supported by the category W∗-Algop
CPSU. We argue that the present work

constitutes a milestone for the development of quantum domain theory. The inter-

ested reader will find the proofs in Appendix C.

12

Rennela, Staton

4.1 Extensions of EWire

Let us part away from the traditional notion of circuits in order to be able to deal

with inputs and outputs of sum types and recursive types: in what follows, circuits

are first-order linear instructions. Therefore, the structures that our circuit language

manipulate are not per se circuits but generalised circuits.

Conditional branching

To extend EWire with conditional branching, one needs to introduce sum types

(that is, W ::= · · · |W⊕W ′ and A ::= · · · | A+A′), and gates in1 ∈ G(W1,W1⊕W2)

and in2 ∈ G(W1,W1 ⊕W2) for every pair of types W1 and W2. Additionally, we

introduce case expressions

case p of (in1w1 → C1 | in2w2 → C2) : W

(where p : W1 ⊕ W2, C1 : Circ(W1,W) and C2 : Circ(W2,W)) and extend the

grammar of patterns:

p ::= · · · | in1 p | in2 p

Then, bit is 1⊕ 1. The lifting of a wire type W ⊕W ′ is the host type |W |+ |W ′|.

Patterns of sums are eliminated using
Ω =⇒ p : Wi

i ∈ {1, 2}
Ω =⇒ ini p : W1 ⊕W2

and the

typing rule for branching is the following:

Ω =⇒ p : W1 ⊕W2 Γ;w1 : W1,Ω
′ ` C1 : W Γ;w2 : W2,Ω

′ ` C2 : W

Γ; Ω,Ω′ ` case p of (in1w1 → C1 | in2w2 → C2) : W

Recursive types

Let us complete the grammars of wire types and host types:

W ::= · · · | X | µX.W A ::= · · · | X | µX.A

We assume that G contains gates

foldµX.W ∈ G(W [X 7→ µX.W], µX.W) unfoldµX.W ∈ G(µX.W,W [X 7→ µX.W])

which corresponds to the folding/unfolding of a recursive type µX.W . For example,

for the type QList of quantum lists defined by

QList = µX.qubit⊗X ⊕ 1

we have fold ∈ G(qubit⊗QList⊕1,QList) and unfold ∈ G(QList, qubit⊗QList⊕1).

Moreover, the lifting |X| of a wire type variable X is the host type variable X

and the lifting |µX.W | of a wire recursive type µX.W is the host recursive type

µX. |W |. For example, |QList| = List = µX.bit×X + 1.

In line with [6], we introduce the recursive typing rules as type judgements Θ ` τ ,

which entail that the type τ is well-formed with respect to the context of distinct

13

Rennela, Staton

type variables Θ. We introduce the following set of rules for typing judgements:

Θ ` 1 Θ, X,Θ′ ` X
Θ `W1 Θ `W2

~ ∈ {⊗,⊕}
Θ `W1 ~W2

Θ, X `W

Θ ` µX.W

The typing judgement Θ ` Γ holds whenever Γ is a context of language variables

such that Θ ` τ holds for every variable (x : τ) ∈ Γ.

At this point, one might question the interest for recursive types in a circuit-

based language. In the traditional conceptualization of circuits, lists and other

infinite data types must be instantiated at a specific length to be used as the input

type of a circuit and therefore (iso)recursive types cannot appear in the wire types

of a circuit.

Let us illustrate our interest for patterns of recursive types by focusing on

the pattern p : QList. We want to implement the Quantum Fourier Trans-

form. Taking inspiration from [18, Sec. 6.2] (itself based on [8]), we assume for

every natural number m ∈ N the existence in the host language of a constant

RGate m : Circ(qubit, qubit), which corresponds to the circuit which performs the

phase shift gate which corresponds to a 2i
2mπ-rotation along the z-axis. Also, the

gate control u ∈ U(qubit ⊗W, qubit ⊗W ′) exists for u ∈ U(W,W ′) where U ⊆ G
is the collection of unitary gates which parametrize QWire. Then the program

rotations performs the rotations of a QFT circuit and the instruction (fourier n)

corresponds to the QFT on n qubits.

