todo

ML-TID
A Type Inference Debugger for ML in Education

Ben Thorner

University of Cambridge
ben.thorner@cl.cam.ac.uk

Abstract

Student programmers can struggle to understand how their code
is wrong, while expert programmers become frustrated when the
safety mechanisms of a language render programming more cum-
bersome. Across the spectrum of languages, those with type infer-
ence encourage the user to elide information that would otherwise
catch errors at their source, making them more difficult to resolve.

In this paper, we present a novel debugging tool for ML that should
lower the barrier to entry. ML-TID' exposes a standard debugging
UI that allows the user to step-through the ML type inference algo-
rithm in a controlled environment. We present details of the concept
and implementation and results from a study of 20 undergraduates.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging, Programming Environments

General Terms Algorithms, Languages

Keywords Type-Inference, Type-Debugging

1.

Functional languages with implicit types are widely acknowledged
to have usability issues for novice programmers. While the expert
can avoid annotating every declaration with a type, a novice user
is faced with understanding complex inference and unification al-
gorithms. Part of the problem is that type error messages will often
reference type variables and other syntax not present in the original
program text, as in the following session with the CML interpreter.

Introduction

— fun doubdble f z = f f;

# Type clash in: (f f)

# Looking for a: ’a

# I have found a: ‘a —> b

Implicit types are also found in isolated declarations of mainstream
languages such as Bluespec and Haskell. Isolating the use of type
inference limits the extent to which erroneous types may propagate,
whilst retaining the advantage of reduced boilerplate. Conversely,
inferred types of nested declarations are only found to be incorrect
at the point of use. The following error message is taken from the
SML/NJ interpreter and refers to the example program in Listing 1.

! Meta Language - Type Inference Debugger

[Copyright notice will appear here once ’preprint’ option is removed.]

todo

Kathryn Gray

University of Cambridge
kathryn.gray@cl.cam.ac.uk

Listing 1. Erroneous Permutation Function
perms [] [[]1]
| perms (z::zs) let fun
map f [] []
| map f (y::ys) = (f y)::(map f ys)
in let fun
inject [] [[z]]
| inject (y::ys) = (z::y)::(inject ys)
in let fun
append
| append

fun

[1 zs zs

(y::ys) zs
in let fun
flat [] [1
| flat (y::ys) = append y (flat ys)
in

y::(append ys zs)

flat (map inject (perms xs))
end end end end;

Error: right—hand—side of clause doesn’t agree
with function result type [circularity]

'Z list list
*Z list list list

erpression:
result type:

in declaration: perms (fn nil => nil nil |
(<pat>,<pat>) => let val <binding> in let
<dec> in <ezp> end end)

o3 o o o h

While the type clash occurs for the entire inductive clause of the
perms declaration, a detailed analysis of the intermediary types
shows the real error is in the definition of the local function inject.

Our tool allows the user to understand type errors in a debugging
environment similar to that of Eclipse or Visual Studio. Each term
in a declaration is associated with a type; a user can step-through
the inference for their program, see how the types evolve, and
compare the inferred types with their own expectations to find the
source of an error. ML-TID has the dual benefit of helping novice
programmers understand error reports, and at the same time form
an intuition of the underlying inference and unification algorithms.

Using the above example as motivation, the next section illustrates
how our tool can be used to carry out said analysis. Section 3 then
gives an overview of a preliminary study of ML-TID involving 20
undergraduates, each having at least novice skill. In Section 4, we
outline the novel aspects of our implementation, such as stepped
interaction with the ability to go back and repeat inference steps.
And in Section 6 we discuss our plans for future work on the tool.
Our tool can be found at bitbucket.org/benthorner/mltid/.

2013/7/30



2. Concept and Design

ML-TID is the prototype implementation of a tool aiming to im-
prove usability of ML by exposing intermediary state of the under-
lying type checker, both at points of error and at individual steps in
the inference for a phrase. The following narrative is our expecta-
tion of a typical use case in the context of the example in Listing 1.

A user enters the example into a standard interpreter, where
it fails to compile due to a typing error; deciding the error to
be non-trivial, the user copies the declaration into ML-TID.

Figure 1 shows a miniaturised screenshot of the user interface on
startup. On the left are the control panel and custom editor; on the
right is a pane used to display visualisations of the Abstract Syntax
Tree (AST) for the declaration under examination, currently blank.

