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Abstract
Ideally complexity is managed by composing a system out of quite
a few, more or less independent, and much smaller descriptions of
various aspects of the overall artifact. When describing (extensible)
programming languages, attribute grammars have turned out to be
an excellent tool for modular definition and integration of their
different aspects.

In this paper we show how to construct a programming lan-
guage implementation by composing a collection of attribute gram-
mar fragments describing separate aspects of the language. More
specifically we describe a coherent set of libraries and tools which
together make this possible in Haskell, where the correctness of the
composition is enforced through the Haskell type system’s ability
to represent attribute grammars as plain Haskell values and their
interfaces as Haskell types makes this possible.

Semantic objects thus constructed can be combined with parsers
which are constructed on the fly out of parser fragments and are
also represented as typed Haskell values. Again the type checker
prevents insane compositions.

Using a very small example language and some simple exten-
sions, we show how all our techniques fit together towards the
construction of extensible compilers out of a collection of pre-
compiled, statically type-checked “language definition fragments”.

Keywords Attribute Grammars,Typed Grammars,Typed Trans-
formations,Haskell,Extensible Languages

1. Introduction
Since the introduction of the very first programming languages,
and the invention of grammatical formalisms for describing them,
people have been looking into how to enable an initial language
definition to be extended by someone other than the original lan-
guage designers. In the extreme case a programmer, starting from
an empty initial language, could thus compose his favorite language
out of a collection of pre-compiled language-definition fragments.
Such language fragments may range from the definition of a sim-
ple syntactic abbreviation like list comprehensions to the addition
of completely new language concepts, or even extensions to the
type system.

[Copyright notice will appear here once ’preprint’ option is removed.]

In solving the problem of how to compose a compiler, various
lines of attack have been pursued. The most direct and least inva-
sive approach, which is so widely applied that one may not rec-
ognize it as an approach to the goal sketched above, is to make
use of libraries defined in the language itself, thus simulating real
extensibility. Over the years this method has been very effective,
and especially modern, lazily evaluated, statically typed functional
languages such as Haskell serve as an ideal environment for ap-
plying this technique; the definition of many so-called combinator
libraries in Haskell has shown the effectiveness of this approach,
which had been characterized as the construction of embedded do-
main specific languages (EDSL). The ability to define operators
and precedences can be used to mimic syntactic extensions. Un-
fortunately not all programming languages really support this ap-
proach very well, given the flood of so-called modeling languages
and frameworks from which lots of boilerplate code is generated.

At the other extreme of the spectrum we start from a base lan-
guage and the compiler text for that base language. Just before the
compiler is compiled itself, several extra ingredients can be added
textually. In this way we get great flexibility and there is virtually no
limit to the things we may add. The Utrecht Haskell Compiler [9]
has shown the effectiveness of this approach using attribute gram-
mars as the composing mechanism. This approach however is not
very practical when defining relatively small language extensions;
we do not want every individual user to generate a completely new
compiler for each small extension. Another problematic aspect of
this approach is that by making the complete text of the compiler
available for modification we may also loose important guarantees
provided by e.g. the type system of the language being defined; we
definitely do not want everyone to mess around with the delicate
internals of a compiler for a complex language.

So the question arises of how we can do better than only pro-
viding powerful abstraction mechanisms without opening up the
whole source of the compiler. The most commonly found approach
is to introduce so-called syntax-macros [19], which enable the pro-
grammer to add syntactic sugar to a language by defining new no-
tation in terms of already existing notation. Despite the fact that
this approach may be very effective, it also has severe shortcom-
ings; as a consequence of mapping the new constructs onto exist-
ing constructs and performing any further processing such as type
checking on this simpler, but often more detailed program repre-
sentation, feedback from later stages is given in terms of invisible
intermediate program representations. Hence the implementation
details shine through, and error messages produced can be confus-
ing or even incomprehensible.

Given the above considerations we impose some quite heavy
restrictions on ourselves. In the first place extensions should go
beyond merely syntactic extensions as is the case with the original
syntax macros, which only map new syntax onto existing syntax;
we want also to gain access to the part of the compiler which deals
with the static semantics, e.g., in order to report errors in terms of
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the extended syntax instead of the original one. We seek extension
at the semantic level, i.e. by using some sort of plug-in architecture;
we will do so by constructing a core compiler as a collection of pre-
compiled components, to which extra components can be added
and for which existing components can be redefined at will. The
questions we answer in this paper are how to compose a compiler
out of separately compiled and statically type checked language-
definition fragments and how to construct such fragments using a
domain specific language embedded in Haskell.

The main contribution of this paper is to show how several re-
lated techniques we have previously developed can be combined in
a unified approach to construct extensible compilers. The solution
we present builds on:

• the introduction of a naming structure which makes it possible
to represent mutually dependent structures and the possibility
to manipulate such structures in a type-safe way [4]

• the description of typed grammar fragments as first class
Haskell values [34], and the typed Left-Corner Transform to
remove left-recursion [5]

• the possibility to construct self-analysing, error correcting
parsers on the fly [27, 28]

• the possibility to deal with attribute grammars as first class
Haskell values, which can be transformed, composed and fi-
nally evaluated [32, 33].

