
Supercompiling Haskell to Hardware

Arjan Boeijink Philip K.F. Hölzenspies Christiaan Baaij Jan Kuper
University of Twente

{w.a.boeijink,p.k.f.holzenspies,c.p.r.baaij,j.kuper}@utwente.nl

Abstract
Supercompilation is a global optimization technique which re-
moves abstractions from a program. A hardware design can be
viewed as a first order program without any abstraction. Hence,
in principle, unconstrained supercompilation is able to generate
hardware from a total Haskell program. The properties that hold
in the hardware domain make it possible for us to sidestep the
practical complications, that supercompilation has for general pro-
grams. We present a version of supercompilation which transforms
Lava-style hardware descriptions – with signal types exposed as
streams – into hardware, without being restricted by the limitations
that follow from deeply embedding a domain specific language in
Haskell. We show that a modified supercompilation algorithm can
be used as the main step in translating Haskell to hardware. Super-
compilation enables using more of Haskell to describe hardware,
including recursion, and choice constructs such as pattern matching
and guards.

In short, hardware makes supercompilation easier and super-
compilation allows synthesis of more elegant hardware descrip-
tions.

Categories and Subject Descriptors B.6.3 [Logic Design]: De-
sign Aids—Hardware description languages; D.3.2 [Program-
ming Languages]: Language Classifications—Applicative(functional)
languages

General Terms Supercompilation, Hardware design

1. Introduction
The history of functional Hardware Description Languages (HDLs)
is long and has produced many tools and languages. To name but a
few: Hawk, Lava, Kansas Lava, Wired and SAFL[1, 3, 10]. Hard-
ware and functional languages match very well with each other,
however each HDL had to make big tradeoffs in its implementa-
tion. These languages can roughly be categorised in three groups:

1. Specification only (elegant and expressive, but not synthesiz-
able)

2. Restricted versions of other languages (synthesizable, but lack-
ing abstraction)

3. Embedded structural DSLs (synthesizable, but often onerous to
use, especially due to the lack of deep embeddings for powerful
language constructs, such as pattern matching, guards, etc.)

[Copyright notice will appear here once ’preprint’ option is removed.]

The context for the work presented in this paper is CλaSH[2],
but it applies equally to Lava-style HDLs. CλaSH falls in the sec-
ond category above, in that it is a restricted form of Haskell. It is
used to describe synchronous hardware, by defining functions on
streams. Streams are given the special interpretation of temporally
spaced input, i.e. an input to the synchronous system under design
is a stream, where the next element in the stream is the input on the
next clock cycle. Functions may be defined on a set of input and
output streams, but may not violate causality. In other words, they
may neither ‘lose’ time, nor see into the future (they consume pre-
cisely one element from every input stream and produce precisely
one element on every output stream).

‘Between’ streams, CλaSH is ‘plain’ Haskell, albeit with re-
strictions. Recursion is generally not allowed. Instead, the language
provides specialised versions of common higher-order functions,
like map and fold. The main reason to disallow recursion, is the
lack of a sufficiently strong normalisation that guarantees recursive
code is synthesizable.

In this paper, we present a new approach, that alleviates this—
and similar—restrictions. The approach is based on the application
of supercompilation as the normalisation of CλaSH programs. Ac-
ceptable programs must be total (between consecutive stream con-
sumptions and/or productions). Under this restriction, however, we
allow for any form of abstraction, e.g. general recursion, (list) com-
prehension, etc.

1.1 Motivation for using supercompilation
This work was initiated by a discussion on: what is the essence of
translating a functional program to a hardware netlist? Partial eval-
uation of higher order arguments (and other things that can not exist
in hardware) comes close but seems not powerful enough. Describ-
ing synchronous hardware using streams as signals requires com-
plete fusion of all steam functions. Recent advances in supercom-
pilation [11] and the fact that supercompilation covers more than
partial evaluation and fusion, made it an interesting option. How-
ever supercompilation has been mostly used as an optimization (not
a translation) technique, and is not yet practical for general use (be-
cause of code size and speed issues). With no strong arguments
for why supercompilation could not be the solution for translation
hardware, we had to try it.

The power of supercompilation of lazy functional language such
as in “Supercompilation by Evaluation” [5] is bounded by the ter-
mination criteria and the preservation of sharing. By assuming that
a sensible structural hardware description is a total program, we
can ignore the restrictions imposed by the termination checker. Be-
cause the resulting netlist is (after flattening) a graph of basic com-
ponents, we can recover the sharing after the supercompilation by
unifying components with identical inputs. Without the limitations
imposed by these concerns we can use supercompilation as a com-
plete step in translating Haskell to hardware.

The next section starts with an introduction into supercompila-
tion, which may be skipped if the reader is already familiar with

1 2013/8/21

function definition:
d ::= f x? = e
expressions:
e ::= v (value)

| x (variable)
| let x =t e in e (recursive let expr.)
| case e of a+ (case expr.)
| e x (application)
| ⊗ e+ (primitive operation)
| πn e (proj. of a product type)

case alternatives:
a ::= C x? → e (constructor alternative)

| n→ e (integer alternative)
| default→ e (default alternative)

values:
v ::= λx→ e (lambda abstraction)

| n (integer)
| C x? (constructor (saturated))

Figure 1. Grammar of the core language

the recent works on supercompilation. Readers more interested in
using hardware description languages or in how supercompilation
allows for more elegance may want to look at the larger example in
section 6.

2. Supercompilation
Supercompilation originates from the work of Turchin [16] in the
1970s and constitutes a very general whole-program optimization
technique. It is a generalization of partial evaluation [9] and is a
superset of many popular optimizations, like deforestation, fusion,
inlining, constant propagation and specialization. It works by ag-
gressively evaluating as much of a program as possible at compile-
time. Where parts of the program are input-dependent, different
cases are explored and compiled separately, later to be merged
back into a single program. We would like to strongly encourage
readers not familiar with supercompilation to read the recent pa-
per “Supercompilation by Evaluation” [5] for a good explanation
of the main concepts. The main reasons that supercompilation has
not found universal uptake, is that it is typically prohibitively slow
and often produces enormously inflated results. For real-world pro-
grams, it is by and large considered infeasible, especially because
the gains (mostly in terms of improved performance) vary tremen-
dously across programs that, on superficial inspection, seem highly
similar. Under the constraints for hardware descriptions, however,
these pitfalls are avoided; synthesizable hardware is inherently fi-
nite and has no higher-order abstractions.

2.1 Functional core language and evaluator
The input of our supercompiler is the simple functional core lan-
guage shown in Figure 1. The core language is in applicative nor-
mal form and has an unique tag attached to each let binding. Fig-
ure 2 shows the operational semantic for this core language in the
style of Sestoft [13]. The tags are preserved in heap binding and
update frames.

2.2 Termination
There are two different sources of nontermination in supercompi-
lation. The first is the evaluation of a term that is non-terminating.
The second is nontermination in the splitter. Having good termi-
nation criteria is a crucial aspect of a supercompilation implemen-
tation. See ’Termination combinators forever’[7] for more on this
topic.

2.3 Problems with supercompilation
The main problem with supercompilation is the code size explosion
for many input programs. Like other whole-program optimization
techniques, compilation times are often very long, but supercom-
pilation can be prohibitively so. The benefits of supercompilation
vary a lot between programs, many programs run only a few per-
cent faster with significant code size increase. The optimization ca-
pabilities of supercompilation are limited by the necessarily conser-
vative termination criteria. Other requirements like preservation of
sharing, can inhibit a lot of potential optimizations. Another prob-
lem is that the output of supercompilation tends to be more difficult
to optimize for lower level optimization passes.

