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Abstract
It would be highly beneficial if non-programmers could participate
in the construction of serious applications. In this article we present
aspects of the design of Marama, a visual modern functional pro-
gramming language for this purpose. Marama’s main target au-
dience are non-programming, but moderately analytically trained
academics. Functional programming languages are easy to visu-
alise, powerful and known for their reliability. A distinctive pur-
sued feature of Marama is that the visual functional programming
constructs are to be entirely visual and self-explanatory, lowering
the threshold for non-programmer participation. Concerning exper-
imental validation, we focus on comprehensibility of a selection
of designed prototype constructs, which is a necessary condition
for non-programmer collaboration in program construction. These
constructs were offered to people in an online survey. It turned out
that participants (N = 43) were quite capable of grasping the work-
ings of these constructs, with an average score of 80%. Limited to
the main target audience (N = 14), the results were even better:
85%.

1. Introduction
This paper presents and validates parts of the design of Marama,
a general purpose Visual Modern Functional Programming Lan-
guage (VMFPL), intended to reduce the gap between programmers
and non-programmers in creating serious, reliable, programs. An
essential target audience of Marama is the following. In some or-
ganisations (such as ours), critical information systems are created
in collaboration between analytically and academically trained, but
non-programming, in-house experts in the field of application of
the system, and programmers. Marama will allow these experts to
participate in constructing systems up to an easily comprehensi-
ble layer, and as such speeding up system development. However,
where possible it is designed to be accessible to a wider audience.

[Copyright notice will appear here once ’preprint’ option is removed.]

Modern Functional Programming Languages (MFPLs) are well
suited for visual representation due to their transformative nature.
Marama’s design is based on visual “twins” of modern functional
programming constructs using spatial metaphors rooted in common
sense or inborn spatial intuition, making the language almost en-
tirely self-explanatory. The implementation strategy is to write a
translation to and from an existing mature modern functional pro-
gramming language, leveraging the extensive amount of work done
in the field of the latter. To the best of our knowledge, a language
combining the mentioned features, scope and approaches does not
yet exist. In this article, we experimentally validate one aspect of
the design: the comprehensibility of the designed visual program-
ming constructs for non-programmers. The experiment consists of
offering a selection of constructs to testpersons (N = 43) in an on-
line survey. Note that the experiment and its results can be read
independently of the other design decisions taken within Marama.
It turns out that non-programming academics were quite capable of
grasping most visual programming constructs.
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1.1 Overall goal
The overall goal of our research project is to bring a programming
environment to non-programmers with the following properties.
It should (1) have a very low threshold to start programming,
(2) allow a seamless scale from very simple to highly advanced
programming, depending on the level of the user, (3) allow users to
assist in creating highly reliable programs, (4) allow users to assist
in the production of highly optimised, high performance, programs
(5) have the benefits of modern programming languages: such as
advanced typing systems and (6) take a minimal amount of time to
develop it.

2. Basic Approach
This section explains the basic approach, and associated design
decisions, chosen to create a language to meet the overall goal. The
requirements of the overall goal are printed with emphasised words.

2.1 Marriage between modern functional programming and
data flow languages

A marriage between visual dataflow languages and MFPLs is an
important ingredient in meeting the requirements of the overall goal
of this study. In visual dataflow languages a program is regarded as
a set of transformations on representations of data flowing through
the system, each box representing a transformation. It is a simple
basic concept with an unambiguous and computational meaning,
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which is easy to understand also by non-programmers. Therefore,
it has a low threshold for usage by non-programmers. The large
majority of dataflow languages, however, are not Turing Complete
(e.g. Orange Canvas), which is in conflict with our goal to create a
serious programming language.

In contrast to this, MFPLs are, as fully fledged programming
languages, evidently Turing Complete. We define MFPLs as lan-
guages which at least support or contain (1) pure functional pro-
gramming, (2) Algebraic Data Structures (ADSs), (3) lazy evalua-
tion (4) pattern matching on ADSs, (5) higher order functions, (6)
a static, strong, type system, which includes parametric, and ad-
hoc, polymorphism, (6) type inferencing, (7) case-statements with
guards and pattern matching and (8) currying of functions [1].