pop : Circ(QList ,qubit⊗QList) =
box p =>
q <- gate unfold p;
case q of in1 w1 ->

((u1,u2) <- w1; output (u1 ,u2))
| in2 w2 -> (q <- gate init0 ();
output (q,w2)))

hadamard = box p => gate H p

fourier : Nat -> Circ(QList ,QList) =
fun n:Nat =>

case n of 0 -> id | 1 -> hadamard
| succ k -> box p =>

(w,q) <- unbox pop p;
w <- unbox (fourier k) w;
r <- gate fold (w,q);
l <- unbox rotations (S k) k r;
output l;

rotations : Nat -> Nat -> Circ(QList ,QList) =
fun m:Nat => fun n:Nat =>

case n of 0 -> id | 1 -> id
| succ k -> box p =>

(c,t) <- unbox pop p;
(q,qs) <- unbox pop t;
(c,qs) <- unbox (rotations m k) (c,qs);
(c,q) <- gate (control (RGate (2+m-k))) (c,q);
l <- gate fold(fold) (c,(q,qs));
output l

4.2 Towards quantum domains

The notion of algebraic compactness provides a way to interpret recursive types.

A Dcpo⊥!-enriched category C is algebraically compact [2] for locally continuous

endofunctors if every locally continuous endofunctor F on C (i.e. F is such that

all FX,Y : C(X,Y) → C(FX,FY) are Scott-continuous) has a canonical fixpoint

written µF , which is the initial F -algebra (where Dcpo⊥! is the category of pointed

dcpos and strict Scott-continuous maps).

Every algebraically compact category C, as part of a categorical model

14

Rennela, Staton

(C,H, T), is a domain-theoretic model of FPC [6, Def. 6.7] and as such provides a

computationally adequate model for the language FPC, a functional programming

language with recursive types [6, Th. 7.14].

Consider that every type judgement Θ ` W is denoted by a locally continuous

functor Cn → C, defined by inductions as follows:

[[Θ `W]](χ) = [[W]] when W ∈ {1, bit, qubit} [[Θ ` X]] = Id

[[Θ `W1 ? W2]](χ) = [[Θ `W1]](χ) ? [[Θ `W2]](χ) with ? ∈ {⊗,⊕}
[[Θ ` µX.W]] = µ[[Θ, X `W]]

The algebraic compactness of the category of W*-algebras together with

(completely) positive sub-unital maps has already been established [19]. This

result establishes W*-algebras and completely positive unital maps as a categorical

model of higher-order quantum computing. For example, the type QList is denoted

by the fixpoint ⊕k≥0M2k of the endofunctor F : X 7→ X ⊗M2 ⊕ 1.

Ultimately, we are interested in quantum domains, that is in finding models

and convenient programming languages that mix quantum features and classical

features more generally. Enriched category theory offers a compelling way to elevate

ourselves from the theory of W*-algebras.

Indeed, whenever a category C is enriched over a category H, one can form a

category of H-enriched presheaves [Cop,H], which inherits some of the structure of

H and C. In particular, when a category C is enriched over a category Dcpo, order-

enriched presheaves Cop → Dcpo are the objects of the free colimit completion of

the category C as a Dcpo-enriched category. We recall that Malherbe et al. [15]

also used presheaves in their steps towards a model of a higher-order quantum

programming language.

Definition 4.2 Consider a categorical model of QWire (C,Dcpo, T). A quantum

predomain is an order-enriched contravariant presheaf F : Cop → Dcpo. A quan-

tum domain is a quantum predomain whose root F (1) is a pointed dcpo, i.e. a dcpo

which has a least element.

The literature is rich of examples of dcpo structures over quantum systems,

upon which quantum (pre)domains can be built. Normal states NS(A) and

predicates [0, 1]A of a C*-algebra A form dcpos whenever A is a W*-algebra.