3. Supercompilation to hardware
Synthesizable hardware is usually described by means of a netlist.
Netlists are total programs without any abstraction, because they
describe finite and concrete hardware. Consequently, the result of
our supercompilation should be a netlist, or a program that has a
straightforward transformation to netlists. To this end, we introduce
NETCORE, which is a core language in hardware normal form
presented in Figure 3.

The input of our supercompiler is similarly constrained by these
properties of the desired result. All types used must have hardware
representations. In other words, every type must have a bijection to
bit vectors. This excludes the use of IO operations (whether hid-
den by unsafe operations or not), which is no limitation on the out-
put, considering that all transistors are non-side-effecting. Since re-
cursion in the output language would correspond to combinatorial
loops in hardware, the input is limited to total programs only.

As an intuition for the correspondence between NETCORE and
actual hardware, consider functions as components and application
as instantiation. This means that functions in NETCORE must be
fully applied and all types in NETCORE have fixed-size bit vector
representations.

3.1 Intuition of hardware supercompilation
The supercompiler starts with evaluating the hardware description
until it gets stuck. When it is stuck we want to be sure that it
has arrived at an evaluation state which represents some hardware
component depending on some unknown input. This means that
the evaluator may not be blocked by a termination checker or lack
of information. The splitter produces the hardware corresponding
to this evaluation state with optionally subcomponents that are
evaluation states still to supercompiled further. The splitter needs to
be minimal in the hardware it peels of the evaluation state and pass
as much information as possible to the substates. Figure 4 show a
graphical and hardware oriented view of the intuition behind using
supercompilation as translation.

3.2 The toplevel
Figure 5 shows the toplevel code of our supercompiler. Compared
with algorithm presented in ’supercompilation by evaluation’, the
main difference are: no termination checking at all, evaluation is
always done before matching and split is defined as a pure function.

3.3 Improving the matcher
Hardware designs tend to consist of many components, often with
groups of components that are almost identical (for example differ-
ing only in some constants). This can make matching very slow, be-
cause the matcher attempts to match with every previous evaluation
state, thus has quadratic behaviour in the number of components.
While it is more common in the hardware domain, this quadratic
matcher behaviour could be a problem for any supercompiler. The
solution to this problem is generating a structural (ignoring names

2 2013/8/21

evaluation state:〈H | E | K〉
H : heap (mapping from names to expressions)
E : expression (the current expression in focus)
K : stack (list of frames ≈ rest of computation)

stack frame:
k ::= updatet x (update frame)

| apply x (application frame)
| primapply ⊗ () e (apply left operand to primop)
| primapply ⊗ c () (apply right operand to primop)
| scrutinise a+ (scrutinise value)

VAR 〈H,x t7→ e | x | K〉 〈H | e | updatet x,K〉
UPDATE 〈H | v | updatet x,K〉 〈H,x t7→ v | v | K〉
APPLY 〈H | e x | K〉 〈H | e | apply x,K〉
LAMBDA 〈H | λx.e | apply x,K〉 〈H | e | K〉
PRIM 〈H | ⊗ (e0, e) | K〉 〈H | e0 | primapply ⊗ () (e),K〉
PRIMMORE 〈H | `n | primapply ⊗ (`) (en, e),K〉 〈H | en | primapply ⊗ (`, `n) (e),K〉
PRIMLAST 〈H | `n | primapply ⊗ (`) (),K〉 〈H | run ⊗ (`, `n) | K〉
CASE 〈H | case e a | K〉 〈H | e | scrutinise a,K〉
DATA 〈H | C x | scrutinise {. . . , C x→ e, . . .},K〉 〈H | e | K〉
LITERAL 〈H | n | scrutinise {. . . , n→ e, . . .},K〉 〈H | e | K〉
LETREC 〈H | let x =t e in e′ | K〉 〈H,x t7→ e | e′ | K〉

Figure 2. Operational semantics of the core language

component definition:
c ::= f x? � b
component body:
b ::= i (component instantiation)

| i using x ↼ i (component composition)
| select xwith a+ (multiplexed components)

select alternative:
a ::= e � b (enum alternative)

| default � b (default alternative)
component instantiation:
i ::= x (variable)

| n (numeric constant)
| f x? (component instantiation)
| p x+ (primitive operator)
| C x? (composition using constructor)
| x :< xs (stream production)

extensions for intermediate NETCORE:
b ::= . . .

| x :< xs← ys in b (stream consumption)
| λx.b (lambda abstraction)

a ::= . . .
| C x? � b (constructor alternative)

i ::= . . .
| x :< xs (stream production)
| C x? (composition using constructor)

Figure 3. Grammar of the hardware normal form

and heap ordering) hash for each evaluation state in the history.
Using this hash, the number of potential matches for an evalua-
tion state is reduced to a few and often zero or one. We calculate
this structure hash in two steps: first, for every heap binder, the ex-
pression is hashed and then, using the extra information from heap
bound variables, the hash for the whole evaluation state is calcu-
lated. The multistep hash calculation is essential to take the struc-
ture of the heap into account, while ignoring names and the order
of the heap binders.

3.4 Simplification of evaluation states
To improve the chances of matching evaluations states, various
simplification steps are applied before matching.

Alias elimination Trivial heap bindings with only a variable as
expression can be eliminated by renaming them in the whole evalu-
ation state. A similar situation can happen on the stack with consec-
utive update frames, that can be merged into a single update frame
by renaming. The third opportunity for renaming occurs when the
term to be evaluated is a free variable and the top of the stack is an
update frame.

Heap garbage collection The evaluator can leave dead bindings
on the heap, and the splitter does not filter the heap binding for the
substates. We use simple copying garbage collector to remove all
unreachable binding from the heap.

Unused updates removal The stack can contain update frames
for let bindings that turned out to be not shared. These update
frames can be filtered out, by simple checking if the variable to
be updated is not a free variable of the evaluation state.

3.5 The new splitter
The splitter is redesigned because it has to translate from the core
language to hardware normal form. The second big difference with
other splitters is that it may not residualize anything that could pre-
vent optimizations of the subexpressions. Because ensuring future
optimizations is crucial for the completeness of the translation pro-
cess, the splitter can not preserve sharing. The input of the split
function is an evaluation state that can not be reduced further by
the rules from the operational semantics. This irreducibility of the
input makes the splitter slightly simpler.

For the splitter cases we start with the input evaluation state,
with optional side conditions. And below that the NETCORE result
of the splitting, where 〈〈H | e | K〉〉 is the component instantiation
resulting from supercompiling the substate 〈H | e | K〉.

Trivial splittings Splitting of evaluation states with an empty
stack and heap, results in only a residual expression and no sub-
states. A state with a free variable in an empty context results in
that variable. If the expression is an constant value, then the splitter
just returns that constant as residual expression.

