
OCaml-Java: Typing Java Accesses from OCaml Programs

Xavier Clerc
ocamljava.org

ocamljava@x9c.fr

Abstract
Functional languages, although they often enable great developer
productivity and ease software maintenance, are commonly ham-
pered by smaller communities and fewer industrial-strength players
when compared to mainstream languages. To partially overcome
these problems, it is usual to resort to a form of interoperability
that allows a functional language to take advantage of libraries orig-
inally written for another language.
Initially driven by practical needs, the problem of language inter-
operability is also fertile in that it induce the designer to develop
a better understanding of the differences, and respective strengths
and weaknesses of the languages involved.
In this article, we present an extension of the OCaml type sys-
tem that allows the developer to manipulate Java instances inside
OCaml programs. This extension is essentially based on existing
features of the OCaml type system, leveraging phantom typing,
subtyping, polymorphic variants, and value-directed typing to en-
code Java types. Combined to this encoding, some lightweight no-
tations allow the developer to easily create and manipulate Java
instances from pure OCaml code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Languages

Keywords Compiler, type system, Java, OCaml, interoperability

1. Introduction
The goal of the OCaml-Java project, broadly presented in [6] is
to allow seamless integration of the OCaml and Java languages.
The incentives for combining these languages can be split into two
categories:

• Java as a language: using Java libraries from the OCaml lan-
guage;

• Java as a platform: using facilities available to to Java byte-
code.

Leveraging Java as a language is useful to OCaml developers
in order to gain access to industrial-strength libraries such as GUI
frameworks, or connection layers to database systems. Leveraging
Java as a platform is useful to OCaml developers in order to gain

[Copyright notice will appear here once ’preprint’ option is removed.]

access to alternative executing modes such as applets, or servlets.

It is noteworthy that some use cases leverage both Java as a
language, and as a platform. For example, to develop multicore
programs:

• the Java platform is used to benefit from a parallel garbage
collector;

• the Java language is used to benefit from fork/join computation,
compare-and-set primitives, etc.

Indeed, multicore programming is one of the objective of the
OCaml-Java project. The original OCaml implementation features
a garbage collector that is celebrated for its efficiency, but is based
on a global lock that forbids several threads to run OCaml code
at the same time. By compiling OCaml sources to Java bytecode
in order to execute programs on a JVM, we gain access to a par-
allel garbage collector, thus allowing multicore programming in a
shared-memory setting.

Obviously, compiling OCaml sources to Java bytecode is not
enough to provide interoperability between the two languages. It is
already possible to call OCaml code from Java code thanks to the
OCaml-Java project through various modalities:

• low-level mechanisms: callbacks (that is runtime registration of
bare values and functions), and scripting (that is an engine for
the javax.script package);

• high-level mechanism: wrapping of OCaml libraries by the
ocamlwrap tool.

The ocamlwrap tool, presented in [7], allows the developer to wrap
the various kind of OCaml values into Java classes while preserv-
ing the strong typing of the OCaml code. The tool is based on
the generation of Java source files from OCaml compiled interface
files.

In this article, we are interested in calling Java code from
OCaml code. Unlike the approach used by the ocamlwrap tool,
this is done by extending the OCaml type system to make it aware
of Java types. In [6], we already presented such an extension, but it
used ad hoc design and implementation. The new design is based
upon an encoding of Java types into OCaml types, providing three
major benefits:

• the implementation is less invasive and easier to maintain;
• the implementation is based on the well-tested original OCaml

typer;
• the general scheme can be reused to interface other languages.

The encoding of Java types into OCaml types is based on the
combined use of phantom typing, subtyping, polymorphic variants,
and value-directed typing. The crucial features of the Java lan-
guages used in the encoding process are the ability to inspect the

1 2013/7/31

class hierarchy at compile-time, and the fact that typing is nominal.
The system as a whole could arguably be seen as a very flexible
FFI1, but we underline that, contrary to most FFI systems, it guaran-
tees type safety and features a limited form of type inference.

In this paper, we first present the challenges that make the
combination of OCaml and Java difficult in Section 2, and expose
the key points of our system in Section 3. Then, Sections 4 to
8 provide the details of our design and implementation: actual
encoding of Java type in Section 4, modifications to the OCaml
typer in Section 5, code generation in section 6, and support for
arrays and exceptions in respectively Sections 7 and 8. Finally, we
compare our approach to related work in Section 9, and discuss
possible evolutions in Section 10.

2. Challenges to interoperability
The type systems of the OCaml and Java languages are fundamen-
tally different, and hence quite difficult to combine. OCaml is a
multiparadigm language (supporting functional, imperative, and
object-oriented programming) featuring a rich type system, while
Java is an object language featuring a simpler type system.

Of course, it is more difficult to embed the typing of the richer
type system into the simpler one. As we have shown in [7], it is
not possible to translate all OCaml constructs to Java constructs by
retaining complete type safety. However, a reasonable subset can
be mapped and it is already quite useful in practice.

Embedding the simpler type system into the richer one is a tad
easier, but it still comes with few challenges to overcome. In the
remainder of this section, we list the main differences between the
type system, particularly underlying the ones that make interoper-
ability difficult.

Mostly versus Totally Statically Typed Although the Java lan-
guage is mostly statically typed, it nevertheless features dynamic
type tests. These runtime tests are arguably used to circumvent
limits of the type system that make impossible to express complex
properties over types. The OCaml language, on the opposite, is
entirely statically typed, ensuring that no dynamic type check is
ever required. Indeed, the compilation of OCaml is done by type
erasure, meaning that (almost) no type information is retained at
runtime.

The fact that OCaml is statically typed implies that we have to
determine the type of the Java elements manipulated at compile-
time. However, it is neither possible nor desirable to rule out the
runtime tests of the Java language. For example, it is quite usual for
Java libraries to store name-value bindings as a map from String
instances to Object instances, and let the developer determine the
actual type of the bound value by using either the getClass()
method, or the instanceof operator.

Our embedding of the Java type system does obviously not
modify the libraries already available for the Java language. As a
consequence, we provide support runtime tests over Java instances.
As the ocamljava-compiled programs run on a JVM, this is done
with no effort. The developer only has to be aware of an hybrid
model, where dynamic type tests are available for the Java in-
stances, while the type of OCaml values cannot be retrieved at run-
time.

Partial versus Complete Type Inference In Java, the developer is
required to explicitly give the type of manipulated elements almost

1 Foreign Function Interface

everywhere. In fact, only the diamond (i.e. <>) of generics provides
support for a very limited form of type inference. As an example, it
allows to write Map<String, Object> s = new HashMap<>()
instead of the more verbose Map<String, Object> s = new
HashMap<String, Object>().

On the opposite, OCaml features full type inference, and the de-
veloper is almost never required to write any typing information in
its program. In practice, type annotation are mainly used in OCaml
when some subtyping is involved, or when the compiler would not
be able to determine the type of a value (e.g. when deserializing a
value).

It is unfortunately not possible to provide full type inference
over Java types, as Java allows to overload names, and to decide
which element to use through type-based decisions (possibly oc-
curring at runtime). As an example, it is perfectly legal in Java to
declare the following:

public class C {
public int method() { ... }
public int method(String s) { ... }
public int method(Integer i) { ... }
public int method(Object o) { ... }

}

Name overloading is possible as long as signatures are differ-
ent. Indeed, while this notion of signature only comprises method
parameters in the frame of the Java language, it also includes the
return type in the frame of the JVM. Of course, name overloading is
incompatible with full type inference, in particular for a language
such as OCaml that uses a compilation scheme based on type era-
sure (thus ruling out any form of dynamic dispatch).

