Towards Persistent and Parallel Asynchronous Adaptive
Specialisation for Data-Parallel Array Processing in SAC

Clemens Grelck

Heinz Wiesinger

University of Amsterdam
Institute of Informatics

C.Grelck@uva.nl

Abstract

Data-parallel processing of multi-dimensional arrays is charac-
terised by a fundamental trade-off between software engineering
principles on the one hand and runtime performance concerns on
the other hand. Whereas the former demand code to be written
in a generic style abstracting from structural properties of arrays
as much as possible, the latter require an optimising compiler to
have as much information on the very same structural properties
available at compile time. Asynchronous adaptive specialisation of
generic code to specific data to be processed at application run-
time has proven to be an effective way to reconcile these contrarian
demands.

In this paper we revisit asynchronous adaptive specialisation,
provide a comprehensive analysis of its strengths and weaknesses
and propose improvements for its design and implementation.
These improvements are primarily concerned with making special-
isations available to running applications as quickly as possible.
One important measure is making specialisations persistent across
multiple invocations of the same or even different applications.
Another one is to run multiple specialisation attempts concurrently
taking further advantage of today’s multi-core chip architectures.

Categories and Subject Descriptors
third-level

CR-number [subcategory]:

Keywords Array processing, Single Assignment C, runtime opti-
misation, dynamic recompilation

1. Introduction

SAC (Single Assignment C) is a purely functional, data-parallel
array programming language [3, 5]. As such, SAC puts the empha-
sis on homogeneous, multi-dimensional arrays as the most relevant
data aggregation principle. SAC advocates shape- and rank-generic
programming on multi-dimensional arrays, i.e. SAC supports func-
tions that abstract from the concrete shapes and even from the con-
crete ranks (number of dimensions) of argument and result arrays.
Depending on the amount of compile time structural information
we distinguish between different runtime representations of arrays.

From a software engineering point of view it is (almost) always
desirable to specify functions on the most general input type(s) to
maximise code reuse. For example, a simple structural operation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IFL’13, August 28-30, 2013, Nijmegen, Netherlands.

Copyright is held by the owner/author(s).

ACM 777,

http://dx.doi.org/10.1145/72?

H.M.Wiesinger@student.uva.nl

like rotation should be written in a rank-generic way, a naturally
rank-specific function like an image filter in a shape-generic way.
Very infrequently it is desirable to write code in a non-generic way.
Consequently, the extensive SAC standard library is full of generic,
mostly rank-generic functions.

However, genericity comes at a price. In comparison to non-
generic code the runtime performance of equivalent operations
is substantially lower for shape-generic code and again for rank-
generic code [15]. The reasons are manifold and often operation-
specific, but three categories can be identified nonetheless: Firstly,
generic runtime representations of arrays need to be maintained,
and generic code tends to be less efficient, e.g. no static nesting of
loops can be generated to implement a rank-generic multidimen-
sional array operation. Secondly, many of the SAC compiler’s ad-
vanced optimisations [6, 7] are not as effective on generic code be-
cause certain properties that trigger program transformations can-
not be inferred. Thirdly, in automatically parallelised code [1, 4, 10]
many organisational decisions must be postponed until runtime and
the ineffectiveness of optimisations inflicts frequent synchronisa-
tion barriers and superfluous communication.

In order to reconcile the desires for generic code and high
runtime performance, the SAC compiler aggressively specialises
rank-generic code into shape-generic code and shape-generic code
into non-generic code. However, regardless of the effort put into
compiler analysis for rank and shape specialisation, this approach
is fruitless if the necessary information is not available at compile
time as a matter of principle. For example, the corresponding data
may be read from a file, or the SAC code may be called from
external (non-SAC) code, to mention only two potential scenarios.

Such scenarios and the ubiquity of multi-core processor archi-
tectures form the motivation for our asynchronous adaptive spe-
cialisation framework [8, 9]. The idea is to postpone specialisation,
if necessary, until runtime time, when full structural information
is always available. Asynchronous with the execution of a generic
function, potentially in a data-parallel fashion on multiple cores,
a specialisation controller generates an appropriately specialised
binary variant of the same function and dynamically links the ad-
ditional code into the running application program. Eligible func-
tions are indirectly dispatched such that if the same binary function
is called again with arguments of the same shapes as previously, the
corresponding new and fast non-generic clone is run instead of the
old and slow generic one.