3 2013/8/21

∗

H

z K

H

e ε

x

y

z

H

x
primap ∗ () e

K

result

fvs / inputs

spliteval
simplify

supercompile

supercompile

Figure 4. Graphical representation of hardware supercompilation process centered on the splitter

reduce : : EvalState −> EvalState
s impl i fy : : EvalState −> EvalState
match : : EvalState −> EvalState −> Maybe Renaming
s p l i t : : EvalState −> Bracket

data Bracket = B {holes : : [EvalState] ,
assemble : : [Instant iat ion] −> ResultExp}

data Promise = P {funName : : String ,
freeVars : : [Name] , meaning : : EvalState}

sc : : EvalState −> SCM Instant iat ion
sc s = do

let state = s impl i fy (reduce s)
ps <− gets promises
case findMatchingState state ps of

Just (p , rn) −>
return (CompInst (funName p)

(map (rename rn) (freeVars p)))
Nothing −> do

let fvs = stateFVs state
n <− promise fvs state
let bracket = s p l i t state
ys <− mapM sc (holes bracket)
bind n fvs (assemble bracket ys)
return (CompInst n fvs)

Figure 5. Code for toplevel of the supercompiler

〈ε | x | ε〉

x

〈ε | n | ε〉

n

Splitting values Splitting of values is relatively easy because the
evaluation stack is empty. Constructor values are split by making a
substate for each argument and the residual is the constructor with
the outputs of the new components as arguments.

〈H | C a b | ε〉

C x y using
x ↼ 〈〈H | a | ε〉〉
y ↼ 〈〈H | b | ε〉〉

Lambdas are split with the body of the lambda as a substate and
the residual is a component with the lambda variable as first input.
Only top level defined functions may have lambdas as user defined

components. Because states given to the splitter have been fully
evaluated, all other lambdas have been beta reduced away.

〈H | λ x y → e | ε〉

λ x y . 〈〈H | e | ε〉〉

Splitting applications If the top of the stack is an application
frame then a chain of all consecutive application frames will be
gathered. The result of the splitting is an substate for each argument
in the chain, and the residual is an component instantiation.

〈H | f | apply a,apply b,K〉

〈〈H | z | K〉〉 using
x ↼ 〈〈H | a | ε〉〉
y ↼ 〈〈H | b | ε〉〉
z ↼ f x y

One problem is that a chain of application frames can be inter-
leaved by one or more update frames. These update frames can be
removed by rebuilding the applications above the update frame as
heap bindings.

〈H | f | apply a,updatet w,apply b,K〉

〈〈H | z | K〉〉 using
x ↼ 〈〈H | a | ε〉〉
y ↼ 〈〈w t7→ f x,H | b | ε〉〉
z ↼ f x y

An update frame at the end of an application chain is removed
too, with the update variable (instead of a fresh variable) being
bound to the residual application.

〈H | f | apply a,apply b,updatet w,K〉

〈〈H | w | K〉〉 using
x ↼ 〈〈H | a | ε〉〉
y ↼ 〈〈H | b | ε〉〉
w ↼ f x y

Splitting primitive operations Primitive operations are split in a
similar way to applications. In the first case the left operand is open
and the second operand an expression.

4 2013/8/21

〈H | x | primapply ⊗ () e,K〉

〈〈H | z | K〉〉 using
y ↼ 〈〈H | e | ε〉〉
z ↼ x⊗ y

In the other case the first operand is an constant value and the
second operand open.

〈H | y | primapply ⊗ c (),K〉

〈〈H | z | K〉〉 using
x ↼ c
z ↼ x⊗ y

Like with applications, if an update frame is next on the stack,
it is taken off and its variable is used to bind the residual operator
to.

〈H | x | primapply ⊗ () e,updatet a,K〉

〈〈H | a | K〉〉 using
y ↼ 〈〈H | e | ε〉〉
a ↼ x⊗ y

Recursive lets in splitting Update frames originating from recur-
sive let bindings need special care to preserve correctness. These
update frames can be referred to from the term being evaluated
or another frame higher up the stack, both directly or indirectly
through heap bindings. The stack is split at every recursive update
frame, these substacks are residualized to subcomponents. Split-
ting the stack may cause update frames in a substack to be referred
to from other substacks. Substacks need to be split again at such
update frames.

〈H | e | K0,update
t x,K1,update

u y,K2〉
y ∈ reachable(e) x ∈ reachable(K1)

〈〈H | y | K2〉〉 using
x ↼ 〈〈H | e | K0〉〉
y ↼ 〈〈H | x | K1〉〉

This solution works only if all update frames that are residual-
ized have a representable type. We can not guarantee representabil-
ity of these frames without imposing inconvenient constraints on
the input. An alternative solution (at the cost of losing some shar-
ing) is to rebuild (onto the heap) the expressions corresponding to
stackframes downto the critical update frame. The rebuild func-
tion takes a stack segment and a variable, and rebuilds a term for
the heap by undoing evaluator steps that produce stack frames. In
combination with a more concrete application splitting example it
looks like the following:

〈H | f | apply a,apply b,K0,update
t r,K1〉

r ∈ (reachable(a) ∪ reachable(b))

〈〈H | z | K0,update r,K1〉〉 using

x ↼ 〈〈H, r t7→ rebuild K0 z | a | ε〉〉
y ↼ 〈〈H, r t7→ rebuild K0 z | b | ε〉〉
z ↼ f x y

Splitting case expressions When the top of the stack is a case
scrutiniser frame, the splitter produces a residual case expression
with a substate for each case alternative. Each alternative gets the
whole rest of the stack in its substate, and the matched constructor

or literal is added as a heap binding with a default tag. Copying
the the rest of stack is required to not block further optimizations,
however this can cause significant code size growth during super-
compilation.

〈H | x | scrutinise {C a b→ p;D c→ q},K〉

select xwith

C a b� 〈〈x t07→ C a b,H | p | K〉〉
D c� 〈〈x t07→ D c, H | q | K〉〉

3.6 Adding types
The operational semantics and thus the evaluator need to be ex-
tended with the types from System FC[15]. Because hardware has
only monomorphic types, the matcher and generalization do not
need special treatment for types. The rest is straightforward book-
keeping. The NETCORE language is also typed, because size infor-
mation of in/outputs is required to convert to other netlist formats.

Splitting case with GADTs The splitter needs to check the types
for each alternative to determine if that alternative is reachable. Un-
reachable alternatives are removed before splitting the case expres-
sion. Removal of unreachable alternatives is crucial for the termina-
tion of the splitter, for example with recursively (as GADT) defined
fixed sized vectors.

data Vec : : ∗ −> ∗ −> ∗ where
VNil : : Vec Z a
VCons : : a −> Vec n a −> Vec (S n) a

vectFold : : (a −> b −> b) −> b −> Vec n a −> b
vectFold f z VNil = z
vectFold f z (VCons x xs) = f x (vectFold f z xs)

sumV5 : : Vec Nat5 Int −> Int
sumV5 = vectFold (+) 0

3.7 Properties of this supercompiler
Proving a supercompiler correct would be a whole paper on itself,
so we will give only some idea why it would be correct. Firstly we
assume that the description in Haskell makes sense as a hardware
component and all the restriction that involves. Secondly we as-
sume that supercompilation is only attempted after the descriptions
have been run (without errors) as Haskell program for all possible
inputs.

Completeness of the translation can be shown by the totality of
the splitter function combined with the termination of the whole
process. The splitter is not defined for all syntacticly possible in-
puts, so it must be shown that these inputs will not happen. Well-
typed programs don’t get stuck, thus evaluation should only block
on external inputs or components. The splitter must delay compo-
nent instantiation to the last possible moment, and must pass on all
possible information to the substates.

Termination of the supercompiler is derived from the fact that
the splitter produces only strictly smaller sub states. And rest of
termination argument is based on the assumption that the input is
sensible hardware (finite, fixed size input, etc.).