Our embedding of the Java type system does not provide full
type inference over Java types, but still features a very limited form
allowing the user to elide the types when there is no ambiguity. In
the case of ambiguity, the compiler will issue an error message, and
the developer will have to provide some type information to fix the
error.

Nominal versus Structural Typing The Java object model is
based on nominal typing, which means that the subtyping relation-
ship between classes is essentially given by the class hierarchy that
is explicitly built by referring to parent types (either classes or inter-
faces) through their names. This way of handling subtyping is not
only simple, it also allows a developer to have maximum control
over it. Alas, it prevents the use of a subtyping relationship not en-
visioned by the original developer. For example, the String class
and Collection interface both define an isEmpty() method, but
a developer cannot treat String and Collection instances in a
uniform way, even if only using methods that are common to both.

On the contrary, the OCaml object model is based on structural
typing, which means that the subtyping relationship is determined
only by looking at the the signature of a class (i.e. the set of methods
it defines), regardless of the class hierarchy. Listing 1 shows two
class definitions, and a function calling some methods over a passed
parameter. The type of the function, as inferred by the compiler is:

val f : < char_at : ’a -> ’b;
start : unit -> ’c; .. > -> ’a -> ’b

and would still be legal (and the very same) without the class def-
initions. What it tells us is that x has to be instance that provides
two methods. As can be seen from the use of type variable (’a, ’b,
and ’c), the function is polymorphic. This example illustrates that
structural typing is not interested in the actual class to be passed

2 2013/7/31

(that would be referred to by its name), but in the set of methods
actually called.

1 c l a s s string = o b j e c t
2 method char_at i = ...
3 ...
4 end
5
6 c l a s s thread = o b j e c t
7 method start () = ...
8 ...
9 end

10
11 l e t f x i =
12 x#start ();
13 x#char_at i

Listing 1. Object use in OCaml.

Our embedding of the Java type system is based on the Java ob-
ject model, and thus name-based. As we will see in Section 5, this
will imposes to add some checks to the original OCaml inference
engine, in order to guarantee that the inferred types are actual Java
types. Without those tests, the OCaml inference engine may some-
times output types to be read as the conjunction of Java classes,
for example requiring a given value to be at the same time of type
string and thread.

Covariant versus Invariant Arrays In the Java language, arrays
are covariant, which means that it is possible for example to pass
a String array where an Object is expected. Most developers
find this both intuitive and convenient, but there is a high price to
pay for this flexibility. Indeed, each array store involves a dynamic
type check to ensure that the element to be stored has a legal type,
throwing an exception if not. This is necessary, as exemplified by
the following code:

String[] strings = new String[] { ... };
...
Object[] objects = strings;
objects[idx] = new Integer(...);

At compilation time, the array store seems legal, as Integer is a
subtype of Object. However, the array store will fail at runtime,
as the objects reference actually points to an array of String
instances, and can thus not be used to store an Integer instance.

As OCaml puts a strong emphasis on type safety, its arrays are
invariant. This is less flexible but ensures that no type error will
occur at runtime. As an aside, it would not be possible to switch
to covariant arrays, as the compilation scheme is based on type
erasure (the required type information may thus not be available at
runtime).

Our embedding of the Java type system uses a mixed solution:
arrays are treated as invariant, but the support for the cast operator
of Java allows the developer to get some flexibility when needed,
by giving up type safety. Section 7 gives more details on the way
Java arrays are mapped to OCaml types.

3. Integration of the Java type system
In this section, we present a broad overview of the typer extension
whose details are then given in Sections 4 to 8. We first explain
the design decisions that led to the current implementation, and
then expose its base elements. Finally, we present a simple example
showing a practical use of the typer extension.

3.1 Design Decisions
Three key properties constrained the design space for our integra-
tion of the Java type system into the OCaml one:

• the typer extension shall not modify the existing syntax of the
OCaml language;

• the typer extension shall produce easy-to-understand error mes-
sages;

• the typer extension shall allow compilation to plain and efficient
Java bytecode.

The first property is important to be able to leverage the vari-
ous tools from the OCaml ecosystem that work at the source level.
Practically, this means that the developer is still able to use its usual
editors, preprocessors, etc. Existing tools are not impacted by our
typer extension. Moreover, the OCaml-Java compiler uses by de-
fault the original typer system, the extensions being explicitly acti-
vated by a command-line switch (namely -java-extensions).

The second property is important to provide the developer
with a pleasant experience. In particular, if the developer makes
a type mistake when manipulating Java instances, the error mes-
sage should be as simple as for example “java.lang.String
is waited but java.lang.Thread is found”. The crucial
element is that the developer should face error messages that im-
mediately “make sense”, without having to fully understand our
typer extension as it would entail a steep learning curve.

The third property is important in order to promote OCaml-Java
as an alternative language for the JVM. By plain and efficient, we
mean that an operation such as a method call should be translated
to a simple INVOKEXYZ Java instruction, and not go through a com-
plex mechanism such as reflection or method handles. Similarly,
accesses to instance fields or array elements should be mapped to
simple instructions, and also allow the compiler to avoid value box-
ing when possible.

3.2 Base Elements
We present here the most prominent characteristic of our typer ex-
tension: representation of Java types, as well as generic mechanism
used to create and manipulate Java instances.

Primitive Java types are simply mapped to predefined OCaml
types. Non-primitive Java types are mapped to a dedicated OCaml
abstract type, namely ’a java instance. Of course, this newly-
introduced type will enjoy custom treatment to fit the Java model,
and particularly subtyping between Java types. The type pa-
rameter ’a is used to designate a particular Java type; for ex-
ample, an instance of the Java java.lang.String class will
be represented on the OCaml side by type java’lang’Object
java instance. The way to write the Java class name is changed
from java.lang.String to java’lang’String in order to
abide the lexical and syntactic rules of the OCaml language.

Once it is possible to designate Java types, it is necessary to de-
vise means to create and manipulate Java instances. To this end, we
propose a mechanism akin to the one used by the original OCaml
implementation for the treatment of printf-like functions. To han-
dle such functions, the typer analyzes at compile-time the format
string in order to determine the actual types of the parameters that
should be passed to the function. We use the same principle to cre-
ate Java instances, leading to the following expression to create an
Object instance: Java.make "java.lang.Object()" ().

In addition to these core elements, we also provide two mech-
anisms to reduce code verbosity. The first mechanisms is the pos-

3 2013/7/31

sibility to “import” Java packages through the OCaml open direc-
tive, and then to refer to classes by their simple names rather than
by their fully-qualified names, thus leading to the following code
for the previous example: Java.make "Object()" ()2. The sec-
ond mechanism is the possibility to replace parameters types by
a simple “ ” (underscore) as long as there is no ambiguity. As an
example, it allows to simply write:

Java.make "Thread(_,_,_)"

rather than:

Java.make "Thread(ThreadGroup,Runnable,String)"

3.3 Example: Minimal Swing Application
In order to give a taste of practical uses of the typer extension,
we present in this section the OCaml code needed to to build a
Swing GUI. We will see how instances are created, how methods
are called, and how interfaces are implemented.

