Circularity and Lambda Abstraction

Olivier Danvy!, Peter Thiemann?, and Ian Zerny'*

! {danvy,zerny}@cs.au.dk
Department of Computer Science, Aarhus University
2 thiemann@acm.org
Institut fiir Informatik, Universitét Freiburg

Abstract. In this tribute to Doaitse Swierstra, we present the first
transformation between lazy circular programs a la Bird and strict cir-
cular programs & la Pettorossi. Circular programs a la Bird rely on lazy
recursive binding: they involve circular unknowns and make sense equa-
tionally. Circular programs & la Pettorossi rely on the inductive construc-
tion of functions and their eventual application: they involve no circular
unknowns and make sense operationally. Our derivation connects these
equational and operational approaches: given a lazy circular program a
la Bird, we decouple the circular unknowns from what is done to them,
which we lambda-abstract with functions. The circular unknowns then
become dead variables, which we eliminate. The result is a strict circu-
lar program & la Pettorossi. This transformation is reversible: given a
strict circular program a la Pettorossi, we introduce circular unknowns
as dead variables, and we apply the functions to them. The result is a
lazy circular program & la Bird.

We illustrate the two transformations by mapping an algebraic construct
to an isomorphic one with new leaves, reading a binary number as sug-
gested by Knuth, and backpatching.

1 Introduction

You do not have to think operationally: I prefer call by value
you can reason equationally to call by name
about your programs. because it is more predictable.
— S. Doaitse Swierstra — Mitchell Wand

One of the wonderful things about functional programming is that we can both
reason about programs equationally (regarding what they do) and think about
them operationally (regarding how they do it). Take circular programs, for exam-
ple. This technique was invented by Richard Bird in the early 1980’s to eliminate
multiple traversals of data [1]. It was then phrased operationally by Alberto Pet-
torossi in the late 1980’s [2]. In this hommage to Doaitse Swierstra, we present
what we believe to be the first transformation between circular programs a la
Bird and circular programs a la Pettorossi. Each of the following sections illus-
trates this transformation.

* Tan Zerny is a recipient of the Google Europe Fellowship in Programming Technology,
and this research is supported in part by this Google Fellowship.

Prerequisites and notation: It seems safe to assume that the reader knows what
a circular program is, but we nevertheless explain the concept in Sec. 2. Likewise,
in a structurally recursive function that visits an inductive data structure, we
readily say that the arguments are “inherited” and the result is “synthesized,”
in reference to Knuth’s attribute grammars [3]. Throughout, our programming
language of discourse is Haskell.

2 Minimum list

In his original article [1], Bird illustrated circular programming with a function
mapping a binary tree of integers into an isomorphic binary tree where all the
integers were replaced by the smallest integer in the given binary tree. Rather
than composing two functions — one to compute the smallest integer in the given
tree, and one to re-traverse the given tree to construct an isomorphic tree — Bird
calculated a ‘circular’ function that ostensibly traverses the given tree once and
yet gets the job done.

In this section, we treat in detail a simplified version of Bird’s original func-
tion that operates not on binary trees of integers, but on lists of integers. We
first present the circular function in the style of Bird (Sec. 2.1), and illustrate
its working equationally (Fig. 1). We then present the circular function in the
style of Pettorossi (Sec. 2.2), and illustrate its working equationally (Fig. 2). We
finally present our transformation to map either function to the other (Sec. 2.3).

2.1 A Bird-style circular program

The circular program a la Bird is a function that uses lazy local recursion to
circularly refer to the minimal element of the input list. In the function below,
m is the circular unknown: it is circularly defined using local recursion and it is
unknown in the body of visit:

minlist_RB :: [Int] -> [Int]
minlist_RB xs = ys
where
(m, ys) = visit m xs
visit :: Int -> [Int] -> (Int, [Int])

visit m [] =
(maxBound, [])

visit m (x : xs) =
let (m’, ys) = visit m xs
in (min x m’, m : ys)

Fig. 1 displays successive unfoldings of this function when it is applied to the list
[3,1,4]. These unfoldings illustrate equationally the resolution of the circular
unknown m. The modified part is boxed at each step.

