
Practical Dependently-Typed Programming for the Web
Correct and Secure Web Programming using Dependent Types and Embedded

Domain-Specific Languages

Simon Fowler Edwin Brady
School of Computer Science, University of St Andrews, St Andrews, Scotland

Email: {sf37, ecb10}@st-andrews.ac.uk

Abstract
Dependently-typed languages allow very expressive types to be
used during development, in turn facilitating easier reasoning about
the operation of programs written in such languages. Stronger type
specifications do however bring with them the disadvantage that it
becomes increasingly difficult to write programs that are accepted
by the type checker and additional proofs may have to be specified
by a user.

Embedded domain-specific languages (EDSLs) address this
problem by introducing a layer of abstraction over more specific
underlying types, allowing domain-specific code to be written in
high-level languages which use dependent types to enforce certain
invariants without additional proof obligations.

In this paper, we apply this technique to web programming,
and introduce an EDSL to facilitate the creation and handling of
web forms which retain type information, reducing the scope for
programmer error and attacks such as SQL injection. We also show
how to enforce resource usage protocols associated with common
web operations such as CGI, database access and session handling.

1. Introduction
Web applications, whilst ubiquitous, are also prone to incorrect
construction and security exploits such as SQL injection [12] or
cross-site scripting [11]. Security breaches using such exploits are
far-reaching, and high profile cases involve large corporations such
as Sony, who suffered a well-publicised and extremely costly SQL
Injection breach in 2011 [7], and Yahoo!, who suffered a breach in
2012 [8].

Many web applications are written in dynamically-checked
scripting languages such as PHP, Ruby or Python, which facil-
itate rapid development [20]. A significant drawback, however,
is that such languages do not provide the same static guarantees
about runtime behaviour afforded by programs with more expres-
sive, static type systems, instead relying on extensive unit testing
to ensure correctness and security.

Let us consider a simple database access routine, written in PHP,
where we wish to obtain the name and address of every employee

[Copyright notice will appear here once ’preprint’ option is removed.]

working in a given department, $dept. We firstly construct an
object representing a database connection, where the arguments are
the database host, user, password and name respectively:

$conn = new mysqli("localhost", "username",
"password", "db");

We then check to see if the connection was successful, and exit
if not. This check is optional, so it would be possible to omit it.
However, this would cause problems with later steps.

if (mysqli_connect_errno()) {
exit();

}

We then create a prepared statement detailing our query, and bind
the ‘dept’ value:

$stmt = $conn->prepare("SELECT ‘name‘, ‘address‘
FROM ‘staff‘ WHERE ‘dept‘ = ?);

$stmt->bind_param(’s’, $dept);

After the parameters have been bound, we execute the statement,
assign variables into which results will be stored, and fetch each
row in turn. Failure to execute a statement before attempting to
fetch rows would cause an error, as would attempting to execute a
statement without binding variables to it.

$stmt->execute();
$stmt->bind_result($name, $address);
while ($stmt->fetch()) {

printf("Name: %s, Age: %s", $name, $age);
}

Finally, once the statement and connection are no longer needed,
they should be closed in order to discard the associated resources:

$stmt->close();
$conn->close();

Even in this small example, there exists a specific resource usage
protocol. Firstly, a connection to the database must be opened. The
object-oriented style used in the example encapsulates this to an
extent, as the object must be created in order for operations to be
performed, however it is less obvious in a procedural version of the
code. Secondly, a prepared statement is created, using the raw SQL
and placeholders to which variables are later bound. The statement
is then executed, and each row is retrieved from the database.
Finally, the resources are freed.

Problems may arise if the protocol is not followed correctly. A
developer may, for example, accidentally close a statement whilst
still retrieving rows, which would cause a runtime error. Similarly,
a programmer may omit closing the statement or connection, which

1 2013/8/21

can lead to problems such as resource leaks in longer-running
server applications. However, in conventional programming lan-
guages, there is no way to check automatically that a protocol is
followed.

In contrast, the use of dependent types makes it possible to spec-
ify a program’s behaviour precisely, and to check that a specifica-
tion is followed. The difficulty is that automatic verification by a
compiler can be difficult or often impossible, requiring additional
proofs to be given by the programmer.

This complexity can be ameliorated through the use of embed-
ded domain-specific languages (EDSLs), which aim to abstract
away the complexity of the underlying type system. EDSLs al-
low domain experts to write verified domain-specific code, with
the EDSL itself providing the implicit proof that the written code
is correct.