In contrast to standard just-in-time compilation approaches for
(byte code) interpreted languages we take advantage of today’s
ubiquity of multi-core architectures and the continuously growing
number of available cores in average computing environments.
With asynchronous adaptive specialisation the re-compilation of
specialised intermediate code happens in parallel with the running
application. The rationale here is that, with a large number of cores,
having one core less available for data-parallel program execution
typically has a negligible effect on runtime performance, if any.

rank: 3

shape: [2,2,3]

data: [1,2,3,4,5,6,
7,8,9,10,11,12]

1 2 3 rank: 2
4 5 6 shape: [3,3]
7 8 9 data: [1,2,3,4,5,6,7,8,9]

rank: 1
[1,2,3,4,5,6] shape: [6]
data: [1,2,3,4,5,6]

rank: 0
42 shape: []
data: [42]

Figure 1. Truly multidimensional arrays in SAC and their repre-
sentation by data vector, shape vector and rank scalar

The effectiveness of our approach, in general, depends on mak-
ing specialised and thus considerably more efficient binary variants
available to a running application as quickly as possible. The con-
tribution of this paper is to investigate optimisations and extensions
of our framework proposed in [8, 9] to this effect. These exten-
sions fall into two categories. Our first approach is to parallelise
the specialisation controller in order to produce multiple special-
isations concurrently. Instead of a fixed classification of the host
architecture’s cores as either compute cores or specialisation cores,
we propose a demand-driven dynamic adjustment of hardware re-
sources. Our second approach is to make specialisations persistent
across multiple runs of the same application or even across multi-
ple unrelated applications that make use of an overlapping set of
libraries.

The remainder of the paper is organised as follows. In Section 2
we explain SAC in general and the calculus of multi-dimensional
arrays in more detail; in Section 3 we do the same for the run-
time specialisation framework. A comprehensive analysis of the
strengths and weaknesses follows in Section 4. Based on this we
propose parallel runtime specialisation in Section 5 and persistent
runtime specialisation in Section 6. Finally, we sketch out some
related work in Section 7 and draw conclusions in Section 8.

2. SAC and the Calculus of Multi-Dimensional
Arrays

As the name “Single Assignment C” suggests, SAC leaves the
beaten track of functional languages with respect to syntax and
adopts a C-like notation. This choice is primarily meant to facili-
tate familiarisation for programmers who rather have a background
in imperative languages than in declarative languages. Core SAC is
a functional, side-effect free subset of C: we interpret assignment
sequences as nested let-expressions, branching constructs as condi-
tional expressions and loops as syntactic sugar for tail-end recursive
functions. Details on the design of SAC can be found in [3, 5].
Following the example of interpreted array languages, such
as APL[2, 11], J[12] or NIAL[13, 14], an array value in SAC is
characterised by a triple (r, §,¢I). The rank r € N defines the
number of dimensions (or axes) of the array. The shape vector § €
N" yields the number of elements along each of the » dimensions.
The data vector d € TN contains the array elements (in row-

major unrolling), the so-called ravel. Here 1" denotes the element
type of the array. Some relevant invariants ensure the consistency of
array values. The rank equals the length of the shape vector while
the product of the elements of the shape vector equals the length of
the data vector.

Fig. 1 illustrates the calculus of multi-dimensional arrays that
is the foundation of array programming in SAC. The array calcu-
lus nicely extends to scalars, which have rank zero and the empty
vector as shape vector. Consequently, every value in SAC has rank,
shape vector and data vector. Both rank and shape vector can be
queried by built-in functions of the same name. The data vector can
only be accessed element-wise through a selection facility adopting
the square bracket notation familiar from C-like languages. Given
the ability to define rank-generic functions, whose argument ar-
ray’s ranks may not be known at compile time, indexing in SAC
is done using vectors (of potentially statically unknown length),
not (syntactically) fixed sequences of scalars as in most other lan-
guages. Characteristic for the calculus of multi-dimensional arrays
is a complete separation between data assembled in an array and
the structural properties (rank and shape) of the array.

. AUD Class:
int[#] rank: dynamic
shape: dynamic
AKD Class:
rank: static
shape: dynamic
AKS Class:
int[3,7] - rank: static
’ shape: static

int int[1] ... int[42] .. int[1,1] ..