2.2 A Pettorossi-style circular program

The circular program a la Pettorossi is a function that uses lambda abstraction
to refer to the minimal element of the input list. In the function below, m is
an abstracted unknown: it is lambda-abstracted in the body of visit and it is
subsequently instantiated when the lambda-abstraction is applied:

minlist RB_.O (3 : 1 : 4 : [1) = ys
where
(m, ys) = visitm (3 : 1 : 4 : [1)
-- unfold the underlined call to wvisit
minlist RB_1 (3 : 1 : 4 : [1) = ys
where
(m, ys) ={let (n, ys) = visitm (1 : 4 : [1)
in (min 3 n, m : ys)

-- unfold the underlined call to wvisit
minlist RB_2 (3 : 1 : 4 : [1) =ys
where

(m, ys) = let (n, ys) = let (n, ys) = visit m (4 : [])
in (min 1 n, m : ys)

in (min 3 n, m : ys)
-- unfold the underlined call to visit
minlist RB_.3 (3 : 1 : 4 : []1) = ys
where

(m, ys) = let (n, ys) = let (n, ys) = let (n, ys) = visit m []
in (min 4 n, m : ys)

in (min 1 n, m : ys)
in (min 3 n, m : ys)
-- unfold the underlined call to visit
minlist RB_4 (3 : 1 : 4 : [1) = ys
where

(m, ys) = let (n, ys) = let (n, ys) = let (n, ys) = (maxBound, [I)
in (min 4 n, m : ys)

in (min 1 n, m : ys)
in (min 3 n, m : ys)
-- unfold the underlined let expression
minlist RB_5 (3 : 1 : 4 : [1) = ys
where

(m, ys) = let (n, ys) = let (n, ys) =’ (min 4 maxBound, m : [])

in (min 1 n, m : ys)
in (min 3 n, m : ys)
-- unfold the underlined call to min
minlist_ RB.6 (3 : 1 : 4 : [1) =ys
where
(m, ys) = let (n, ys) = let (n, ys) = (, m: [1)
in (min 1 n, m : ys)
in (min 3 n, m : ys)
-- unfold the underlined let expression
minlist RB_7 (3 : 1 : 4 : []1) = ys
where

(m, ys) = let (n, ys) = (min 1 4, m : m : [])‘

in (min 3 n, m : ys)
-- unfold the underlined call to min
minlist RB_.8 (3 : 1 : 4 : []1) = ys
where

(n, ys) = let (n, ys) = (, mim: D

in (min 3 n, m : ys)
-- unfold the underlined let expression
minlist RB_9 (3 : 1 : 4 : []1) = ys
where

(m,ys)=’(min31,m:m:m: [])‘

-— unfold the underlined call to min
minlist_RB_10 (3 : 1 : 4 : []) = ys
where

(m,ys)=(,m:m:m: D)
-- unfold the underlined where expression, which is recursive

minlist_RB_11 (3 : 1 : 4 : [1) =m

Fig. 1. Successive equational unfoldings of minlist_RB [3,1,4]

minlist AP0 (3 : 1 : 4 : [1) =ysm
where
(m, ys) = visit (3 : 1 : 4 : [])
-- unfold the underlined call to wvisit
minlist AP_.1 (3 : 1 : 4 : [1) =ysm
where
(m, ys) ={let (n, ys) = visit (1 : 4 : [1)
in (min 3 n, \m ->m : ys m)

-- unfold the underlined call to wvisit
minlist AP_2 (3 : 1 : 4 : [1) =ysm
where
(m, ys) = let (n, ys) = let (n, ys) = visit (4 : [])
in (min 1 n, \m ->m : ys m)

in (min 3 n, \m ->m : ys m)
-- unfold the underlined call to visit
minlist_ AP_.3 (83 : 1 : 4 : []1) =ysm
where

(m, ys) = let (n, ys) = let (n, ys) = let (n, ys) = visit []
in (min 4 n, \m ->m : ys m)

in (min 1 n, \m ->m : ys m)
in (min 3 n, \m ->m : ys m)
-- unfold the underlined call to visit
minlist_ AP_4 (3 : 1 : 4 : [1) =ysm
where