That the supercompilation process preserves the semantics of
the described hardware is fairly strait forward. The evaluator and
matcher are directly derived from operational semantics. And for
the splitter it can be proven by using local case analysis.

5 2013/8/21

3.8 Disadvantages of supercompilation
Structure present in the input is lost in the generated hardware. This
can make lowlevel debugging harder and might affect optimiza-
tions heuristics of synthesis tools.

Supercompilation is sometimes too aggressive causing expo-
nential blowup in code size. In these naive bitCount and bitRe-
verse implementations the supercompiler produces a very big tree
like lookup structure that yield the result for each possible input
directly.

bitCount : : Int32 −> Int32
bitCount x = bc x nat32 where

bc Z = 0
bc a (S c) = (i f even a then 0 else 1) +

bc (a ‘ shiftR ‘ 1) c

bitReverse : : Word32 −> Word32
bitReverse x = br x 0 nat32 where

br b Z = b
br a b (S c) = br (a ‘ shiftR ‘ 1)

((i f even a then 0 else 1) + 2∗b) c

In the bitCount example the splitter extends the branch over the
addition and the recursive call, thus producing a big tree. And in
the bitReverse example the problem is that the br function is un-
intendedly specialized over its second argument. This problem is
probably not solvable in the supercompiler itself, because distin-
guishing the compile time part from the intended hardware part
is undecidable. And retroactively undoing the spurious specializa-
tions its not always feasible, because the supercompiler might run
out of memory before that.

These problems only seems to occur in combination of a finite
recursion that branches on an input. In all example we have found
so far the problem is easy to avoid by writing slightly different
code, for these examples it is using a getBit function instead.

4. Extensions for sequential hardware
Until now we only considered combinatorial hardware descrip-
tions. For less trivial hardware components, we need to describe
things with state (delays, registers and memory blocks).

Streams as signals We choose streams to implement signals,
because they offer an elegant, simple and executable notation for
the implementation of synchronous systems. A large part of their
elegance is that streams are applicative functors.

i n f i x r 4 :<
data Signal a = a :< Signal a

instance Functor Signal where
fmap f (x :< xs) = f x :< fmap f xs

instance Applicative Signal where
pure x = x :< pure x
(f :< f s) <∗> (y :< ys) = f y :< (fs<∗>ys)

4.1 Supercompiling streams
After supercompilation we want to have only stream functions of a
specific form: Single-recursive functions that pattern matches on all
input streams and results in a stream constructor. And the recursive
call is on all tails of all input streams. Example:

foo (a:<as) (b:<bs) (c:<cs) =
x <− bar a b c
xs <− foo as bs cs

x :< xs

We rely on fusion capabilities of supercompilation to produce only
stream functions of the directly recursive form.

Evaluating streams The evaluation state is extended by a stream
context S, which is a sequence of stream bindings (a :< as← bs).

〈H | S | e | K〉

The stream context is extended when trying to evaluate a case of
the stream constructor on a free variable.

STREAM 〈H | S | case x {a :< as→ e} | K〉

〈H | a :< as← x, S | e | K〉 (x is free)

All other evaluation rules keep the stream context unmodified. The
reason to extend the evaluation state is to be able to continue the
evaluation until we find a stream constructor value. So that all the
matching on the input streams and the recursive stream function
call has been exposed at that point.

Splitting of streams Splitting of a stream constructor is similar to
other constructors, except that the whole stream context is removed
and residualized. Thanks to previous evaluator extension the split-
ter can produce the output in the expected format directly.

〈H | a :< as← bs | x :< xs | ε〉

a :< as← bs in
y :< ys using

y ↼〈〈H | ε | x | ε〉〉
ys ↼〈〈H | ε | xs | ε〉〉

In all other cases splitting just passes on the stream context to
its substates.

4.2 Stateful components
A small library of primitive functions for delay, registers and mem-
ory block would suffice for most hardware designs. We choose
not to use builtin primitives for state, because it poses interest-
ing challenges for the supercompilation algorithm. And it allows
for describing state machines as (multiple) recursive functions over
streams.

delay : : a −> Signal a −> Signal a
delay x ˜(y :< ys) = x :< delay y ys

mealy : : (s −> i −> (s ,o)) −> s −>
Signal i −> Signal o

mealy f s ˜(i :< i s) = o :< mealy f s ’ i s
where (s ’ , o) = f s i

For example a delay combinator can be written as a function
over streams with as extra argument the thing to be delayed. And
this mealy machine has a transition function as first argument
and the internal state as the second. We need to use lazy pattern
matching on streams here because such stateful components can
be a part of a feedback loop. The extra state arguments on stream
functions may only be used with a type that is representable in
hardware.

Lazy pattern matching on streams GHC translates lazy pattern
matches to let bindings with case expression, so they end up as
heap bindings. To produce the same normal form with lazy stream
matches, we need to make them strict during evaluation. When
evaluation blocks on a stream constructor value, these case expres-
sions are evaluated to expose stream matches within them.

6 2013/8/21

4.3 Supercompiling stateful streams
Accumulating state arguments causes the supercompilation process
to not terminate anymore. For example:

acummulator : : Signal Int −> Signal Int
acummulator xs = accum 0 xs where

accum a (b :< bs) = let y = a + b in
y :< accum y bs

Makes the supercompiler go through a series of evaluation states:

S1: 〈a0
t37→ 0, y0

t57→ a0 + b0, ys0
t67→ accum y0 bs0

| b0 :< bs0 ← xs0 | y0 :< ys0 | ε〉
S2: 〈a0

t37→ 0, y0
t57→ a0 + b0, y1

t57→ y0 + b1, ys1
t67→ accum y1 bs1

| b1 :< bs1 ← bs0 | y1 :< ys1 | ε〉
S3: 〈a0

t37→ 0, y0
t57→ a0 + b0, y1

t57→ y0 + b1, y2
t57→ y1 + b2, . . .

. . .

Because of the growing evaluation states, the matcher can not find
a state to tie back to, so it will not terminate. The solution to
this problem is to avoid the infinite state argument accumulation.
We use the growing tag heuristic from Bolingbroke to detect the
problematic heap binders.

For every evaluation state, a bag with all tags on the heap
binders is collected. When the supercompiler reaches S2 it finds
a previous state S1 with the same set of tags. The tag t5 is has a
greater multiplicity in S2 than in S1, so the heap binders corre-
sponding to that tag are to blame for potential nontermination. The
supercompilation process is rolled back to state S1 and the binders
with tag t5 are split off and supercompiler resumes with the rest
of the state. Checks for rollback are only done if the focus term
of the evaluation state is a stream constructor. Disabling sharing of
representable heap binders when in a stream function context helps
accumulator detection.

Supercompiling the same example with this rollback technique
produces the following output (after inlining):

acummulator : : Signal Int −> Signal Int
acummulator (b0 :< bs0) = let y = 0 + b0 in

y0 :< f2 y0 bs0

f2 y0 (b1 :< bs1) = let y1 = y0 + b1 in
y1 :< f2 y1 bs1

The problem of the recursion being unpeeled is addressed later.

4.4 Improving rollback
Figure 6 shows the toplevel code of the supercompiler with both
forms of rollback. This code does not include the bookkeeping for
the unique name supply, types and cleaning up of the supercompi-
lation state when rolling back.