Listing 2 shows build a one-button Swing frame can be created
from several parameters (respectively title, width, height, button
label, and action associated with button click). Line 2 opens the
Java module, allowing to use its make and call functions unqual-
ified. Lines 3 and 4 respectively create the frame and its button: the
make function receives as its first parameter the signature of the
Java constructor to be called. Lines 5 to 8 call various methods to
build the frame: the call function receives as its first parameter
the signature of the Java method to be called. As long as there is
no ambiguity on the designated method, parameter types can be
replaced by underscores acting as wildcards.

1 l e t make_frame ttl w h lbl act =
2 l e t open Java i n
3 l e t f = make "JFrame(String)" ttl i n
4 l e t b = make "JButton(String)" lbl i n
5 l e t p = call "JFrame.getContentPane ()" f i n
6 call "JFrame.setSize(_,_)" f w h;
7 call "JButton.addAciontListener(_)" b act;
8 call "JFrame.add(Component)" p b;
9 f

Listing 2. Creating a Swing Frame in OCaml.

The type of the make frame function, as inferred by the com-
piler is the following:

val make_frame :
java’lang’String java_instance ->
int32 ->
int32 ->
java’lang’String java_instance ->
java’awt’event’ActionListener java_instance ->
javax’swing’JFrame java_instance

The int32 type is a plain OCaml one, and the pack’Class
java instance type is the OCaml type for instances of the Java
class whose fully-qualified name is pack.Class. Instances of Java
strings can be easily converted from/to OCaml strings through the
JavaString module. The ActionListener instance is a bit dif-
ferent, as it designate an interface that can hence not be directly
instantiated.

It is possible to implement Java interfaces through proxies. The
developer has to indicate which interface she wants to implement,
along with an OCaml object actually providing the implemen-
tation for the methods of the interface. Listing 3 shows how an

2 As in Java, the java.lang package is always opened.

ActionListener can be implemented. The interface consists in
one single method, namely ActionPerformed, taking a param-
eter of type ActionEvent. As the parameter is not used by the
method implementation, it remains unnamed. The quit value has
type java’awt’event’ActionListener java instance and
can thus be passed to the make frame function.

1 l e t quit =
2 Java.proxy "java.awt.event.ActionListener"
3 (o b j e c t
4 method actionPerformed _ =
5 exit 0
6 end)

Listing 3. Implementing a Java interface in OCaml.

4. Encoding of Java types into OCaml types
The encoding of Java types into Java types is based on the combina-
tion of several techniques already available to OCaml developers,
precisely: phantom types, polymorphic variants and value-directed
typing. We begin this section by introducing these techniques, and
then move on to their use inside the OCaml-Java project.

4.1 Phantom types
A phantom type is a parametrized type whose some parameters
only appear and its declaration and not in its definition. For ex-
ample, the following record type:

type (’a, ’b) resource = { value : ’a }

is a phantom type as the type parameter ’b only appear on the left-
hand side. Phantom types are commonly used to encode additional
properties into types, with the benefit that they incur no runtime
overhead.

A classical use is to implement access rights to resources. Con-
sider a program where some resources have read-only rights while
other have read-write rights. By embedding the rights into the type
system, one can rely on the compiler to ensure that all access con-
form to the rights.

Listing 4 shows a possible encoding of such a system. The two
permissions are translated into abstract types, and two functions
are provided to create resources with given rights. Then, the read
function is made available to all resources by accepting any kind
of resource through the ’b parameter of the (’a, ’b) resource
type, while the write function is only available to read-write re-
sources by explicitly requesting read write as the second com-
ponent.

1 t y p e (’a, ’b) resource = { v a l u e : ’a }
2 t y p e read_only
3 t y p e read_write
4 v a l make_ro : ’a -> (’a, read_only) resource
5 v a l make_rw : ’a -> (’a, read_write) resource
6 v a l read : (’a, ’b) resource -> ’a
7 v a l write :
8 (’a, read_write) resource -> ’a -> unit

Listing 4. Phantom types used to model access rights.

Other classical uses of phantom types include encoding of units
of measurement (e.g. whether a given value is expressed in meters
or feet), some state (e.g. whether a socket is connected), or some
generic property over a data structure (e.g. whether a given list can
be empty).

4 2013/7/31

4.2 Polymorphic variants
Polymorphic variants are a flexible alternative to classical variants
or sum types. Unlike classical variants, their constructors do not
have to be unique and are also not tied to a given module. It follows
that a given constructor is not tied to a given type. This does not
only allows reuse of constructors in disjoint situations, but also
to define a sum type as a subset of another one. For example, to
model a generic notion of flags, and a particular version of flags for
classes, one can write in OCaml:

type flags = [‘Public; ‘Private; ‘Synchronized]
type class_flags = [‘Public; ‘Private]

where the backtick is used to distinguish constructors of polymor-
phic variants from constructors of classical variants.

The ability to define a polymorphic variant as the subset of an-
other one allows to enforce data structure invariants. In our exam-
ple, when defining a class, the type class flags will be used to be
sure that one does not try to mark a class with the ‘Synchronized
flag. Moreover, it is possible to define a function working over
the flags types, and to pass it values of the class flags. Thus
achieving at the same time genericity and safety, without resorting
to conversion between distinct sum types.

OCaml developers frequently mix polymorphic variants with
phantom types. Not only because they save from the need to define
additional types (thus polluting the namespace), but also because
they carry a notion of subtyping. Indeed, our resource example can
be rewritten to use polymorphic variants, as shown by Listing 5.
The crucial element is the use of the [> ...] form that, contrary
to the [...] form, states that the expected type should contain
at least the constructors between the bracket (and thus may contain
additional constructors).

1 t y p e (’a, ’b) resource = { v a l u e : ’a }
2 v a l make_ro : ’a -> (’a, [‘Read]) resource
3 v a l make_rw :
4 ’a -> (’a, [‘Read | ‘Write]) resource
5 v a l read : (’a, [> ‘Read]) resource -> ’a
6 v a l write :
7 (’a, [> ‘Write]) resource -> ’a -> unit

Listing 5. Phantom types with polymorphic variants.

In our contrived example, the two versions are not very differ-
ent, but it is mainly due to the fact that we only have two levels for
the resource permissions; it is then easy to just use polymorphism
to access both levels as done in Listing 4. However, if we define
additional permissions with operations that are only available to
given combinations of permissions, the first proposed encoding
will become tedious. On the opposite, the second encoding can be
trivially extended to additional permissions, relying on subtyping
(i.e. the fact that [‘X] is a subtype of [‘X ; ‘Y]) and open
polymorphic variants (i.e. the [> ‘Z] form).

Moreover, the OCaml language allows to finely control the
subtyping relationship between types through variance annotations
over type parameters. A type parameter can be declared with a
+ in order to indicate that it is covariant, or a - to indicate that
it is contravariant. The default, that is the absence of any sign
annotation, is to consider the type parameter as invariant. Suppose
that we have two types t1 and t2 such that t1 is a subtype of
t2. If we declare type +’a plus, then t1 plus is a subtype
of t2 plus. On the opposite, if we declare type -’a minus,
then t2 minus is a subtype of t1 minus. In OCaml, due to the
coexistence of type inference and subtyping, it is often necessary

Java type OCaml type notes
boolean bool
byte int 63-bit integer
char int 63-bit integer
double float double precision
float float double precision
int int32
long int64
short int 63-bit integer
pack.Class -’a java instance

Table 1. Mapping of Java types.

for the developer to use explicit coercions (whose notation is (expr
:> type)) to comply with the typing rules. However, it should be
noted that coercions are always checked at compile-time and thus
type-safe.