(m, ys) = let (n, ys) = let (n, ys) = let (n, ys) =’ (maxBound, \m -> [1)

in (min 4 n, \m ->m : ys m)
in (min 1 n, \m ->m : ys m)
in (min 3 n, \m ->m : ys m)
-- unfold the underlined let expression
minlist _ AP_5 (3 : 1 : 4 : [1) =ysm
where

(m, ys) = let (n, ys) = let (n, ys) =’ (min 4 maxBound, \m ->m : (\m -> [1) m)

in (min 1 n, \m ->m : ys m)
in (min 3 n, \m ->m : ys m)
-- unfold the underlined call to min and the underlined beta-redex
minlist_AP_6 (3 : 1 : 4 : []1) =ysm
where
(m, ys) = let (n, ys) = let (m, ys) =

in (min 1 n, \m ->m : ys m)
in (min 3 n, \m ->m : ys m)
-- unfold the underlined let expression
minlist AP.7 (3 : 1 : 4 : []1) =ysm
where

(m, ys) = let (n, ys) =’ (min 1 4, \m ->m : (\m ->m : []) m)‘

in (min 3 n, \m ->m : ys m)
-- unfold the underlined call to min and the underlined beta-redex
minlist_AP_.8 (3 : 1 : 4 : []) =ysm
where

(m, ys) = let (n, ys) =’ (1, \m ->m :m: [])‘

in (min 3 n, \m ->m : ys m)
-- unfold the underlined let expression
minlist_ AP_9 (3 : 1 : 4 : [1) =ysm
where

(m, ys) =’ (min 31, \m->m: (\m ->m : m : [1) m)

-- unfold the underlined call to min and the undernined beta-redex
minlist_AP_10 (3 : 1 : 4 : []) = ysm
where

(m, ys) =’(1, \m->m:m:m: [])‘
-- unfold the underlined where expression, which is not recursive
minlist AP_11 (3 : 1 : 4 : [1D 5 (\m ->m :m :m : []1) 1

-- unfold the underlined beta-redex

minlist_AP_12 (3 : 1 : 4 : [1) =m

Fig. 2. Successive equational unfoldings of minlist_AP [3,1,4]

minlist_AP :: [Int] -> [Int]

minlist_AP xs = ys m
where
(m, ys) = visit xs
visit :: [Int] -> (Int, Int -> [Int])
visit [] =
(maxBound , \m -> [])
visit (x : xs) =
let (m’, ys) = visit xs

in (min x m’, \m -> m : ys m)

Fig. 2 displays successive unfoldings of this Pettorossi-style program to the in-
put list [3,1,4]. These unfoldings illustrate equationally the resolution of the
abstracted unknown m. The modified part is boxed at each step.

2.3 From either style to the other
The last steps of Fig. 1 and Fig. 2 differ in two key aspects:

1. In the substitution step from minlist_RB_10 to minlist_RB_11, the where
expression is recursive for the Bird-style program, whereas for the Pettorossi-
style program, the where expression is non-recursive in the substitution step
from minlist_AP_10 to minlist_AP_11.

2. The instantiation of m takes place during resolution for the Bird-style pro-
gram, i.e., minlist_RB_11 is the final result, whereas for the Pettorossi-style
program, the instantiation of m takes place subsequently, i.e., minlist_AP_11
is not the final result.

The key distinction is that m is a circular unknown (i.e., a variable that is declared
recursively) in the Bird-style program whereas it is not in the Pettorossi-style
program.

Using this observation, given a circular program a la Bird, we decouple the
circular unknown from what is done to it, which we represent as a function (e.g.,
initially as the identity function). Consequently, the unknown becomes a dead
variable in Bird’s program and it is our observation that omitting this dead
variable gives exactly a circular program a la Pettorossi — in the present case,
the same program as in Sec. 2.2.