Figure 2. Three-level hierarchy of array types: arrays of unknown
dimensionality (AUD), arrays of known dimensionality (AKD) and
arrays of known shape (AKS)

The type system of SAC is monomorphic in the element type of
an array, but polymorphic in the structure of arrays. As illustrated in
Fig. 2, each element type induces a conceptually unbounded num-
ber of array types with varying static structural restrictions on ar-
rays. These array types essentially form a hierarchy with three lev-
els. On the lowest level we find non-generic types that define arrays
of fixed shape, e.g. int [3,7] or just int. On an intermediate level
of genericity we find arrays of fixed rank, e.g. int[.,.]. And on
the top of the hierarchy we find arrays of any rank, e.g. int [*].
The hierarchy of array types induces a subtype relationship, and
SAC supports function overloading with respect to subtyping.

The array type system leads to three different runtime represen-
tations of arrays depending on the amount of compile time struc-
tural information, as illustrated in Fig. 2. For AKS arrays both rank
and shape are compile time constants and, thus, only the data vector
is carried around at runtime. For AKD arrays the rank is a compile
time constant, but the shape vector is fully dynamic and, hence,
must be maintained alongside the data vector. Last not least, for
AUD arrays both shape vector and rank are dynamic.

3. Asynchronous Adaptive Specialisation

In order to reconcile software engineering principles for generality
with performance demands we have developed the asynchronous
adaptive specialisation framework illustrated in Fig. 3. The idea
is to postpone specialisation if necessary until runtime time, when
all structural information is eventually available no matter what. A
generic SAC function compiled for runtime specialisation leads to
two functions in binary code: the original generic and presumably
slow function definition and a small proxy function that is actually
called by other code instead of the generic binary code.

SAC link with Dynamic Specialisation re-create _ |Intermediate
Module Controller Code

‘ load
invoke

inspect
and
retrieve update SAC Compiler
generate
Specialisation Dispatch E_I:)ared
Request Function ibrary (.so)
Queue Registry
link

A with
file lookup
request dispatch

function
4

< Application Program >

Figure 3. Software architecture of asynchronous adaptive specialisation framework

When executed, the proxy function files a specialisation request
consisting of the name of the function and the concrete shapes of
the argument arrays before calling the generic implementation. Of
course, proxy functions also check whether the desired specialisa-
tion has been built before, or whether an identical request is cur-
rently pending. In the former case, the proxy function dispatches
to the previously specialised code, in the latter case to the generic
code, but without filing another request.

Concurrent with the running application, a specialisation con-
troller (thread) takes care of specialisation requests. It runs the
fully-fledged SAC compiler with some hidden command line ar-
guments that describe the function to be specialised and the spe-
cialisation parameters in a way sufficient for the SAC compiler to
re-instantiate the function’s partially compiled intermediate code
from the corresponding module, compile it with high optimisation
level and generate a new dynamic library containing the specialised
code and a new proxy function. Eventually, the specialisation con-
troller links the application with that library and replaces the proxy
function in the running application.

4. Analysis

The effectiveness of asynchronous adaptive specialisation depends
on how often the dynamically specialised variant of some func-
tion is actually run instead of the original generic version. This
depends on two connected but distinguishable properties. Firstly,
the application itself must apply an eligible function repeatedly to
arguments with the same shape. Secondly, the specialised variant
must become available sufficiently quickly to have a relevant im-
pact on application performance. In other words, the application
must run considerably longer than the compiler needs to generate
binary code for specialised functions.

The first condition relates to a property of the application. Many
applications in array processing do expose the desired property, but
obviously not all. We can only deal with unsuitable applications by
dynamically analysing an application’s properties and by stopping
the creation of further specialised functions at some point.

The second condition sets the execution time of application
code in relation to the execution time of the compiler. In array
programming, however, the former often depends on the size of
the arrays being processed, whereas the latter depends on the size

and structure of the intermediate code. Obviously, execution time
and compile time of any code are unrelated with each other and,
thus, many scenarios are possible.