Entering debug mode locks the editor and causes the right-
hand pane to display the AST of the declaration in collapsed
form; the debug button is used for toggling between modes.

Sub-phrases in the AST are annotated with any associated type. On
entry to debug mode, we assign to each expression a fresh type
variable. The types are then refined with each step of the inference
process and eventually become representative of their sub-phrases.

By repeated use of the step button, the user advances
through the inference; each click of the button equates to
moving a logical cursor between adjacent nodes of the AST.

After several steps through the program, we arrive at the situation
in Figure 2. The boxed, darker highlight marks the cursor, whilst
a lighter colour indicates simultaneous changes in other type an-
notations due to global constraints arising from the previous step.
Certain labels in the tree are anomalous; these occur due to sugaring
of the bare language to derive more convenient syntactic forms. As
an example, the highlight in the editor pane covers the sub-phrase
[[1] and yet the cursor presides over something entirely different.

A tutorial session might be required to introduce the concept
of a derived form; however, our experience suggests that
users are seldom concerned with such deeply nested syntax.

At any point during the inference, one may revisit past steps in
sequence using the back button, the effect of which is illustrated in
Figure 3 by comparison with Figure 2. The ability to step in both
directions facilitates analysis of the effects of unification; in this
case, we assume the user can establish the following equivalences.

~ unifies with § list and e unifies with § 1ist”

A feature of many debuggers is the ability to affect multiple steps
with a single command. The step-over button is used to complete
inference for the sub-tree rooted at the cursor. Figure 4 illustrates
the effect of using the step-over feature on entering debug mode,
the cursor immediately advancing to just before the erroneous step.

With a little guidance or experimentation, the user should
see this step would normally unify the types assigned to the
ground and recursive clauses of the inferred function perms.

Inspection shows a unification error has occurred due to a spurious
type for the identifier perms in the inductive clause of the declara-
tion. The only use of perms is to form a value in application with
inject via the map function, which has the correct type; it is the
injection function which is at fault and is also non-trivial to correct.

2 Primes affixed to a letter symbolise iterations of the alphabet; these vari-
ables correspond to the same iteration and thus the primes are not shown.

todo

1> ML~ Type Inference Debugger =@ %
Home | Library

s) = (x::y):: (inject ys)

vi:ys) zs = y:: (append ys zs)

12 flat [1 = [
13 | flat (v::ys) = append y (flat ys)

15 flat (mar
16 end end end

nject (perms xs))

o | o Lo |

(Click run’or ‘debug'to start checking your program

Figure 1. Initial ML-TID Session

inject: (£ list) — ((£ 1ist) list)

Once a correction’ is determined, one must toggle between modes
in order to make the change. Clicking the debug button unlocks
the editor and completes any remaining inference for the phrase,
up to a point of error; a similar effect is had using the run button
outside of debug mode. With inference successfully completed for
the corrected perms, the context is modified to associate the name
of the declared value with the inferred type, illustrated in Figure 5.

3. Evaluation and Feedback

Computer Science undergraduates from the University of Cam-
bridge were recruited for a number of controlled experiments aim-
ing to contrast the debugging performance of ML-TID and the
CML interpreter. An experiment would begin with a brief tutorial
of each application in the context of a simple example* demonstrat-
ing a unification error; the task was then to find and correct errors in
arange of example programs divided between the two applications.

Examples ranged from modifying fun id x = x = x so
that the declared value had the type o — «, to correcting a
version of the permutation function familiar from Listing 1.

Each of the 20 participants had introductory experience with Core
ML as part of the foundational material of the Cambridge syllabus;
responses to a brief questionnaire given at the beginning of the ex-
periments also indicate a variety of preferred interpreters’ and some
additional experience of related languages, such as Haskell and F#.

Interactive tools for programming are difficult to evaluate quantita-
tively, with the experience gained by each participant in solving a
particular problem introducing bias when performing the same task
under an alternative treatment. As a consequence, the experiments
served mainly to inform subjects when completing a survey about
their thoughts on using the tools, covering general preferences and
comments in addition to a more detailed look at individual features.