Here is the minlist program a la Bird where we have marked (with a trailing
underscore) all of the variables that depend on the circular unknown:

minlist_mark :: [Int] -> [Int]

minlist_mark xs = ys_

where
(m_, ys_) = visit m_ xs
visit :: Int -> [Int] -> (Int, [Int])

visit m_ []1 =
(maxBound, [1)

visit m_ (x : xs) =
let (m’, ys_) = visit m_ xs
in (min x m’, m_ : ys_)

We decouple the circular unknown in two steps. Here is the decoupling (as
a pair) of the inherited variables that depend on the circular unknown: the first

component of the pair is the circular unknown, and the second component is

what is done to the circular unknown:?
minlist_inher :: [Int] -> [Int]
minlist_inher xs = ys_
where
(m, ys_) = visit (m, id) xs
visit :: (Int, Int -> Int) -> [Int] -> (Int, [Int])

visit m_ [] =
(maxBound, [])

visit (m_ @ (m, f)) (x : xs) =
let (m’, ys_) = visit m_ xs
in (min x m’, £ m : ys_)

Here is the abstraction of the synthesized variables that depend on the cir-
cular unknown:

minlist_synth :: [Int] -> [Int]
minlist_synth xs = ys m
where
(m, ys) = visit (m, id) xs
visit :: (Int, Int -> Int) -> [Int] -> (Int, Int -> [Int])

visit m_ [] =
(maxBound, \m -> [])

visit (m_ @ (m, £f)) (x : xs) =
let (m’, ys) = visit m_ xs

in (min x m’, \m -> f m : ys m)

In visit, the variable m is dead (i.e., it is unused) and the variable £ solely
denotes the identity function (i.e., nothing is done to m). Thus, we strike out the
first and we symbolically apply the second. The result is precisely the circular
program a la Pettorossi from Sec. 2.2. This program is inductively defined and
can be transliterated to an eager programming language such as ML.

Overall, each of the steps in the transformation from Bird style to Pettorossi
style can be reversed.

In the following sections, we successively consider Bird’s original circular
program mapping a tree of numbers to an isomorphic tree of the least of these
numbers (Sec. 3); Knuth’s original attribute grammar for reading a binary num-
ber (Sec. 4); and conversely, how to express backpatching as a circular program

(Sec. 5).

3 Minimum tree

Let us turn to Bird’s circular function that given a binary tree of integers, maps it
to an isomorphic binary tree where all the integers were replaced by the smallest
integer in the given binary tree. The tree data type is declared as follows:

data BTree a = Leaf a | Node (BTree a) (BTree a)
For example, a tree such as tin below should be mapped to the tree tout:

3 In the interest of generality, we fully decouple the inherited variables, here m_ of
visit, even though nothing is done to them. In general, the inherited variables
could be changed. Such is the case in Knuth’s program for reading binary numbers
(Sec. 4).

tin = Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
tout = Node (Leaf 1) (Node (Leaf 1) (Leaf 1))

Bird’s circular program is the starting point of the transformation:

mintree_RB :: BTree Int -> BTree Int
mintree_RB t = t°’
where
(m, t’) = visit m t
visit :: Int -> BTree Int -> (Int, BTree Int)

visit m (Leaf n)
= (n, Leaf m)
visit m (Node 1 r)
= let (lm, 1t) = visit m 1
(rm, rt) = visit m r
in (min 1lm rm, Node 1t rt)

As in Sec. 2, we decouple the circular unknown (here m) from what is done
to it. Here is the mintree program where we have marked (with a trailing un-
derscore) all of the variables that depend on the circular unknown:

mintree_mark :: BTree Int -> BTree Int
mintree_mark t = t’_
where
(m_, t’_) = visit m_ t
visit :: Int -> BTree Int -> (Int, BTree Int)

visit m_ (Leaf n)
= (n, Leaf m_)
visit m_ (Node 1 r)
= let (Im, 1t_) = visit m_ 1
(rm, rt_) = visit m_ r
in (min 1m rm, Node 1lt_ rt_)

Here is the decoupling (as a pair: the circular unknown and what is done

to it, represented as a function) of the inherited variables that depend on the
circular unknown:

mintree_inher :: BTree Int -> BTree Int
mintree_inher t = t’_
where
(m, t’_) = visit (m, id) t
visit :: (Int, Int -> Int) -> BTree Int -> (Int, BTree Int)

visit (m, f) (Leaf n)
= (n, Leaf (f m))
visit m_ (Node 1 r)
= let (lm, 1lt_) = visit m_ 1
(rm, rt_) = visit m_ r
in (min 1m rm, Node 1lt_ rt_)

