
Towards a framework for the implementation and
verification of translations between argumentation models

Bas van Gijzel Henrik Nilsson
University of Nottingham
{bmv,nhn}@cs.nott.ac.uk

Abstract
Argumentation theory is an interdisciplinary field studying how
conclusions can be reached through logical reasoning in settings
where the soundness of arguments might be subjective and argu-
ments can be contradictory. There are two main approaches: the
structured approach giving a predetermined structure to arguments,
including for example legal and scientific arguments, and the ab-
stract approach making no specific assumptions about the form of
arguments and thus being generally applicable. Structured argu-
mentation models have seen a recent surge, with new developments
in both general frameworks and more domain-specific approaches.
For the abstract approach, a significant effort has been directed to-
wards the construction of usable tools and efficient implementa-
tions. However, despite these tools and existing translations from
structured into abstract argumentation frameworks in the literature,
there is still a lack of implementations of the structured models and
their translations, suggesting that there are different problems with
the implementation of the structured counterpart.

Building on previous work, this paper attempts to tackle this
problem by applying functional programming techniques. We first
explain and implement two argumentation models: Dung’s argu-
mentation frameworks, the standard abstract model, and Carneades,
a structured argumentation model used in the legal domain. Having
expressed both in full concrete detail, yet in a sufficiently abstract
way thanks to using functional programming, we provide one of the
first implementations of a translation between argumentation mod-
els, fully documenting the techniques, making all work publicly
available and reusable.

Categories and Subject Descriptors I.2.3 [Deduction and Theo-
rem Proving]: Nonmonotonic reasoning and belief revision

General Terms Theory, Verification

Keywords argumentation, functional programming, Haskell, do-
main specific language

1. Introduction
Argumentation theory is an interdisciplinary field studying how
conclusions can be reached through logical reasoning in settings

[Copyright notice will appear here once ’preprint’ option is removed.]

where the soundness of arguments might be subjective and argu-
ments can be contradictory. There are two main approaches: the
structured approach giving a predetermined structure to arguments,
including for example legal and scientific arguments, and the ab-
stract approach makes no specific assumptions about the form of
arguments and thus being generally applicable. Structured argu-
mentation models have seen a recent surge, with new developments
in both general frameworks [3, 5, 23] and more domain-specific
approaches [18, 19]. For the abstract approach, a significant effort
has been directed towards the construction of usable tools and effi-
cient implementations; see [7] for a survey. However, despite these
tools and existing translations from structured into abstract argu-
mentation frameworks in the literature [6, 16, 17, 22, 23], there is
still a lack of implementations of the structured models and their
translations, suggesting that there are different problems with the
implementation of the structured counterpart.

We give a number of potential reasons:

• Abstract argumentation is closely related to logic program-
ming [11], making it easier to develop implementations that
are both intuitive and efficient [7]. In contrast, no mainstream,
general-purpose language or paradigm provide an equally close
fit for structured argumentation. There are a few implementa-
tions done in Java [25], but, Java being an imperative language,
they are quite far removed from the logical specification thus
making it significantly more difficult to verify whether the im-
plementation is actually correct, rather than what is the case
when specification and implementation are closely aligned.

• Most implementations of structured argumentation models are
not publicly available. Simari [25] gives an overview of some of
the structured argumentation models, but most implementations
are now unavailable or closed source. In those cases code was
never published, this means that the information regarding the
techniques of the implementations has effectively been lost.
New implementers thus have to start from scratch.

• Translations can be notoriously complex, both in implemen-
tation and in verification. Examples include the translation of
Carneades into ASPIC+ [16, 17] and the translation of abstract
dialectical frameworks into Dung [6]. Both proofs are at least a
page long and are hard to verify even for experts in the field.

This paper attempts to address this problem by applying func-
tional programming techniques, using Haskell as our programming
language. We argue that to simplify verification of structured argu-
mentation frameworks and their translations, they should be imple-
mented in a declarative language in such a way that the code is close
to the actual mathematics. Due to their declarative nature, func-
tional programming languages thus provide a good fit. A particular
advantage of functional languages is their proven track record of
being suitable for tailoring to specific needs through the approach

Draft proceedings paper for IFL’13 1 2013/8/21

of Embedded Domain-Specific Languages (EDSL) [18, 19]. Our
specific choice of programming language, Haskell, is further moti-
vated by our previous work [15], where we managed to implement
the Carneades argumentation model in such a way that is was easily
readable by an argumentation theorist with no previous knowledge
of Haskell. We thus hope that our approach ultimately could result
in an EDSL that is as suitable for implementing structured argu-
mentation frameworks as logic programming is for implementing
abstract ones.

Our contributions are the following:

• We explain and implement two argumentation models: Dung’s
argumentation frameworks [11] (AFs), the standard abstract
model, and Carneades [18, 19], a structured argumentation
model used in the legal domain. We provide and discuss all the
Haskell programming code of the implementation of Dung’s
AFs. The code is to a large extent a transliteration of standard
definitions, allowing this paper to simultaneously serve docu-
mentation and implementation. Our discussion of Carneades is
based on our previous work in [15].

• We provide one of the first implementations of a translation be-
tween argumentation models, fully documenting the techniques
and making all work publicly available and reusable.

• We discuss the desired properties of such a translation, sketch
an implementation of these properties in Haskell, and discuss a
possible formalisation of these properties into a theorem prover.

• We discuss and provide (online) a formalisation of the imple-
mentation of Dung’s AFs in a theorem prover, Agda, giving
the first fully machine-checkable formalisation of an argumen-
tation model and showcasing the benefits of using a functional
programming language as an initial implementation.

The paper is structured as follows. In Section 2 we give an
introduction to Dung’s abstract argumentation frameworks, each
time providing implementations of the definitions in functional pro-
gramming language, Haskell. In Section 3 we provide an introduc-
tion to the Carneades model, again giving corresponding Haskell
definitions. Section 4 discusses the implementation of a transla-
tion of Carneades into Dung’s AFs and sketch an implementation
of a few desired properties. In Section 5 we discuss the possibili-
ties of formalising the implementation of the previous translation
and briefly mention our formalisation of Dung’s AFs in a theorem
prover, Agda, and what we can gain from this. We conclude in Sec-
tion 6 with a discussion of what we have learnt from this study and
how we can take this further.