1 module ConvolutionAuxiliaries;

2

3 use Array: all;

4

5 export {convolution_step, is_convergent};
6

7 double [x]

8 convolution_step (double[x] A)

9

10 R =A;

11

12 for (i=0; i<dim(A); i++) {

13 R =R+ rotate(i, 1, A)

14 + rotate(i, —1, A);

15 }

16

17 return R / tod(2 *x dim(A) + 1);
18

19

20 bool

21 is_convergent (double[x] new,

22 double [*] old,

23 double epsilon)

24

25 return all(abs(new — old) < epsilon);
26}

Figure 4. Case study: generic convolution step and convergence
check

We demonstrate potential runtime behaviour of applications by
means of a small case study: rank-generic convolution with con-
vergence check. Fig. 4 shows the definition of a SAC module
ConvolutionAuxiliaries that defines and exports two rank-
generic functions: convolution_step and is_convergent. The
former defines a single convolution step that computes each ele-
ment of a multi-dimensional grid as the arithmetic mean of its di-
rect neighbours along each axis. The latter implements a predicate
whether or not all elements of a two given arrays differ by less than

a given threshold. Due to using the rotate function imported from
the comprehensive SAC array library this concolution step imple-
ments cyclic boundary conditions.

A more detailed description of the compositional style of array
programming advocated by SAC along with a more thorough ex-
planation of a variant of the code shown here can be found in [3].
Since this is not a paper about programming in SAC or the language
design of SAC, we refrain from repeating this information here.

1 module Convolution;

2

3 use Array: all;

4

5 import ConvolutionAuxiliaries: all;
6

7 export {convolution};

8

9 double [*]

10 convolution (double[x] A, double epsilon)
11 {

12 A_new = A;

13

14 do {

15 A_old = A_new;

16 A_new = convolution_step(A_old);
17 }

18 while (!is_convergent(A_new, A_old,
19 epsilon));
20 return A_new;

21}

Figure 5. Case study: generic convolution kernel with conver-
gence check

Fig. 5 shows a second module named Convolution. This mod-
ule defines and exports a single function named convolution,
which computes a series of convolution steps until sufficient con-
vergence is reached. More precisely, in every iteration (tail recur-
sion) the function convolution applies both imported functions
convolution_step and is_convergent.

We compile the module ConvolutionAuxiliaries (Fig. 4)
with and without runtime specialisation enabled and import either
version into the module Convolution. We conducted a series of
experiments with different array ranks and shapes on an AMD
Phenom II X4 965 quad-core system. The machine runs at 3.4GHz
clock frequency and is equipped with 4GB DDR3 memory. The
operating system is Linux with kernel 2.6.38-rc1.

A representative plot of the runtimes achieved is shown in
Fig. 6; it reports on a convolution experiment with a 3-dimensional
array of 100 x 100 x 100 double precision floating point numbers.
The figure shows individual iterations on the x-axis and measured
execution time for each iteration on the y-axis. The two lines show
measurements with runtime specialisation disabled and enabled,
respectively.

The first insight is that for the given example runtime speciali-
sation does not inflict any measurable overhead in the startup phase
while the specialisation controller is still working on the first spe-
cialisation.

After 8 iterations running completely generic binary code a
shape-specialised version of the convolution_step function be-
comes available. Switching from a generic to a non-generic imple-
mentation of the convolution step reduces the execution time per it-
eration from about 1.5 seconds to roughly 0.25 seconds. This exam-
ple demonstrates the tremendous effect that runtime specialisation
can have on generic array code. The 3-dimensional case requires a
total of six rotations of the argument array. Rotation is not a built-

in function in SAC, but itself is implemented using two consecu-
tive basic array operations (with-loops). Rank-generic binary code
cannot further be optimised and leads to a total of 19 intermediate
arrays to compute the final result. For the specialised intermediate
code the compiler manages to unroll the for-loop three times and to
fold the resulting array operations such that the entire convolution
step is computed in one step without any intermediate temporary
structures materialising in memory.

As soon as the specialisation of the convolution step is com-
pleted, the specialisation controller starts working on the already
pending specialisation request for the convergence check. As illus-
trated in Fig. 6, the specialised binary code for the convergence
check becomes available after 26 iterations and reduces the ex-
ecution time of a single iteration further from 0.25 seconds to
0.065 seconds. The main reason for this considerable performance
improvement again is the effectiveness of optimisations that fuse
consecutive array operations and, thus, avoid the creation of inter-
mediate arrays. With all binary code specialised for the relevant
array shape 100 x 100 x 100 no further improvements are to be
expected for the remainder of the application runtime.