Examples of such languages are Haskell [2], Clean [3] and the
functional part of Scala [4]. Their features make that they meet
other important requirements of our overall goal. These include the
following. First, with MFPLs you can create programs far more
reliably than with many mainstream programming paradigms (of
which language such as Java and C++ are part). This is caused by
the fact it easier to verify (or even formally prove) their correctness
[5, 6]. Second, their high expressivity leads to more concisely and
sharply formulated programs, which in its turn also contributes to
their easier verifiability. Third, there are several highly advanced
compilers for MFPLs which create highly optimised code for the
construction of serious programs.

MFPLs and dataflow languages can be easily integrated, merg-
ing the advantages of both, cf. [7, 8]. This is so, because MFPLs
consist purely of side-effect free transformations of data [2]. Each
transformation can be represented by a dataflow box. In a sense,
functional languages are Turing complete dataflow languages. In
contrast, it is impossible to represent programs in imperative lan-
guages (Java, etc.) as pure data flow structures. For example, con-
trol structures such as loops, absent in (the purely functional part
of) MFPLs, cannot be represented as a dataflow.

2.2 Visual counterparts
An essential part of the basic approach is designing visual counter-
parts to all functional programming constructs. Each visual coun-
terpart consists of a mix of adequate collective visual metaphors
and spatial constructions governed by the laws of physics. The spa-
tial constructions are chosen such that the physical rules which
govern their dynamics, semantically align with the programming
constructs they epitomise. Moreover, these rules are chosen such
that they are obvious to a person with an average spatial intuition.
This means we strive for a language in which the need for defin-
ing the semantics of constructions textually, or even externally, is
minimised. (Sect. 6.3 contains a good example).

The programming constructs which are to be represented vi-
sually to have a full coverage of those found in MFPLs include:
function application, function composition, function definition,
guards, case-statements, recursive definitions, algebraic data struc-
tures (ADSs), pattern matching on ADSs, higher order functions,
explicit typing including polymorphy, parametric polymorphy, cur-
rying and algebraic data types. Note that this list uses a slightly re-
fined categorisation than in the earlier definition of MFPLs, which
is more convenient for the design process of the visual constructs.
Next to these constructs, the feedback provided by the type infer-
ence system should also have a visual counterpart.

2.3 Implementation
The implementation is realised by actually building a 2-way com-
piler between the visual language and an existing MFPL. In this
way, we leverage 100s of humanyears worth of work in MFPL com-
piler and language design, cf. [7].

2.4 Minimisation of Textual Explanations
One of the most distinctive features in the design of Marama, is
that visualisations are designed such that the need to explain them
textually is minimised. This has the following advantages. It low-
ers the threshold to start collaborating in programming, because
there is no need to work through piles of tutorials and textbooks.
Memorising the meaning of constructs is minimised, which makes
it easy to continue using the language also after longer interrup-
tions. We may expect such interruptions to occur more frequently
among non-programmers. An added benefit is that the language can
more easily cross natural language barriers — users from anywhere
in the world can start programming without having to wait for a
translation of the documentation into their language (provided that
the collective visual metaphors, of course, have been chosen ade-
quately).

2.5 Visual and Textual View
Marama features a textual view and a visual view. The textual
view is the target language mentioned in 2.3. The motivation is
that the visual language is in no way intended to replace textual
programming, which has its own benefits.