2. An implementation of AFs in Haskell
The abstract argument system, or argumentation frameworks (AFs)
as introduced by Dung [11] is a very simple, yet general model
that is able to capture various contemporary approaches to non-
monotonic reasoning. It has also been the translation target for
many modern structured argumentation models [6, 16, 17, 22, 23]
that have been introduced later in the literature. This section gives a
significant part of the standard definitions of Dung’s AFs, including
an algorithm for what is termed the grounded semantics, and show
how these definitions can be almost immediately translated into (a
slightly stylised version) of the functional programming language,
Haskell1. The purpose of this section is to show how a functional
programming language such as Haskell can be used to quickly im-
plement a prototype of an argumentation model and in a way that is

1 The source code of this Section, see
http://www.cs.nott.ac.uk/~bmv/Code/dunginhaskell_ifl.
lhs, is written in literate Haskell and can immediately be run by a standard
Haskell compiler.

amenable to proving properties of this implementation. This section
can also serve as a tutorial-like introduction to the implementation
of AFs up to grounded semantics. The implementation is provided
as a public library2, in the same way as the code for our earlier
work discussed in Section 3. Those interested in a more complete
introduction to AFs and alternative semantics can consult Baroni
and Giacomin [1].

An abstract argumentation framework consists of a set of ab-
stract arguments and a binary relation on this set representing at-
tack: the notion of one argument conflicting with another. To keep
the framework completely general, the notion of argument is ab-
stract; i.e., no assumptions are made as to their nature and they
may come from any domain, including informal ones such as “if it
rains you get wet”. Note that the attack relation is not assumed to
be symmetric: an attacked argument does not necessarily constitute
a counter-attack of the attacking argument.

Definition 2.1. Abstract argumentation framework An abstract
argumentation framework is a tuple 〈Args,Att〉, such that Args
is a set of arguments and Att ⊆ Args × Args is an attack relation
on the arguments in Args .

While the notion of argument is abstract, we need to assume that
it is possible to determine if two arguments are the same or not. For
now, we use Strings to just label arguments.

data DungAF arg = AF [arg] [(arg , arg)]
deriving (Show)

type AbsArg = String

Note that we use lists instead of sets for ease of presentation.

Example 2.2. An example (abstract) argumentation framework
containing three arguments where the argument C reinstates the
argument A by attacking its attacking argument B is captured by
AF1 = 〈{A,B,C}, {(A,B), (B,C)}〉.

A //B //C

Figure 1. An (abstract) argumentation framework

And in Haskell:

a, b, c :: AbsArg
a = "A"

b = "B"

c = "C"

AF1 :: DungAF AbsArg
AF1 = AF [a, b, c] [(a, b), (b, c)]

We now quickly give a few standard definitions for AFs such
as the acceptability of arguments and admissibility of sets. We
will use an arbitrary but fixed argumentation framework AF =
〈Args,Att〉.

Definition 2.3 (Set-attacks). A set S ⊆ Args of arguments attacks
an argument A ∈ Args iff there exists a Y ∈ S such that
(Y,X) ∈ Att .

For example, in Figure 1, {A,B} set-attacks C, because B
attacks C and B ∈ {A,B}.

Definition 2.4 (Conflict-free). A set S ⊆ Args of arguments is
called conflict-free iff there are no X , Y in S such that (X,Y) ∈
Att .

2 See http://hackage.haskell.org/package/Dung.

Draft proceedings paper for IFL’13 2 2013/8/21

http://www.cs.nott.ac.uk/~bmv/Code/dunginhaskell_ifl.lhs
http://www.cs.nott.ac.uk/~bmv/Code/dunginhaskell_ifl.lhs
http://hackage.haskell.org/package/Dung

Considering a set of arguments as a position an agent can take
with regards to its knowledge, conflict-freeness is then often the
minimal requirement for a reasonable position. For example, in
Figure 1, {A,C} would be a conflict-free set.

Definition 2.5 (Acceptability). An argument X ∈ Args is accept-
able with respect to a set S of arguments, or alternatively S defends
X , iff for all arguments Y ∈ S: if (Y,X) ∈ Att then there is a
Z ∈ S for which (Z, Y) ∈ Att .

An argument is acceptable (w.r.t. to some set S) if all its attack-
ers are attacked in turn (note that although the acceptability is w.r.t.
to a set S, all attackers are taken in account). For example, in Fig-
ure 1, {C} is acceptable w.r.t. {A,B,C}, because A attacks the
only attacker of C, i.e. B.

Dung defined the semantics of the argumentation frameworks
by using the concept of extensions and the characteristic function
of an AF . An extension is always a subset of Args , and can
intuitively be seen as a set of arguments that are acceptable when
taken together. We will just discuss the grounded extension, but for
completeness we give the four standard semantics defined by Dung.

Definition 2.6 (Characteristic function). The characteristic func-
tion of AF , FAF : 2Args → 2Args , is a function, such that, given a
set of arguments S, FAF (S) = {X | X is acceptable w.r.t. to S}.

For example, in Figure 1, FAF (∅) = {A}, FAF (A) = {A,C}
and FAF (A,B,C) = {A,C}.

A conflict-free set of arguments is said to be admissible if it is
a defendable position, that is, it can defend itself from incoming
attacks.

Definition 2.7 (Admissibility). A conflict-free set of arguments S
is admissible iff every argument X in S is acceptable with respect
to S, i.e. S ⊆ FAF (S).

Note that not every conflict-free set is necessarily admissible.
For example, in Figure 1, {C} is conflict-free but is not an admis-
sible set, since (B,C) ∈ Att and there is no argument in {C} that
defends from this attack.