4.3 Value-directed typing
The original OCaml standard library ships with a module named
Printf, which unsurprisingly provides functions allowing printf-
like formatting. Such functions take as their first parameter a format
string that can contain formatting instructions introduced by the %
character. For example, the following allows to print a string and
an integer as the values of a key and its binding:

Printf.printf "key: %s binding:%d\n" x y

However, the type of this function cannot be expressed in vanilla
OCaml as its actual type depends on the contents of the format
string. For this very reason, there is a special typing rule in the
compiler to handle format strings, resulting in what we call value-
directed typing to underline that the type of an expression depends
on a string literal.

Now examine how printf is handled at the typing level. If we
ask toplevel to output the type of the function, we get:

(’a, out_channel, unit) format -> ’a

and if we ask it the type of the expression “printf "int: %d"”,
we get:

int -> unit

Wherever the format type is expected, the OCaml compiler also
accepts a literal string as a valid expression. The aforementioned
literal string is then parsed to determine the list of parameters that
should actually be passed to printf to make it able to properly
render the format string. Then, these parameters are bound to the
’a type parameter of the format type, so that the compiler can treat
the other parameters by applying the usual typing rules.

4.4 Combination in OCaml-Java
Encoding of the class hierarchy Table 1 summarizes the map-
ping from Java types to OCaml ones. Primitive Java types are just
mapped to OCaml predefined types. Then, the most interesting
type is java instance that accounts for Java reference types (be-
sides arrays whose handling is detailed at Section 7). The abstract
java instance type accepts a type parameter that is used to pre-
cisely designate the represented Java type.

The encoding of the Java type is done by combining phantom
typing and polymorphic variants. The Java type Object is simply
represented by the OCaml type:

[‘java’lang’Object] java_instance

5 2013/7/31

Type Meaning and example
java constructor constructor signature

"java.lang.Object()"
java method method signature

"java.lang.Object.wait():void"
java field get field signature

"java.lang.Thread.MAX PRIORITY:int"
java field set field signature

"java.lang.Thread.MAX PRIORITY:int"
java type class, interface, or array type

"java.lang.String"
java proxy interface type

"java.lang.Comparable"

Table 2. Format types.

Similarly, the Java type Thread is represented by the OCaml type:

[‘java’lang’Object
| ‘java’lang’Runnable
| ‘java’lang’Thread] java_instance

thus ensuring that the type for threads is actually a subtype of the
type for objects.

More generally, a Java reference type is encoded as a [c0
| ... | cn] java instance OCaml type, where the ci con-
structors represent all the parent types of the type to be encoded.
These parents include all the super classes, as well as all the imple-
mented interfaces. Conceptually, one can think of these construc-
tors as representing “all the reference types the designated instance
can be safely casted to”. It is noteworthy that the type parameter of
the java instance type is declared contravariant, meaning that [
c0 | ... | cn] java instance is a subtype of [d0 | ...
| dp] java instance iff the ci constructors form a subset of
the dj constructors, which is coherent with the Java semantics.

This encoding is based only on two properties of the Java lan-
guage: (i) the typing of reference types is nominal, and (ii) the
class hierarchy is fully determined at compile-time. It is interesting
to notice how the encoding differs from the ones exposed in [8].
In [8], the authors show how phantom types can be used in Stan-
dard ML in order to encode a subtyping relationship, while our
encoding uses the combination of subtyping and phantom typing
to encode the Java class hierarchy into OCaml types.

Manipulating instances Now that we are able to designate Java
types, it is necessary to devise means to create instance, access their
fields, invoke their methods, etc. All these manipulations are based
on variation over the value-directed typing presented above. We
introduction a Java module providing the following functions:

make : ’a java_constructor -> ’a
call : ’a java_method -> ’a
get : ’a java_field_get -> ’a
set : ’a java_field_set -> ’a
instanceof : ’a java_type -> ’b java_instance -> bool
cast : ’a java_type -> ’b java_instance -> ’a
proxy : ’a java_proxy -> ’a

where all the types appearing in the first parameters of the various
functions are akin to the format type used by the printf function.
Table 2 presents the semantics, and example strings for the various
types.

Likewise to what is done for the printf function, the ’a pa-
rameter is used to encode the actual types of the call, just using
the type mapping presented above. For example, the type of “make
"java.lang.Integer(int)"” is:

int32 -> [‘java’lang’Object | ‘java’lang’Number
| ‘java’lang’Integer | ‘java’io’Serializable
| ‘java’lang’Comparable] java_instance

However, method parameters use the open form of variants (i.e. [>
...]), so that for example it is possible to to passe an Integer
instance where an Object is waited. Without this slight modifi-
cation, the developer would be required to explicitly coerce from
Integer to Object in such situations. As a result, the type of
“call "java.lang.Object.wait():void"” is:

[> ‘java’lang’Object] java_instance -> unit

Adding sugar Thus far, we are able to designate Java types, and
to manipulate Java instances. However, the literal strings used to
refer to Java elements are pretty verbose. We thus introduce two
elements to reduce verbosity:

• an equivalent to the Java import directive;
• a wildcard to be used instead of actual types.

The original OCaml provides a mechanism used to open a mod-
ule, that allows to access its elements without prefixing them with
the module name. We modify the treatment of the open direc-
tive, so that “open Package’pack” is the OCaml equivalent to
the “import pack.*” Java directive. As a result, the construc-
tor of the Object class can be called by simply writing make
"Object()".

As previously seen, it is also possible to replace any type by the
underscore character (i.e.). The lookup mechanism will accept
any type where an underscore is used. If the lookup mechanism
returns one element, it is simply used. If the lookup mechanism
returns more than one element, then the compiler outputs an error
message with the choices leading to the ambiguity. While its im-
plementation is much more simple, this wildcard mechanism can
be seen as a very limited form of type inference, allowing the user
to both write shorter code, and request the compiler to determine
the type of a partially-specified element.

5. Amendments to the Original OCaml Typer
Up to this point, we left the original OCaml typer almost un-
touched, only adding support for the format strings used to desig-
nate the various Java elements (constructors, methods, fields, etc.),
as well as support for the enhanced open directive. However, as we
will see in this section, we felt the need to slightly modify the typer
for usability reasons (as opposed to correctness reasons).

5.1 Shortening Java types
The most prominent problem regarding usability is that Java types
as encoded as phantom polymorphic variants are quite verbose.
The developer should be able to specify a Java type without hav-
ing to write down its complete hierarchy, which can be lengthy.
Of course, the OCaml language being based on type inference, the
type of manipulated entities is very rarely expressed by the devel-
oper; however, the types of exported values appear in mli files (i.e.
top-level module signatures).

We thus provide a convenient shorthand notation for Java types
that relies on the principle that we have two representation for such
types: a core representation and a surface notation. The former
has been the one exposed at Section 4.4, while the latter has been

6 2013/7/31

introduced at Section 3.2. As a consequence the type of threads is
simply java’lang’Thread java instance, rather than:

[javalangObject
| javalangRunnable
| javalangThread] java_instance

A pre-treatment transforms the surface notation into the the core
representation by looking up for the designated class in the class-
path. Once found, we simply recursively determine all its parents
to build the set of constructors of the polymorphic variant.

Symmetrically, a post-treatment transforms the core representa-
tion into the surface notation, such that types output by the compiler
(e.g. in error messages) use the lightweight notation rather than the
internal one. This post-treatment is trivial: we iterate over the con-
structors and remove all constructors that designate the parent of
another constructor. At the end of the process, only one constructor
remains: the one that is not a parent, and hence represent the Java
class encoded by the set of constructors.