Making rollback more precise The elegant tagbag method for
termination checking and rollback has been shown to be both ef-
ficient and effective. [4, 6] However, the effectiveness of the tagbag
method relies on the fact that each tag is relatively rare. This breaks
down when a lot of abstractions are used in a program which give
rise to a lot of similar polymorphic expressions. In case of hard-
ware descriptions, the use of applicative functors on streams is very
common, which contains a polymorphic function application in its
implementation.

We can try to make the tags more precise by adding extra
information, for example using the first type constructor in type
of the tagged expression. This workaround helps a bit, but is not
good enough for larger hardware descriptions as they tend to use a
small set of types in the definition of a lot of other types. We tried
other methods to add more information to the tags, but failed to

type Hist = [(String , EvalState ,Maybe TagBag)]

data RollBackException
= RollBackAccumExp String (Set Name)
| RollBackInitExp String (Set Name)
| RollBackInitVar String EvalState Renaming

checkForInits : : String −> Hist −> SCM ()
checkTagsAccum : : TagBag −> EvalState −>

Hist −> SCM ()
spl i tOffBinders : : Set Name −> EvalState −>

Bracket

sc : : Hist −> TypedFVs −> EvalState −>
SCM Instant iat ion

sc h fvts s = do
let state = s impl i fy (reduce s)
let inSS = hasStreamResultType state
let h i s t = i f inSS then h else []
let fvs = stateFVs state
ps <− gets promises
case findMatchingState state ps of
Just (q , rn) −> do
checkForInits (funName q) h i s t
return (CompInst (funName q)

(map (rename rn) (freeVars q)))
Nothing −> do
let tb = heapTagBag state
when (isStreamConExp state)

(checkTagsAccum tb state h i s t)
n <− promise fvs state
let bracket = s p l i t state
let mtb = i f isStreamConExp state
then Just tb else Nothing

let hist ’ = i f inSS
then (n , state ,mtb) : h i s t else h i s t

(do
ys <− mapM (sc hist ’) (holes bracket)
bind n fvs (assemble bracket ys)

) ‘ catchError ‘ (\ rbe −> case rbe of
RollBackAccumExp nx aes
| n == nx −> do
let rbr = spl i tOffBinders aes state
let rh = (n , state ,Nothing) : h i s t
ys <− mapM (sc rh) (holes rbr)
bind n fvs (assemble rbr ys)
−> throwError rbe

) ‘ catchError ‘ (\ rbe −> case rbe of
RollBackInitExp nx i e s
| n == nx −> do
let rbr = spl i tOffBinders i e s state
ys <− mapM (sc h i s t) (holes rbr)
bind n fvs (assemble rbr ys)

RollBackInitVar nx gstate rn
| n == nx −> do
let ys = varMappingsFromRN rn
z <− sc h i s t gstate
bind n fvs (CompBody ys z)
−> throwError rbe

)
return (CompInst n fvs)

Figure 6. Code for supercompiler toplevel with rollbacks

7 2013/8/21

solve the problem completely and found calculating the tagbag for
such solutions very expensive.

Heuristic for selecting what to rollback The solution lies in
another property that accumulators have in hardware descriptions.
They are exposed as heap binders that exist in both current and
previous evaluation states, so we can use that extra information to
split them off. Because checking for accumulators is only done on
stream constructor expressions, the same binder in both means that
it has been carried over from one cycle to the next. We can use the
names of heap binders implicitly as heap locations, because a new
name is generated only when allocating a let-expression onto the
heap. Combining the growing tag heuristic with cross cycle binder
detection gives a cheap and very effective rollback technique. The
only potential problem is that certain constant expressions could be
split off if they happen to have the same tag as an accumulator. For
general purpose supercompilation, filtering on old binders in the
growing tag heuristic could be a nice improvement.

Avoiding initial state propagation Another reason that stream
functions can be unpeeled is specialization on initial states. For
example, a simple component that averages the last four inputs:

avgLast4 : : Signal Int −> Signal Int
avgLast4 = avg4 0 0 0 where

avg4 a b c (x :< xs) =
div (x+a+b+c) 4 :< avg4 x a b xs

This results in the recursion being unpeeled three times, because
avg4 is specialized on the zeros.

avgLast4 (x:<xs) = div (x+0+0+0) 4 :< f2 x xs
f2 a (x:<xs) = div (x+a+0+0) 4 :< f3 x a xs
f3 a b (x:<xs) = div (x+a+b+0) 4 :< f4 x a b xs
f4 a b c (x:<xs) = div (x+a+b+c) 4 :< f4 x a b xs

This initial state propagation can be avoided by adding another
form of rollback. When the matcher finds a recursion in the stream
function, the supercompilation history is searched for the earliest
evaluation state that is an instance of the matched state. Then the
heap bindings that specialize this instance of the evaluation state
are split off and the supercompilation process is restarted from here.
Initial-state rollback can override an acummulation rollback.

Initial-state specialization by variables only This can also hap-
pen with an initial state that only differs in using less variables
than a later state. We handle this by rolling back to the initial state
and then resuming supercompilation with the renamed late state. A
similar problem has been described in section 6.2.5 of Max Boling-
broke’s PhD thesis.

5. From supercompiled core to hardware
Supercompilation has removed all abstractions, but a few post
processing steps are required before hardware can be generated.
The first step is that of inlining all those functions that are trivial or
used only once. Supercompilation produces such functions in great
numbers.

Lambda floating A lambda represents a component with an in-
put, but supercompilation can leave lambdas inside case alterna-
tives. We thus need to float lambdas out of case statements (in a
bottom up way), until only the outermost expressions are lambdas.

select xwith

C a b� λp.e

D c� λq.f

=⇒
λp. select xwith

C a b� e

D c� f [q/p]

5.1 Post processing stream functions
Stream binders behave like lambdas and can end up inside case
alternatives, so we need to float them out like we did with the
lambdas.

Dealing with state machines State machines are ubiquitous in
hardware descriptions. Quite often, multiple recursive stream func-
tions representing state machines can be merged into a single one
by introducing a datatype with one constructor per function, where
the arguments of each constructor are the state arguments of the
corresponding function. Consider as an example:

pulseLengthCounter xs = countPulse 0 xs
noPulse (x:<xs) = case x of
Low −> 0 :< noPulse xs
High −> 0 :< (countPulse 1) xs

countPulse n (x:<xs) = case x of
Low −> n :< noPulse xs
High −> n :< (countPulse (n+1)) xs

which can be converted to

data StateX = NoPulse | CountPulse Word16
pulseLengthCounter xs = foo (CountPulse 0) xs
foo s (x:<xs) = case s of

NoPulse −> case x of
Low −> 0 :< foo NoPulse xs
High −> 0 :< foo (CountPulse 1) xs

CountPulse n −> case x of
Low −> n :< foo NoPulse xs
High −> n :< foo (CountPulse (n+1)) xs

If the heuristics for rollback fail to produce a single recursive func-
tion, we can resolve that by using this state machine conversion.

Implicit state machines It is possible to hide state in a single
recursive stream function by reordering the stream arguments:

swapSub : : Signal Bool −> Signal Int −>
Signal Int −> Signal Int

swapSub (c:<cs) (x:<xs) (y:<ys) =
(x − y) :< i f c

then swapSub cs ys xs
else swapSub cs xs ys

The state in such cases can be made explicit by creating specialized
copies of each stream function that is applied with a varying order
of stream arguments. After that we can apply the same method of
dealing with state machines described previously.