These techniques make use of many well-known Haskell exten-
sions, such as multi-parameter type classes, functional dependen-
cies, generalised algebraic data types and arrow notation. For sim-
plicity, in the rest of the paper we will refer to this just as Haskell.

In Section 2 we introduce the syntax of a small language and
its extension, as it is to be provided by the language definer and
extender. In Section 3 we show the techniques we use to represent
the syntax, and in Section 4 show the corresponding static seman-
tics parts. We close by discussing related work, future work and
present our conclusions.

2. Extensible Languages
In this section we show how to express extensible languages. The
architecture of our approach is depicted in Figure 1; boxes represent
(groups of Haskell) modules and arrows are import relations.

Figure 1. Initial Language

In the rest of the section we will take a detailed look at each
module, and how everything fits together in the construction of a
compiler. Our running example will be a small expression language
with declarations. The purpose of this example is to introduce
the main characteristics of out approach in an easy way. For a
more involved example we refer to [31], the implementation of a
compiler for the Pascal-like Oberon0 [37] language.

We will refer to our expression language as the initial grammar:

root ::= decls "main" "=" exp
decls ::= var "=" exp decls | empty
exp ::= exp "+" term | term
term ::= term "*" factor | factor
factor ::= int | var

Note that this concrete grammar uses the syntactic categories exp,
term and factor to represent operator precedences.

To implement this language fragment, a language implementer
has to provide the Haskell code of Figure 2, expressing himself us-
ing our murder1 combinator library (of course one might generate
this from the grammar description) and the arrow-interface2. This
corresponds to the module Grammar in Figure 1. Without delving
into details in this section, observe that the context-free grammar
just given can be immediately recognized in the structure of the
code. This grammar fragment description consists of a sequence
of transformations, introducing new non-terminals to the grammar.
The notation is to be read as output ← transformation ≺ input .
Each non-terminal (syntactic category) of the context free gram-
mar is introduced (using addNT ) by defining a list of productions
(alternatives) separated by <|> (choice) operators, where each pro-
duction contains a sequence of elements to be recognized.

The parameter sf is a record containing the “semantics of
the language”. The type of this record is declared in the module
Semantics Declaration , for example:

data SemLang decls main rs name val rest ds nds
al ar as ml mr ms value cs var vs

= SemLang {semRoot :: decls → main → rs
, semDecls :: name → val → rest → ds
, semNoDecl :: nds
, semAdd :: al → ar → as
, semMul ::ml → mr → ms
, semCst :: value → cs
, semVar :: var → vs }

The functions contained in the record (accessed as e.g. semMul sf )
describe how to map the semantic values associated with the ab-
stract syntax trees corresponding to the non-terminals in the right-
hand side of a production onto the semantic value of the left hand
side of that production (and eventually the value associated with
the root of a parse tree). We call these semantic functions, because
they give meaning to the constructs of the language. As we will
see in Section 4, the semantics of our simple expression language
is composed by two aspects: pretty-printing and expression eval-
uation. The record is parametrized by the types that compose the
types of its fields, i.e. the semantic functions of the productions.
Such a record describes the abstract syntax of the language.

In Section 4 we show how to construct and adapt the semantic
functions (module Semantics Implementation in Figure 1) using
the uuagc-system combined with a first-class attribute grammar
library. We map the abstract parse tree of the program onto a call
tree of the semantic function calls. The resulting meaning of a
parse tree is a function which can be seen as a mapping from
the inherited to the synthesized attributes. Thus, a production is
defined by a semantic function and a sequence of non-terminals
and terminals ("*"), the latter corresponding to literals which are
to be recognized.

As usual, some of the elementary parsers return values which
are constructed by the scanner. For such terminals we have a couple
of predefined special cases, such as int , which returns the integer
value from the input and var which returns a recognized variable
name.

An initial grammar is also an extensible grammar. It exports
(with exportNTs) its starting point (root) and a list of exportable
non-terminals each consisting of a label (by convention of the form

1 MUtually Recursive Definitions Explicitly Represented: http://
hackage.haskell.org/package/murder
2 Using Arrow syntax [24], which is inspired by the do-notation for
Monads
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gramIni sf = proc ()→ do
rec root ← addNT ≺ T (semRoot sf ) decls "main" "=" exp U

decls ← addNT ≺ T (semDecls sf ) var "=" exp decls U <|> T (semNoDecl sf ) U
exp ← addNT ≺ T (semAdd sf ) exp "+" term U <|> T term U
term ← addNT ≺ T (semMul sf ) term "*" factor U <|> T factor U
factor ← addNT ≺ T (semCst sf ) int U <|> T (semVar sf ) var U

exportNTs ≺ exportList root $ export ntDecls decls . export ntExp exp
. export ntTerm term . export ntFactor factor

Figure 2. Initial Language Grammar

import Grammar (gramIni)
import SemanticsImpl (semIni)

compiler = genCompiler (gramIni semIni)

Figure 3. Initial Language Compiler

nt ...) and the collection of right hand sides. These right hand sides
can be used and modified in future extensions.

Figure 3 contains a fragment of a (very simple) compiler of
the example language; it corresponds to the module Compiler
of Figure 1. The function genCompiler closes a grammar and
generates a parser integrated with the semantics for the language
starting from the first non-terminal, which in our case is root . The
left-corner transform is applied to remove possible left recursion
from the grammar, in order to use straightforward top-down parsing
techniques in the actual parsing process.