Definition 2.8 (Extensions). Given a conflict-free set of arguments
S, argumentation frameworkAF , and if the domain of F is ordered
with respect to set inclusion then:

• S is a complete extension iff S = FAF (S).
• S is a grounded extension iff it is the least fixed point of FAF .
• S is a preferred extension iff it is a maximal fixed point of FAF .
• S is a stable extension iff it is a preferred extension attacking

all arguments in Args\S.

As proven in Dung [11], given that that the domain of F is ordered
w.r.t. to set inclusion, F is monotonic. Furthermore, the grounded
extension always exists and is unique and there always exists a pre-
ferred extension. Alternatively, the grounded and preferred exten-
sions can respectively be characterised as the smallest and a maxi-
mal complete extension.

setAttacks :: Eq arg ⇒ DungAF arg → [arg]→
arg → Bool

setAttacks (AF att) args arg
= or [y ≡ arg | (x , y)← att , x ∈ args]

conflictFree :: Eq arg ⇒ DungAF arg → [arg]→ Bool
conflictFree (AF att) args

= null [(x , y) | (x , y)← att , x ∈ args, y ∈ args]

acceptable :: Eq arg ⇒ DungAF arg → arg →
[arg]→ Bool

acceptable af @(AF att) x args
= and [setAttacks af args y | (y , x ′)← att , x ≡ x ′]

f :: Eq arg ⇒ DungAF arg → [arg]→ [arg]
f af @(AF args ′) args

= [x | x ← args ′, acceptable af x args]

fAF1 :: [AbsArg]→ [AbsArg]
fAF1 = f AF1

admissible :: Eq arg ⇒ DungAF arg → [arg]→ Bool
admissible af args = conflictFree af args ∧

args ⊆ f af args

groundedF :: Eq arg ⇒ ([arg]→ [arg])→ [arg]
groundedF f = groundedF ′ f []
where groundedF ′ f args

| f args ≡ args = args
| otherwise = groundedF ′ f (f args)

Then as expected:

groundedF fAF1

> ["A", "C"]

Note that by the required Eq arg ⇒, Haskell forces us to see
that we need an equality on arguments to be able implement these
functions.

Given an argumentation framework, we can determine which
arguments are justified by applying an argumentation semantics.
However, in contrast to the succinct extension based approach, we
will take the labelling-based approach to grounded semantics. The
labelling based approach is more commonly used in actual imple-
mentations and thus easier compare to existing implementations.
Furthermore, this obviates the need to formalise fixed points, sig-
nificantly reducing the amount of work needed when implement-
ing everything in a theorem prover. Below we have given the com-
monly used algorithm for grounded labelling [21]. However, for
correctness, the “if then” in the ∃ has been changed to “and”. Al-
though this small fix in the algorithm is obvious and to our knowl-
edge has not been adopted in any actual implementation, it does
make a case in point for formalisation of more complex mathemat-
ics such as a translation between argumentation models.

Algorithm 2.9. Algorithm for grounded labelling (Algorithm 6.1
of [21])

1. L0 = (∅, ∅, ∅)
2. repeat
3. in(Li+1) = in(Li) ∪ {x | x is not labelled in Li,
∀y : if yRx then y ∈ out(Li)}

4. out(Li+1) = out(Li) ∪ {x | x is not labelled in Li,
∃y : yRx and y ∈ in(Li+1)}

5. until Li+1 = Li

6. LG = (in(Li), out(Li),A− (in(Li) ∪ out(Li)))

The Haskell equivalent to a labelling:

data Status = In | Out | Undecided
deriving (Eq ,Show)

For our Haskell implementation, we will first translate the two
conditions for x containing quantifiers in line 3 and 4.

-- if all attackers are Out
unattacked :: Eq arg ⇒ [arg]→

DungAF arg → arg → Bool
unattacked outs (AF att) arg =

let attackers = [x | (x , y)← att , arg ≡ y]
in null (attackers \\ outs)

-- if there exists an attacker that is In
attacked :: Eq arg ⇒ [arg]→

DungAF arg → arg → Bool

Draft proceedings paper for IFL’13 3 2013/8/21

attacked ins (AF att) arg =
let attackers = [x | (x , y)← att , arg ≡ y]
in ¬ (null (attackers ‘intersect ‘ ins))

We split the implementation in two parts. A function for the
grounded labelling which can immediately be applied to an AF,
and a function actually implementing the algorithm, which has an
additional two arguments that accumulate the Ins and Outs.

grounded :: Eq arg ⇒ DungAF arg → [(arg ,Status)]
grounded af @(AF args) = grounded ′ [] [] args af

grounded ′ :: Eq a ⇒ [a]→ [a]→
[a]→ DungAF a → [(a,Status)]

grounded ′ ins outs []
= map (λx → (x , In)) ins
++ map (λx → (x ,Out)) outs

grounded ′ ins outs args af =
let newIns = filter (unattacked outs af) args

newOuts = filter (attacked ins af) args
in if null (newIns ++ newOuts)

then map (λx → (x , In)) ins
++ map (λx → (x ,Out)) outs
++ map (λx → (x ,Undecided)) args

else grounded ′ (ins ++ newIns)
(outs ++ newOuts)
(args \\ (newIns ++ newOuts))
af

Then as expected:

grounded AF1

> [("A", In), ("C", In), ("B",Out)]

Finally, the grounded extension can be defined by returning only
those arguments that are In from the grounded labelling.

groundedExt :: Eq arg ⇒ DungAF arg → [arg]
groundedExt af = [arg | (arg , In)← grounded af]

3. An implementation of Carneades in Haskell
In this section we will give definitions and again correspond-
ing implementations in Haskell of the Carneades argumentation
model [18, 19], an argumentation model designed to capture stan-
dards and burdens of proof. This is largely based on previous work
in [15]3. We have included the majority of the previous work, to
ensure that this paper is self-contained. We provide a shorter treat-
ment of this implementation, together with one alteration: we have
changed the use of proof standards by relying on the definition of
ProofStandardNamed to allow for an easier translation.

