Abstract

Immediate Dominators in Linear Time

An Elegant and Non-Amortized Algorithm
EXTENDED ABSTRACT

Marco T. Morazan

Seton Hall Uniersity
morazanm@shu.edu

Abstract

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages)

Keywords Immediate Dominators, Algorithms

Computing dominators is a fundamental problem in the imple-
mentation of programming languages. Dominators are used in com-
piler optimizations involving loop-invariant computations and code
motion [2]. Dominators also play a role in program transformation
techniques involving static single assignment form [8], lambda lift-
ing [11], and lambda dropping [10]. In addition to applications in
programming languages, dominators are used in software testing to
achieve good testing coverage [1], in VLSI testing to find faults [5],
and in computational biology to study species extinction [3, 4].

Modern algorithms to compute dominators, have taken two
major approaches: an equation-based approach and a spanning-
tree-based approach. The equation-based approach, also known as
the data-flow approach, aims to solve a system of recursive set-
equations—one equation for each node in the call-graph. The span-
ning tree approach aims to exploit properties of the depth-first span-
ning tree to determine the dominator relationship. Both approaches
have strived to develop “fast” and “practical” algorithms with vary-
ing degrees of success. Equation-based approaches have not devel-
oped an O(NN) algorithm, but have yielded algorithms that are ele-
gant and that in practice are expected to run fast [7]. Approaches us-
ing spanning trees have developed an asymptotically optimal O (V)
algorithm [6]. This asymptotically optimal algorithm, however, is
conceptually complex, difficult to explain, and difficult to imple-
ment.

Spanning-tree-based algorithms aim to build the dominator tree
of a call-graph, GG, by exploiting properties of, ST, its depth-firt
spanning tree. Several spanning tree algorithms have been proposed
in the search for an O(n) algorithm [6, 9, 12, 13]. Of these algo-
rithms, the best known is the almost linear algorithm developed by
Langauer and Tarjan (LT) [13] which has served as the basis for
other spanning-tree-based algorithms. The most recent refinement
has been done by Buchsbaum et al. (B) obtaining an O(n) algo-
rithm [6]. These algorithms work using three conceptual steps:

[Copyright notice will appear here once ’preprint’ option is removed.]

Morazdn IFL 2013

1. Compute semidominators.
2. From semidominators compute relative dominators.

3. From relative dominators compute immediate dominators.

The LT and B algorithms compute each of these steps differently,
but both are based on visiting and processing nodes.

This article presents a new spanning-tree-based linear-time al-
gorithm that eliminates the need to compute semidominators and
relative dominators. Its novel approach is based on processing
edges, not nodes, during a traversal of the nodes in reversed order
from the spanning tree traversal order. A forest-like data structure
is maintained that dynamically tracks dominator information across
edges when the tail of an edge is visited, not when the head is vis-
ited. The immediate dominator of a node is not computed until it is
its turn to be connected within the forest and its immediate domi-
nator is decided solely based on the heads of the edges for which it
is the tail. At each step, the forest consists solely of trees of height
0O-nodes not yet connected—and trees of height 1-the root of such
trees is the largest node so far from which its children are reachable.
This property guarantees that each edge can be processed in con-
stant time. Therefore, the algorithm is O(v + €), or simply O(n),
where v is the number of nodes and e is the number of edges. Fur-
thermore, the algorithm is remarkably simple, elegant, and easily
implemented.

References

[1] H. Agrawal. Efficient Coverage Testing Using Global Dominator
Graphs. In Proceedings of the SIGPLAN/SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering, pages 11-20,
1999.

[2] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-
Wesley Publishing Company, 1979.

[3] S. Allesina and A. Bodini. Who Dominates Whom in the Ecosystem?
Energy Flow Bottlenecks and Cascading Extinctions. Journal of
Theoretical Biology, 230(3):351-358, 2004.

[4] S. Allesina, A. Bodinia, and C. Bondavalli. Secondary Extinctions in
Ecological Networks: Bottlenecks Unveiled. Ecological Modelling,
194(1-3):150-161, 2006.

[5] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Fault

Equivalence Identification Using Redundancy Information and Static

and Dynamic Extraction. In Proceedings of the 19th IEEE VLSI Test

Symposium, pages 124—130, 2001.

A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan,

and J. R. Westbrook. Linear-Time Algorithms for Dominators and

Other Path-Evaluation Problems. Siam J. Compt., 38(4):1533-1573,

2008.

K. D. Cooper, T. J. Harvey, and K. Kennedy. A Simple, Fast Domi-
nance Algorithm. Software Practice and Experience, 4, 2001.

[6

—

[7

—

2013/7/28



[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Trans. Program. Lang. Syst., 13:451-490,
October 1991. ISSN 0164-0925.

[9] D. Harel. A Linear Time Algorithm for Finding Dominators in Flow
Graphs and Related Problems. In Proc. of the Seventeenth Annual
ACM Symposium on Theory of Computing, pages 185-194, 1985.

[10] O. Danvy and U. P. Schultz. Lambda-Dropping: Transforming Re-
cursive Equations into Programs with Block Structure. Theoretical
Computer Science, 248(1-2):243-287, 2000.

[11] M. T. Morazan and U. P. Schultz. Optimal Lambda Lifting in
Quadratic Time. In O. Chitil, editor, Implementation and Application
of Functional Languages, volume 5083 of Lecture Notes in Computer
Science, pages 37-56. Springer Verlag, 2008.

[12] Stephen Alstrup and Dov Harel and Peter W. Lauridsen and Mikkel
Thorup. Dominators in Linear Time. SIAM Journal on Computing, 28
(6):2117-2132, 1999.

[13] Thomas Lengauer and Robert Endre Tarjan. A Fast Algorithm for
Finding Dominators in a Flowgraph. ACM Transactions on Program-
ming Languages and Systems , 1(1):121 — 141, 1979.

Morazdn IFL 2013

2013/7/28