2.1 Language Extension
The language (and thus compiler of that language) can be extended
without having either to re-compile or to inspect the grammar
and semantic components of the compiler for the initial language.
Figure 4 shows the structure of a compiler produced as an extension
of an initial language including the introduction of new syntax. In
this case both the grammar and the semantics are being extended.

Figure 4. Language Extension

Figure 5. Lang. Semantics Modification

If the extension only involves modification of the seman-
tics (e.g. to add new aspects or redefine existing ones), then
it suffices to add an extension to the module containing the
Semantics Implementation (Figure 5).

We compose compositions in an incremental way; i.e. any new
language extension will be applied to the previously extended lan-
guage.

In the rest of the section we show how to extend the language
just defined by adding new kinds of expressions such as conditional
expressions and new syntactic categories such as conditions:

factor ::= ... | "if" cond "then" exp "else" exp

cond ::= exp "==" exp | exp ">" exp

The grammar extension gramExt is again defined as a Haskell
value, which imports an existing set of productions and builds an
extended set, as shown in Figure 7. In this case the type of the sf

gramExt sf = proc imported → do
let exp = getNT ntExp imported
let factor = getNT ntFactor imported

rec addProds ≺ (factor , T (semIf sf ) "if" cond
"then" exp
"else" exp U)

cond ← addNT ≺ T (semEq sf ) exp "==" exp U
<|> T (semGr sf ) exp ">" exp U

exportNTs ≺ extendExport imported
(export ntCond cond)

Figure 6. Language Extension : If

record, defined in the module Semantics Declaration Extension ,
is:

data SemLangExt cnd thn els is el er es gl gr gs

= SemLangExt {semIf :: cnd → thn → els → is
, semEq :: el → er → es
, semGr :: gl → gr → gs }

We first show how to combine previously defined productions
with the newly defined productions into an extended grammar: for
each non-terminal to be extended, or used in an extension, we re-
trieve its list of productions (using getNT ) from the imported non-
terminals, and add new productions to this list using addProds . For
example, for factor the new if ... then ... else... production is
added by:

let exp = getNT ntExp imported
let factor = getNT ntFactor imported
addProds ≺ (factor , T (semIf sf ) "if" cond

"then" exp
"else" exp U)
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Extra non-terminals can be added as well using addNT ; in the
example we add the non-terminal cond with its two productions
to represent some simple conditions:

cond ← addNT ≺ T (semEq sf ) exp "==" exp U
<|> T (semGr sf ) exp ">" exp U

Finally, we extend the list of exportable non-terminals with (some
of) the newly added non-terminals, so they can be extended by
further fragments elsewhere:

exportNTs ≺ extendExport imported (export ntCond cond)

gramExt sf = proc imported → do
let exp = getNT ntExp imported
let factor = getNT ntFactor imported

cond ← addNT ≺ T (semEq sf ) exp "==" exp U
<|> T (semGr sf ) exp ">" exp U

addProds ≺ (factor , T (semIf sf ) "if" cond
"then" exp
"else" exp U)

exportNTs ≺ extendExport imported
(export ntCond cond)

Figure 7. Language Extension : If

Some extensions may require to modify some already defined
productions of the grammar to extend. For example, suppose
we want to extend our language with some unary operators sq
(square), pyth (sum of squares) and db (double), whose prece-
dence is in between term and factor . This can be done by adding
a new syntactic category unary , for the new operators, and up-
dating the references to factor in the productions of term to
point to unary . Figure 8 shows how to implement this extension.
The transformation updProds updates the productions of an ex-

gramExt2 sf = proc imported → do
let term = getNT ntTerm imported
let factor = getNT ntFactor imported

unary ← addNT ≺ T (semSq sf ) "sq" factor U
<|> T (semPyth sf ) "pyth" factor U
<|> T (semDb sf ) "db" factor U

updProds ≺ (term, mapNTProds factor unary)

exportNTs ≺ extendExport imported
(export ntUnary unary)

Figure 8. Language Extension : Sq, Pyth and Db

isting non-terminal (e.g. term) by a given function. The function
mapNTProds factor unary maps every reference to factor in
the productions to point to unary .

Because gramIni , gramExt and gramExt2 are all proper
Haskell values, which are separately defined in different modules
which can be compiled separately, we claim that the term first-class
grammar fragments is justified.

The extended language compiler is shown in Figure 9. The
(left associative) operator (+>>) composes an initial grammar
with its extension, returning a new (initial) grammar. The func-
tion genCompiler makes sure that all existing references to non-

import GrammarExt2 (gramIni , gramExt , gramExt2 )
import SemanticsImplExt2 (semIni , semExt , semExt2 )

compiler = genCompiler (gramIni semIni +>>
gramExt semExt +>>
gramExt2 semExt2 )

Figure 9. Extended Language Compiler

terminals eventually refer to the final version of the definitions for
these non-terminals.

3. First-Class Syntax
In this section we introduce the murder library, which we use to
define and combine grammars. The library is based on the typed
representation of grammars and the typed transformations [4] of
these grammars.