3.1 Arguments
Carneades contains mathematical structures to represent arguments
placed in favour of or against atomic propositions; i.e., an argument
in Carneades is a single inference step from a set of premises and
exceptions to a conclusion, where all propositions in the premises,
exceptions and conclusion are literals in the language of proposi-
tional logic.

Definition 3.1. Carneades’ Arguments Let L be a propositional
language. An argument is a tuple 〈P,E, c〉 where P ⊂ L are its
premises, E ⊂ L with P ∩ E = ∅ are its exceptions and c ∈ L
is its conclusion. For simplicity, all members of L must be literals,
i.e. either an atomic proposition or a negated atomic proposition.

3 See http://www.cs.nott.ac.uk/~bmv/CarneadesDSL for the liter-
ate Haskell source code and Cabal package.

An argument is said to be pro its conclusion c (which may be a
negative atomic proposition) and con the negation of c.

In Carneades all logical formulae are literals in propositional
logic; i.e., all propositions are either positive or negative atoms.
Taking atoms to be strings suffice in the following, and propo-
sitional literals can then be formed by pairing this atom with a
Boolean to denote whether it is negated or not:

type PropLiteral = (Bool ,String)

The negation for a literal p, written p is then given as follows:

negate :: PropLiteral → PropLiteral
negate (b, x) = (¬ b, x)

We chose to realise an argument as a newtype (to allow a man-
ual equality instance) containing a tuple of two lists of propositions,
its premises and its exceptions, and a proposition that denotes the
conclusion:

newtype Argument = Arg ([PropLiteral],
[PropLiteral],PropLiteral)

Arguments are considered equal if their premises, exceptions and
conclusion are equal; thus arguments are identified by their logical
content. The equality instance for Argument (omitted for brevity)
takes this into account by comparing the lists as sets.

A set of arguments determines how propositions depend on
each other. Carneades requires that there are no cycles among
these dependencies. Following Brewka and Gordon [4], we use a
dependency graph to determine acyclicity of a set of arguments.

Definition 3.2. Acyclic set of arguments A set of arguments is
acyclic iff its corresponding dependency graph is acyclic. The cor-
responding dependency graph has a node for every literal appearing
in the set of arguments. A node p has a link to node q whenever p
depends on q in the sense that there is an argument pro or con p that
has q or q in its set of premises or exceptions.

Our realisation of a set of arguments is considered abstract for
simplicity, only providing a check for acyclicity and a function to
retrieve arguments pro a proposition. We use FGL [12] to imple-
ment the dependency graph, forming nodes for propositions and
edges for the dependencies. For simplicity, we opt to keep the graph
also as the representation of a set of arguments.

type ArgSet = . . .

getArgs :: PropLiteral → ArgSet → [Argument]
checkCycle :: ArgSet → Bool

3.2 Carneades Argument Evaluation Structure
The main structure of the argumentation model is called a Carneades
Argument Evaluation Structure (CAES):

Definition 3.3 (Carneades Argument Evaluation Structure (CAES)).
A Carneades Argument Evaluation Structure (CAES) is a triple

〈arguments, audience, standard〉
where arguments is an acyclic set of arguments, audience is
an audience as defined below (Def. 3.4), and standard is a total
function mapping each proposition to to its specific proof standard.

Note that propositions may be associated with different proof
standards. The transliteration into Haskell is almost immediate

newtype CAES = CAES (ArgSet ,Audience,
PropStandard)

Definition 3.4 (Audience). Let L be a propositional language. An
audience is a tuple 〈assumptions, weight〉, where assumptions ⊂

Draft proceedings paper for IFL’13 4 2013/8/21

http://www.cs.nott.ac.uk/~bmv/CarneadesDSL

L is a propositionally consistent set of literals (i.e., not containing
both a literal and its negation) assumed to be acceptable by the
audience and weight is a function mapping arguments to a real-
valued weight in the range [0, 1].

This definition is captured by the following Haskell definitions:

type Audience = (Assumptions,ArgWeight)
type Assumptions = [PropLiteral]
type ArgWeight = Argument →Weight
type Weight = Double

Further, as each proposition is associated with a specific proof
standard, we need a mapping from propositions to proof standards:

type PropStandard = PropLiteral → ProofStandardNamed

A proof standard is a function that given a proposition p, aggregates
arguments pro and con p and decides whether it is acceptable or not:

type ProofStandard = PropLiteral → CAES → Bool

newtype ProofStandardNamed =
P (String ,PropLiteral → CAES → Bool)

instance Eq ProofStandardNamed where
P (l1 ,) ≡ P (l2 ,) = l1 ≡ l2

We also introduce a named version of the proof standard, together
with an equality instance, so that later in the translation step we can
check the used proof standard. This aggregation process will be
defined in detail in the next section, but note that it is done relative
to a specific CAES.

3.3 Evaluation
Two concepts central to the evaluation of a CAES are applicability
of arguments, which arguments should be taken into account, and
acceptability of propositions, which conclusions can be reached
under the relevant proof standards, given the beliefs of a specific
audience.

Definition 3.5 (Applicability of arguments). Given a set of argu-
ments and a set of assumptions (in an audience) in a CAES C, then
an argument a = 〈P,E, c〉 is applicable iff

• p ∈ P implies p is an assumption or [p is not an assumption
and p is acceptable in C] and

• e ∈ E implies e is not an assumption and [e is an assumption
or e is not acceptable in C].

Definition 3.6 (Acceptability of propositions). Given a CAES C,
a proposition p is acceptable in C iff (s p C) is true, where s is
the proof standard for p.