Projections Proj(A) on a finite-dimensional C*-algebra A, which are elements p of

A which are self-adjoint (i.e., p = p∗) and idempotent (i.e., p = p2), are continuous

lattices, used in von Neumann’s quantum logic. Furthermore, one can consider

the dcpo C(A) of commutative C*-subalgebras of a C*-algebra A (seen as classical

views of a quantum system) ordered by inclusion.

The following proposition will not come as a surprise to the reader familiar with

enriched categories: mostly, it follows from the fact that the Yoneda embedding is

full and faithful.

Proposition 4.3 Consider a categorical model of QWire (C,Dcpo, T) where C is

a small category of quantum computation. Then, the triplet ([Cop,Dcpo],Dcpo, T)

15

Rennela, Staton

is a categorical model of QWire, where [Cop,Dcpo] is algebraically compact for

locally continuous endofunctors.

Consequently, the triplet ([FdC∗-Algop
CPSU,Dcpo],Dcpo, V) is categorical

model of QWire, which will be investigated in future work.

Summary. We have introduced a new calculus, EWire (Sec. 2), for embedded

circuits within an expressive host language. The language includes QWire as an

instance (Sec. 2.2). We have proposed a notion of categorical model for EWire

(Sec. 3) in which the relationship between the circuit and host language is explained

in terms of enriched categories. Our first example of a model is based on the Set-

enrichment of C*-algebras. Finally by considering a model of QWire based on W*-

algebras and dcpos, we have introduced some recursive types to give a denotational

semantics to the Quantum Fourier Transform.

Acknowledgement

The authors would like to thank Bart Jacobs, Michele Pagani and Shane Mansfield

for helpful discussions, but also Bert Lindenhovius, Michael Mislove and Vladimir

Zamdzhiev for hosting the first author at Tulane University during the elaboration

of this work, and Jennifer Paykin for introducing us to the subtle aspects of QWire.

The QFT illustration is due to Tyson Williams via Wikimedia Commons (CC BY

3.0). The research leading to these results has received funding from the ERC grant

agreement n. 320571, a Royal Society fellowship, and EPSRC grant EP/N007387/1.

References

[1] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors. In
International Conference on Foundations of Software Science and Computational Structures, pages
297–311. Springer, 2010.

[2] Michael Barr. Algebraically compact functors. Journal of Pure and Applied Algebra, 82(3):211–231,
1992.

[3] Clemens Berger, Paul-André Mellies, and Mark Weber. Monads with arities and their associated
theories. Journal of Pure and Applied Algebra, 216(8-9):2029–2048, 2012.

[4] Brian Day. On closed categories of functors. In Reports of the Midwest Category Seminar IV, pages
1–38. Springer, 1970.

[5] Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. The enriched effect calculus: syntax and
semantics. Journal of Logic and Computation, page exs025, 2012.

[6] Marcelo P Fiore and Gordon D Plotkin. An axiomatisation of computationally adequate domain
theoretic models of FPC. 1994.

[7] Robert Furber and Bart Jacobs. From Kleisli categories to commutative C*-algebras: probabilistic
Gelfand duality. In Algebra and Coalgebra in Computer Science, pages 141–157. Springer, 2013.

[8] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benôıt Valiron. Quipper:
a scalable quantum programming language. In ACM SIGPLAN Notices, volume 48, pages 333–342.
ACM, 2013.

[9] Bart Jacobs. On block structures in quantum computation. Electronic Notes in Theoretical Computer
Science, 298:233–255, 2013.

[10] Bart Jacobs. A recipe for state-and-effect triangles. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 35. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[11] Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.

16

https://commons.wikimedia.org/wiki/File:Quantum_Fourier_transform_on_n_qubits.svg

Rennela, Staton

[12] Aleks Kissinger and Sander Uijlen. A categorical semantics for causal structure. arXiv preprint
arXiv:1701.04732, 2017.

[13] Andre Kornell. Quantum collections. arXiv preprint arXiv:1202.2994, 2012.

[14] Paul Blain Levy. Call-by-push-value: A Functional/imperative Synthesis, volume 2. Springer Science
& Business Media, 2012.