As pointed out earlier, the time it takes to make a specialised bi-
nary variant of either the convolution step or the convergence check
available to the running application is constant (for a given interme-
diate code, compiler version and compiler options). In contrast, the
time it takes to complete one iteration of the application depends on
the rank and shape of the argument array. Running the very same
application on a considerably larger argument array may lead to a
situation in which both specialisations become available long be-
fore the application moves on to the second iteration. The other
extreme is likewise possible. For small arrays the entire application
may have terminated before even the first specialisation becomes
available. In this case the specialisation controller discards the spe-
cialisation attempt and terminates alongside the application itself.
As a consequence, the entire application runs generic binary code
just as without runtime specialisation.

These scenarios illustrate that runtime specialisation is most ef-
fective for long-running applications. Furthermore, they demon-
strate that any measure that contributes to making specialised bi-
nary variants quicker available to a running application is beneficial
in practice and improves the applicability of the entire approach.

5. Parallel Asynchronous Adaptive Specialisation

A number of aspects affect the time that it takes from filing a spe-
cialisation request by the running application to the specialised bi-
nary effectively becoming available for dispatch. The most relevant
aspect in one way or another is the execution speed of the com-
piler. For good reasons the design of the SAC compiler is diamet-
rically opposed to that of typical just-in-time compilers for byte-
code interpreted languages. Whereas the latter are optimised for
short compilation times, the SAC compiler has from the very be-
ginning been optimised for speed of compiled code, not speed of
the compiler.

Many different large-scale code transformations/optimisations
contribute to this design at the expense of considerable compilation
times even for relatively short source codes. Of course, the most
time-consuming optimisations could be switched off for the run-
time specialisation use case, but this would be counter-productive.
It is exactly this optimisation capacity that is essential for achiev-
ing the substantial performance gains through specialisation, as
demonstrated in the previous section. Thus, speeding up asyn-
chronous adaptive specialisation in general is limited and would
require a long-term engineering investment.

What can be achieved with much less effort and, hence, is
at the core of our proposed improvements, is the parallelisation
of the dynamic specialisation process itself. With compute cores

Experiment: 100x100x100 array

'WWWMWM,A P U W WS W

Time in seconds per convolution step

0.8 #— Runtime specialisation disabled
—o— Runtime specialisation enabled
0.6
0.4
0.2 \
0
0 5 10 15 20 25 30 35 40 45 50

Convolution steps

Figure 6. Case study: running the generic convolution kernel defined in Fig. 4 and Fig. 5 on a 3-dimensional argument array of shape
100 x 100 x 100 with and without asynchronous adaptive specialisation

available in abundance in the near future, if not already today, the
same argument that we used to motivate setting aside one core for
specialisation instead of data-parallel execution of the application
holds for more than one core.

Looking at Fig. 6 shows that the relative performance improve-
ments realised by adaptive asynchronous specialisation by far out-
weigh potential improvements through data-parallel execution even
when assuming linear speedups and even on the fairly small quad-
core system that we used for our experiments. On system with tens
of cores parallel specialisation through multiple concurrent special-
isation controllers should be beneficial even if the relative perfor-
mance improvements are less impressive.

For our running example of generic convolution it is fairly clear
that two specialisation controllers would be optimal. One would
then specialise the convolution step while the other could concur-
rently specialise the convergence check. According to Fig. 6 the
former takes about 12 seconds (8 iterations of 1.5 seconds each)
while the latter takes about 5 seconds (18 iterations of 0.25 sec-
onds plus some share of last slow iteration). Looking at the dif-
ferent complexities of the definitions of the convolution step and
the convergence check, as shown in Fig. 4, these numbers appear
plausible.

In other words, it proves to be rather unfortunate that we first
specialise the convolution step and only after completing this task
turn towards the convergence check. If we would specialise the con-
vergence check first, partially specialised code would already be
available after 3—4 iterations. Unfortunately, the specialisation or-
der is beyond our control because the generic implementation of
the convolution step is simply run before the that of the conver-
gence check in the application code.

In any case, with two concurrent specialisation controllers we
can expect that the specialised convergence check becomes avail-
able after only 3—4 iterations while the specialised convolution step
still becomes available in exactly the same time as with a single

specialisation controller. Of course, due to the specialised conver-
gence check we would already have computed more iterations at
this point in time than before.

