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Abstract
Dynamic programming is a technique for designing algorithms
to solve certain optimisation problems. It is similar to the divide-
and-conquer method in that a problem is split into subproblems
that are recursively solved, and the subsolutions are combined
to form a final solution. However, unlike divide-and-conquer, the
subproblems are not necessarily independent. Indeed, the efficiency
of dynamic programming algorithms relies on sharing the solutions
to subproblems that are revisited. The usual approach to dynamic
programming is to use an array to store the subsolutions. The
construction of the array begins with base cases, and must carefully
respect the dependencies that subsolutions have.

As a motivating example, we will be considering the minimum
edit distance problem, which nicely demonstrates how a recursive
definition can be turned into a more efficient dynamic algorithm. In
this problem we are concerned with finding the minimal edit distance
of two strings. One such measure is the Levenshtein distance, which
is the minimum number of substitutions, insertions, and deletions of
single characters that can be made to turn one string into another.

editDist1 :: (String,String)→ N
editDist1 (xs, [ ]) = length xs
editDist1 ([ ],ys) = length ys
editDist1 (xs@(x : xs′),ys@(y : ys′)) =

minimum [editDist1 (xs, ys′)+1,editDist1 (xs′,ys)+1,
editDist1 (xs′,ys′)+ if x y then 0 else 1]

In the base cases, a string can be turned into an empty one by
deleting all its characters (or conversely, an empty string can be
turned into a string by inserting that those characters), which takes
as many operations as there are characters. When both strings are
non-empty we have choices: we can delete the first character from
either xs or ys or we can substitute the first character of xs for that
of ys if they differ. Whatever the choice, we add the cost of the
operation to the minimum distance of the ensuing strings.

Such simple recursive equations are often a good starting point
when describing algorithms, but can be terribly inefficient. In this

∗ This work has been funded by EPSRC grant number EP/J010995/1.

[Copyright notice will appear here once ’preprint’ option is removed.]

case, we can save ourselves exponential work by sharing the results
of previously encountered subproblems.

The typical means of improving efficiency is to tabulate the
intermediate results in an array that is indexed by the parameters of
the function. Here, however, the parameter is a pair of strings, and
indexing such values in an array is not generally desirable. We can
massage this problem away by instead passing indices that indicate
the remaining length of the string that is being inspected.

editDist2 :: (String,String)→ N
editDist2 (xs,ys) = table ! mn where

mn = (length xs, length ys)
table = tabulate ((0,0),mn) editDist
editDist (i,0) = i
editDist (0, j) = j
editDist (i@(i′+1), j@(j′+1)) =

minimum [table ! (i, j′) +1, table ! (i′, j)+1,
table ! (i′, j′)+ if xs !! i′ ys !! j′ then 0 else 1 ]

This makes use of the function tabulate, which constructs a table
that is mutually dependant on the function editDist.

tabulate :: (Ix i)⇒ (i, i)→ (i→ e)→ Array i e
tabulate ixs f = array ixs [(i, f i) | i← range ixs ]

Although this code mirrors its specification quite closely, we shall
see that by moving to a more abstract setting, we can do better yet.

Our general approach will be to use structured recursion schemes.
The seed for many of these ideas finds its roots in histomorphisms,
introduced as a recursion scheme for course-of-values recursion
by Uustalu and Vene [8]. For dynamic programming, however, this
scheme suffers from a serious limitation: the coalgebra is restricted
to be the inverse of an initial algebra, which rules out its application
to many problems. The restriction on the coalgebras was later lifted
by Kabanov and Vene [7] with the introduction of dynamorphisms,
although the development was restricted to the setting of CPO.
However, it was known at the time that histomorphisms, which
are closely related, are an instance of recursion schemes from
comonads [9], which in turn can be generalised to the setting of
recursive coalgebras [3]. A somewhat surprising result by Hinze
et al. [6] showed that recursive schemes from comonads could
be unified with adjoint folds. This work was applied directly to
dynamic programming by Hinze and Wu [4], where bialgebras
and dicoalgebras played a central role of the proofs. The setting
of adjoint folds was generalized to cover all forms of conjugate
hylomorphisms by Hinze et al. [5], where further examples of
dynamic programming were given. In particular, they showed how
algorithms with finite lookup tables can be expressed in terms of
para-hylos. There remains, however, one wrinkle in the story: in all
these approaches, the intermediate values are stored in structures
with linear lookup times.
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The aim of this work is to show how structured recursion schemes
can be used to express dynamic programming algorithms without
resorting to linear lookup structures. We do so by building an
intermediate structure with sharing. The result can be thought of
as a nexus, which were discussed in a similar context by Bird and
Hinze [2]. Bird [1] later showed how nexuses could be used as the
intermediate structure of hylomorphisms.

For a taste of the development to come, we will be working with
the following base functor that more closely follows the structure of
the recursion:

data EditDist x = Base String |Other Char Char x x x
instance Functor EditDist where

fmap f (Base xs) = Base xs
fmap f (Other x y u v w) =Other x y (f u) (f v) (f w)

The following algebra for this base functor performs the work of
turning problems into solutions.

editDistA ::EditDist N→ N
editDistA (Base xs) = length xs
editDistA (Other x y u v w) =

minimum [u+1,v+1,w+ if x y then 0 else 1]

This algebra can be used to deconstruct values that have been set up
by the corresponding coalgebra:

editDistC :: (String,String)→ EditDist (String,String)
editDistC (xs, [ ]) = Base xs
editDistC ([ ],ys) = Base ys
editDistC (xs@(x : xs′),ys@(y : ys′)) =

Other x y (xs,ys′) (xs′,ys) (xs′,ys′)

Now, it so happens that in Haskell we can use both the fold of
the algebra and the unfold of the coalgebra to obtain the following
(inefficient) solution:

editDist3 :: (String,String)→ N
editDist3 = editDistA · editDistC .

We will show how the intermediate datastructure can be gen-
erated from the cofree comonad, rather than directly from the un-
folding of the coalgebra editDistC, and further demonstrate how
this can be done in such a way that sharing is preserved between
nodes. Much of this work is inspired by categorical machinery that
may not be familiar to most programmers. Our goal is to keep the
use of such machinery light, and to focus on the details of practical
implementation, rather than on the body of theory that is already
established.
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