It is also possible in the surface notation to take advantage of
opened package to elide the package from the class name, replac-
ing it by an underscore. Thus leading to the shortest notation for
the type of threads: ’Thread java instance.

Finally, besides java instance, we provide another type in
the surface notation, namely java extends. The two differ only in
the openness of the polymorphic variant in the core representation.
Precisely:

• pack’Class java instance is translated to
[c0 | ... | cn] java instance;

• pack’Class java extends is translated to
[> c0 | ... | cn] java instance.

5.2 Enforcing Java types
There are great incentives in encoding the typing of Java elements
into existing OCaml types, uniformity and maintainability coming
first to mind. However, this also comes with an obvious drawback:
the typing rules of OCaml are then applied to Java elements, possi-
bly leading to unexpected types.

Indeed, the unification algorithm of OCaml when applied to our
encoding of Java types can output types that are perfectly legitimate
OCaml types but have no sensible equivalent in Java. Consider for
example the code sample of Listing 6, where the developer ar-
guably made a typo, using x instead of s at line 4. The type, as
inferred by the compiler, is shown by lines 6-12 using the core rep-
resentation.

1 l e t f x =
2 l e t open Java i n
3 l e t s = call "Integer.toString ()" inst i n
4 call "String.charAt(_)" x 0
5
6 v a l f : [> ‘java ’lang ’Object
7 | ‘java ’lang ’Number
8 | ‘java ’lang ’Integer
9 | ‘java ’io’Serializable

10 | ‘java ’lang ’Comparable
11 | ‘java ’lang ’CharSequence
12 | ‘java ’lang ’String] java_instance -> int

Listing 6. Inferring impossible types.

The type of f makes perfect sense in the structural typing of
OCaml. It simply indicates that the type of x is the conjunction of

the type of Integer and String. While perfectly correct with re-
spect to the code, it suffers from a major problem: it is not possible
to build a Java instance that matches this type.

To avoid such types, we amend the OCaml compiler in order to
check the output of the unification function in order to ensure that
all inferred Java types are indeed possible Java types. Checking
whether a given set of constructors represent a possible Java type
is obvious using the post-treatment described above to output Java
types. If the post-treatment ends up with only one constructor, then
the set represents a simple class. Otherwise, the presence of several
constructors represents a conjunction of several classes.

In some sense, this mechanism can be considered as a fail-
fast measure. Indeed, it informs the developer as soon as possible
that she is combining types in a way that makes no sense in the
Java typing system. Accepting the impossible Java type would as a
matter of fact entails no unsafety, as the developer would in practice
be unable to build an instance to be passed to the f function.

6. Code Generation
Once the typer of the compiler has checked that the passed source
abide to the typing rules, subsequent compiler phases are responsi-
ble for actual code generation. We describe in this section how the
special functions used to call Java constructors, methods, to access
fields are compiled into Java bytecode.

As seen in the previous section, the compiler will issue an error
if the developer writes a constructor (or method or field, for that
matter) signature that is ambiguous. Similarly, an error will also be
issued if there is no match for a given signature. In practice, this
means that the element to called or accessed is completely deter-
mined at compile-time. This allows to drop the string literal used to
encode the signature. It is noteworthy that this is different from the
compilation of printf-like functions that need the format string
both at compile-time (in order to determine the number and types
of expected arguments) and at runtime (in order to render the string
to output).

The referenced element being totally determined at compile-
time, the compiler is able to output efficient bytecode, avoiding
to resort a dynamic mechanism such as reflection. For example,
the expression “Java.make "Object()" ()” is translated in the
following sequence:

new java.lang.Object
dup
invokespecial java.lang.Object.<init>()

which is the very same code that is generated by the javac com-
piler.

However, Java instances are represented in OCaml as a custom
type. An OCaml custom type is an abstract type that can be pro-
vided with specific functions for comparison, hashing, and serial-
ization. The Java instance is boxed in a custom value. Nevertheless,
the overhead entailed by this extra indirection is mitigated by the
unboxing optimization performed by the compiler, and is also re-
inforced by code inlining.

Recent versions of the OCaml-Java compiler do a very aggres-
sive unboxing. For example, unboxed values can be used as param-
eter or return values to/from functions. In practice, most of the time,
the Java instances will be boxed only when stored in OCaml data
structures. Performance of Java instance manipulations is hence
reasonably close to the equivalent manipulations directly done us-

7 2013/7/31

ing the Java language.

There is only one function that cannot be directly mapped to
plain Java bytecode: the proxy function. The function takes as its
first parameter a literal string giving the name of an interface, and as
its second parameter an OCaml object implementing the methods
specified in the interface. At compile-time, as for other functions,
the string literal is used to determine the actual type of the OCaml
object and then discarded.

At runtime, a Java instance is built using the method named
Proxy.newProxyInstance. This instance is responsible for re-
ceiving method calls, and dispatching them to the OCaml method.
The Java instance is also responsible for converting parameter and
return values back and forth.

7. Handling of Arrays
In this section, we examine how array types are embedded into
our encoding. This is indeed an interesting problem, as we want
to ensure at the same time genericity and decent performance. This
leads to a custom encoding which leverage advanced features of
the OCaml type system to provide genericity. It is important to
notice that Java itself does not support genericity for arrays types.
It can be observed by looking at the java.util.Arrays class
that provides for example distinct methods to sort arrays of type
byte[], char[], etc.

7.1 The Case for Specialized Arrays
In OCaml, arrays are represented through the ’a array type; how-
ever, their specific runtime representation makes impossible to use
this type to represent Java arrays. Reusing this type would in fact
entail a systematic copy of the data from the Java array to its OCaml
counterpart. This would not only result in a significant overhead,
but would also makes it quite difficult to share an array instance be-
tween OCaml and Java code, which may be needed by some Java
libraries.

Then, another possibility would be to define a dedicated ’a
java array type that would provide a custom representation to
carry actual Java array instances, leading to a module akin to the
one showed by Listing 7. It is noteworthy that the module does not
provide any means to directly create an ’a java array because
in this encoding we would like to restrict the ’a parameter to Java
types only, ruling out OCaml types.

1 t y p e ’a java_array
2 v a l length : ’a java_array -> int32
3 v a l get : ’a java_array -> int32 -> ’a
4 v a l set : ’a java_array -> int32 -> ’a -> unit

Listing 7. Uniform representation for Java arrays in OCaml.

Anyway, this representation is not satisfactory, as it forces
to have a common representation not only for the various ’a
java array instances, but also for the various ’a instances. While
the former is not a major problem (it would still incur a dynamic
check to query the actual type of the array before any get/set oper-
ation), the latter would imply to always use a boxed representation
for array elements. This boxing is not a concern for arrays of refer-
ences but is a huge penalty in the case of primitive elements.

As a consequence, in order to reach decent performance, we
can provide different implementations for the various array types,
as shown by Listing 8. Then, we face another problem, the generic-
ity one. It could be solved by adding another type to the modules to

represent the type of the elements, but we statically know the type
of elements only for primitive arrays. We thus decided to define
all array types with a type parameter, and ensure that the functions
responsible for array creations will enforce the correct value for
the type parameter. Practically, it means that the equivalent of Java
type int[] is int32 java int array, as shown by Listing 9.

1 module t y p e IntArray = s i g
2 t y p e t
3 v a l length : t -> int32
4 v a l get : t -> int32 -> int32
5 v a l set : t -> int32 -> int32 -> unit
6 end
7
8 ...
9

10 module t y p e LongArray = s i g
11 t y p e t
12 v a l length : t -> int32
13 v a l get : t -> int32 -> int64
14 v a l set : t -> int32 -> int64 -> unit
15 end
16
17 ...