IDRIS [3] is a language with full dependent types, and exten-
sive support for EDSLs through overloading and syntax macros.
Through the use of IDRIS, and a framework for describing resource
protocols using algebraic effects [4], we present a dependently-
typed web framework, which allows the construction of programs
with additional guarantees about correctness and security, whilst
minimising the increase in development complexity.

1.1 Contributions
The primary contribution of this paper is the application of depen-
dent types to provide strong static guarantees about the correctness
and security of web applications, whilst minimising additional de-
velopment complexity. In particular, we present:

• A form-handling mechanism, which preserves type information
and manages user input, therefore increasing applications’ re-
silience to attacks such as SQL injection and cross-site script-
ing.

• Representations of CGI, Databases and sessions as resource-
dependent algebraic effects, allowing programs to be accepted
only when they follow clearly defined resource usage protocols.

• A message board application, demonstrating the usage of the
framework.

We structure the remainder of this paper as follows. We provide
a brief overview of the Effects framework in Section 2; explain
how this may be used to ensure adherence to resource usage proto-
cols for CGI, SQLite and a session handler in Section 3; describe
an EDSL for type-safe form handling in Section 4, implemented
using Effects; and discuss the larger example of a message board
system making use of these components in Section 5.

The code used to implement the framework and all associated
examples used in this paper is available online at http://www.
github.com/SimonJF/IdrisWeb.

2. An overview of the Effects framework
Effects [4] is an IDRIS library which handles side-effects such as
state, exceptions, and I/O as algebraic effects [16]. In particular,
it supports parameterising effects by an input and output state,
which permits effectful programs to track the progress of a resource
usage protocol. Effectful programs are written in a monadic style,
with do-notation, with their type stating which specific effects are
available. Effectful programs are described using the following data
type, in the simplest case:

Eff : (m : Type -> Type) ->
(es : List EFFECT) -> (a : Type) -> Type

Eff is parameterised over a computation context, m, which de-
scribes the context in which the effectful program will be run, a

list of side effects es that the program is permitted to use, and the
programs return type a. The name m for the computation context is
suggestive of a monad, but there is no requirement for it to be so.

For example, the following type carries an integer state, throws
an exception of type String if the state reaches 100, and runs in a
Maybe context:

addState : Eff Maybe [STATE Int, EXCEPTION String] ()
addState = do val <- get

when (val == 100) (raise "State too big")
put (val + 1)

2.1 Implementing Effects
Effects such as state and exception are described as algebraic data
types, and run by giving handlers for specific computation contexts.
Effects have a corresponding resource (in the case of state, the re-
source is simply the current state). Executing an effectful operation
may change the resource and return a value:

Effect : Type
Effect = (in_res : Type) -> (out_res : Type) ->

(val : Type) -> Type

For example, the state effect is described as follows:

data State : Effect where
Get : State a a a
Put : b -> State a b ()

That is, Get returns a value of type a without updating the
resource type. Put returns nothing, but has the effect of updating
the resource. In order to make an effect usable, we implement a
handler for a computation context by making an instance of the
following class:

class Handler (e : Effect) (m : Type -> Type) where
handle : res ->

(eff : e res res’ t) ->
(k: res’ -> t -> m a) -> m a

The handle function takes the input resource, an effect which
may update that resource and execute a side-effect, and a contin-
uation k which takes the updated resource and the return value of
the effect. We use a continuation here primarily because there is no
restriction on the number of times a handler may invoke the contin-
uation (raising an exception, for example, will not call the continu-
ation). Reading and updating states in handled for all computation
contexts m as follows:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k n ()

Finally, we promote State into a concrete effect STATE, and
the Get and Put operations into functions in Eff, as follows:

STATE : Type -> EFFECT
STATE t = MkEff t State

get : Eff m [STATE x] x
get = Get

put : x -> Eff m [STATE x] ()
put val = Put val

A concrete effect is simply an algebraic effect type paired with
its current resource type. This, and other technical details, are
explained in full elsewhere [4]. For the purposes of this paper, it
suffices to know how to describe and handle new algebraic effects.