3. Envisioned Usage
The envisioned uses of the language include and exclude the fol-
lowing. (1) The language is not intended to be a replacement for
textual programming. Textual programs have their own distinctive
features and advantages. Rather, it is intended as a complement
to textual languages, and as an alternative view on the program,
cf. [7]. In our institute, for example, we develop multi-agent sys-
tems, and intend to use Marama primarily as a glue language, to
connect these agents. The agents may (have) be(en) written in any
language. (2) There is an inevitable trade off between expressivity
and difficulty level of programming languages. Marama allows a
program to be expressed in a multi layered structure, using simple
functional constructs in the top layer (function application, func-
tion composition, which coincides with the expressivity of most
dataflow languages), and harder constructs in lower levels. This
allows user-friendliness from non-programmers to programmers,
and gradations in between. Depending on the talent and motiva-
tion of the user, deeper layers of the program are accessible, up to
the deepest, which brings Turing complete expressivity at one’s fin-
gertips. In this way non-programmers and programmers can meet
each other halfway in the programming process, by collaborating in
an overlapping range within the multi-layered structure. (3) A dis-
advantage of functional languages, in comparison with imperative
languages, is that it is in general considered cognitively more dif-
ficult to write parts of programs dealing with changing structures,
such as changes on a computer display (animations), or ongoing
I/O. One may consider to use another language for these parts of
the program. An example of a domain well-suited for functional
programming is datamining, but one may also think of parts of pro-
grams, such as plugins for drawing programs and Web browsers.
However, several MFPLs have been explicitly designed for dealing
with changing structures, while still having the additional benefit
of higher reliability than imperative languages. Therefore, usage
for these problems is encouraged for those able to surmount the
cognitive barrier.

4. Related work
Visual Haskell 1 designed by Reekie [7] has a similar approach: us-
ing a translation between an existing modern functional language

1 Not to confuse with another project with the same name but a completely
different goal.
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(Haskell [2]) and a visual functional language. However, his focus
is on “programmers not familiar with functional programming”,
not on non-programmers. Diagrams are elegant, but cryptic and
certainly not self-explanatory in the sense described in this arti-
cle. They require textual explanations, such as case-statements. An-
other example is that he uses semantically agnostic trees as a base
for different structures, in particular algebraic datastructures.

The Visual Functional Programming Environment of Kelso [8],
is a proto-type environment to create and compile visual functional
programs without being tied to a specific textual functional pro-
gramming language. However, his approach differs from ours in
the same way as Visual Haskell does.

5. Validation
To validate the effectiveness of our current version of visual pro-
gramming constructs, this study first focusses on to what degree
people understand these constructs (without using them to create
programs). Understanding is an essential condition towards par-
ticipation in program creation, albeit not a sufficient one. For this
purpose, a selection of these constructs were offered to 43 testper-
sons, to test their understanding of them. This selection is the fol-
lowing: function application, function composition, function defi-
nition, guards, case-statements, recursive definitions, list-ADSs and
pattern matching on list-ADSs with a fixed length.

The test consists of an online survey with the following rele-
vant details. Each question may be introduced by a number of vi-
sual primers (see Sect. 6.1), or visual examples of the construction
being used. Use of written language is minimised as much as pos-
sible. The questions are mostly questions in which the participant
has to predict the outcome of a small visual program. Examples of
questions can be found in Sect. 6. The survey additionally contains
questions related to the background of the participant: education,
degree of exactness of education(s), professions, age, sex and pro-
gramming experience. Some of these questions are important to
distinguish between programmers and non-programmers, and de-
grees in between.

The test persons were acquired, among other ways, by ap-
proaching arbitrary people on the street and in research facilities,
and by word of mouth. Most were not employed by our institute to
increase objectivity.

The complete survey can, for the time being, be accessed at:
http://survey.x50x.net/limesurvey/index.php

6. Designed Visualisations
This section elaborates on some of the visual programming con-
struct designs tested in the online survey, and aspects surrounding
them.

6.1 Visual primers
During our study, we used visual primers to make understanding
some visual programming constructs easier. Visual primers are
introductory drawings, which contain analogies or examples of
usage of the visual programming constructs to come. For example,
a drawing with a person going through a sliding door was used to
introduce guarded case-statements.