Listing 8. Possible specialized representation for Java arrays in
OCaml.

1 module t y p e IntArray = sig
2 t y p e e = int32
3 t y p e ’a t
4 v a l length : e t -> int32
5 v a l get : e t -> int32 -> e
6 v a l set : e t -> int32 -> e -> unit
7 end
8
9 ...

10
11 module t y p e ReferenceArray = sig
12 t y p e ’a t
13 v a l length : ’a t -> int32
14 v a l get : ’a t -> int32 -> ’a
15 v a l set : ’a t -> int32 -> ’a -> unit
16 end

Listing 9. Actual representation for Java arrays in OCaml.

7.2 The Reach for Genericity
Through functors The representation exposed by Listing 9 is
particularly interesting as the various specialized array types ac-
tually share the same signature at the module level, precisely:

module type ArraySignature = sig
type e
type ’a t
val length : e t -> int32
val get : e t -> int32 -> e
val set : e t -> int32 -> e -> unit

end

It is hence possible to define functors over that signature to write
functions that operate on any kind of array. For example, a generic
iter routine may be written:

module Iterator (A : ArraySignature) = struct
let iter f a =

let i = ref 0l in
let l = A.length a in
while !i < l do

8 2013/7/31

f (A.get a !i)
i := Int32.succ !i

done
end

The Iterator functor can then be applied to any specialized array
module in order to get an iter function for a particular kind of
arrays.

Through GADTs However, functors are quite heavy to manipu-
late as one will need to write a new functor to provide new generic
operations. For this reason, we provide another abstraction over the
various kinds of arrays to unify them into a single type. This single
type will act as a wrapper around the various array types. This is
done through a GADT with three type parameters whose semantics
is:

1. the type of array elements;

2. the type of array indexes;

3. the type of wrapped array.

Listing 10 shows the resulting module declaration.

1 module t y p e JavaArray = sig
2 t y p e (_, _, _) t
3 v a l wrap_int_array : int32 IntArray.t ->
4 (int32 , int32 , int32 IntArray.t) t
5 v a l wrap_long_array : int64 LongArray.t ->
6 (int64 , int32 , int64 LongArray.t) t
7 v a l wrap_reference_array :
8 ’a ReferenceArray.t ->
9 (’a, int32 , ’a ReferenceArray.t) t

10 ...
11 v a l length : (_, _, _) t -> int32
12 v a l get : (’e, ’i, _) t -> ’i -> ’e
13 v a l set : (’e, ’i, _) t -> ’i -> ’e -> unit
14 v a l wrapped : (_, _, ’r) t -> ’r
15 end

Listing 10. Actual representation for Java arrays in OCaml.

Once an array is wrapped, the usual length, get and set
function can be called in a generic but type-safe way, thus allowing
to write generic code over the JavaArray.t type. For example, the
aforementioned iter routine may be written:

let iter f a =
let i = ref 0l in
let l = JavaArray.length a in
while !i < l do
f (JavaArray.get a !i)
i := Int32.succ !i

done

Moreover, the power of GADTs also allows us to encode 2D
arrays in the very same type, by just adding the following functions
(to wrap 2D arrays, and query the length of a sub array):

val wrap_int_array2:
int32 IntArray.t ReferenceArray.t ->
(int32,
int32 * int32,
int32 IntArray.t ReferenceArray.t) t

...
val length_sub: (_, int32 * int32, _) t ->

int32 -> int32

No change is needed to the get and set functions. The type system
ensures that whenever an element of a 2D array is accessed, the
passed index is a couple of integers rather than a simple integer.

Summary The proposed way of implementing arrays provides an
acceptable compromise: we grant both efficiency and genericity
at the price of several module declarations. The key property of
this implementation is that the developer will pay a performance
penalty only when actually taking advantage of genericity: poly-
morphic code will go through an indirection while monomorphic
code will be as efficient as possible. It is also noteworthy that the
kind of genericity made possible is greater than what is available in
the Java language. Finally, this scheme based on specialized imple-
mentations tied into a common one through a GADT is generic and
can be used in a variety of situations.

8. Handling of Exceptions
The OCaml and Java languages both support exceptions, with sim-
ilar semantics. Precisely, the only difference is that OCaml excep-
tion handlers can enclose any expression while Java handlers can
only enclose sequences of instructions. This lead to slightly dif-
ferent implementations (in OCaml the values are popped from the
stack until the appropriate handler is found, while in Java the stack
is outright emptied), but the code generator of the OCaml-Java
compiler performs the necessary transformation so that the seman-
tics are aligned.

In OCaml, the type of exceptions (namely exn) is basically
a sum type with the extra property that it is open. The openness
means that, contrary to other sum types, there is not a single place
where all constructors are declared; an exception E directive
adds a constructor E to the type. The constructor can, as ordinary
sum types, also declare some attached types trough a declaration of
the following form: exception E of t0 * ... * tn.

In Java, exceptions are classes that inherit (directly or indirectly)
from the java.lang.Throwable class. In both languages, when
a exception handler is declared, it is possible to indicate to which
kind of exception it applies: through a constructor name in OCaml,
and through a class name in Java.

To be able to catch Java exceptions in OCaml code, which is
necessary as soon as it is possible to call Java methods, we have
declare a new constructor through exception Java exception
of This allows to catch Java exceptions just the same way
we catch ordinary OCaml exception. The remaining question is the
one about the type(s) to attach to this newly-introduced constructor.

As Java exceptions inherit from java.lang.Throwable, the
obvious answer would be to have the type java’lang’Throwable
java extends. Unfortunately, such a type would be refused by the
OCaml typer: java extends uses the open form of polymorphic
variants (i.e. [> ...]), which in turn implies the use of an implicit
type variable ’a that is used to track possible additional construc-
tors. However, it is not possible to declare an exception carrying
a type variable: this would result in polymorphic values to be at-
tached to an exception instance, and would break type safety.

We thus declare the following exception constructor: Java exception
of java’lang’Throwable java instance. Then, the devel-
oper will have to resort to Java.instanceof to discriminate the
different exceptions, as it is not possible in OCaml to match over a
type. Thus leading to code handlers like the ones in Listing 11.

1 open Package ’java ’io
2
3 t r y
4 ...
5 w i t h
6 | Not_found ->

9 2013/7/31

7 (* usual OCaml exception *)
8 ...
9 | Java_exception e

10 when Java.instanceof "IOException" e ->
11 (* any Java exception inheriting from
12 java.io. IOException *)
13 | Java_exception _ ->
14 (* any other Java exception *)
15 ...

Listing 11. Handlers mixing OCaml and Java exceptions.

9. Related Work
In this section, we review alternative systems providing language
interoperability, whether they are directly integrated into a lan-
guage or proposed as external tools. The original OCaml imple-
mentation [12] supports a limited form of interoperability with
the C language through two mechanisms: callbacks and externals.
Callbacks allow the developer to register some value on the OCaml
side that can then be accessed on the C side. As such values can
be functions, this allows to call OCaml code from C code; how-
ever, the developer is in charge of converting values between the
type systems. Externals allow the developer to indicate that a given
function will be implemented in C. The type of the function has
to be explicitly given, and the developer is in charge of converting
values between the type systems.