2 2013/8/21

http://www.github.com/SimonJF/IdrisWeb
http://www.github.com/SimonJF/IdrisWeb

2.2 Resource Protocols as Effects
More generally, a program might modify the set of effects available.
This might be desirable for several reasons, such as adding a new
effect, or to update an index of a dependently typed state. In this
case, we describe programs using the EffM data type:

EffM : (m : Type -> Type) ->
(es : List EFFECT) -> (es’ : List EFFECT) ->
(a : Type) -> Type

EffM is parameterised over the context and type as before, but
separates input effects (es) from output effects (es’). In fact, Eff
is defined in terms of EffM, with equal input/output effects. We can
use this to describe how effects follow resource protocols. A simple
example is a file access protocol, where a file must be opened
before it is read or written, and a file must be closed on exit:

data FileIO : Effect where
Open : String -> (m : Mode) ->

FileIO () (OpenFile m) ()
Close : FileIO (OpenFile m) () ()

ReadLine : FileIO (OpenFile Read)
(OpenFile Read) String

WriteLine : String ->
FileIO (OpenFile Write)

(OpenFile Write) ()
EOF : FileIO (OpenFile Read)

(OpenFile Read) Bool

Note that the types of the input and output resources de-
scribes how resource state changes in each operation: opening a
file changes an empty resource to a resource containing an open
file; reading a line is only possible if the resoource is a file open
for reading, etc. The handler for this effect for an IO computation
context will execute the required primitive I/O actions, as well as
throwing an exception if any operation fails.

The following program type checks, and therefore implicitly
carries a proof that the file resource protocol is followed correctly:

testFile : Eff IO [FILE_IO (), STDIO] ()
testFile = catch (do open "testFile" Read

str <- readLine
close
putStrLn str)

(\err => putStrLn ("Error: " ++ show err))

The type of testFile states that File I/O and console I/O are
available effects, and in particular that the resource associated with
the File I/O will be in the same state on entry and exit. Therefore,
attempting to write to the file, or failing to open or close the file,
would cause a compile-time error.

We will use this technique extensively throughout this paper:
describe a resource usage protocol in terms of state transitions;
implement an effect which captures that protocol; implement pro-
grams which, by using this effect, implicitly carry a proof that the
resource protocol has been correctly followed.

3. Modelling resource usage protocols
In this section, we show how three such effects; CGI, database
access and a simple session handler, may be implemented, and
describe the benefits of developing programs using this technique
over simply handling them in the IO context or as part of a monad
transformer.

3.1 CGI
CGI is used to invoke an application on a web server, making use of
environment variables to convey information gained from an HTTP

Uninitialisedstart

Initialised

TaskRunning

TaskCompleted

HeadersWritten

ContentWritten

initialise

startTask

finishTask

writeHeaders

writeContent

Figure 1. CGI States

request and using standard output to communicate with the remote
client. Importantly, HTTP headers must be correctly written to the
browser prior to any other output; failure to do so will result in an
internal server error being shown.

A previous implementation of CGI in IDRIS implemented CGI
an extension of monadic IO, as in Haskell. Whilst basic functional-
ity worked correctly, this approach had several disadvantages; most
notably, it was possible to perform arbitrary IO at any point in the
program. If this were to happen, then the program would fail due to
the fact that headers had not been written to the client.

By modelling CGI as a resource-dependent algebraic effect, we
may enforce a resource usage protocol which, even though the pro-
gram may be running in an IO execution context, prevents arbitrary
IO from being performed and therefore ensures that the headers
are written correctly. In order to accomplish this, we define an ef-
fect, Cgi, and an associated resource, InitialisedCGI, which is
parameterised over the current state, CGIStep. This resource de-
scribes the current state, alongside a CGIInfo record which con-
tains information from the request. We represent an uninitialised
CGI process as the unit type, ().

data CGIStep = Initialised
| TaskRunning
| TaskCompleted
| HeadersWritten
| ContentWritten

data InitialisedCGI : CGIStep -> Type where
ICgi : CGIInfo -> InitialisedCGI s

Figure 1 shows the states through which the CGI program pro-
gresses, and Figure 2 shows how this is represented as a resource-
dependent algebraic effect. Each operation performed in an effect-
ful program requires the resource to be of a certain type, and the
completion of the operation may alter the type or value of the re-
source.