[15] Octavio Malherbe, Philip Scott, and Peter Selinger. Presheaf models of quantum computation: an
outline. In Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson
Abramsky, pages 178–194. Springer, 2013.

[16] Eugenio Moggi. Computational lambda-calculus and monads. In Proc. LICS’89, number 14–23, 1989.

[17] Michele Pagani, Peter Selinger, and Benôıt Valiron. Applying Quantitative Semantics to Higher-order
Quantum Computing. In Proceedings of POPL’14, pages 647–658. ACM, 2014.

[18] Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: A Core Language for Quantum Circuits.
In Proceedings of POPL’17, pages 846–858. ACM, 2017.

[19] Mathys Rennela. Towards a Quantum Domain Theory: Order-enrichment and Fixpoints in W*-
algebras. In Proceedings of MFPS XXX, volume 308, pages 289 – 307. Electronic Notes in Theoretical
Computer Science, 2014.

[20] Mathys Rennela. Operator algebras in quantum computation. arXiv preprint arXiv:1510.06649, 2015.

[21] Mathys Rennela and Sam Staton. Complete positivity and natural representation of quantum
computations. In Proceedings of MFPS XXXI, volume 319, pages 369–385. Electronic Notes in
Theoretical Computer Science, 2015.

[22] Shôichirô Sakai. C*-algebras and W*-algebras. Springer Science & Business Media, 2012.

[23] Peter Selinger. Towards a quantum programming language. Mathematical Structures in Computer
Science, 14(04):527–586, 2004.

[24] Sam Staton. Algebraic Effects, Linearity, and Quantum Programming Languages. In Proceedings of
POPL’15, pages 395–406. ACM, 2015.

[25] Dave Wecker and Krysta M Svore. LIQUi|>: A software design architecture and domain-specific
language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.

A Additional typing rules for the host language

Recall that the types of the host language are

A,B ::= A×B | 1 | A→ B | T (A) | Circ(W,W ′) | a | b

The standard typing rules of the monadic metalanguage are the rules of the simply-

typed λ-calculus

(x : A) ∈ Γ

Γ ` x : A

Γ, x : A ` t : B

Γ ` (λxA.t) : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` t(u) : B

Terms of product types are formed following four typing rules

−

Γ ` unit : 1

Γ ` t : A Γ ` u : B

Γ ` (t, u) : A×B

Γ ` t : A×B

Γ ` π1(t) : A

Γ ` t : A×B

Γ ` π2(t) : B

to which we need to add the typing rules for the monad [16], associated respectively

to the unit and the strong Kleisli composition:

Γ ` t : B

Γ ` return(t) : T (B)

Γ ` t : T (B) Γ, x : B ` u : T (C)

Γ ` letx = t inu : T (C)

This is in addition to the typing rules for the interaction between the host language

and the circuit language given in Section 2.

17

Rennela, Staton

B Operational semantics of EWire

Let us start with the (partial) destruction of patterns.

p← output p′;C =⇒ C[p 7→ p′] unbox (box w ⇒ C) p =⇒ C[w 7→ p]

()← ();C =⇒ C (w1, w2)← (p1, p2);C =⇒ C[w1 7→p1
w2 7→p2]

The reduction system → on terms is defined in two parts: the reduction →H

is the operational semantics of the host language, while the reduction →b is the

operational semantics of boxed circuits (we refer to [18, Sec. 4] for its description),

in such a way that →=→H ∪ →b. This allows us to define the following reduction

rules for boxing and unboxing instructions.