All participants thought ML-TID would be useful to some extent
for debugging type errors, although three expressed no direct pref-
erence and three preferred CML. Below are some of the comments
we received giving criticism and areas where ML-TID can improve.

...ML-TID would get very complicated with large func-
tions...

3 A possible correction is to replace (x::y) with (x::y::ys) in the
definition of inject, while a non-trivial substitution giving the correct
behaviouris (x::y::ys)::(map (fn zs => y::zs) (inject ys)).
4fun bad f x = f f was used in the tutorial for all experiments.
SPoly/ML (12) CML(2) SML/NJ(2) Moscow ML (4)

2013/7/30



-

B> ML - Type Inference Debugger

(=@ = |

Home | Library

1 fun perms [] = [[]] fun perms nil =...
2 | perms (x::xs) = let fun .
3 map £ [1 = [] ¢ perm= nil = [ n...
4 | map £ (y::ys) = (f y)::(map £ ys) perms o
5 in let fun - 1
& inject [1 = [[x1] ¢ nil = [ nil ::... B
7 | inject (v::y=) = (x::¥)::(inject ys) nil Br**'" list
8 i let ©
9 mote 02 e 2 |[ nil :: nil ] (&6"'""" list ) list
appen Z5 = ZS
10 | append (y::ys) zs = y:: (append ys zs) ( (B'"""" 1list ) * ( ( &''''" list ) list ) )
il in let fun ¢ mil :: nil : ( &''''" 1list ) * ( ( &''''' list ) 1lis
12 flat [1 = []
13 | flat (y::ys) = append y (flat wys) 7 nil
14 in nil : &"'"''"' list
15 flat (map inject (perms xs)) .
16 end end end end; ¢ mnil
nil : ( &'"""'' list ) list
O perms X @I XS =...
| clear || debug || run |
| back || step || step-over | i
HE 1 [»
Inferred on "L nil : nil T |
. A
Figure 2. Debugging with ML-TID
r | |1
B> ML - Type Inference Debugger = |3 3
Home | Library
1 fun perms [] = [[[] fun perms nil =...
2 | perms (x::xs) = let fun .
3 map £ [1 = [] ¢ perm= nil = [ n...
4 | map £ (y::ys) = (f y)::(map £ ys) perms o
5 in let fun - 1
& inject [1 = [[x1] ¢ nil = [ nil ::... B
7 | inject (v::y=) = (x::¥)::(inject ys) nil Br**'" list
8 i let ©
mole an ¢ [nil :: nil ] : &
9 append [] zs = zs
10 | append (y::ys) zs = y:: (append ys zs) Cy'""'"" * (y'""''" 1list ) ) —> ( y''"'' list )
i1 in let fun ¢ |mil :: mil : ( &''''' list ) % ( e''''' list )
12 flat [1 = []
13 | flat (y::ys) = append y (flat wys) 7 nil
14 in nil Grirrr list
15 flat (map inject (perms xs)) .
16 end end end end: ¢ mnil
nil g''""" list
O perms X @I XS =...
| clear || debug || run |
| back || step || step-over | i
HEl i [ T»
Inferred on “nil : nil” |
\

Figure 3. Backwards Step in ML-TID

todo

2013/7/30



-
B> ML - Type Inference Debugger

(=@ = |

Home | Library

1 fun perms [] = [[]1]
2 | perms (x::xs) = let fun
3 map £ [] = []
4 | map £ (y::y=s) = (£ y)::(map £ ys)
5 in let fun
& inject []1 = [[x]]
7 | inject (v::y=) = (x::¥)::(inject ys)
8 in let fun
9 append [] zs = zs
10 | append (v::ys) zs = y:: (append ys zs)
11 in let fun
12 flat [1 = [1
13 | flat (y::y=s) = append y (flat wys)
14 in
15 flat (map inject (perms xs))
16 end end end end;
| clear || debug || run |
| back || step || step-over |

[»

§ perm= nil = [ n.
perms : ( B''''' list ) -» ( ( &''''' list ) list )
¢ nil = [ nil ::... (B''"'' list ) -> ( ( &6''"'' list
nil : B''''' list
@ [ nil :: nil ] : ( &'"'''" list ) list
((&''"'r list ) * ( ( &''''' list ) list )
e nil :: mil & ( &''''' list ) * ( ( &''''! list ) 1
? nil
nil : &"'''' list
¢ nil
nil : ( &''''' list ) list
perms x siws -
perms : ( E'''"' list ) -> ( ( ( E''''' list ) list ) 1
9|x 1: xs = let £... : ( E'"''" list ) —> ( { E''''' list
: ¢ x xs : £''7 list <
:<| 1 | Dl |
e L.+ EPO000 Tacis