Upon creation, the CGI application is uninitialised, meaning
that environment variables have not been queried to populate the
CGI state. The only operation that can be performed in this state
is initialisation: by calling initialise, a CGIInfo record is pop-

3 2013/8/21

ulated, and the state transitions to Initialised. The Init opera-
tion is defined as part of the Cgi effect, and involves transitioning
from the uninitialised state to the initialised state.

data Cgi : Effect where
Init : Cgi () (InitialisedCGI Initialised) ()
StartRun : Cgi (InitialisedCGI Initialised)

(InitialisedCGI TaskRunning) ()
FinishRun : Cgi (InitialisedCGI TaskRunning)

(InitialisedCGI TaskCompleted) ()
WriteHeaders : Cgi (InitialisedCGI TaskCompleted)

(InitialisedCGI HeadersWritten) ()
WriteContent : Cgi (InitialisedCGI HeadersWritten)

(InitialisedCGI ContentWritten) ()
OutputData : String ->

Cgi (InitialisedCGI TaskRunning)
(InitialisedCGI TaskRunning) ()

RunAction : Env IO (CGI (InitialisedCGI TaskRunning)
:: effs) ->

CGIProg effs a ->
Cgi (InitialisedCGI TaskRunning)

(InitialisedCGI TaskRunning) a

Figure 2. CGI Effect

Additional operations, including those to query POST and GET
variables, are omitted in the interest of brevity.

User code executes in the TaskRunning state. Several opera-
tions, such as querying the POST and GET variables, are available
in this state, alongside functions to output data to the web page and
append data to the response headers. It is important to note, that
at this stage nothing is written to the page, with the output and
addHeader functions instead modifying the CGIInfo record. This
data may then be printed at the end of the program’s execution, in
accordance with the resource usage protocol.

After the user code has finished execution, control returns to the
library code. At this point, the state transitions to TaskCompleted,
and the headers are written. Finally, the headers and content are
written which completes the process. Since we parameterise the
resource over a state, we may ensure that certain operations only
happen in a particular prescribed order.

In IDRIS, types are first-class, meaning that they may be treated
like other terms in computations. We may therefore define the
following type synonym, which we may use in order to make use
of the CGI framework:

CGIProg : List EFFECT -> Type -> Type
CGIProg effs a =
Eff IO (CGI (InitialisedCGI TaskRunning) :: effs) a

This is then passed, along with initial values for other effects that
the user may wish to use, to the runAction function, which invokes
the RunAction operation and executes the user-specified action.

A simple “Hello, world!” program would be defined as follows:

module Main
import Cgi

sayHello : CGIProg [] ()
sayHello = output "Hello, world!"

main : IO ()
main = runCGI [initCGIState] sayHello

3.2 Database access with SQLite
SQLite1 is a lightweight SQL database engine often used as simple,
structured storage for larger applications. We make use of SQLite

1 http://www.sqlite.org

Uninitialisedstart

ConnectionOpened

PreparedStatementOpen

PreparedStatementBinding

PreparedStatementBound

PreparedStatementExecuting

openDB
closeDB,
connFail

prepareStatementstmtFail

startBind

finishBind

bindFail

beginExecution

finalise

executeFail

nextRow,
reset

Figure 3. Database Resource Usage Protocol

due to its simplicity, although we envisage that these concepts
would be applicable to more complex database management sys-
tems.

The creation, preparation and execution of SQL queries has
a specific usage protocol, with several possible points of failure.
Failure is handled in traditional web applications by the generation
of exceptions, which may be handled in the program. Handling
such exceptions is often optional, however, and in some cases
unhandled errors may cause a deployed web application to display
an error to the user. Such errors can be used to determine the
structure of an insecure SQL query, and are often used by attackers
to determine attack vectors for SQL injection attacks.

Figure 3 shows a resource usage protocol for database access,
which we have implemented for the SQLite library. This is encap-
sulated by the Sqlite effect (Figure 4; we again omit some op-
erations, such as those to bind and retrieve data types other than
String, in the interest of brevity).

There are three main phases involved in the usage of the SQLite
protocol: connection to the database, preparation of a query, and
execution of the query. This is reflected in the associated resource
SQLiteRes, which again is parameterised by the current protocol
state.

data SQLiteRes : Step -> Type where
OpenConn : DBPointer -> SQLiteRes s
OpenStmt : DBPointer -> StmtPointer -> SQLiteRes s
ExecutingStmt : DBPointer ->

StmtPointer ->
StepResult ->
SQLiteRes s

data DBPointer = ValidConn Ptr
| InvalidConn

data StmtPointer = ValidStmt Ptr
| InvalidStmt

If a failure happens at any point during the computation, the re-
source is updated to reflect the failure: if, for example, the library

4 2013/8/21

data Sqlite : Effect where
OpenDB :

String ->
Sqlite ()

(SQLiteRes ConnectionOpened) Bool
CloseDB :

Sqlite (SQLiteRes ConnectionOpened) () Bool
PrepareStatement :