C =⇒ C ′

box (w : W)⇒ C →b box (w : W)⇒ C ′

t→ t′

unbox t p⇒ unbox t′ p

Then, we add the structural reduction rule
C =⇒ C ′

E[C] =⇒ E[C ′]
with

E ::= w ← �;C | w ← gate g p in � | ()← p;� | (w1, w2)← p;�

Therefore, normal circuits are given by the following grammar:

N ::= output p | w ← gate g p;N | x⇐ lift p;N | ()← w;N | (w1, w2)← w;N

Finally, commuting conversion rules allows to reduce even more instructions to

normal forms, ensuring preservation, progress and normalization.

w ← (p2 ← gate g p1;N);C =⇒ p2 ← gate g p1;w ← N ;C

w ← (x⇐ lift p;C ′);C =⇒ x⇐ lift p;w ← C ′;C

w ← (()← w′;N);C =⇒ ()← w′;w ← N ;C

w ← ((w1, w2)← w′;N);C =⇒ (w1, w2)← w′;w ← N ;C

The following propositions are proven by straightforward induction. In partic-

ular, assuming that the reduction →H satisfies preservation, progress and strong

normalization one can deduce that the reduction→ does too. The interested reader

will find the proofs of the following propositions in [18, App. A].

Proposition B.1 (Preservation) If the judgement Γ; Ω ` C : W holds and the

circuit C reduces to the circuit C ′, then the judgement Γ; Ω ` C ′ : W holds.

Proposition B.2 (Progress) If the judgement Γ; Ω ` C : W holds, then either

the circuit C is normal or there is a circuit C ′ such that C reduces to C ′, i.e. the

relation C =⇒ C ′ holds.

18

Rennela, Staton

Proposition B.3 (Normalization) If the judgement Γ; Ω ` C : W holds, then

there exists a normal circuit N such that the circuit C reduces to N in a finite

number of steps.

C Omitted proofs

C.1 Proof of Proposition 3.3

The category Set of sets and functions is the canonical example of cartesian closed

category, and the distribution monad D : Set→ Set is a strong monad.

The category FdC∗-Algop
CPU of the opposite category of finite-dimensional C*-

algebras and completely positive unital maps has a monoidal structure given by the

tensor product of C*-algebras, finite sums given by direct sums and the C*-algebra

C of complex numbers is the unit I.

In this setting, H0 is the category N, skeleton of the category of finite sets and

functions which considers natural numbers as its objects. The copower n � A of a

natural number n ∈ N and a C*-algebra A is the C*-algebra n� A, defined as the

n-fold direct sum A⊕· · ·⊕A like in [9]. We observe that the copower distributes over

the coproduct (n� (A⊕B) = n�A⊕n�B) and that composition is multiplication

(n� (m�A) = nm�B).

The copower n�C is the C*-algebra Cn. Copowers are preserved by endofunctors

A⊗−.

A⊗ (n�B) = A⊗B ⊕ · · · ⊕A⊗B = n� (A⊗B)

We still need to verify that we have a relative adjunction. Observing that

FdC∗-AlgCPU(A,Cn) ∼= FdC∗-AlgCPU(A,C)× · · · × FdC∗-AlgCPU(A,C)

one deduces that

FdC∗-AlgCPU(A,Cn) ∼= Set(n,FdC∗-AlgCPU(A,C))

and therefore

FdC∗-Algop
CPU(Cn, A) ∼= Set(n,FdC∗-Algop

CPU(C, A))

Then, the symmetric monoidal functor J : N → FdC∗-Algop
CPU associates every

natural number n ∈ N to the C*-algebra Cn. The morphisms runn are given by the

isomorphism

FdC∗-Algop
CPU(C,Cn) := FdC∗-AlgCPU(Cn,C) ∼= D(n)

between states on Cn and the n-simplex D(n) := {x ∈ [0, 1]n |
∑

i xi = 1} [7,

Lemma 4.1].

The semantics of types and gates is rather standard. Probabilities are complex

numbers C and a (classical) bit is therefore an element of the C*-algebra C ⊕ C.

Moreover, n-qubit systems are modelled in the C*-algebra M2n . In other words,

1 = C bit = C⊕ C qubit = M2

19

Rennela, Staton

u = u† − u (for every unitary u ∈ U)

meas : C⊕ C→M2 : (a, b) 7→
(
a 0
0 b

)
new : M2 → C⊕ C :

(
a b
c d

)
7→ (a, b)

and so on.

