Abstract

Immediate Dominators in Linear Time

An Elegant and Non-Amortized Algorithm
EXTENDED ABSTRACT

Marco T. Morazan

Seton Hall Uniersity
morazanm@shu.edu

Abstract

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages)

Keywords Immediate Dominators, Algorithms

Computing dominators is a fundamental problem in the imple-
mentation of programming languages. Dominators are used in com-
piler optimizations involving loop-invariant computations and code
motion [2]. Dominators also play a role in program transformation
techniques involving static single assignment form [8], lambda lift-
ing [11], and lambda dropping [10]. In addition to applications in
programming languages, dominators are used in software testing to
achieve good testing coverage [1], in VLSI testing to find faults [5],
and in computational biology to study species extinction [3, 4].

Modern algorithms to compute dominators, have taken two
major approaches: an equation-based approach and a spanning-
tree-based approach. The equation-based approach, also known as
the data-flow approach, aims to solve a system of recursive set-
equations—one equation for each node in the call-graph. The span-
ning tree approach aims to exploit properties of the depth-first span-
ning tree to determine the dominator relationship. Both approaches
have strived to develop “fast” and “practical” algorithms with vary-
ing degrees of success. Equation-based approaches have not devel-
oped an O(NN) algorithm, but have yielded algorithms that are ele-
gant and that in practice are expected to run fast [7]. Approaches us-
ing spanning trees have developed an asymptotically optimal O (V)
algorithm [6]. This asymptotically optimal algorithm, however, is
conceptually complex, difficult to explain, and difficult to imple-
ment.

Spanning-tree-based algorithms aim to build the dominator tree
of a call-graph, GG, by exploiting properties of, ST, its depth-firt
spanning tree. Several spanning tree algorithms have been proposed
in the search for an O(n) algorithm [6, 9, 12, 13]. Of these algo-
rithms, the best known is the almost linear algorithm developed by
Langauer and Tarjan (LT) [13] which has served as the basis for
other spanning-tree-based algorithms. The most recent refinement
has been done by Buchsbaum et al. (B) obtaining an O(n) algo-
rithm [6]. These algorithms work using three conceptual steps:
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1. Compute semidominators.
2. From semidominators compute relative dominators.

3. From relative dominators compute immediate dominators.

The LT and B algorithms compute each of these steps differently,
but both are based on visiting and processing nodes.

This article presents a new spanning-tree-based linear-time al-
gorithm that eliminates the need to compute semidominators and
relative dominators. Its novel approach is based on processing
edges, not nodes, during a traversal of the nodes in reversed order
from the spanning tree traversal order. A forest-like data structure
is maintained that dynamically tracks dominator information across
edges when the tail of an edge is visited, not when the head is vis-
ited. The immediate dominator of a node is not computed until it is
its turn to be connected within the forest and its immediate domi-
nator is decided solely based on the heads of the edges for which it
is the tail. At each step, the forest consists solely of trees of height
0O-nodes not yet connected—and trees of height 1-the root of such
trees is the largest node so far from which its children are reachable.
This property guarantees that each edge can be processed in con-
stant time. Therefore, the algorithm is O(v + €), or simply O(n),
where v is the number of nodes and e is the number of edges. Fur-
thermore, the algorithm is remarkably simple, elegant, and easily
implemented.
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