String ->
Sqlite (SQLiteRes ConnectionOpened)

(SQLiteRes PreparedStatementOpen) Bool
StartBind :

Sqlite (SQLiteRes PreparedStatementOpen)
(SQLiteRes PreparedStatementBinding) ()

BindText :
ArgPos -> String -> Int ->
Sqlite (SQLiteRes PreparedStatementBinding)

(SQLiteRes PreparedStatementBinding)
Bool

FinishBind :
Sqlite (SQLiteRes PreparedStatementBinding)

(SQLiteRes PreparedStatementBound)
Bool

ExecuteStatement :
Sqlite (SQLiteRes PreparedStatementBound)

(SQLiteRes PreparedStatementExecuting) ()
Finalise :

Sqlite (SQLiteRes PreparedStatementExecuting)
(SQLiteRes ConnectionOpened)
Bool

GetColumnText :
Int ->
Sqlite (SQLiteRes PreparedStatementExecuting)

(SQLiteRes PreparedStatementExecuting)
String

RowStep :
Sqlite (SQLiteRes PreparedStatementExecuting)

(SQLiteRes PreparedStatementExecuting)
StepResult

Figure 4. Database Effect

failed to create a connection to the database, the resource value
would be updated to OpenConn InvalidConn. At this point, no
further side-effecting requests are made to the underlying SQLite
library, in order to ensure safety. The connFail, stmtFail,
bindFail and executeFail utility functions allow for failures,
once detected, to be handled by executing the appropriate sequence
of state transition functions to dispose of any open resources and
return to the initial protocol state.

SQL queries are evaluated in SQLite upon a call to the C library
function sqlite3 step(). In the case that a statement returns a
result set, each subsequent call retrieves another row for processing
using a column access function. Once all rows have been retrieved,
the library returns SQLITE DONE, meaning that no further calls
should be made without resetting the function. We encapsulate
this requirement through the StepResult data type within the
ExecutingStmt constructor.

data StepResult = Unstarted
| StepFail
| StepComplete
| NoMoreRows

Each call to nextRow, which is a wrapper around the underly-
ing sqlite3 step() C library function, returns a result of type
StepResult, which is then reflected in the resource. Calls to
sqlite3 step() are only executed if the previous StepResult is
either Unstarted or StepComplete. We may therefore statically
guarantee that only calls that will return a valid result are executed.

By incorporating pointers to open connections and prepared
statements into the resource associated with the effect, we introduce
a further layer of abstraction, in order to hide implementation
details from the developer and encourage cleaner, less error-prone
code.

3.2.1 Example Code
Programs making use of the DSL should look familiar to devel-
opers even without a background in functional programming. To
demonstrate the functionality of the library, we return to the previ-
ous example of selecting the names and addresses of all staff work-
ing in a given department. Due to the fact that the Effects library
overloads the bind operator, we may make use of do-notation, fa-
cilitating the usage of an imperative style.

We define a function of type:

String ->
Eff IO [SQLITE ()] (Either String (List (String, String)))

This means that the program will be run in the IO execution context,
and must start and end with no active resources. The return type
indicates that either a list of (String, String) pairs, representing
names and addresses in the database, or an error will be returned.

testSelect : String -> Eff IO [SQLITE ()]
(Either String (List (String, Int)))

testSelect dept = do
open_db <- openDB "people.db"
if open_db then do

let sql = "SELECT name, address FROM ‘staff‘
WHERE dept = ?;"

sql_prep_res <- prepareStatement sql
if sql_prep_res then do

startBind
bindText 1 dept
finishBind
beginExecution
results <- collectResults
finaliseStatement
closeDB
return $ Right results

else do err <- stmtFail
return $ Left err

else do err <- connFail
return $ Left err

The program initially attempts to open a connection to the people.db
database. At this point, since the OpenDB operation has been in-
voked, the program transitions to the ConnectionOpened state.
The openDB function returns a Boolean value indicating whether
or not the operation is successful. If not, then the connFail func-
tion is called to generate an appropriate error and dispose of the
resources, as shown in 3.

A call to prepareStatement attempts to create a prepared
statement, and a subsequent call to beginExecution allows data
to be retrieved from the database.