Removing all streams and introducing delays When all stream
functions are in direct recursive form, we can remove all stream
constructs and insert the delay primitive for state.

foo as bs �
foo2 as bs x y using
x ↼ constX
y ↼ constY

foo2 (a :< as) (b :< bs) x y �
c :< c using
c ↼ bar a b x y
x′ ↼ fx a b x
y′ ↼ fy a b y
cs ↼ foo2 as bs x′ y′

8 2013/8/21

is converted to the following streamless form:

foo a b �
bar a b x y using
x ↼ delay constX x′

x′ ↼ fx a b x
y ↼ delay constY y′

y′ ↼ fy a b y

5.2 Undoing duplication from supercompilation process
Duplication is caused by cloning the heap for subcomponents dur-
ing splitting, and/or by copying the stack when splitting case ex-
pressions.

This is not a critical problem, because it mostly causes the same
component to be used multiple times and does not affect code size.
The matcher finds identical components during supercompilation.
For the stack, the duplication is limited by logic depth. When
instantiating supercompiled hardware exponential blowup in size
is possible.

Recovering sharing Identical components are easy to detect due
to matching during supercompilation. We need to use a bottom up
transformation to merge identical components, because instantiat-
ing and flattening all components first could blow up exponentially.
The algorithm for undoing the duplication caused by loss of sharing
is:

1. Sort all components by the maximum nesting depth of compo-
nents inside them

2. For all components, starting with the deepest one:

(a) Float ‘free’ components out of case expressions

(b) Instantiate components that cannot be floated out

(c) Unify the component instantiations with identical inputs

(d) Update the current component with the result

Pushing case over common expressions Due to stack duplication
when splitting case expressions, residual case alternatives can be
similar, differing only in some subexpression. In the following
example, the multiplication with x can be floated out of the case
alternatives:

case c of
True −> 3 ∗ x
False −> 5 ∗ x

(case c of {True −> 3; False −> 5}) ∗ x

Duplication by splitting of recursive lets The rebuilding of the
stack onto the heap in the splitter rule for recursive lets may cause
duplication of components with multiple feedback loops. Figure 7
shows a graphical representation of an example with both the pro-
duced and the expected output. This could be solved by some ex-
tensive post processing the resulting netlist. However, this code
size explosion (exponential in the number of feedback loops) could
make the supercompiler run out of memory before post processing.
The workaround is amending the splitter to not duplicate in specific
cases.

〈H | e | K0,update
t x,K1〉

x ∈ fvs(e)
(x is a signal with a product type of representable elements)

〈〈H | x | K1〉〉 using
x ↼ 〈〈H | e | K0〉〉

Figure 7. Example of duplication by splitting of recursive lets

We apply this special splitter rule only on feedback loops on
components with multiple outputs. This heuristic might have an
effect on completeness of the translation process.

5.3 From datatypes to bitvectors
Custom encodings are important for interfacing with existing com-
ponents and for very compact encodings. This allows hardware de-
signs for existing instruction sets or protocols to be specified using
nice datatypes, instead of bitvectors.

class Representable a where
type BitSize a
encode : : a −> BitVector (BitSize a)
decode : : BitVector (BitSize a) −> a

Given this class, we can define a standard translation to remove
all data constructors. First, the optimized lowlevel hardware de-
scription is converted back into the simple core language. Then the
encode and decode functions are inserted around each constructor
and case expression.

Foo a b => encode (Foo (decode a) (decode b))

case x of
Foo a b −> e
Bar c −> f

=>

case decode x of
Foo a ’ b ’ −>

let a = encode a ’
let b = encode b ’
in e

Bar c ’ −> let c = encode c ’ in f

After that we go through the whole supercompilation process
again, until we arrive again at the same lowlevel representation, but
this time without any constructor or case expression.

The reason to not insert en/decode functions before the first su-
percompilation pass is efficiency. If all case expressions are con-
verted to their bitlevel variants, then supercompilation could have
to deal with over ten times as much code. Another reason is that not
all datatypes have a bitvector encoding; some only exist as genera-
tive abstractions at compile time.

9 2013/8/21

synthesizer channel

a d s r
modulator

a d s r
carrier

+ out

sample buffer

buffer
control

synthesizers
registers/control

de
m

uxin

Figure 8. Overview of the soundcard components

6. Soundcard chip example
Here is an example to show how supercompilation enables more
expressiveness in describing hardware. We chose to describe a
simplified digital soundcard with early 90s features: a synthesizer
with multiple channels using frequency/phase modulation, a buffer
for direct sound sample output and a simple instruction set to
control the whole thing. Figure 8 shows the structure of this design.

The first component is oscillator that produces various sine
waves using compile time generated lookup tables. To make the
lookup table smaller the waveforms are synthesized using symme-
try from a quarter sine table.

data WaveForm = FullSine | AbsoluteSine
| HalfSine | QuarterSine deriving (Eq, Enum)

o sc i l l a t o r : : WaveForm −> Word16 −> Word16 −> Int16
−> (Word16, Int16)

o sc i l l a t o r wform f i x mods = (x ’ , amplitude) where
x ’ = x + f i
modx = x + toW16 mods
of f se t = (modx ‘ shiftR ‘ 4) .&. 0xFF
quad = (modx ‘ shiftR ‘ 14) .&. 0x3
index = i f odd quad then 255−of f se t else of f se t
qSin = lookupTable 256 qSinTable index
amplitude = waveSelect quad wform qSin

qSinTable = [round (s in ((x+0.5)∗2∗pi/1024)∗32767)
| x <− [0 . . 255]]

waveSelect 0 x = x
waveSelect 1 QuarterSine = 0
waveSelect 1 x = x
waveSelect Ful lSine x = negate x
waveSelect AbsoluteSine x = x
waveSelect = 0

The second component is an envelope generator, allowing the
amplitude of a played tone to change over time.

data EnvelopeMode = Attack | Decay
| Sustain | Release deriving Eq

envelope mode x a d s r = case mode of
Attack | x+a < x −> (Decay , maxBound)

| otherwise −> (Attack , x + a)
Decay | x−d < s −> (Sustain , s)

| otherwise −> (Decay , x − d)
Sustain −> (Sustain , s)
Release | x−r > x −> (Release , 0)

| otherwise −> (Release , x − r)

Next we connect the oscillator and envelope generator with an
amplifier to form an operator. An extra input allows the operator to
be modulated by another signal. The operator includes the register
and delay elements, and is written an applicative style. We postpone
the decision for space/time tradeoff with multiple operators by
parametrizing the stateful components.

data OperReg = WaveForm | Volume | FreqStep
| EnvReg EnvelopeMode deriving Eq

operator : : (f o r a l l a .a −> Signal a −> Signal a)−>
(f o r a l l b .Enum b => OperReg −> b −> Signal b) −>
Signal Bool −> Signal Int16 −> Signal Int16

operator delay ctrlReg play ms = out where
pps = delay False play
wf = ctrlReg WaveForm FullSine
f i = ctrlReg FreqStep 10
(x ’ , osc) = unpack (l i f tA4 o s c i l l a t o r wf f i x ms)
x = resetOsc<$>play<∗>pps<∗>delay 0 x ’
resetOsc p pp y = i f p && not pp then 0 else y
[a ,d , s , r] = [ctrlReg (EnvReg e) i | (e , i) <−
[(Attack ,5) , (Decay ,2) , (Sustain ,0) , (Release , 1)]]

env ’ = l i f tA6 envelope em gain a d s r
(em’ , gain) = unpack $ delay (Release ,0) env ’
em = toggleEnv<$>play<∗>pps<∗>em’
out = amplify<$>osc<∗>gain<∗>ctrlReg Volume 64

toggleEnv True False = Attack
toggleEnv False True = Release
toggleEnv e = e

amplify x gain vol = toI16 (res ‘ shiftR ‘ 16) where
res = toI32 x ∗ toI32 (shiftR gain 8) ∗ toI32 vol