3.1 Grammar Representation
We use a representation of grammars as typed abstract syntax [5]
based on the use of Generalized Algebraic Data Types [25]. The
idea is to indirectly refer to non-terminals via references encoded as
types. Such references type-index into an environment holding the
actual collection of productions for non-terminals. This enforces
that the productions occurring in an environment can only contain
references to non-terminals that belong to the environment in ques-
tion. A grammar is a value with type Grammar a , where the type
a is the type of a witness of a complete successful parse starting
from the root nonterminal of the grammar.

3.2 Grammar Extensions
Grammar definitions (Figure 2) and extensions (Figure 7) are typed
transformations of values of type Grammar , implemented using
the library TTTAS3 (Typed Transformations of Typed Abstract Syn-
tax). TTTAS enables us to represent typed transformation steps,
(possibly) extending a typed environment. In other words, by using
typed transformations when adding non-terminals and productions
to a grammar, we will always construct a grammar that is assured
to be well-typed again.

In TTTAS the transformations are represented as Arrows [14].
Arrows are a generalization of Monads, modeling a computation
that takes inputs and produces outputs. In our case the computation
maintains a state containing the environment mapping the non-
terminals of the grammar onto the thus far defined productions.
We use the input and output of the arrows to read and write data
controlling the transformation process.

Both extensible grammars and grammar extensions have to ex-
port their starting point and their list of exportable non-terminals,
which can be used and/or modified by future extensions. We encode
this data in a value of type Export , which is constructed using the
function exportList , and extended with extendExport .

The only difference between extensible grammars and grammar
extensions is that a grammar extension has to import the list of non-
terminals it will extend, while an initial grammar does not import
anything.

Thus, the definition of an extensible grammar, like the one in
Figure 2, has the following shape:

gramIni = proc ()→ do ...
exportNTs ≺ exported

3 http://hackage.haskell.org/package/TTTAS
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where the proc () part indicates that gramIni is a typed trans-
formation that takes just () as input and returns as output a value
(exported ) of type Export . With exportNTs we inject the Export
value in the transformation in order to return it as output.

The definition of a grammar extension, like the one in Figure 7,
has the shape:

gramExt = proc imported → do ...
exportNTs ≺ exported

Now in order to extend a grammar with a grammar extension
all we have to do is to compose both transformations by connecting
the output of the first to the input of the second. This is the role of
the operator (+>>), used in Figure 9, which is a (type) specialized
version of the Arrow ’s composition (>>>).

To add a new non-terminal to the grammar boils down to adding
a new term to the environment using the transformation addNT .
The input to addNT is the initial list of alternative productions for
the non-terminal and the output is a non-terminal symbol, i.e. the
index of the newly added non-terminal in the new grammar. Thus,
when in Figure 2 we write:

exp ← addNT ≺ productions

we are adding the non-terminal for the expressions, with the list
of productions productions passed as a parameter, and we bind to
exp a symbol holding the reference to the added non-terminal so
it can be used in the definition of this or other non-terminals. The
list of alternative productions is expressed in an applicative style;
i.e. in terms of pure , (<*>), (<*) and (<|>), or using the brackets
T and U. These brackets are inspired by the idioms approach as
introduced by McBride [21]. The brackets T and U are the LATEX
representations of the Haskell identifiers iI and Ii, which come
with a collection of Haskell class and instance declarations which
together allow us to write T (semMul sf ) term "*" factor U
instead of the more elaborate text:

pure (semMul sf ) <*> sym term <* tr "*" <*> sym factor

Adding new productions to an existing non-terminal boils down to
appending the extra productions to the list of existing productions
of that non-terminal. Figure 7 contains an example of adding a pro-
duction to the non-terminal factor . The transformation addProds
takes as input a pair with a reference to the non-terminal to be ex-
tended and the list of productions to add:

addProds ≺ (nonterminal , productions)

In this case the output is irrelevant, since no new references are
created as a result of this extension.

3.3 Closed Grammars
We can run the transformation by closing the grammar; i.e. all ref-
erences are made to point to the latest version of their correspond-
ing non-terminals. Thus, a call to closeGram starts with an empty
grammar, and applies to it all the transformations defined in the
grammar description to obtain the defined grammar.

genCompiler = (parse . generate . leftcorner) closeGram

The type of a closed grammar is Grammar a , where a is a
phantom type [13] representing the type of the start non-terminal.

Since this grammar can be left-recursive we have to apply the
leftcorner [5] typed transformation in order to remove potential
left-recursion:

leftcorner ::Grammar a → Grammar a

The function generate generates a parser integrated with the se-
mantics for the language starting from the first non-terminal, which
in our case is root .

generate ::Grammar a → Parser Token a

Finally, parse parses the input program while computing the mean-
ing of that program. Currently we can generate either uulib4 or
uu-parsinglib5 parsers.

parse :: Parser Token a → [Token ]→ ParseResult a

4. First-Class Semantics
In this section we complete the example by showing how we use
attribute grammars to define the static semantics of the initial lan-
guage and how such definitions can be redefined when the language
is extended.

An Attribute Grammar describes for a context-free grammar
how each node in a parse tree is to be decorated with a collection
of values, called attributes. For each attribute we have a defining
expression in which we may refer to other “nearby” attributes,
thus defining a data-flow graph based on the abstract syntax tree.
An attribute grammar evaluator schedules the computation of these
expressions, such that the attributes we are interested in eventually
get computed.