The notion of visual primers may sound slightly contradic-
tory in the face of our goal to make the visual constructions self-
explanatory as much as possible. However, this is mostly an appar-
ent contradiction. First, some unclarities are due to the quality of
the drawings. In future versions, drawings of a better quality will
used, making many primers redundant (such as the sliding door
primer). Second, even if primers continue to be important for some
constructs, most of these constructs remain self-explanatory in the
sense that the complete meaning is contained in them. The users
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Figure 2. Guarded case statement

may simply require some hints to recognise elements in the picture
as they were intended. This is something qualitatively different than
for example Visual Haskell, in which many constructs are defined
in terms of an external definition.

6.2 Function application
Fig. 1 shows function application. A ball which holds the value 3,
goes through a box which adds 5 to it. The result is a ball which
holds 8. This is immediately an example of a survey question: the
question posed here is “Predict what will appear at the ?-mark.”.

6.3 Guarded case statement
Fig. 2 is a guarded case statement. In this case, a ball holding 4
comes in and starts to roll down. When the ball reaches the first
door, it opens because it satisfies the guard (4 > 3). Then the ball
falls through, and continues its way through a box which adds 5
to it, which results in a ball holding 9. The second door is never
reached (although it would have opened if it were reached because
4 < 5 also holds).

This design is a good example of our goal to capture the seman-
tics of the constructions internally: the order in which the doors are
tried is enforced by the mechanical dynamics of the ball, and un-
derstanding the latter is a matter of common sense. In contrast, case
statements in Visual Haskell require an external definition.

6.4 Recursion
Fig. 3 shows a simple recursive definition of box b, integrated with
an example of its application. In the example, the ball holding value
1 enters b, rolls past the first door (because the condition =0? is
not fulfilled), then falls down the always open second hole. It goes
through the −1 sub-box, which subtracts 1, so that a ball holding
value 0 appears. Then the ball enters box b again, here elucidated
with a magnification of a part of the picture (compare with [7]). The
ball continues its way, also passing the identity box, which outputs
the input unchanged.

6.5 Algebraic Data Structures
ADSs pose a challenge. We need a structure which is recursive in
some way, and allows the same manipulations as ADSs in func-
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Figure 3. Simple recursion
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Figure 4. Example of List-Algebraic-Data-Structures (List-ADS)

tional languages, but then naturally enforced by its spatial proper-
ties.

In this stage of the design, the structure is simplified, because
people only participate in a passive comprehensibility study. If they
also create programs, some more restrictions must be imposed on
ADSs. Visual designs for this purpose are already designed but are
beyond scope of this paper.

Fig. 4 depicts list ADSs. A list is a physical construction which
consist of “bricks” which are stacked onto each other. Each brick
has two slots: (1) in this case one to hold an integer, which is a
little stick which can hold the ball with the integer; (2) another one
to hold the rest of the list. A special half-sized brick is reserved to
represent “Nil” - the empty list.

6.6 Visual Pattern Matching
Fig. 5 shows visual pattern matching. The list-pattern is nothing but
a list which visual structure is equal to that of a normal list, except
for the omission of values on the balls. In this example, the first
ball is taken from the list, then the function +1 is applied to it, and
it is consequently put in as the first value of the output-list. The
rest of the list, is transferred unchanged to the same position in the
resulting list.

1

f+1

Figure 5. Visual pattern matching

7. Results
In total 43 people participated, and had all kinds of educational
and professional backgrounds. Table 1 shows the average score of
the total group, and subgroups of participants on different program-
ming comprehension topics. On each topic a participant can score 0
(completely wrong) to 1 (perfect). “n level recursion” refers to the
recursiondepth of the function application of a recursive function.
For example, 1 means that a function called itself exactly once.

Table 1. Average Scores Participants. Scale is a ratio (0-1), unless
indicated otherwise.