Note that these two definitions in general are mutually depen-
dent because acceptability depends on proof standards, and most
sensible proof standards depend on the applicability of arguments.
This is the reason that Carneades restricts the set of arguments to
be acyclic. (Specific proof standards are considered in the next sec-
tion.) The realisation of applicability and acceptability in Haskell
is straightforward:

applicable :: Argument → CAES → Bool
applicable (Arg (prems, excns,))

caes@(CAES (, (assumptions,),))
= and $ [(p ∈ assumptions) ∨

(p ‘acceptable‘ caes) | p ← prems]
++
[(e ∈ assumptions) ↓
(e ‘acceptable‘ caes) | e ← excns]

where
x ↓ y = ¬ (x ∨ y)

acceptable :: PropLiteral → CAES → Bool
acceptable c caes@(CAES (, , standard))

= c ‘s‘ caes
where P (, s) = standard c

3.4 Proof standards
Carneades predefines five proof standards, originating from the
work of Freeman and Farley [13, 14]: scintilla of evidence, pre-
ponderance of the evidence, clear and convincing evidence, beyond
reasonable doubt and dialectical validity. Some proof standards de-
pend on constants such as α, β, γ; these are assumed to be defined
once and globally. This time, we proceed to give the definitions
directly in Haskell, as they really only are translitarations of the
original definitions.

For a proposition p to satisfy the weakest proof standard, scin-
tilla of evidence, there should be at least one applicable argument
pro p in the CAES:

scintilla :: ProofStandard
scintilla p caes@(CAES (g , ,))
= any (‘applicable‘caes) (getArgs p g)

Preponderance of the evidence additionally requires the maxi-
mum weight of the applicable arguments pro p to be greater than the
maximum weight of the applicable arguments con p. The weight of
zero arguments is taken to be 0. As the maximal weight of applica-
ble arguments pro and con is a recurring theme in the definitions of
several of the proof standards, we start by defining those notions:

maxWeightApplicable :: [Argument]→ CAES →Weight
maxWeightApplicable as caes@(CAES (, (, argWeight),))
= foldl max 0 [argWeight a | a ← as, a ‘applicable‘ caes]

maxWeightPro :: PropLiteral → CAES →Weight
maxWeightPro p caes@(CAES (g , ,))
= maxWeightApplicable (getArgs p g) caes

maxWeightCon :: PropLiteral → CAES →Weight
maxWeightCon p caes@(CAES (g , ,))
= maxWeightApplicable (getArgs (negate p) g) caes

We can then define the proof standard preponderance:

preponderance :: ProofStandard
preponderance p caes = maxWeightPro p caes >

maxWeightCon p caes

Clear and convincing evidence strengthen the preponderance
constraints by insisting that the difference between the maximal
weights of the pro and con arguments must be greater than a given
positive constant β, and there should furthermore be at least one
applicable argument pro p that is stronger than a given positive
constant α:

clear and convincing :: ProofStandard
clear and convincing p caes
= (mwp > α) ∧ (mwp −mwc > β)
where

mwp = maxWeightPro p caes
mwc = maxWeightCon p caes

Beyond reasonable doubt has one further requirement: the maxi-
mal strength of an argument con pmust be less than a given positive
constant γ; i.e., there must be no reasonable doubt:

beyond reasonable doubt :: ProofStandard
beyond reasonable doubt p caes
= clear and convincing p caes ∧

(maxWeightCon p caes < γ)

Draft proceedings paper for IFL’13 5 2013/8/21

Finally dialectical validity requires at least one applicable argu-
ment pro p and no applicable arguments con p:

dialectical validity :: ProofStandard
dialectical validity p caes

= scintilla p caes ∧ ¬ (scintilla (negate p) caes)

3.5 Convenience functions
We provide a set of functions to facilitate construction of proposi-
tions, arguments, argument sets and sets of assumptions.

mkProp :: String → PropLiteral
mkArg :: [String]→ [String]→

String → Argument
mkArgSet :: [Argument]→ ArgSet
mkAssumptions :: [String]→ [PropLiteral]

A string starting with a ’-’ is taken to denote a negative atomic
proposition.

To construct an audience, native Haskell tupling is used to
combine a set of assumptions and a weight function, exactly as it
would be done in the Carneades model:

audience :: Audience
audience = (assumptions,weight)

Carneades Argument Evaluation Structures and weight functions
are defined in a similar way, as will be shown in the next subsection.

Finally, we provide a function for retrieving the arguments for a
specific proposition from an argument set, a couple of functions to
retrieve all arguments and propositions respectively from an argu-
ment set, and functions to retrieve the (not) applicable arguments
or (not) acceptable propositions from a CAES:

getArgs :: PropLiteral → ArgSet →
[Argument]

getAllArgs :: ArgSet → [Argument]
getProps :: ArgSet → [PropLiteral]
applicableArgs :: CAES → [Argument]
nonApplicableArgs :: CAES → [Argument]
acceptableProps :: CAES → [PropLiteral]
nonAcceptableProps :: CAES → [PropLiteral]

3.6 Implementing a CAES
This subsection shows how an argumentation theorist given the
Carneades DSL developed in this section quickly and at a high level
of abstraction can implement a Carneades argument evaluation
structure and evaluate it as well.

arguments = {arg1 , arg2 , arg3},
assumptions = {kill ,witness,witness2 , unreliable2},

standard(intent) = beyond -reasonable-doubt ,

standard(x) = scintilla, for any other proposition x,
α = 0.4, β = 0.3, γ = 0.2.

Arguments and the argument graph are constructed by calling
mkArg and mkArgSet respectively:

arg1 , arg2 , arg3 :: Argument
arg1 = mkArg ["kill", "intent"] [] "murder"
arg2 = mkArg ["witness"] ["unreliable"] "intent"
arg3 = mkArg ["witness2"] ["unreliable2"] "-intent"

argSet :: ArgSet
argSet = mkArgSet [arg1 , arg2 , arg3]

The audience is implemented by defining the weight function
and calling mkAssumptions on the propositions which are to be
assumed. The audience is just a pair of these:

weight :: ArgWeight
weight arg | arg ≡ arg1 = 0.8
weight arg | arg ≡ arg2 = 0.3
weight arg | arg ≡ arg3 = 0.8
weight = error "no weight assigned"

assumptions :: [PropLiteral]
assumptions = mkAssumptions ["kill", "witness",

"witness2", "unreliable2"]

audience :: Audience
audience = (assumptions,weight)