4.1 Definition of the Language Semantics
To define the static semantics of a language we use the AspectAG6

embedding of attribute grammars in Haskell. In order to be able
to redefine attributes or to add new attributes later, it encodes the
lists of inherited and synthesized attributes of a non-terminal as
an HList-encoded [17] value, indexed by types using the Haskell
class mechanism. In this way the closure test of the attribute gram-
mar (each attribute has exactly one definition) is realized through
the Haskell class system. Thus, attribute grammar fragments can be
individually type-checked, compiled, distributed and composed to
construct a compiler. Albeit easy to use for the experienced Haskell
programmer, it has a rather steep learning curve for the uninitiated.
A further disadvantage is that the approach is relatively expensive:
once the language gets complicated (in our Haskell compiler UHC
[9] some non-terminals have over 20 attributes), the cost of ac-
cessing attributes may eventually overshadow the cost of the actual
computations.

For those reasons in [35] we have defined an extension to the
uuagc compiler [29], that generates AspectAG code fragments
from original uuagc sources. This tool enables a couple of opti-
mizations to the AspectAG code: we limit both our reliance on the
HList-encoding, resulting in a considerable speed improvement,
and allow existing uuagc code to be reused in a flexible environ-
ment.

With the --aspectag option we make uuagc generate AspectAG
code out of a set of .ag files and their corresponding .agi files. An
.agi file includes the declaration of a grammar and its attributes
(the interface), while the SEM blocks specifying the computation
of these attributes are included in the .ag file (the implementation).

In the rest of the paper we will show examples written in the
uuagc language. Although another valid option would have been
to implement the semantic functions directly in AspectAG, or to
use a hybrid approach.

Figure 10 shows the .agi file for the semantics of our initial
language. Notice that the grammar defined here is not exactly the
same as the context-free grammar of the language, since our at-
tribute grammars are built on top of the abstract syntax of the lan-
guage. We define attributes for the following aspects: pretty print-
ing, realized by the synthesized attribute spp, which holds a pretty

4 http://hackage.haskell.org/package/uulib
5 http://hackage.haskell.org/package/uu-parsinglib
6 http://hackage.haskell.org/package/AspectAG
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SemanticsImpl.agi

DATA Root | Root decls :Decls main : Expr

DATA Decls | Decl name : String val : Expr rest :Decls
| NoDecl

DATA Expr | Add al : Expr ar : Expr
| Mul ml : Expr mr : Expr
| Cst value : Int
| Var var : String

ATTR Root Decls SYN spp : PP Doc
ATTR Root Expr SYN sval : Int
ATTR Decls Expr INH ienv : [(String , Int)]
ATTR Decls SYN senv : [(String , Int)]

Figure 10. Language semantics

printed document of type PP Doc, and expression evaluation, re-
alized by the synthesized attribute sval of type Int , which holds
the result of an expression, and an inherited attribute ienv which
holds the environment ([(String , Int)]) in which an expression is
to be evaluated. Synthesized attributes take their definition “from
below”, using the values of the synthesized attributes of the chil-
dren of the node the attribute is associated with and the inherited
attributes of the node itself. An inherited attribute is defined “from
above”: in its defining expression we may refer to the inherited at-
tributes of its parent and the synthesized attributes of its siblings.

Keep in mind that we chose these trivial semantics in order to
keep the example simple, and focus on the features of the tech-
nique. A real compiler should involve more complex tasks such as
type-checking, optimization and code generation.

Figure 11 shows the .ag file including the implementation of
the attributes declared above. In a SEM block we specify how at-
tributes of a production are to be computed out of the attributes
from the left hand side and children of the production. The defin-
ing expressions at the right hand side of the = signs are almost
plain Haskell code, using minimal syntactic extensions to refer to
attributes. We refer to a synthesized attribute of a child using the
notation child .attribute and to an inherited attribute of the pro-
duction itself (the left-hand side) as lhs.attribute . Terminals are
referred to by the name introduced in the DATA declaration. For
example, the rule for the attribute ienv for the child rest of the pro-
duction Decl extends the inherited list ienv by a pair composed of
the name used in the declaration and the value sval of the child
with name val (val .sval ).

The pretty-printing attribute is defined for each production by
combining the pretty printed children using the pretty printing
combinators from the uulib library: (<#>) for horizontal (beside)
composition, (<->) for vertical (above) composition, and pp to
pretty print a string.

The semantics of the expression evaluation (sval ) is intuitive.
Variables of the main expression are located in an environment
constructed as follows:

• the declarations sub-tree (decls) receives an empty environment
ienv and extends it through the list of declarations with the
values resulting from the evaluation of the expression in the
right hand side of each declaration

• the complete environment is passed “up” to the root in the
attribute senv

• this environment is distributed into the main expression as
ienv

SemanticsImpl.ag

SEM Root
| Root lhs.spp = decls.spp <->

"main =" <#>main.spp

SEM Decls
| Decl lhs.spp = name <#> "=" <#> val .spp <->

rest .spp
| NoDecl lhs.spp = empty

SEM Expr
| Add lhs.spp = al .spp <#> "+" <#> ar .spp
| Mul lhs.spp = ml .spp <#> "*" <#>mr .spp
| Cst lhs.spp = pp (show value)
| Var lhs.spp = pp var