The toplevel of this soundcard connects the output of the 8 syn-
thesizer channels and the sample buffer with a mixer. State ma-
chines are used to: split the input into commands and raw samples
and to control the read side of the sample buffer.

soundcard : : Signal Int16 −> Signal (Maybe Int16)
soundcard ins = mixer 0 chan xs ys where

chan = moduloCounter 8
(cmd,wrS) = unpack (demuxCommand ins)
xs = synthes izers 8 chan cmd
ys = sampleBuffer (bufferCtr l cmd chan) wrS
sampleBuffer = regFi le 65536 0

mixer accum (0:<chs) (x:<xs) (y:<ys) =
Just (shiftR accum 3) :< mixer (y+x) chs xs ys

mixer accum (:<chs) (x:<xs) (y:<ys) =
Nothing :< mixer (accum+x) chs xs ys

buf ferCtr l = setCtr l 0 0 where
setCtr l nr r i (r :<rs) cs = case r of

PlayIndex i −> i :< rdUpd nr i rs cs
PlaySamples s −> r i :< rdUpd s r i rs cs

rdUpd nr r i rs (c:<cs)
| nr/=0 && c==0 = setCtr l (nr−1) (r i+1) rs cs
| otherwise = setCtr l nr r i rs cs

demuxCommand = recCmd 0 where
recCmd wi (x:<xs) = case decode (toBV x) of
WriteIndex i −> (Nop,Nothing):<recCmd i xs
WriteBuff n −> (Nop,Nothing):<recSample n wi xs
c −> (c ,Nothing):<recCmd wi xs

10 2013/8/21

recSample n i (x:<xs) = case n of
0 −> (Nop, Just (i , x)):<recCmd (i+1) xs
−> (Nop, Just (i , x)):<recSample (n−1) (i+1) xs

type Channel = Word8
type Octave = Word8
data Tone = Tone Octave Note
data Note = A | Ash | B | C | Csh | D | Dsh
| E | F | Fsh | G | Gsh deriving Enum

data OperType = Carr ier | Modulator deriving Eq
data Command = Nop | SetMRatio Channel Word8
| WriteIndex Word16 | WriteBuff Word16
| PlayIndex Word16 | PlaySamples Word16
| SetReg Channel OperType OperReg Word8
| PlayTone Channel Tone | StopTone Channel

instance Representable Command where
type BitSize Command = D16
decode cv = . . . −− omitted for space reasons

Finally we construct the set of synthesizer channels from the op-
erators. Because of the low frequency of audio signals all channels
share the same synthesizer by time multiplexing. Connecting all
register files and converting the commands to register write signals
takes a fair bit of code.

synthes izers : : Channel −> Signal Channel −>
Signal Command −> Signal Int16

synthes izers nCh chan cmd = out where
(rMR, wrMR, wrP) = unpack (chRegs <$> cmd)
modR = regFi le nCh 0 rMR wrMR
(wrM, wrC) = unpack (operCtrl<$>cmd<∗>modR)
play = regFi le nC False chan wrP
xDelay i n i = delayFi le nCh i n i chan
ctrlReg wr key i n i = regFi le nCh i n i chan
(fmap (fmap fromW16) . wrSel key <$> wr)

mS = operator xDelay (ctrlReg wrM) play (pure 0)
out = operator xDelay (ctrlReg wrC) play mS

wrSel : :Eq k => k−> Maybe ((k , i) ,x) −> Maybe (i , x)
wrSel kA (Just ((kB, i) ,y)) | kA==kB = Just (i , y)
wrSel kA = Nothing

chRegs (SetMRatio c r) = (0 , Just (c , r) , Nothing)
chRegs (PlayTone c k) = (c ,Nothing , Just (c ,True))
chRegs (StopTone c) = (0 ,Nothing , Just (c , False))
chRegs = (0 , Nothing ,Nothing)

topAStep = 440∗2ˆ3 ∗ 2ˆ16/44100
noteSteps = map (\x −> round (topAStep∗2∗∗(x/12)))

[0 . . 11]

operCtrl (SetReg ch op reg x) = demux wrx where
demux w = (wrSel Modulator w, wrSel Carr ier w)
wrx = Just ((op , (reg , ch)) , fixRVal reg (toW16 x))
fixRVal (EnvReg Sustain) x = x ‘ shiftL ‘ 8
fixRVal (EnvReg) x = shiftR (xˆ2) 2 + 1
fixRVal x = x

operCtrl (PlayTone c (Tone oct note)) modR =
(wrFStep mf , wrFStep cf) where
wrFStep x = Just ((FreqStep , c) , toW16 x)
cf = shiftR nstep (7−fromEnum oct)
mf = shiftR (nstep∗toW32 modR) (12−fromEnum oct)
nstep = lookupTable 12 noteSteps (fromEnum note)

operCtrl = (Nothing , Nothing)

7. Comparison
Common hardware description languages, such as VHDL and Ver-
ilog have very limited power of generative abstractions. Even worse
for expressiveness, the synthesizable subset often depends on the
tooling being used.

7.1 Hardware Description EDSLs
There are multiple domain specific languages for hardware design
embedded in Haskell, such as the well-known Lava [3] family of
libraries. A so-called deep embedding is used to synthesize a DSL
description to a netlist. That is, the DSL primitives are constructors
for a netlist graph datatype; synthesis of a description composed
of these primitives is simply the calculation/construction of the
Haskell expression. Techniques such as observable sharing [8]
must be used to detect cycles and so ensure termination of the
netlist generation.

The rich set of choice-constructs in Haskell, such as pattern
matching, cannot be reflected down to the eventual netlist when us-
ing the EDSL approach. This is a consequence of using Haskell’s
evaluation mechanism to construct the netlist graph: choice con-
structs can be used to guide the construction, but it is not possible /
feasible to observe all the alternatives. A developer using an EDSL
can hence only use choice-constructs offered by the EDSL library
to represent choice in the netlist. Supercompilation can however
observe Haskell’s choice-constructs in their entirety, meaning that
a developer can use these elements to describe choice in the netlist.

In the long term, we expect Haskell to support a way to deeply
embed most language constructs (where pattern matching and
guards are the crucial aspects). This will benefit all kinds of ED-
SLs, and will minimize the difference (from the user’s point of
view) between the EDSL approach and supercompilation for hard-
ware descriptions.

7.2 Current Transformations in CλaSH
The compiler for CλaSH uses a set of simple rewrite steps that are
based on the syntax and types of the input expressions. Supercom-
pilation as described in this work is however based on the semantics
of the expressions.

The CλaSH compiler uses a combination of inlining and spe-
cialisation to transform a higher-order function hierarchy to a first-
order one, but leaves the function hierarchy intact otherwise. It
is therefore easier to reason about the resulting netlist, as there
is an almost one-to-one correspondence between the component-
hierarchy and the function-hierarchy.