While parallelising asynchronous adaptive specialisation ap-
pears to be beneficial no matter what if only sufficiently many com-
pute cores are available, the question arises how many cores would
be best to use for specialisation and how many for data-parallel ex-
ecution of the application program itself. For the running example
this question seems to be straightforward to answer: two. However,
even for this admittedly simple demo application this is not the op-
timal number. Once both specialisations have been created, the two
specialisation controllers would wait in vain for any other requests
to come and thus would waste two compute cores until the termi-
nation of the application. It seems plausible that these two cores
should rather help running the application, in particular on a small
quad-core system as we used for experimentation.

Starting out with some default ratio, the expectation is that an
application initially requires more specialisations while in many
cases a fixed point is reached after some time or at least the need for
specialisations reduces as the application continues to run. Thus,
we propose to adapt the number of specialisation controllers to
the actual demand and leave as many cores as possible to the
(implicitly) parallelised application.

6. Persistent Asynchronous Adaptive
Specialisation

Another major area of refinement lies in making asynchronous
adaptive specialisations persistent. So far specialisations are ac-
cumulated during the execution of an application, but are auto-
matically removed upon termination. Consequently, any follow-up
run of the same application program starts again from scratch. Of
course, the next run may use arrays of different shape, but in many
scenarios it is quite likely that a similar set of shapes will prevail as
in previous runs.

SAC link with Dynamic Specialisation re-create _|Intermediate
Module Controller Code
inspect . ‘ load
and invoke
retrieve
update SAC Compiler
consult generate
Specialisation Dispatch Shared
Request Function L
Queue Registry
Spec ‘
4 Data .
Base \. link
file lookup with
request d'SPa.tCh \l
function i
v "":Amh

C Application Program

Figure 7. Software architecture of asynchronous adaptive specialisation framework with persistent storage

Therefore, we propose to store specialised binary functions in
persistent collections alongside the original generic binary mod-
ules. Fig. 7 shows a sketch of the extended framework architecture.
The most notable difference to Fig. 3 is the specialised functions
data base shown in the lower right corner. Whenever a new spe-
cialised binary version of some generic function is created, it is not
only linked into the running application that requested this particu-
lar specialisation, but it is additionally stored in the data base.

The other area that needs refinement is the specialisation con-
troller. Instead of checking only for potentially existing speciali-
sations created previously in the same application run or currently
pending, the specialisation controller additionally consults the ex-
ternal persistent data base to figure out whether or not the required
specialisation already exists. Depending on the outcome of this
query the application either dispatches to the specialised imple-
mentation or files a specialisation request to be taken care of by
a specialisation controller.

The main advantage of persistent storage is that the overhead
of actually compiling specialisations at application runtime can
often be avoided. Our assumption is that for many applications the
proposed approach results in a sort of training phase in practice
after which most required specialisations have become available.
Only in case the user runs an application on a previously unseen
array shape does the dynmaic specialisation machinery become
active again.

A potential scenario could be image filters. They can be applied
to any image pixel format. In practice, however, users only deal
with a fairly small number of different image formats. Still, the
concrete formats are unknown at compile time. Purchsing a new
camera may introduce further image formats to be used. This sce-
nario would result in a short training phase until all image filters
have been specialised for the additional image formats of the new
camera.

Persistence, however, also creates a new range of research ques-
tions. For instance, specialisation repositories cannot grow ad in-
finitum. We propose to employ statistical methods like least re-
cently used or least often used to decide when which specialisations
may be displaced by new ones. In other words, persistent storage is
managed like a cache memory for specialisations.

7. Related Work

Our approach differs from just-in-time compilation of (Java-like)
byte code in several aspects. In the latter hot spots of byte code
are adapted to the platform they run on by generating native code
at runtime while the execution platform was deliberately left open
at compile time. This form of adaptation (conceptually) happens
in a single step. In contrast, our approach adapts code not to its
execution environment but to the data it operates on. This is an
incremental process that may or may not reach a fixed point. The
number of different array shapes that a generic operation could
be confronted with is in principle unbounded, but in practice the
number of different array shapes occurring in a concrete application
is often fairly limited. Our approach is not specific to SAC, but can
be carried over to any context of data-parallel array processing.

8. Conclusions and Future Work

Asynchronous adaptive specialisation is a viable approach to recon-
cile the desire for generic program specifications in (functional) ar-
ray programming with the need to achieve competitive runtime per-
formance under limited compile time information about the struc-
tural properties (rank and shape) of the arrays involved. This sce-
nario of unavailability of shapely information at compile time is
extremely relevant. Beyond potential obfuscation of shape relation-
ships in user code data structures may be read from files or func-
tional array code could be called from less information-rich envi-
ronments in multi-language applications. Furthermore, the scenario
is bound to become practice whenever application programmer and
application user are not identical, which rather is the norm than the
exception in (professional) software engineering.