Here is the abstraction of the synthesized variables that depend on the cir-
cular unknown:

mintree_synth :: BTree Int -> BTree Int
mintree_synth t = t’ m
where
(m, t?) = visit (m, id) t
visit :: (Int, Int -> Int) -> BTree Int -> (Int, Int -> BTree Int)

visit (m, f) (Leaf n)
= (n, \m -> Leaf (f m))
visit m_ (Node 1 r)
= let (lm, 1t) = visit m_ 1
(rm, rt) = visit m_ r
in (min 1m rm, \m -> Node (1t m) (rt m))

In visit, the variable m is dead (i.e., it is unused) and the variable £ solely
denotes the identity function (i.e., nothing is done to m). Thus, we eliminate
both. The result is Pettorossi’s one-pass solution to the problem [2]:

mintree_AP :: BTree Int -> BTree Int
mintree_AP t = t’ m
where
(m, t’) = visit t
visit :: BTree Int -> (Int, Int -> BTree Int)

visit (Leaf n)
= (n, \m -> Leaf m)
visit (Node 1 r)
= let (1lm, 1t) = visit 1
(rm, rt) = visit r
in (min 1m rm, \m -> Node (1t m) (rt m))

Again, the Pettorossi-style program can be transliterated to an eager program-
ming language. Also, each of the transformation steps is reversible.

4 Reading numbers

Knuth’s seminal article on attribute grammars [3] starts with an example of
a grammar that gives a precise definition of binary notation for numbers. The
grammar generates the language with words of the form num.mantissa where
both num and mantissa are bit strings. The attribution of the grammar com-
putes, in an attribute v of the start symbol, the numeric value of the binary
notation.

The interest in Knuth’s second attribution of the grammar arises from a non-
trivial attribute dependency that requires a two-pass traversal for evaluating
all attributes. Thus, the “obvious” translation of the attribute grammar into a
functional program results in a circular program of a slightly more general form
as in the preceding examples.

But to start from the beginning, a slightly rephrased and simplified version
of this example is sufficient to demonstrate the transformation. The simplified
grammar only generates bit strings and the attribution considers the generated
bit string as the binary notation for a number and computes it. The underlying
grammar has terminals 0 and I representing the low bit and the high bit and
three non-terminals Bit, Bits, and S, the start symbol. All non-terminals have
a synthesized attribute v; Bit and Bits have an inherited attribute p; and Bits
has an additional synthesized attribute [. The intention is that the attribute
v computes the value of the respective bit or bit string relative to its starting
position p — a Bit at position p counts 2P. The attribute [computes the length
of a bit string.

Fig. 3 contains the productions of the grammar and their attribution. The
attribution rules use the notation suggested by Johnsson for referring to the
attribute occurrences, with 1 indicating synthesized attributes and | indicating
inherited ones [4]. His translation of an attribute grammar into a lazy program
interprets a non-terminal as a function from its inherited attributes to its syn-
thesized attributes. Applying this technique to the attribute grammar in Fig. 3

S — Bits ST v=Bits Tv
Bits | p=Bits 11— 1
Bits — € Bits tv =0
Bits 11 =0
Bits — Bit Bitsy Bits T v = Bit T v+ Bits1 Tv
Bit | p= Bits | p
Bits1 | p=Bits [p—1
Bits 11 = Bits1 11+ 1
Bit —0 Bittv=0
Bit —1 Bit T v =2"(Bit | p)

Fig. 3. Attribute grammar for interpreting numbers in binary notation

data Bit = 0 | I

digitval :: Int -> Bit -> Int
digitval p 0 = 0

digitval p I = 2 "~ p

dec n = n - 1

inc n = n + 1

Fig. 4. Auxiliary definitions for interpreting numbers in binary notation

leads to the circular program lexnum_RB shown in Fig. 5 which uses the definitions
in Fig. 4.