Programming experience (1-4) Any Any Any 1 1 or 2
Highest educational level Any ≥Bach. ≥Bach. ≥Bach. ≥Bach.
Exactness of highest edu. (1-5) Any < 5 5 Any 3 or 4
Sample size N 43 26 11 20 14
Function application 0.98 1 1 1 1
Guards 0.9 1 0.82 1 1
Guarded case 0.83 0.87 0.91 0.88 0.86
Function definition 0.95 0.65 0.95 0.98 1
Funct. compos. of nested defs 0.78 0.92 0.64 0.93 0.93
1 level recursion 0.65 0.58 0.91 0.5 0.71
2 level recursion 0.53 0.5 0.82 0.45 0.45
ADS introduction 0.79 0.85 0.82 0.8 0.79
ADS basic 0.81 0.88 0.82 0.85 0.93
Average score 0.8 0.81 0.85 0.82 0.85

7.1 Discussion
The most important overall observation, is that our main target
audience, the subgroup of people who followed Bachelor’s degree
education or higher, were analytically trained (exactness level 3 or
4), but had very limited prior programming experience (level 1 or
2) (N = 14), are quite capable of grasping the visual programming
constructs, with an average score of 0.85. Notable problems were
in the recursion questions, where we observe a drop to about 0.7
(1 level recursion) and 0.45 (2 level recursion). These are still
promising numbers: most of these non-programming participants
also seemed to have understood this concept using the wordless,
visual designs.

The overall score (of people with any background) was quite
high, a score of 0.8 (N = 43), and the group without any prior
programming experience, who followed any Bachelor’s degree ed-
ucation or higher, performed even better, with an average score of
0.82 (N = 20).

Some remarkable deviations are that people with a Bachelor’s
degree education or higher, in a very exact discipline, scored lower
on the topics function composition and guards. Perhaps they were
overconfident and were more prone to make simple calculation
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errors. As could be expected, however, they scored much better
than others on the cognitively more challenging topic of recursion.

Qualitative observations, grouped by topic, include the follow-
ing. (1) Motivation. Several participants indicated the survey hav-
ing been “fun”. A biology student said he was enthusiastic about
the approach, and he had the feeling the language would give him
access to a certain degree of programming, without explicitly hav-
ing to study programming. A professional photographer indicated:
“this is one of the most important research topics in this era!”. A
biologist recalled a computer game he likes to play, which indicates
the playfulness of the designs (which may help lowering the thresh-
old to start programming). Negative responses, which were in the
minority and not inside the main target audience, included: “it is
just like a school examination, I lost hope after some time”. (2) De-
sign: specifically for non-programmers, it was difficult to grasp the
notion of recursion without an example. The recurring function was
often not regarded as a self-reference, but as a new, other function.
Adding an example execution, seemed to lead to major improve-
ments. During a preliminary field experiment (before the survey
was constructed), it turned out that the case-statement required a
primer drawing (see 6.1) of a ball rolling down. Otherwise, most
people interpreted the drawing as a ball “flying” over the guarded
doors, which doesn’t enforce any order in which the doors are tried.

8. Future Work
Future work will (or may) include the following. First, the exist-
ing designs will be improved to increase their comprehensibility,
in particular recursion. For this purpose, the participants will be
interviewed to discover the source of misinterpretations. Second,
we will create and test designs which cover more of the remaining
mentioned constructs (see Sect. 2.2), to wit general ADSs (not only
lists of fixed length), general pattern matching on ADSs, higher
order functions, explicit typing including polymorphy, parametric
polymorphy and currying. Third, it may be quite effective to cre-
ate animations to exemplify the working of a construct, as was also
suggested by some of the participants.

Most importantly, we will extend the test beyond a compre-
hensibility study toward actual program (co-)creation by non-
programmers, by further developing the prototype language Marama.

9. Conclusion
The main target audience of Marama, analytically trained aca-
demics, with minimal to no prior exposure to programming (N =
14), turned out to be capable of grasping the visual programming
constructs quite well, with an average score of 0.85. More than half
of them were capable of grasping the principle of the most difficult
concept in the experiment: recursion.

The overall score (of people with any background) was quite
high, a score of 0.8 (N = 43), and the group without any prior
programming, who followed any Bachelor’s degree education or
higher, performed even better, with an average score of 0.82 (N =
20).
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