On top of these low-level foundations, several project have
proposed easiest way to interact with C libraries. The camlidl
project [10], as its name suggests, relies on an IDL (Interface De-
scription Language) to describe a set of C functions and how their
types map to OCaml types. From this description, the tool gen-
erates the necessary OCaml and C files with the boilerplate code
responsible for type conversions. More recently, the ctype [15]
project relies on a combinator-based OCaml library that allows to
represent at runtime the type of C functions, and then to invoke
them. Both projects are essentially interested in making easier to
call C from OCaml, providing very limited support for the other di-
rection. They succeed in their endeavor, greatly simplifying OCaml
developments involving C code. However, they are not type safe,
and an error in the description of a function to be interfaced with
results in a runtime error.

It is also possible to interface the original implementation of
OCaml with Java through the camljava project [11] that is based
on the JNI framework. This provides a low-level access to Java ele-
ments, but can be combined to O’Jacaré [4] to obtain a higher-level
interface. O’Jacaré uses an IDL to let the developer describe the set
of classes to generate bindings for. The generated bindings present
the developer with OCaml classes that are the counterpart of the
Java ones. The problem of Java overloading is circumvented by
allowing the developer to rename mapped elements.

Following the same principles than O’Jacaré, versions 1.x of
the OCaml-Java project were based on a tool, namely Nickel [5],
generating OCaml definitions and Java stubs from a mapping file
written in XML. While we first considered polymorphic variants
to overcome the overloading problem, we finally settled on name
mangling because of the extra overhead entailed by the use of
polymorphic variants. Listing 12 compares the two encoding for
the case of the wait methods from the Object class.

1 c l a s s t y p e java ’lang ’Object = o b j e c t
2 method wait : [‘LongInt o f int64 * int32
3 | ‘Unit] -> unit

4 ...
5 end
6
7 c l a s s t y p e java ’lang ’Object = o b j e c t
8 method wait : unit -> unit
9 method wait2 : int64 -> int32 -> unit

10 ...
11 end

Listing 12. Overloading of Java methods in Nickel.

The OCamIL [3] project, whose compiler produces MSIL to be
run on a .NET virtual machine, also used an adaptation of O’Jacaré
tailored to the .NET object model. While this approach “just works”
in practice, it entails several problems. First, it somewhat complex-
ifies the build process that has to accommodate a code-generation
stage. More importantly, errors messages are not always easy to
decipher, mainly due to the mixing of the two objects models. For
example, as OCaml classes are used to represent Java classes, one
can pass any object implementing the same methods as the Java
classes. This is accepted by the OCaml compiler because of its
structural typing, but will fail at runtime as the instance should be
an OCaml object holding an instance of a Java object.

Interestingly enough, earlier attempts to port a functional lan-
guage to a managed runtime were actually based on typer exten-
sions. For example, MLj [1] and SML.NET [2] ported the SML
language to respectively the JVM and the .NET platforms by ex-
tending the type system of SML to make it aware of the object
model of the underlying platform. This is probably due to the fact
that the SML language, unlike OCaml, does not possess support
for object-oriented programming; it was thus natural to add such a
layer. While our typer extension is much more modest as it does not
provide a complete object layer but simply encodes it into existing
OCaml constructs, the practical result is quite comparable. In MLj,
as in OCaml-Java, it is possible to create new instances, access their
fields, call their methods, and also to implement interfaces.

More recently, the Scala language [13] has been designed with
interoperability in mind. Its type system has hence been devised to
be able to easily access to Java elements, but also to be able to pro-
duce classes that can be directly used by Java developers with no
further processing. Scala also provides support for object-oriented
and functional programming, presenting the developer with a uni-
form system. The use of Java elements from Scala is fully trans-
parent for the developer, and full support for generics is provided.
The object system used by Scala is basically the one of Java, thus
avoiding impedance mismatch.

The Clojure language [9], a revival of the LISP language specifi-
cally designed to be hosted by a JVM, also provides a tight coupling
with the Java type system. It allows to create and manipulate Java
instances just as Clojure entities. Likewise to our Java.proxy
function, Clojure provides means to dynamically implement a Java
interface. Moreover, it can save a script as a class file, so that it can
be then used from Java code. The only element of the Java type
system not supported by Clojure is generics. However, this comes
as no surprise, as the Clojure language is a dynamic language (thus
interfacing with Java at runtime) and Java compiles generics by
type erasure (thus retaining no type information at runtime).

The F# [14], that targets the .NET platform, and has been de-
signed to easily interoperate with the C# language, is quite similar
to OCaml. It could be argued that it was in beginning basically
“OCaml with a totally different object system”, the replacing object
system being the one behind C# (or more generally behind the CLR
of the .NET platform). Since then, the F# language evolved and is

10 2013/7/31

now more distant from OCaml than it was initially. Manipulating
C# entities from F# sources is transparent for the developer and the
ML polymorphism of F# directly maps to C# generics, thus provid-
ing a consistent developer experience.

Finally, besides full-blown language implementations, some
systems are indeed only concerned with the interoperability be-
tween programming languages. For example, the well-known SWIG
project [16] allows to generate wrappers to C[++] library for a large
range of languages. The tool is arguably based on an IDL, but its
format is so close to C header files that in practice, it is often pos-
sible to actually use the C header files with no modification. From
a developer standpoint, the SWIG approach suffers from the same
problems raised by the Nickel or O’Jacaré projects. Moreover, as
for these projects, the generated wrappers entail some overhead that
is most of the time avoided when the interoperability layer is actu-
ally built into the language itself. When a tight integration between
the language is not necessary, and when calls from one language to
the other involve lengthy computations, it is also possible to resort
to solutions originally designed for distributed systems. For exam-
ple, the Thrift framework [17] allows to connect code written in
various languages in a client-server mode. The Thrift tool gener-
ates code to exchange data in binary form between the languages
from a file describing the various services that can be called.

10. Future Work
10.1 Generics
The current implementation provides full support for Java raw
types, thus just ignoring generics where present. As a consequence,
the first task will be to enhance the implementation to support
generics. Fortunately, polymorphic variants, like plain sum types,
can see their constructors carry values. The types of these values
can contain type variables (e.g. ‘C of ’a), and can hence be used
to represent the generic parameters. We can then map the Java type
Collection<E> to the OCaml type:

[‘java’lang’Object
| ‘java’lang’Iterable of ’e
| ‘java’lang’Collection of ’e] java_instance

The types inevitably become quite verbose when instantiated, lead-
ing to the following one for a collection of threads:

[‘java’lang’Object
| ‘java’lang’Iterable

of ([‘java’lang’Object
| ‘java’lang’Runnable
| ‘java’lang’Thread] java_instance)

| ‘java’lang’Collection
of ([‘java’lang’Object

| ‘java’lang’Runnable
| ‘java’lang’Thread] java_instance)]

java_instance

The main problem, however, is not related to verbosity but to the
fact that type expressions are significantly more difficult to produce
(and thus, also, to analyze). Indeed, when ignoring generics, it
is possible to generate the type expression by simply recursively
visiting the parents of a given class. Such a simple process cannot
be used when generics are involved as the generic parameters can
lead to loops in the followed path. For example, the complete
signature of the Integer class is:

class Integer
extends Number
implements Comparable<Integer>

As a consequence, when producing the type expression for the
Comparable<...> part of the signature, we cannot make a recur-
sive call to handle the parameter of the Comparable interface as
it would lead to an infinite loop. Instead, we have to identify the
reference to a previously-seen type and refer to it through a type
variable. The resulting type will be:

[‘java’io’Serializable
| ‘java’lang’Comparable of ’a
| ‘java’lang’Integer
| ‘java’lang’Number
| ‘java’lang’Object] java_instance as ’a

Another problem is the handling of generic bounds. Such
bounds allow the Java developer to indicate through the super and
extends keywords lower and upper bound where a generic type
parameter is waited. These bounds can be both used at declaration-
and use-site, as shown by Listing 13.