In Fig. 4, the function digitval is the interpretation of the Bit non-terminal.
It has one (inherited) argument and one (synthesized) result. Its Bit-typed ar-
gument serves to distinguish the two production rules for Bit. The functions dec
and inc stand for the decrement and increment operations in the attribution.
In Fig. 5, the function lexnum_RB is the transliteration of the attributions of the
non-terminals S and Bits. There is no choice in the first equation of the where
block because S has one production.

The function visit is the interpretation of the Bits non-terminal. Its first ar-
gument holds the inherited attribute p and its second determines the production.
It computes a pair comprising the synthesized attributes.

As in Sec. 2 and Sec. 3, we decouple the circular unknown (here 1) from what
is done to it. Here is the lexnum program where we have marked (with a trailing
underscore) all of the variables that depend on the circular unknown:

lexnum_mark :: [Bit] -> Int
lexnum_mark bs = v_
where
(1_, v_) = visit (dec 1_) bs
visit :: Int -> [Bit] -> (Int, Int)
visit p_ [] =
(o, 0)

visit p_ (b:bs) =
let (1, v_) = visit (dec p_) bs
in (inc 1, v_ + digitval p_ b)

lexnum_RB :: [Bit] -> Int

lexnum_RB bs = v
where
(1, v) = visit (dec 1) bs
visit :: Int -> [Bit] -> (Int, Int)
visit p [1 =
(0, 0)

visit p (b:bs) =
let (1, v) = visit (dec p) bs
in (inc 1, v + digitval p b)

Fig. 5. Bird-style circular program for interpreting numbers in binary notation

Here is the decoupling (as a pair: the circular unknown and what is done
to it, represented as a function) of the inherited variables that depend on the

circular unknown:

lexnum_inher :: [Bit] -> Int
lexnum_inher bs = v_
where
(1, v_) = visit (1, dec) bs
visit :: (Int, Int -> Int) -> [Bit] -> (Int, Int)
visit (p, £) [1 =
0, 0)

visit (p, £f) (b:bs) =
let (1, v_) = visit (p, dec . f) bs
in (inc 1, v_ + digitval (f p) b)
In contrast to Sec. 2 and Sec. 3, something is actually being done to the circular
unknown at call time (i.e., it is decremented).
Here is the abstraction of the synthesized variables that depend on the cir-

cular unknown:

lexnum_synth :: [Bit] -> Int
lexnum_synth bs = v 1
where
(1, v) = visit (1, dec) bs
visit :: (Int, Int -> Int) -> [Bit] -> (Int, Int -> Int)

visit (p, £) [1 =
(0, \p -> 0)
visit (p, £f) (b:bs) =
let (1, v) = visit (p, dec . f) bs
in (inc 1, \p -> v p + digitval (f p) b)

In visit, the variable p is dead (i.e., it is unused) so we eliminate it. The
result is a Pettorossi-style program:

lexnum_AP :: [Bit] -> Int
lexnum_AP bs = v 1
where
(1, v) = visit dec bs
visit :: (Int -> Int) -> [Bit] -> (Int, Int -> Int)

visit £ [] =
0, \p -> 0)
visit £ (b:bs) =
let (1, v) = visit (dec . f) bs
in (inc 1, \p -> v p + digitval (f p) b)

Again, this Pettorossi-style program can be transliterated to an eager program-
ming language. Also, each of the transformation steps is reversible.

type Lab = Int
type Addr = Int
type Env = Map Lab Addr
data Source =
SSUB | SPSH Int | SJMP Lab | SCJP Lab | SLAB Lab
data Target =
TSUB | TPSH Int | TJMP Addr | TCJP Addr

Fig. 6. Type definitions for backpatching

backpatch_AP :: [Source] -> [Target]
backpatch_AP ss = f env
where
(env, f) = collect O ss
collect :: Addr -> [Source] -> (Env, Env -> [Target])

collect a [] =
(empty, \env -> [])

collect a (si : sis) =
let (env, f) = collect (a + tsize si) sis in
case si of
SSUB -> (env, \env -> TSUB : f env)
SPSH -> (env, \env -> TPSH i : f env)
SJMP -> (env, \env -> TJMP (env ! 1) : f env)

i
1
SCJP 1 -> (env, \env -> TCJP (env ! 1) : f env)
SLAB 1 -> (insert 1 a env, f)

Fig. 7. Pettorossi-style program for backpatching

5 Backpatching

Backpatching is a traditional compilation technique [5]. It applies in a compiler
that generates code using symbolic labels for jump targets in the first place. The
main argument for doing so is to simplify the code generator and in particular
subsequent transformation steps that may insert or remove instructions, or even
rearrange entire code blocks.