In this paper we have proposed several improvements and ex-
tensions to asynchronous adaptive specialisation that generally
broaden its applicability by making specialised binary code avail-
able sooner. The parallelisation of the specialisation process itself
with a variable distribution of cores between specialisation and
data-parallel application execution allows us to satisfy specialisa-
tion requests as quickly as possible. Persistent asynchronous adap-
tive specialisation aims at sharing runtime overhead across several
runs of the same application or even across multiple independent
applications sharing some library code and thus to effectively elim-
inate the observable overhead in many situations.

We are currently working on implementing both parallel and
persistent asynchronous adaptive specialisation. Our future work,
hence, is dominated by completing this implementation and con-
ducting extensive experiments to evaluate the benefits of the pro-
posed extensions.

References

[1] M. Diogo and C. Grelck. Heterogenous computing without heteroge-
neous programming. In K. Hammond and H. Loidl, editors, Trends
in Functional Programming, 13th Symposium, TFP 2012, St.Andrews,
UK, volume 7829 of Lecture Notes in Computer Science. Springer,
2013. to appear.

[2] A. Falkoff and K. Iverson. The Design of APL. IBM Journal of
Research and Development, 17(4):324-334, 1973.

[3] C. Grelck. Single Assignment C (SAC): high productivity meets
high performance. In V. Zsék, Z. Horvéth, and R. Plasmeijer, edi-
tors, 4th Central European Functional Programming Summer School
(CEFP’11), Budapest, Hungary, volume 7241 of Lecture Notes in
Computer Science, pages 207-278. Springer, 2012.

[4] C. Grelck. Shared memory multiprocessor support for functional array
processing in SAC. Journal of Functional Programming, 15(3):353—
401, 2005.

[5] C. Grelck and S.-B. Scholz. SAC: A functional array language for
efficient multithreaded execution. [International Journal of Parallel
Programming, 34(4):383-427, 2006.

[6] C. Grelck and S.-B. Scholz. Merging compositions of array skeletons
in SAC. Journal of Parallel Computing, 32(7+8):507-522, 2006.

[7] C. Grelck and S.-B. Scholz. SAC — From High-level Programming
with Arrays to Efficient Parallel Execution. Parallel Processing Let-
ters, 13(3):401-412, 2003.

C. Grelck, T. van Deurzen, S. Herhut, and S.-B. Scholz. An Adap-
tive Compilation Framework for Generic Data-Parallel Array Pro-
gramming. In 15th Workshop on Compilers for Parallel Computing
(CPC’10). Vienna University of Technology, Vienna, Austria, 2010.

C. Grelck, T. van Deurzen, S. Herhut, and S.-B. Scholz. Asynchronous

Adaptive Optimisation for Generic Data-Parallel Array Programming.

Concurrency and Computation: Practice and Experience, 24(5):499—

516,2012.

[10] J. Guo, J. Thiyagalingam, and S.-B. Scholz. Breaking the gpu
programming barrier with the auto-parallelising SAC compiler. In
6th Workshop on Declarative Aspects of Multicore Programming
(DAMP’11), Austin, USA, pages 15-24. ACM Press, 2011.

[11] International Standards Organization. Programming Language APL,
Extended. ISO N93.03, ISO, 1993.

[12] K. Iverson. Programming in J. Iverson Software Inc., Toronto,
Canada, 1991.

[13] M. Jenkins. Q’Nial: A Portable Interpreter for the Nested Interactive
Array Language Nial. Software Practice and Experience, 19(2):111-
126, 1989.

[14] M. Jenkins and J. Glasgow. A Logical Basis for Nested Array Data

Structures. Computer Languages Journal, 14(1):35-51, 1989.

[8

=

[9

—

[15] D. Kreye. A Compilation Scheme for a Hierarchy of Array Types. In
T. Arts and M. Mohnen, editors, Implementation of Functional Lan-
guages, 13th International Workshop (IFL’01), Stockholm, Sweden,
Selected Papers, volume 2312 of Lecture Notes in Computer Science,
pages 18-35. Springer, 2002.