SEM Root
| Root lhs.sval = main.sval

SEM Expr
| Add lhs.sval = al .sval + ar .sval
| Mul lhs.sval = ml .sval ∗mr .sval
| Cst lhs.sval = value
| Var lhs.sval = case lookup var lhs.ienv of

Just v → v
Nothing → 0

SEM Root
| Root decls.ienv = [ ]

main.ienv = decls.senv

SEM Decls
| Decl val .ienv = [ ]

rest .ienv = (name, val .sval) : lhs.ienv

SEM Decls
| Decl lhs.senv = rest .senv
| NoDecl lhs.senv = lhs.ienv

Figure 11. Language semantics

The rules to describe the computation of the attribute ienv for the
productions Add and Mul of the non-terminal Expr are omitted.
In this case, rules that copy the attribute (unchanged) to the chil-
dren are inserted automatically by uuagc. The library AspectAG
includes a function copy that implements the same behaviour.

Notice that the expressions of the declarations (Decl ) should
be closed, since they are (in our current definition) evaluated in an
empty environment.

A semantic function (sem Prod ) is generated for each produc-
tion (Prod ) of the grammar. Thus, to complete our initial language
of Section 2 we only need to construct the record semIni with these
semantic functions:

semIni = SemLang {semRoot = sem Root
, semDecls = semDecls
, semNoDecl = sem NoDecl
, semAdd = sem Add
, semMul = sem Mul
, semCst = sem Cst
, semVar = sem Var }
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SemanticsImplExt.agi

EXTENDS "SemanticsImpl"

ATTR Root Decls Expr SYN serr
USE {++} { [ ]} : [String ]

SemanticsImplExt.ag

SEM Decls | Decl lhs.serr
= (case lookup name lhs.ienv of

Just → [name ++ " duplicated"]
Nothing → [ ]) ++ val .serr ++ rest .serr

SEM Expr | Var lhs.serr
= case lookup var lhs.ienv of

Just → [ ]
Nothing → [var ++ " undefined"]

Figure 12. Semantics Extension: Errors

4.2 Extending the Semantics
Having first-class attribute grammars enables us to have a compiled
definition of the semantics of a language and to introduce relatively
small extensions to it later, without the need to either reconstruct
the whole compiler, or to require the sources of the core language
to be available.

In this subsection we show, by using some simple examples,
how extensions can be defined.

The use of variables and declarations in the example language
can be erroneous. Thus we introduce in Figure 12 an extra syn-
thesized attribute (serr ) in which we collect error messages corre-
sponding to duplicated definitions and referring to undefined vari-
ables. This extension to the language corresponds to the kind of
extensions described in Figure 5, because it only involves a change
at the semantic level; no new syntax is added.

The keyword EXTENDS in Figure 12 is used to indicate
which attribute grammar is being extended. The USE clause in-
cluded in the declaration of the synthesized attribute serr indicates
that, for the productions where the definition is omitted, the at-
tribute will be computed by collecting the synthesized attributes
serr of the children of the production. If the collection is empty
(NoDecl and Cst) the value of the attribute is [ ]. In the other case
(Root , Add and Mul ) the values are combined with the operator
(++). The same can be done in AspectAG using the function use .

In Section 2.1 we extended the initial language with a condi-
tional expression. The implementation of the semantics of this ex-
tension, which corresponds to the extensions depicted in Figure 4,
is shown in Figure 13. In this case not only new attributes are added,
but we also extend the abstract syntax with a new kind of node, and
define a new production for the existing non-terminal Expr . Since
semantics extensions are pairwise incremental, we also have to de-
fine the computation of the attribute serr for the newly included
productions.

AspectAG enables the redefinition of already existing attributes.
In uuagc (extended to generate AspectAG) we use :=, instead of
=, to declare attribute redefinitions. For example, in the extension
of Figure 14, the attribute ienv is redefined to allow the use of
variables in the expressions of the declarations. Notice how a very
small change to the attribute grammar definitions may influence the
overall language considerably.

Usually we do not want to define the complete semantics of
a syntactic extension from scratch. If we limited ourselves to a
syntax-macro like mechanism, where new syntax is mapped onto
existent syntax, it would be useful to have a way to express this
mapping at the semantic level. In [33] we extended AspectAG with

SemanticsImplExt2.agi

EXTENDS "SemanticsImplExt"

DATA Expr | If cnd : Cond thn : Expr els : Expr

DATA Cond | Eq el : Expr er : Expr
| Gr gl : Expr gr : Expr

ATTR Cond SYN sval : Bool
ATTR Cond SYN spp : PP Doc
ATTR Cond SYN serr USE {++} {[ ]} : [String ]

SemanticsImplExt2.ag

SEM Expr | If lhs.sval = if cnd .sval then thn.sval
else els.sval

SEM Cond | Eq lhs.sval = el .sval ≡ er .sval
lhs.spp = el .spp <#> "==" <#> er .spp

| Gr lhs.sval = gl .sval > gr .sval
lhs.spp = gl .spp <#> ">" <#> gr .spp

Figure 13. Semantics Extension: If

SemanticsImplExt3.agi

EXTENDS "SemanticsImplExt2"