Figure 4. ML-TID Step-Over Feature

-
B> ML - Type Inference Debugger

(=@ = |

Home | Library

" MName Type
[perms (  list ) —> ( ( a list ) 1list )
mod { int * int ) -> int

div ( int * int ) -> int

* { int * int ) -> int

true bool

+ { int * int )} -> int

= { int * int } -> bool

- { int * int ) -> int

abs int -> int

<= { int * int ) -> bool

- int -> int

false bool

HH { oo * { o list ) ) -> { @ list )
= { int * int )} -> bool

= { "o * " o) —-> bool

< { int * int ) -> bool

nil o list

Figure 5. Extended ML-TID Library

todo

2013/7/30



SCORES

FEATURE UTILITY RATINGS
mstep Mstep-over mback ®error messages M highlighting m tree types

50 q

45

35 4

30

25

Total Frequency

20 -

: F-I-

= I
e} 1S} o
L L L
w
&
o w
@

.|

Figure 6. Survey Results for ML-TID Features

...[CML] was a lot simpler to look at, the tree structure [of
ML-TID] was a sea of characters...

Despite these issues, a clear majority of the participants chose the
current prototype as their preferred debugging tool; a sample of
their feedback is shown below to lend further support to this claim.

...[ML-TID] showed exactly where the problem was —
compared to CML’s cryptic error messages...

[ML-TID gives] additional insight into how types [are] in-
ferred [and] helps you to think of possible solutions...

Figure 6 shows the qualitative scores assigned to a selection of
ML-TID features, over all participants. Consistently popular were
step-over, highlighting and type annotations in the tree; participants
were observed using the former pair to immediately focus on er-
rors, analysing the annotated types. Popularity of step and back
is more variable; participants were observed employing these fea-
tures together in order to contrast changes between states of the
type checker. Even less popular were the custom error messages; al-
though their concise form might have been difficult to interpret, the
low score was not unexpected, given the motivation for the project.

4. Implementation

Whilst the application is self-contained, the implementation of ML-
TID decouples user interaction and core functionality into separate
components. The core defines an extensible architecture for rep-
resenting inference statements of the form C' - P = A asserting

todo

phrase P has property A under assumptions C on its free variables;
properties are generally (polymorphic) types or possibly additional
context. Graphical interaction with the core makes use of a sim-
ple engine interface, accepting textual strings and exposing both a
mechanism for atomic inference steps and sufficient state to deter-
mine intermediary types of sub-phrases; features such as step-over
and back are notably implemented as a sub-component of the GUIL.

Inference statements are represented using members of the state,
parsing and typing modules of the core, respectively corresponding
to assumptions, phrases and (most) properties thereof; each mem-
ber of the parsing module itself corresponds to a phrase in the con-
clusion of one or more typing rules, reflecting the delegation of
inference to individual classes. The typing sub-component defines
a base class extended by all logical types and supports unification
of these; in addition, the module uses the wrapper design pattern
to support polymorphic types and type functions, the latter instru-
mental in defining custom datatypes. State is essentially two map-
pings between strings and polymorphic or user-defined types; these
are aggregated to form the context C' and scoped using a mech-
anism similar to copy-constructors, replicating all mappings for
immutable extension or modification during the inference of sub-
phrases. Whilst the parser is non-trivial, a significant challenge has
been defining the architecture for encapsulating parsed strings: the
majority of nodes in the generated trees support atomic inference
steps by implementation of a method with the following prototype.

public Phrase infer(Context c) throws Exception

Invocation of the method is recursive within a syntax tree but yields
when a property changes, returning the object representing the
last inferred sub-phrase; this not-so-incidentally allows the GUI to
highlight the corresponding visual element, illustrated in Figure 2.