C.2 Denotations of the examples in FdC∗-Algop
CPU

[[` hadamard]] = H∗ −H
[[` pop]] = (idqubit⊗QList ⊕ init0) ◦ unfold

where unfold : [[QList]]→ [[qubit⊗QList]]

[[` rotations]](m)(n) = id if n ∈ {0, 1}
[[` rotations]](m)(k + 1) = id + id + rm,k if k ≥ 1

where rm,k = fold ◦ fold ◦ control-RGate(2 +m− k)

◦ [[` rotations]](m)(k) ◦ pop ◦ pop

[[` fourier]](m)(0) = id

[[` fourier]](m)(1) = [[` hadamard]]

[[` fourier]](m)(k + 1) = fk if k ≥ 1

where fk = rk+1,k ◦ fold ◦ [[` fourier]](k) ◦ pop

C.3 Proof of Proposition 4.1

First, it has been established that the category W∗-Algop
CPSU is symmetric monoidal

when equipped with the spatial tensor product [13] and it is a well-known fact that

the category Dcpo of dcpos and Scott-continuous maps is cartesian closed.

Much like in [10, Section 5.6], we introduce the restricted version of the monad

of subvaluations V = dcGEMod([0, 1](−), [0, 1]) on Dcpo, where the category

dcGEMod is the category of directed-complete generalized effect modules and

Scott-continuous effect module homomorphisms, also introduced as a category of

quantum predicates in [20,21].

Recall that a strong monad over a monoidal closed category K is the same thing

as a K-enriched monad. The monad V is enriched over Dcpo and therefore a strong

monad since the category Dcpo is (cartesian) closed.

Since there is a full and faithful functor which takes every W*-algebra A to its

directed-complete generalized effect module [0, 1]A of predicates [21], there is an

equivalence

V (n) = dcGEMod([0, 1]n, [0, 1]) ∼= W∗-AlgCPSU(Cn,C) for every n ∈ N

and therefore an equivalence

V (n) ∼= W∗-Algop
CPSU(C,Cn) for every n ∈ N

Building up on the constructions of Prop 3.3, we deduce that

(W∗-AlgCPSU,Dcpo, V) is a categorical model of QWire.

20

Rennela, Staton

C.4 Proof of Proposition 4.3

Variations of most of the categorical constructions required have been discussed

in [21]. The coproduct of quantum predomains F,G : Cop → Dcpo is defined

pointwise on the disjoint sum of dcpos, and so does the terminal object (resp. zero

object) of the category of quantum (pre)domains and Scott-continuous maps (resp.

strict Scott-continuous maps).

Since C is a small category, the Day convolution provides us with a symmetric

monoidal closed category of quantum predomains [4] and algebraic compactness for

locally continuous endofunctors is given by [6, Example 6.9].

The copower takes inspiration from the fact that the equivalence Mn(A) ∼= Mn⊗
A holds for every C*-algebra A and every natural number n ∈ N. In short: for every

n ∈ N, n � F is the quantum predomain defined as the mapping A 7→ F (Mn(A))

on objects and f 7→ F (Mn(f)) on maps.

Finally, exploiting the fact that the enriched Yoneda embedding y : C →
[Cop,Dcpo] is full and faithful, we observe that there is a one-to-one correspondance

between completely positive unital maps I → J(n) and Scott-continuous natural

transformations C(−, I)⇒ C(−, J(n)), which leads us to the following equivalence

T (n) ∼= C(I, J(n)) ∼= [Cop,Dcpo](I, J(n)) for every n ∈ N

21

	Introduction
	Embedded languages and enriched categories
	Recursive types and recursive terms

	Functional programming and quantum circuits
	Circuit typing and host typing
	QWire

	Categorical models of EWire
	A step towards quantum domain theory
	Extensions of EWire
	Towards quantum domains

	Acknowledgement
	References
	Additional typing rules for the host language
	Operational semantics of EWire
	Omitted proofs
	Proof of Proposition 3.3
	Denotations of the examples in FdC*-AlgCPUop
	Proof of Proposition 4.1
	Proof of Proposition 4.3