SemanticsImplExt3.ag

SEM Decls | Decl val .ienv := rest .senv

Figure 14. Semantics Extension: Variables in declarations

SemanticsImplExt4.agi

EXTENDS "SemanticsImplExt3"

DATA Expr
| Sq se : Expr ⇒ (Mul se se)
| Pyth pl : Expr pr : Expr ⇒ (Add (Sq pl) (Sq pr))
| Db de : Expr ⇒ (Mul (Cst 2) de)

Figure 15. Semantics Extension: Sq, Pyth and Db

an agMacro combinator that enables us to define the attribute com-
putations of a new production in terms of the attribute computa-
tions of existing productions. Thus, we can define the extensions
Sq , computing the square of an expression, Pyth for the sum of
the squares of two expressions, and Db to double an expression as
in Figure 15. The fragment Sq se :Expr ⇒ (Mul se se) defines a
production Sq with a child se , where the computation of its seman-
tics is based on the computation of the semantics of the production
Mul , but mapping both children to se . In the case of Pyth , macros
are used recursively to define the mapping of the children of the
production Add .

Sometimes we will need to define a special semantics for certain
attributes of the production. For example, with the definition of
Sq of Figure 15, if we pretty print the expression pyth 3 4 the
result will be 3 ∗ 3 + 4 ∗ 4, since that was the abstract syntax tree
to which it was mapped in order to compute its semantics. This
however is likely not to be the desired behavior. Fortunately we are
able to redefine attribute computations in such cases! Thus, in the
corresponding .agi file (Figure 16) we redefine the semantics of
the pretty printing aspect.
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SemanticsImplExt4.ag

SEM Expr
| Sq lhs.spp := "sq" <#> se.spp
| Pyth lhs.spp := "pyth" <#> pl .spp <#> pr .spp
| Db lhs.spp := "db" <#> de.spp

Figure 16. Pretty printing redefinition

5. Related Work
Although syntax extensions are not commonly supported in typed
languages, there is a long tradition in languages like Lisp [36],
Scheme [2], Prolog [1], and more recently Stratego [6]. For these
syntactically very parsimonious languages a pressing need for such
a facility exists, and the absence of a rich type system does not pro-
vide a burden for its implementation. We quote Fisher and Shivers
[11] who say “Once one has become accustomed to such a pow-
erful tool, it is hard to give up. When we find ourselves writing
programs in languages such as Java, SML, or C, that is, that lack
Scheme’s syntax extension ability- we find that we miss it greatly”.
Having made this observation they introduce the Ziggurat [12] sys-
tem, which aims at the same goal as this paper; the underlying
technology is completely different though. They use a delegation
based system with which the semantics associated with the node
in an abstract syntax tree can be updated. By using Lisp as their
implementation language they do not have to cope with the prob-
lems posed by the Haskell type system; on the other hand the users
of the Ziggurat system do not have the advantages associated with
having a typed implementation language. We believe that having a
statically typed implementation language is a great advantage, and
we happily rephrase the above quote: “Once one has become ac-
customed to the advantages of a static type system, it is hard to give
up. When we find ourselves writing programs in languages such as
Lisp, PHP, Ruby and JavaScript, that lack Haskell’s type and class
system- we find that we miss it greatly”.

Another distinguishing feature is that our underlying technology
for describing the static semantics is based on attribute grammars.
Attribute grammars have proven themselves extremely useful for
compositional language definitions. Adams [3] proposed a set of
tools for modular syntax and modular attribute grammars in an un-
typed setting. Among many others, the attribute grammars systems
LISA [22], JastAdd [10], Silver [30] and Kiama [26], have success-
fully tackled the problem of defining modular extensible compilers
in a typed context.

Most of these systems, like uuagc, have a generative approach
to compositionality; i.e. take the sources of all the composing mod-
ules and generate a monolithic system in a host language. There-
fore, they do not provide separate compilation. An exception is
Kiama, which is embedded as a library in Scala, and supports
composition by using mixins and traits . From this point of view,
Kiama is closely related to AspectAG, although the former is not
able to perform well-formedness checks (such as the closure test)
to a composed grammar, unless the grammar is declared as non-
extensible. The design of AspectAG is inspired by [8], which rep-
resents attributions using Rémy-style records, instead of the type-
level programming techniques.

LISA and Silver include parser generators to construct parsers
out of the composed grammars. Since we do not have access to the
source of the composing grammars, we use typed grammar trans-
formations and parser combinators to generate (left-recursion free)
top-down parsers on the fly. Neither Kiama nor JastAdd provides
support for concrete syntax specification and parsing.

All the systems support synthesized and inherited attributes, but
some of them extended the model with some new features. Silver

includes forwarding, to allow productions to implicitly define the
computation of some attributes by translation. This functionality is
very similar to the provided in AspectAG by the combination of
agMacros and attribute redefinitions. JastAdd and Kiama support
reference attributes, i.e. attributes that refer to other tree nodes.
This is useful in writing compilers, because it allows one to model
language relations (such as the use and declaration of variables
and types) as references inside the abstract syntax tree. We do not
support this kind of attribute.

Finally, we use Haskell, a strongly-typed pure functional pro-
gramming language, to define the attribute computations. We think
it fits perfectly to the declarative nature of attribute grammars. In
cases where imperative languages like Java (JastAdd, LINDA) are
used, it becomes impossible to control the absence of side-effects.
Silver defines its own language which is declarative and strongly-
typed, although more limited.