1 c l a s s C<E e x t e n d s CharSequence > {
2 ...
3 }
4
5 c l a s s D {
6 p r i v a t e C<? s u p e r String > field;
7 ...
8 }

Listing 13. Bounds for generic type parameters.

It should be possible to encode bounds using polymorphic vari-
ants combined to variance annotations. Listing 14 and 15 show
possible encodings for respectively an extends and a super
bound. However, the question is not only to enhance the current
implementation to support generic bounds, but also to be able to
emit sensible error messages when constraints are not respected.
While generating appropriate messages is not difficult for such
simple examples, it becomes difficult when the offending type is
nested, which is by definition always the case with generic types.

1 t y p e -’v extends
2 l e t obj : [‘Object] extends
3 l e t num : [‘Object|‘Number] extends
4 l e t int : [‘Object|‘Number|‘Integer] extends
5 l e t str : [‘Object|‘String] extends
6
7 l e t f (_ : [> ‘Object|‘Number] extends) = ...
8 l e t _ = f obj (* REJECTED *)
9 l e t _ = f num (* accepted *)

10 l e t _ = f int (* accepted *)
11 l e t _ = f str (* REJECTED *)

Listing 14. OCaml encoding of an extends bound.

1 t y p e +’v super
2 l e t obj : [‘Object] super
3 l e t num : [‘Object|‘Number] super
4 l e t int : [‘Object|‘Number|‘Integer] super
5 l e t str : [‘Object|‘String] super
6
7 l e t f (_ : [< ‘Object|‘Number] super) = ...
8 l e t _ = f obj (* accepted *)
9 l e t _ = f num (* accepted *)

10 l e t _ = f int (* REJECTED *)
11 l e t _ = f str (* REJECTED *)

Listing 15. OCaml encoding of a super bound.

11 2013/7/31

10.2 Miscellaneous Enhancements
Another major enhancement, besides generics, to the current im-
plementation would be to allow the developer to extend existing
classes and interfaces. As of today, the developer is only able to
implement an interface. There is a great practical incentive to make
it possible to extend a class: complex event listeners. Indeed, while
simple event listeners are specified by interface with one or two
methods, complex listeners may contain far more methods. It is
usual that the library provides for those listeners adapter classes
that provides empty implementations for the methods. This allows
the developer to extend this class and only override the method(s)
she is interested in, without having to take care of the other meth-
ods. More generally, the whole purpose of object-oriented design it
to provide classes with default implementation to be overridden in
order to customize the behavior.

A minor enhancement could also be devised to provide custom
support for Java enum classes. The current implementation treats
enum classes as ordinary classes, meaning that the developer has
to accesses to the elements of an enum through class fields using
the Java.get function. This is a problem because by doing so, we
get a plain Java instance that can then only be tested for equality
and cannot be used in pattern matching, leading to code like the
following:

let open Java in
let state = call "Thread.getState()" th in
if equal state (get "Thread.State.NEW") then

...
if equal state (get "Thread.State.BLOCKED") then

...

while we would like to be able to write the following, also taking
advantage of the exhaustiveness and non-redundancy checks of the
pattern matching:

let state = Java.call "Thread.getState()" th in
match state with
| ‘NEW -> ...
| ‘BLOCKED -> ...
...

Finally, the typer extension, as the whole OCaml-Java project
for that matter, will have to be updated according to the evolution
of Java. In particular, the upcoming version of Java will introduce
features that should get support in our compiler:

• lambdas, that allow to define functions/code blocks without
having to go through a inner-classes;

• default methods, that allow to define default implementations
for interface methods.

Lambdas are particularly interesting, as their inclusion into the
Java language will somewhat reduce the semantic gap between the
two languages. In order to leverage the full power of lambda-aware
libraries, it is desirable to be able to pass an OCaml function where
a Java lambda is waited, automatically deriving the necessary wrap-
per(s) to translate values back and forth.

Default methods shall modify our handling of interfaces, as the
developer should not be required to provide a method implemen-
tation if a default implementation is available. Still, the developer
should be able to override the default implementation when it does
not fit her needs. The behavior of the Java.proxy function has to
be updated to take into account these optional methods.

10.3 Other Languages
We think it could also be interesting to apply the kind of type
encoding presented in this paper to other languages. The term
“other languages” can refer to either host languages (OCaml in this
article), or embedded languages (Java in this article). Regarding
embedded languages, we are particularly interested by exploring
possible encodings of languages based on structural typing. The
idea, in this case, would be to use the set of constructors to encode
the set of declared methods rather than the class hierarchy. Such
an encoding may use the parameters of the various constructors to
encode the parameters types of the methods.

Acknowledgments
Part of this work was performed while the author was visiting the
OCaml Labs at Cambridge University. The author would like to
thank the OCaml Labs for providing a great working environment.

References
[1] N. Benton, and A. Kennedy: Interlanguage working without tears:

blending SML with Java, Proceedings of the fourth ACM SIGPLAN
international conference on Functional programming (ICFP ’99), 1999.

[2] N. Benton, A. Kennedy, and C. V. Russo: Adventures in interoperabil-
ity: the SML.NET experience, Proceedings of the 6th ACM SIGPLAN
international conference on Principles and practice of declarative pro-
gramming (PPDP’04), 2004.

[3] E. Chailloux, G. Henry, and R. Montelatici: Mixing the Objective Caml
and C# Programming Models in the .NET Framework, Workshop on
Multiparadigm Programming with OO Languages (MPOOL), 2004.

[4] E. Chailloux, G. Henry, and R. Montelatici: Interopérabilité des
langages fonctionnels : applications en Objective Caml, Technique et
Sciences Informatiques Vol 24/9, 2005.

[5] X. Clerc: the nickel project, http://nickel.x9c.fr
[6] X. Clerc: OCaml-Java: OCaml on the JVM. Trends in Functional

Programming, Lecture Notes in Computer Science Volume 7829, 2013.
[7] X. Clerc: OCaml-Java: an ML Implementation for the Java Ecosystem.

International Conference on Principles and Practices of Programming on
the Java platform (PPPJ’13), 2013.

[8] M. Fluet, R. Pucella: Phantom types and subtyping, Journal of
Functional Programming, Volume 16, 2006.

[9] R. Hickey: The Clojure programming language. Proceedings of the
2008 symposium on Dynamic language, 2008.

[10] X. Leroy: Camlidl users manual version 1.0, March 1999,
http://caml.inria.fr/camlidl/htmlman

[11] X. Leroy: The camljava project,
http://forge.ocamlcore.org/projects/camljava/

[12] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon:
The OCaml system release 4.00. Documentation and user’s manual, July
2012.

[13] M. Odersky, et al.: The Scala language specification, 2004.
[14] D. Syme, J. Margetson: The F# programming language.

http://research.microsoft.com/projects/fsharp

[15] J. Yallop: the ctypes project,
https://github.com/ocamllabs/ocaml-ctypes

[16] SWIG: Simplified Wrapper and Interface Generator,
http://www.swig.org.

[17] The Apache Foundation: the Thrift project,
http://thrift.apache.org

12 2013/7/31