Finally, after assigning proof standards in the standard func-
tion, we form the CAES from the argument graph, audience and
function standard :

standard :: PropStandard
standard (, "intent") =

P ("beyond_reasonable_doubt",
beyond reasonable doubt)

standard =
P ("scintilla", scintilla)

caes :: CAES
caes = CAES (argSet , audience, standard)

We can now try out the argumentation structure. Arguments
are pretty printed in the format premises ∼ exceptions ⇒
conclusion:

getAllArgs argSet
> [["witness2"] ∼["unreliable2"]⇒ "-intent",

["witness"] ∼["unreliable"] ⇒ "intent",
["kill", "intent"]∼[] ⇒ "murder"]

As expected, there are no applicable arguments for −intent ,
since unreliable2 is an exception, but there is an applicable argu-
ment for intent , namely arg2 :

filter (‘applicable‘caes) $ getArgs (mkProp "-intent") argSet
> []

filter (‘applicable‘caes) $ getArgs (mkProp "intent") argSet
> [["witness"]⇒ "intent"]

However, despite the applicable argument arg2 for intent ,
murder should not be acceptable, because the weight of arg2 < α.
Interestingly, note that we can’t reach the opposite conclusion ei-
ther:

acceptable (mkProp "murder") caes
> False
acceptable (mkProp "-murder") caes
> False

4. An implementation from Carneades into AFs
In the previous two sections we have seen both an implementa-
tion of Dung’s argumentation frameworks and an implementation
of Carneades, a structured argumentation model. There is an ex-
isting translation between the two models [16, 17], which pro-
vides a means to translate Carneades into the ASPIC+ [23] struc-
tured argumentation model, which is known to generate Dung’s
AFs [23], thereby providing an indirect translation from Carneades
into Dung’s argumentation frameworks.

In this Section, we discuss an implementation that indeed
translated a CAES from the Carneades argumentation model into

Draft proceedings paper for IFL’13 6 2013/8/21

Dung’s argumentation frameworks. However, to avoid having to
introduce the ASPIC+ model, we instead use a derived transla-
tion based on the algorithm below, allowing us to directly translate
Carneades into Dung’s argumentation frameworks.

Algorithm 4.1. Algorithm for argument generation (Adapted Def-
inition 4.9 of [17])

1. generatedArgs = choiceArgs = ∅.
2. sortedArgs = Topological sort of arguments on its depen-

dency graph.
3. while sortedArgs 6= ∅:

(a) Pick the first argument in sortedArgs . Remove all argu-
ments from sortedArgs that have the same conclusion, c,
and put them in argSet .

(b) Translate argSet and generate arguments, building on pre-
viously generatedArgs, using one argument per premise out
of choiceArgs as subarguments, and put the generated ar-
guments in tempArgs .

(c) Add all arguments from tempArgs to argSet.
(d) If present, pick one acceptable argument in tempArgs that

has the conclusion c and add it to choiceArgs .
(e) argSet = tempArgs = ∅.

For our implementation we give the main functions or type
signatures involved4. If we look at the translation as given in van
Gijzel and Prakken [17], we can make the following observation:
when a CAES is translated into Dung (through ASPIC+) we end
up with arguments in our Dung framework for the propositions
which were in L (from Carneades), but also with arguments with
represent the original Carneades argument nodes. Therefore, our
arguments, instead of just having a String labelled arguments,
will contain both label and propositional literal (either standard
proposition or a proposition associated with an argument). Then,
using this argument type, we can define a similarly instantiated AF.

type Label = String

type ConcreteArg = (Label ,PropLiteral)

type ConcreteAF = DungAF ConcreteArg

The main translation function calls functions to translate the
assumptions and the argument graph in a CAES, by calling two
helper functions propToArg and argsToAF .

translate :: CAES → ConcreteAF
translate caes@(CAES (argset ,

(assumptions,weights),
standard)) =

AF args attacks
where args = map propToArg assumptions ++ args ′

AF args ′ attacks = argsToAF (topSort argset)
caes (AF [] [])

topSort is a topological sorting of the argument graph. We
implement our topological sorting by using FGL’s implementation
of it. However, due to the definition of dependency graphs, we have
to reverse the ordering.

topSort :: ArgSet → [(PropLiteral , [Argument])]
topSort g
| cyclic g = error "Argumentation graph is cyclic!"

| otherwise = reverse (topsort ′ g)

A proposition can readily be translated to an argument in an AF.

4 For the complete translation see:
http://www.cs.nott.ac.uk/~bmv/Code/translation_ifl.lhs.

propToArg :: PropLiteral → ConcreteArg
propToArg p@(True, l) = (l , p)
propToArg p@(False, l) = ("not "++ l , p)

argsToAF :: [(PropLiteral , [Argument])]→
CAES → ConcreteAF →
ConcreteAF

Given the translation, we need to be able to map our translated
arguments and propositions to the original arguments and proposi-
tions in a CAES.

arg2dung :: ConcreteAF →
Argument → ConcreteArg

prop2dung :: ConcreteAF →
PropLiteral → ConcreteArg

Given a translation function, we can talk about the properties
we would need to be able to convince ourselves that the transla-
tion is actually correct. To do so, we would want to prove prop-
erties that are commonly expected of a translation functions in ar-
gumentation theory, namely that arguments and propositions that
were acceptable/unacceptable in the original model, after transla-
tion into the other model, are identifiable and will still be accept-
able/unacceptable. These conditions are commonly called corre-
spondence properties.

For the translation function here, we can refer to existing def-
initions of the correspondence of applicability of arguments and
acceptability of propositions (Theorem 4.10 of [17]).

Theorem 4.1. LetC be a CAES, 〈arguments, audience, standard〉,
LCAES the propositional language used and let the argumentation
framework corresponding to C be AF . Then the following holds:

1. An argument a ∈ arguments is applicable in C iff there is an
argument contained in the complete extension of AF with the
corresponding conclusion arga.

2. A propositional literal c ∈ LCAES is acceptable in C or
c ∈ assumptions iff there is an argument contained in the
complete extension of AF with the corresponding conclusion c.