Java provides the Swing library for creation of graphical interfaces;
the paradigm is to break apart the design into a number of pan-
els, which are clearly discernible in the screenshots. The panels
communicate using a synchronous event-based messaging system.
Considering the various features of the user interface, one point
of interest is the mechanism for exporting logical type hierarchies
into strings: the objects are converted into a stream of parser tokens
input to a pretty-printer, which replaces each token with a textual
representation consistent with previous output, referring especially
to the symbol used for each type variable object, across multiple
streams. Another issue was supporting multiple and backward in-
ference steps; whilst the former are immediate by multiple atomic
steps, supporting backward steps required a logical timeline storing
the necessary state to reproduce graphical elements of the interface
as they appeared when the original step took place within the core.

5. Related Work

Approaches to improving usability issues of programming lan-
guages with implicit types largely correspond to one of three cat-
egories. Inspection systems allow the programmer to investigate
the types of sub-phrases at a point of error. Bernstein and Stark
[1] demonstrate a system permitting inference for open expres-
sions; unbound identifiers are resolved as part of error messages,
such that types of sub-phrases may be determined by application
to a fresh (function) variable. Other examples [3] instead favour
a graphical point-and-click method, with the added capability [2]
of specifying assumed types for expressions. Explanation systems
provide verbose output describing the inference steps leading to
an error. Beaven and Stansifer [4] envisage a more interactive ap-
proach avoiding full explanation; their current system explains why
a type is assigned to a phrase based on those of its sub-phrases,

2013/7/30



with additional description given to how types change due to unifi-
cation. Analytical systems attempt to emulate manual resolution
techniques. Lerner, Grossman and Chambers [5] recast the type
checker as a decision procedure in a heuristic search and enumera-
tion process for possible corrections to faulting programs; modifi-
cations not leading to an error are ranked for suggestion to the user.

Beyond the approaches given above, Jung and Michaelson [6] im-
plement a visual programming language for a Standard ML subset,
using colours and letters to represent base types and type variables,
respectively; functions are entered as text for display as icons, with
highlighting used to guide connection of value icons to positions
representing compatible formal parameters. ML-TID falls between
explanation and inspection systems, with inspection possible not
only at the point of error, but also at preceding inference steps; we
suggest that the ability to observe types evolve in the tree visualisa-
tion constitutes an implicit explanation of the inference algorithm.

6. Conclusions and Future Work

Our experience of evaluating ML-TID with students has shown that
interactive inspection of the type checking process is preferable
to the trial-and-error approach employed by many to identify the
cause of a type error. Future work is now under consideration,
including changes to the GUI and extended use or study of the tool.

Based on criticisms of readability, we are exploring a differ-
ent representation of type variables using a subscript nota-
tion; this avoids counting primes. Another simple extension
is to add a button to complement step-over; this is a precur-
sor to an alternative breakpoint scheme requested by users.

As to further use of the tool, we are looking to deploy ML-TID in
a class of undergraduate students learning the Meta Language. Our
hope is that we can gain a more complete understanding of the ben-
efits of ML-TID and also investigate its usefulness as a teaching aid.
The tool can be found at bitbucket.org/benthorner/mltid/.

Acknowledgments

ML-TID is the product of a research project for the University of
Cambridge. The evaluation of the tool was much improved based
on advice from lan Davies and Richard Gibbens. We would also
like to thank Gonville & Caius College for the funding that made
the user study possible. Finally, our thanks go to all participants in
the study and to everyone else who gave feedback on the prototype.

References
[1] K. L. Bernstein and E. W. Stark, Debugging Type Errors. State
University of New York, 1995.

[2] A. Keane, A tool for investigating type errors in ML programs.
University of Edinburgh, 1999.

[3] O. Chitil, F. Huch and A. Simon, Typeview: A Tool for Understanding
Type Errors. Proc. 12th International Workshop on Implementation of
Functional Languages, Pp. 63—69.

[4] M. Beaven and R. Stansifer, Explaining Type Errors In Polymorphic
Languages. ACM Letters on Programming Languages and Systems, Vol.
2, Pp. 17-30.

[5] B. Lerner, D. Grossman and C. Chambers, Searching for ML Type-
Error Messages. Proc. ACM Workshop on ML, 2006.

[6] Y. Jung and G. Michaelson, A visualisation of polymorphic type
checking. ACM Journal of Functional Programming, Vol. 10, Pp. 57-75.

todo

2013/7/30