Once the transformations are finished with the code, the symbolic labels have
to be transformed to addresses. A typical approach is to traverse the code and
build an environment that maps symbolic labels to addresses. A second pass
uses this environment to resolve all jump addresses.

Backpatching is a one-pass implementation technique for this two-pass trans-
formation. In this pass, label definitions are entered in the environment as they
occur. For a label use, there are two possibilities, either the label is already de-
fined (a backward reference) in which case the target address can be inserted
directly, or the label is not yet defined (a forward reference), in which case this
use-before-definition is registered in the environment. In general, there may be
multiple uses before a definition is found, so the environment entry for a label
may contain a list of unresolved targets. When defining a label that already has
some uses, the unresolved targets are visited and overwritten with the address,
hence the name backpatching.

This traditional algorithm is imperative. However, a purely functional im-
plementation of backpatching can be given by abstracting the generation of the

program with absolute addresses from the environment as illustrated by the
code in Fig. 7. It relies on the datatype definitions given in Fig. 6. They define
a type Source of source instructions for a stack machine, which are subtrac-
tion, push a constant, jump, conditional jump, and label definition. Both jump
instructions refer to symbolic labels of type Label. The type Target of target
instructions comprises subtraction, push, jump, and conditional jump, where
the latter two refer to addresses. As an auxiliary definition, an environment of
type Env is a mapping from labels to addresses. Furthermore, there is a function
tsize :: Source -> Int that computes the size of the generated target code for
each source instruction.

The function collect in Fig. 7 traverses the list of source instructions and
keeps track of the current target address in its first argument a. It returns a pair
of an environment and a function that expects an environment and returns the
target code. The transformation removes the label instruction SLAB 1 so that its
target size is 0.

This function is written in Pettorossi style: it is defined inductively and can be
expressed directly in an eager programming language. We use it as the starting
point to demonstrate the reverse transformation from Pettorossi style to Bird
style, taking the reverse sequence of steps.

The first step is to introduce the abstracted value as a circular unknown of
visit, here with the formal parameter envi of visit:

backpatch_circ :: [Source] -> [Target]
backpatch_circ ss = f env
where
(env, f) = collect O ss env
collect :: Addr -> [Source] -> Env -> (Env, Env -> [Target])

collect a [] envl =
(empty, \env -> [1)

collect a (si : sis) envl =
let (env, f) = collect (a + tsize si) sis envl in
case si of
SSUB -> (env, \env -> TSUB : f env)
SPSH -> (env, \env -> TPSH i : f env)

i
SJMP 1 -> (env, \env -> TJMP (env ! 1) : f env)
SCJP 1 -> (env, \env -> TCJP (env ! 1) : f env)
SLAB 1 -> (insert 1 a env, f)

Next, we specialize the synthesized abstractions with respect to envi. Each
abstraction passes envl unchanged and so £ envl becomes the lazily constructed
result, ts:

backpatch_synth :: [Source] -> [Target]
backpatch_synth ss = ts
where
(env, ts) = collect O ss env
collect :: Addr -> [Source] -> Env -> (Env, [Target])
collect a [] envl =
(empty, [1)
collect a (si : sis) envl =
let (env, ts) = collect (a + tsize si) sis envl in
case si of
SSUB -> (env, TSUB : ts)
SPSH -> (env, TPSH i : ts)

i
SJMP 1 -> (env, TJMP (envl ! 1) : ts)
SCJP 1 -> (env, TCJP (envl ! 1) : ts)
SLAB 1 -> (insert 1 a env, ts)

Since there are no inherited abstractions we are done and the result is a
circular backpatching program a la Bird.