Informally, the properties state that every argument and propo-
sition in a CAES, after translation, will have a corresponding ar-
gument and keep the same acceptability status. I will now sketch
the implementation of these properties in Haskell. If the translation
function is a correct implementation, the Haskell implementation
of the correspondence properties should always return True . How-
ever to constitute an actual (mechanised) proof we would need to
convert the translation and the implementation of the correspon-
dence properties in Haskell to a theorem prover like Agda.

corApp :: CAES → Bool
corApp caes@(CAES (argset , ,)) =

let translatedCAES = translate caes
applicableArgs = filter (‘applicable‘caes)

(getAllArgs argset)
corDungArgs = map (arg2dung translatedCAES)

applicableArgs
in corDungArgs ≡ groundedExt translatedCAES

corAcc :: CAES → Bool
corAcc caes@(CAES (argset , ,)) =

let translatedCAES = translate caes
acceptableProps = filter (‘acceptable‘caes)

(getProps argset)
corDungArgs = map (prop2dung translatedCAES)

acceptableProps
in corDungArgs ≡ groundedExt translatedCAES

Draft proceedings paper for IFL’13 7 2013/8/21

http://www.cs.nott.ac.uk/~bmv/Code/translation_ifl.lhs

5. Formalising Dung’s AFs in a theorem prover
Translations between argumentation models can be notoriously
complex. We hope that the previous sections have convinced the
reader that using Haskell as a programming language already
makes this problem significantly easier. Similar advantages hold
for the functional implementations of argumentation models, en-
suring that the specification and implementation of the semantics
are closely aligned. However in the case of the implementation of
translations, given the complexity of proofs of correctness, and the
difficulty for even experts of the field to check this work, we believe
that mechanical formalisation of translations and their correctness
proofs also have significant benefits. This section constitutes a first
step to this goal by providing, to our knowledge, the first formali-
sation of an argumentation model in a theorem prover.

In Section 2 we were able to construct an implementation of
Dung’s AFs in Haskell. Given that Agda is also functional in na-
ture and very close to Haskell in syntax, it is an obvious choice.
Agda is a programming language and a theorem prover at the same
time. Types with accompanying implementations (functions), cor-
respond to theorems with accompanying proofs through the Curry-
Howard correspondence [9, 10, 20], or the proofs-as-programs in-
terpretation. This means that if we write an implementation/proof
of grounded semantics in Agda we already gain a few nice results
for free. Firstly, all functions that are implemented are guaranteed
to be terminating, which means that because we successfully im-
plemented the grounded semantics, we immediately know that our
algorithm is terminating on all (finite) inputs and because Agda
will always give back a labelling, we also have proven that the
grounded extension always exists, verifying one of Dung’s origi-
nal results [11]. The correctness of these proofs are automatically
checked by the Agda type checker and thus the correctness of the
proofs only depends on the core implementation of Agda.

The mathematical properties proven in such a formalisation,
similar to the proofs of correspondence results between argumenta-
tion models, are not meant for an end-user of an actual implemen-
tation of the argumentation model. What we do gain however, is
a mechanically proven way to check that our standard algorithms
are correct, which is especially useful in the case that the two lan-
guages are relatively close (as is the case for Haskell and Agda).
Because a full treatment of the Agda code is not the focus of this
paper, we have instead made the relevant code available online5.

6. Conclusions
In this paper we have discussed a significant part of Dung’s argu-
mentation frameworks, the Carneades argumentation model and a
translation from Carneades into AFs. We have shown that Haskell
can provide a short and intuitive implementation, while keeping
true to the original mathematical definitions. We have discussed
the merits of formalising such an implementation in Agda, show-
ing that is feasible to formalise an implementation of an argumen-
tation model into a theorem prover. Finally, we gave a sketch of
the required properties of a translation function, hinting what to
formalise in a theorem prover, with the ultimate goal to give us
the means to translate between argumentation models in a verified
manner.

The initial results are encouraging, despite that we haven’t for-
malised an actual translation yet. The successful implementation of
a translation and the formalisation of Dung’s argumentation frame-
works suggest that the formalisation of a translation is not far off.
It is important to note that our approach is not necessarily meant to
give the final implementation of a model. The intended use of this

5 For the complete Agda code see:
http://www.cs.nott.ac.uk/~bmv/Code/AF2.agda

approach is for quick prototyping/testing of argumentation models,
followed by an implementation and verification of a translation be-
tween models, delegating the actual evaluation of arguments to an
optimised implementation. Near future work is thus to connect the
(verified) translations to efficient implementations as given in [7].

Instead of translating between argumentation models, we can
also choose to translate to a specific format, such as a file format or
a general format such as the Argument Interchange Format [8, 24].
Especially the recent work on giving a logical specification to the
AIF [2] would be a good application for a theorem prover.

References
[1] P. Baroni and M. Giacomin. Semantics of abstract argument systems.

In G. Simari and I. Rahwan, editors, Argumentation in Artificial Intel-
ligence, pages 25–44. Springer US, 2009. ISBN 978-0-387-98197-0.
URL http://dx.doi.org/10.1007/978-0-387-98197-0_2.

[2] F. Bex, S. Modgil, H. Prakken, and C. Reed. On logical specifications
of the Argument Interchange Format. Journal of Logic and Com-
putation, 2012. . URL http://logcom.oxfordjournals.org/
content/early/2012/08/03/logcom.exs033.abstract.

[3] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic framework for default reasoning. Artificial
Intelligence, 93:63–101, 1997.

[4] G. Brewka and T. F. Gordon. Carneades and abstract dialectical
frameworks: A reconstruction. In M. Giacomin and G. R. Simari,
editors, Computational Models of Argument. Proceedings of COMMA
2010, pages 3–12, Amsterdam etc, 2010. IOS Press 2010.

[5] G. Brewka and S. Woltran. Abstract dialectical frameworks. In
Proceedings of the Twelfth International Conference on the Principles
of Knowledge Representation and Reasoning, pages 102–111. AAAI
Press, 2010.