A disadvantage of the current CλaSH compiler is that the set of
transformations cannot unroll static recursion, meaning that recur-
sive expressions cannot be transformed into a netlist. Additionally,
it is hard to prove that a rewriting system such as the one used by
the CλaSH compiler has a canonical first-order normal form. Con-
cisely defining to which restrictions an input program must adhere
for it to be synthesizable to a netlist is therefore non-trivial.

7.3 Partial Evaluation
Supercompilation and partial evaluation, both being symbolic eval-
uation mechanisms, have a lot in common; so much so that it hard
to quantify the difference. Existing partial evaluation techniques
are however not powerful enough to perform the stateful stream
fusion as performed by the supercompilation process described in
this work.

The compiler for the Bluespec [12] hardware description lan-
guage makes extensive use of partial evaluation to completely un-
roll recursive function definitions, and reduce the function hierar-
chy to a first-order form. There is however no account of the exact
details of its partial evaluation mechanism, nor an exhaustive list of
restrictions / requirements on the input programs.

11 2013/8/21

8. Conclusions
We have proposed an alternative way to produce hardware from
a high level language, which trades predictability of the resulting
hardware for increased expressiveness. The result is that the full in-
put language is available for hardware design and could be applied
to CλaSH and lava style hardware descriptions. The use of streams
offers a good basis for (local) state abstractions.

Hardware design, functional programming and supercompi-
lation are a perfect triple. Extending the perfect match from
Sheeran [14]:

• Direct correspondence combinatorial hardware and functional
languages

• Hardware domain avoids supercompilation disadvantages
• Functional languages are good at generative abstractions
• Supercompilation is easier with simple semantics
• Translation to netlist ' removing abstraction ' unconstrained

Supercompilation

Supercompilation is the sledgehammer approach to hardware
description: guaranteed success but the results might not be recog-
nizable. Although it is powerful, it is inflexible in the sense that the
semantics of the source language determines the produced hard-
ware.

Any high level language to hardware Unconstrained supercom-
pilation could, in principle, be used to translate any language to the
netlist level, as nothing in the presented technique is Haskell spe-
cific; it merely requires an input language with operational seman-
tics and an output language that can be synthesized to hardware.
Simplicity of the operational semantics benefits the whole super-
compiler. The output language is preferably close to a subset of the
input language. How to model sequential and stateful components
in a executable manner is an important choice to make.

The evaluator for the input language is just an implementation
of the operational semantics. A matcher for the eval-state, follows
from state structure and variable naming implementation. A simpli-
fier that includes garbage collection, and maybe some more trans-
formations to make the splitter simpler. The splitter is the critical
part, however most choices are determined by structure of the eval-
state and the output language. It might be necessary to modify the
output language or the evaluator to make the implementation of the
splitter feasible. Some further post processing and optimizations
could be applied to make the generated hardware more efficient or
to overcome differences between the in- and output languages.

8.1 Future work
This work is now at the proof of concept stage and needs more work
before a wider audience can use it as a practical tool. Besides doc-
umentation we need a comprehensive library for hardware compo-
nents. A decision has to made on which type level numeral library
to support. Iavor Diatchki’s work on integrating type level natural
in GHC looks promising. Also warning the user on accidently in-
finite hardware descriptions would be useful, and can be done by
integrating a very relaxed variant of termination criteria proposed
in other works.

Creating formal proofs of the properties of this supercompiler
requires further research. And making the supercompilation pro-
cess faster is long term concern, especially with the iterative roll-
back procedure we introduced.

Dependently typed languages for hardware The total nature of
hardware matches well with dependently typed languages. And the
ubiquitous use of fixed size data types requires a lot of manipulation
of type level numerals. Plus the verification of hardware could be

assisted by encoding more properties into types. Thus adapting this
work to a language like Agda or Idris would be interesting.

Acknowledgments
This research is conducted within the Modern project(647.000.003)
supported by NWO. We thank Max Bolingbroke for making avail-
able the source code for his supercompiler and discussions on su-
percompilation in general.

References
[1] E. Axelsson, K. Claessen, and M. Sheeran. Wired: Wire-Aware Circuit

Design. In Proceedings of Conference on Correct Hardware Design
and Verication Methods (CHARME), volume 3725 of Lecture Notes in
Computer Science, pages 5–19. Springer Verlag, 2005.

[2] C. P. R. Baaij, M. Kooijman, J. Kuper, W. A. Boeijink, and M. E. T.
Gerards. CλaSH: Structural Descriptions of Synchronous Hardware
using Haskell. In Proceedings of the 13th Conference on Digital Sys-
tem Design, pages 714–721, USA, September 2010. IEEE Computer
Society.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware
Design in Haskell. In Proceedings of the third International Con-
ference on Functional Programming (ICFP), pages 174–184. ACM,
1998. ISBN 1-58113-024-4. doi: 10.1145/289423.289440. URL
http://doi.acm.org/10.1145/289423.289440.

[4] M. C. Bolingbroke. Call-by-need supercompilation. PhD thesis,
University of Cambridge, May 2013.

[5] M. C. Bolingbroke and S. L. P. Jones. Supercompilation by evaluation.
In Proceedings of the 3rd ACM SIGPLAN Symposium on Haskell,
pages 135–146, 2010.

[6] M. C. Bolingbroke and S. L. P. Jones. Improving su-
percompilation: tag-bags, rollback, speculation, normalisa-
tion, and generalisation. unpublished, March 2011. URL
www.cl.cam.ac.uk/~mb566/papers/chsc2-icfp11.pdf.

[7] M. C. Bolingbroke, S. L. P. Jones, and D. Vytiniotis. Termination
combinators forever. In K. Claessen, editor, Haskell, pages 23–34.
ACM, 2011. ISBN 978-1-4503-0860-1.

[8] A. Gill. Type-Safe Observable Sharing in Haskell. In
Proceedings of the second Haskell Symposium, pages 117–
128. ACM, Sep 2009. ISBN 978-1-60558-508-6. doi:
http://dx.doi.org/10.1145/1596638.1596653.

[9] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and
automatic program generation. Prentice Hall international series in
computer science. Prentice Hall, 1993. ISBN 978-0-13-020249-9.

[10] J. Matthews, B. Cook, and J. Launchbury. Microprocessor spec-
ification in Hawk. In Proceedings of 1998 International Confer-
ence on Computer Languages, pages 90–101, May 1998. doi:
10.1109/ICCL.1998.674160.

[11] N. Mitchell. Rethinking supercompilation. In P. Hudak and S. Weirich,
editors, ICFP, pages 309–320. ACM, 2010. ISBN 978-1-60558-794-
3.

[12] R. S. Nikhil. Bluespec: A General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions. In Philippe Coussy
and Adam Morawiec, editor, High-Level Synthesis - From Algorithm
to Digital Circuit, pages 129–146. Springer Netherlands, 2008.

[13] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):
231–264, 1997.

[14] M. Sheeran. Hardware Design and Functional Programming: a Perfect
Match. Journal of Universal Computer Science, 11(7):1135–1158, jul
2005.

[15] M. Sulzmann, M. M. T. Chakravarty, S. L. P. Jones, and K. Donnelly.
System f with type equality coercions. In F. Pottier and G. C. Necula,
editors, TLDI, pages 53–66. ACM, 2007. ISBN 1-59593-393-X.

[16] V. F. Turchin. The concept of a supercompiler. ACM Trans. Program.
Lang. Syst., 8(3):292–325, 1986.

12 2013/8/21