6 Related work

Kuiper and Swierstra [6] noted the connection between attribute grammars and
functional programs around the same time as Johnsson [4]. They note that
rewrite rules employing tuples and derivations of circular programs can be con-
veniently expressed using attribute grammars. They define two mappings from
attribute grammars to functional programs. One of the mappings can give rise to
multiple traversals of a data structure whereas the other yields circular programs
that traverse the structure at most once, but require lazy evaluation.

Fernandes and Saraiva [7] transform circular programs into efficient, strict
and deforested, multiple-traversal programs by using attribute grammars-based
techniques, in particular ordered attribute grammars [8]. This approach draws
on ideas from earlier work by Saraiva, Swierstra, and Kuiper [9]. Both works rely
on intricate analysis techniques for attribute grammars. Their transformations
yield strict, but potentially multi-pass programs.

Fernandes and coworkers [10] suggest a strictification transformation for cir-
cular programs. Their transformation is based on a dependency analysis to dis-
cover the circularity. They naively split the circular call, which returns a tuple,
into several ones with each computing only one component. Specialization of
these calls yields independent, non-circular definitions. The resulting programs
are suitable for strict evaluation, but they are not in Pettorossi-style in that they
might require multiple passes over the input data.

7 Conclusion

In the course of the 1980’s, Bird and Pettorossi investigated how to calculate
programs that traverse their input only once [1, 2]:

multiple-pass program

Swierstra
t al.)
o a A Pettorossi

Bird-style Pettorossi-style
one-pass program one-pass program
this work

In his joint work on circular attribute grammars, Swiestra has shown how to
transform Bird-style programs into multiple-pass programs and vice versa [6, 9].

In this tribute to Doaitse Swierstra, we have shown how to connect Bird-
style and Pettorossi-style programs. A Bird-style program inductively extends a

circular unknown until this extended unknown can be solved. We decouple the
circular unknowns in a Bird-style program from what is inductively done to them,
which we represent with functions. The circular unknowns then become dead
variables. Symbolically applying the functions to the circular unknowns gives
back a Bird-style program, and eliminating the dead variables gives a Pettorossi-
style program. A Pettorossi-style program is therefore one that computes over
differences, and so could be considered as the derivative of a Bird-style program.

Acknowledgments: We are grateful to Julia Lawall for comments on a preliminary
version of this article, and to Doaitse Swierstra for many years of academic
camaraderie. We wish him many happy returns!

References

1. Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21 (1984) 239-250

2. Pettorossi, A.: Derivation of programs which traverse their input data only once.
In Cioni, G., Salwicki, A., eds.: Advanced Programming Methodologies. Academic
Press, Limited, San Diego, CA, USA (1989) 165-184

3. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2) (1968) 127-145

4. Johnsson, T.: Attribute grammars as a functional programming paradigm. In
Kahn, G., ed.: Functional Programming Languages and Computer Architecture.
Number 274 in Lecture Notes in Computer Science, Portland, Oregon, Springer-
Verlag (September 1987) 154-173

5. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques
and Tools. Second edn. Pearson Education, Inc. Addison-Wesley, London, United
Kingdom (2006)

6. Kuiper, M.F., Swierstra, S.D.: Using attribute grammars to derive efficient func-
tional programs. Technical Report RUU-CS-86-16, University of Utrecht (August
1986)

7. Fernandes, J.P., Saraiva, J.: Tools and libraries to model and manipulate circu-
lar programs. In Ramalingam, G., Visser, E., eds.: Proceedings of the 2007 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM 2007), Nice, France, ACM Press (January 2007) 102-111

8. Kastens, U.: Ordered attributed grammars. Acta Informatica 13 (1980) 229-256

9. Saraiva, J., Swierstra, S.D., Kuiper, M.F.: Strictification of computations on trees.
In: 3th Latin-American Conference on Functional Programming, CLaPF’99. (1999)

10. Fernandes, J.P., Saraiva, J., Seidel, D., Voigtlander, J.: Strictification of circu-
lar programs. In Khoo, S.C., Siek, J., eds.: Proceedings of the 2011 ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion (PEPM 2011), Austin, Texas, ACM Press (January 2011) 131-140