6. Conclusions and Future Work
With the combination of the techniques we have developed over
the years our dream is close to becoming true: the possibility to
construct a complete compiler out of a collection of pre-compiled,
statically type-checked, possibly mutually dependent language-
definition fragments.

We tackled the problem of how to construct a composable
compiler both at syntactic and semantic level.

By dealing with context-free grammars as Haskell values we
are able to compose, analyze and transform them (to apply for ex-
ample the left-corner transform) to construct efficient parsers. With
the use of typed transformations we mantain a type correct repre-
sentation of the grammars during the transformation processes. It
is important to point out that grammar fragments are combined on
the fly; i.e. after they have been compiled.

At the semantic level, by using first-class attribute grammars,
attribute computations can be defined and composed; different at-
tributes can be stored in different modules, compiled and then com-
posed. An importan characteristic of this approach is that attribute
computations can also be redefined, in order to specialize (or mod-
ify the behaviour of) parts of already defined (and compiled) se-
mantics.

With the combination of techniques described in this paper we
have established a firm bridge-head. So what problems are left and
how should we proceed from here?

In the first place the organization of the collection of attributes
in a linear structure, such as HList is costly. It is our experience
however that a compiler spends most of its time in the auxiliary
code for type-checking and -inferencing and (global) optimization.
Thus for a modest language defined by a limited set of attributes
we think the approach is not prohibitively costly. For more com-
plicated languages, which use many attributes for their definition,
there are several ways to alleviate this problem. Most attributes are
not defined in isolation since most aspects are described using a
collection of attributes. This is something we can exploit; do not
place all attributes in a single linear HList, but group them in an
tree-like structure [20], thus lowering the nesting depth of the top
HList products.

Building the complete compiler from scratch as a collection of
syntax extensions and fine-grained aspect definitions is probably
not always the optimal approach; large parts of the compiler will
be shared by all users, and there is no reason to use the relatively
expensive techniques enabling extensibility all over the compiler,
as long as the core compiler remains extensible. In this way we
plan to define an extensible Haskell compiler, where the already
existing attribute-grammar based description of UHC can be used to
generate such an extensible core compiler. Therefore we provide
default definitions for all aspects, each of which can be redefined.
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An additional benefit of this approach is that we prevent unwanted
or illogical combinations of aspects. For example, we may inhibit
circumvention of the basic type-checking part of the compiler by
simply not exporting that part of the interface.

A second point for improvement is the way attribute evaluation
is scheduled. In the description above we use a very straightfor-
ward approach which uses Haskell’s lazy evaluation; a tree attribu-
tion is seen as a single large data flow graph, with attributes in the
nodes and semantic functions for defining the values of the nodes
[7, 8, 15, 18]. Unfortunately this elegant approach breaks down
when large trees are to be attributed; a lazy evaluation scheduling
first builds a large dependency graph in memory, and only starts
doing some real work when this large graph has been constructed.
This resembles the application of function foldr to a very long list,
usually remedied by using foldl ′ instead. Unfortunately there is no
similar simple transformation which alleviates this problem for an
arbitrary attribute grammar, since this requires a global flow analy-
sis of the attribute dependencies [16]. However, the UUAGC already
performs these analyses and can generate strict implementations
containing explicitly scheduled code, and thus an efficient version
for the sketched core compiler can be generated. Interfacing with
this core compiler will be a bit more cumbersome, since the de-
pendencies between the attributes now have become visible. Since
these dependencies usually reflect the way the compiler program-
mer thinks about his attribute grammars [23] we expect this extra
burden to be bearable.

A third problem arises from the way we construct our parsers
and combine our aspects. With the current Haskell implementa-
tions every time we use the compiler the complete parser and at-
tribute grammar is reconstructed from scratch; the individual gram-
mar components are constructed first (gramIni and gramExt),
then they are merged into a single large grammar (the calls to +>>)
and references are resolved (closeGram); subsequently this large
grammar is analysed and subjected to the Left-Corner Transform,
and finally out of this resulting grammar the actual parser is con-
structed. A similar sequence of steps is done for the aspects. The
final parser and evaluator, however, do not depend on the input of
the compiler; they are global constant Haskell values; i.e. are in
constant applicative form (CAF). Having such values repeatedly
being constructed is not a problem of our approach alone, but oc-
curs whenever some form of composition, analysis and transfor-
mation is taking place. We expect this to occur more often once
the expressiveness of our techniques become more widely known
and we think this problem is to be solved at the Haskell level in
a generic way, e.g., by making it possible to save evaluated global
values just before a program quits (using pragmas), and reading
them back when the program is run for the next time; in this way
the evaluation of CAFs is memoized over different runs of the pro-
gram.

One might object that library code used in this paper goes far be-
yond the normal use of the Haskell type system, and that our type-
level programming is not for the everyday Haskell programmer. We
agree completely, although some of the complexity is already hid-
den in the libraries. Moreover, we believe type-level programming
is a promising research area, which has broad interest in the (func-
tional) programming languages community. Another possible line
of future work is to explore the implementation of our techniques
in a dependently-typed language, such as Agda or Coq.
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