[6] G. Brewka, P. E. Dunne, and S. Woltran. Relating the semantics of
abstract dialectical frameworks and standard AFs. In Proceedings
of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI-11), pages 780–785, 2011.

[7] G. Charwat, W. Dvorák, S. A. Gaggl, J. P. Wallner, and
S. Woltran. Implementing abstract argumentation - a survey. Tech-
nical Report DBAI-TR-2013-82, Vienna University of Technol-
ogy, 2013. URL http://www.dbai.tuwien.ac.at/research/
report/dbai-tr-2013-82.pdf.

[8] C. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,
M. South, G. Vreeswijk, and S. Willmott. Towards an argument inter-
change format. The Knowledge Engineering Review, 21(4):293–316,
2006. URL http://www.journals.cambridge.org/abstract_
S0269888906001044.

[9] H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Sciences of the United States of America, 20(11):
584, 1934.

[10] H. B. Curry, R. Feys, W. Craig, J. R. Hindley, and J. P. Seldin.
Combinatory logic, volume 2. North-Holland Amsterdam, 1972.

[11] P. M. Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence, 77(2):321–357, 1995. ISSN 0004-3702.
.

[12] M. Erwig. Inductive graphs and functional graph algorithms.
Journal Functional Programming, 11(5):467–492, Sept. 2001.
ISSN 0956-7968. . URL http://dx.doi.org/10.1017/
S0956796801004075.

[13] A. M. Farley and K. Freeman. Burden of proof in legal argumentation.
In Proceedings of the 5th International Conference on Artificial Intel-
ligence and Law (ICAIL-05), pages 156–164, New York, NY, USA,
1995. ACM. ISBN 0-89791-758-8. .

[14] K. Freeman and A. M. Farley. A model of argumentation and its
application to legal reasoning. Artificial Intelligence and Law, 4:163–
197, 1996. ISSN 0924-8463. URL http://dx.doi.org/10.1007/
BF00118492. 10.1007/BF00118492.

Draft proceedings paper for IFL’13 8 2013/8/21

http://dx.doi.org/10.1007/978-0-387-98197-0_2
http://logcom.oxfordjournals.org/content/early/2012/08/03/logcom.exs033.abstract
http://logcom.oxfordjournals.org/content/early/2012/08/03/logcom.exs033.abstract
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2013-82.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2013-82.pdf
http://www.journals.cambridge.org/abstract_S0269888906001044
http://www.journals.cambridge.org/abstract_S0269888906001044
http://dx.doi.org/10.1017/S0956796801004075
http://dx.doi.org/10.1017/S0956796801004075
http://dx.doi.org/10.1007/BF00118492
http://dx.doi.org/10.1007/BF00118492

[15] B. van Gijzel and H. Nilsson. Haskell gets argumentative. In Proceed-
ings of the Symposium on Trends in Functional Programming (TFP
2012), LNCS 7829, pages 215–230, St Andrews, UK, 2013. LNCS.

[16] B. van Gijzel and H. Prakken. Relating Carneades with abstract argu-
mentation. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI-11), pages 1113–1119, 2011.

[17] B. van Gijzel and H. Prakken. Relating Carneades with abstract argu-
mentation via the ASPIC+ framework for structured argumentation.
Argument & Computation, 3(1):21–47, 2012. . URL http://www.
tandfonline.com/doi/abs/10.1080/19462166.2012.661766.

[18] T. F. Gordon and D. Walton. Proof burdens and standards. In G. Simari
and I. Rahwan, editors, Argumentation in Artificial Intelligence, pages
239–258. Springer US, 2009. ISBN 978-0-387-98197-0.

[19] T. F. Gordon, H. Prakken, and D. Walton. The Carneades model of
argument and burden of proof. Artificial Intelligence, 171(10-15):875–
896, 2007. ISSN 0004-3702. .

[20] W. A. Howard. The formulae-as-types notion of construction. To HB
Curry: essays on combinatory logic, lambda calculus and formalism,
44:479–490, 1980.

[21] S. Modgil and M. Caminada. Proof theories and algorithms for ab-
stract argumentation frameworks. In G. Simari and I. Rahwan, editors,
Argumentation in Artificial Intelligence, pages 105–129. Springer US,
2009. ISBN 978-0-387-98196-3. . URL http://dx.doi.org/10.
1007/978-0-387-98197-0_6.

[22] S. Modgil and H. Prakken. A general account of argumentation with
preferences. Artificial Intelligence, 2012.

[23] H. Prakken. An abstract framework for argumentation with structured
arguments. Argument & Computation, 1:93–124, 2010.

[24] I. Rahwan and C. Reed. The argument interchange format. In
G. Simari and I. Rahwan, editors, Argumentation in Artificial Intelli-
gence, pages 383–402. Springer US, 2009. ISBN 978-0-387-98197-0.
URL http://dx.doi.org/10.1007/978-0-387-98197-0_19.

[25] G. R. Simari. A brief overview of research in argumentation sys-
tems. In Proceedings of the 5th international conference on Scal-
able uncertainty management, SUM’11, pages 81–95, Berlin, Hei-
delberg, 2011. Springer-Verlag. ISBN 978-3-642-23962-5. URL
http://dl.acm.org/citation.cfm?id=2050266.2050276.

Draft proceedings paper for IFL’13 9 2013/8/21

http://www.tandfonline.com/doi/abs/10.1080/19462166.2012.661766
http://www.tandfonline.com/doi/abs/10.1080/19462166.2012.661766
http://dx.doi.org/10.1007/978-0-387-98197-0_6
http://dx.doi.org/10.1007/978-0-387-98197-0_6
http://dx.doi.org/10.1007/978-0-387-98197-0_19
http://dl.acm.org/citation.cfm?id=2050266.2050276

	Introduction
	An implementation of AFs in Haskell
	An implementation of Carneades in Haskell
	Arguments
	Carneades Argument Evaluation Structure
	Evaluation
	Proof standards
	Convenience functions
	Implementing a CAES

	An implementation from Carneades into AFs
	Formalising Dung's AFs in a theorem prover
	Conclusions