CollectResults is a simple function which makes a call to
nextRow in order to make the next row of the result set available
for processing, and uses the getColumnText and getColumnInt
functions to retrieve the data from the database. This function is
then recursively called until there are no more rows to process.

collectResults :
Eff IO
[SQLITE (SQLiteRes PreparedStatementExecuting)]
(List (String, Int))

collectResults = do
step_result <- nextRow
case step_result of

StepComplete => do name <- getColumnText 1
age <- getColumnInt 2

5 2013/8/21

xs <- collectResults
return $ (name, age) :: xs

NoMoreRows => return []
StepFail => return []

In order to decrease unnecessary boilerplate code in user applica-
tions, we provide functions which abstract out unnecessary parts of
this process. In order to do this, we define the algebraic data type
DBVal, which is a tagged union over simple primitive types:

data DBVal = DBInt Int
| DBText String
| DBFloat Float
| DBNull

We also make use of the ResultSet type, which is a list of returned
database rows.

ResultSet : Type
ResultSet = List (List DBVal)

Using these, we may implement a function, ExecuteSelect,
which, given a query, a list of variables to bind and their associ-
ated indices within the query, and a function which is used to ex-
tract information out of each returned database row, returns either
a ResultSet or an error.

executeSelect :
String -> String -> List (Int, DBVal) ->
(Eff m [SQLITE (SQLiteRes PreparedStatementExecuting)]

(List DBVal)) ->
Eff m [SQLITE ()] (Either String ResultSet)

3.3 A Simple Session Handler
More complex web applications require some persistent state
across separate requests. This is often done through an abstraction
of a session, wherein a cookie is set on the remote host contain-
ing a unique session ID, which is in turn used to retrieve data. In
this section, we describe the implementation of a simple session
handler, and the resource usage protocol involved.

A major strength of the Effects library is that it allows for
simple composition of individual, fine-grained effects. By combin-
ing the individual CGI and SQLite components, we may construct
a simple session handler to provide a notion of state across separate
web requests.

We implement this by having a SQLite database, containing two
tables: session, which stores session keys and their associated
expiry dates, and sessiondata, which contains the data associated
with each session. A datum associated with the session is described
as a tagged union containing one of the primitive types String,
Bool or Int, which is serialised alongside a type tag for storage in
the database.

Figure 6 shows the resource usage protocol associated with the
session handler, and Figure 5 the corresponding algebraic effect. In
this application, there exist two states: In SessionUninitialised,
the user may load or create a session. In SessionInitialised,
the user may update the representation of the session in mem-
ory, serialise the session and write it to the database, or delete the
session and invalidate the user’s session key. The introduction of
these two states ensures that changes are explicitly either written or
discarded, eliminating the possibility of a developer updating the
session but neglecting to commit it to persistent storage. This, of
course, is under the assumption that the process exits cleanly: we
attempt to facilitate this by writing total functions where possible.

Much like the SQLite effect, we encapsulate failure by reflect-
ing it in the resource associated with the effect.

data SessionStep = SessionUninitialised
| SessionInitialised

data Session : Effect where
LoadSession :
SessionID ->
Session (SessionRes SessionUninitialised)

(SessionRes SessionInitialised)
(Maybe SessionData)

UpdateSession :
SessionData ->
Session (SessionRes SessionInitialised)

(SessionRes SessionInitialised) ()
CreateSession :

SessionData ->
Session (SessionRes SessionUninitialised)

(SessionRes SessionInitialised)
(Maybe SessionID)

DeleteSession :
Session (SessionRes SessionInitialised)

(SessionRes SessionUninitialised) Bool
WriteToDB :

Session (SessionRes SessionInitialised)
(SessionRes SessionUninitialised) Bool

DiscardSessionChanges :
Session (SessionRes SessionInitialised)

(SessionRes SessionUninitialised) ()
GetSessionID :

Session (SessionRes SessionInitialised)
(SessionRes SessionInitialised)
(Maybe SessionID)

GetSessionData :
Session (SessionRes SessionInitialised)

(SessionRes SessionInitialised)
(Maybe SessionData)

Figure 5. Session Effect

SessionUninitialisedstart

SessionInitialised

loadSession,
createSession

writeToDB,
discardSessionChanges,
deleteSession

updateSession

Figure 6. Session Handler Resource Usage Protocol

data SessionRes : SessionStep -> Type where
InvalidSession : SessionRes s
ValidSession : SessionID ->

SessionData ->
SessionRes s

The SessionRes data type is parameterised over the current state,
which determines which operations may be performed, and has two
constructors: InvalidSession and ValidSession. If an opera-
tion such as creating a new session fails, no further side-effecting
calls will be made, in turn preserving integrity.

4. Type-aware form handling
Programming web applications often involves processing user data,
which may then be used in further effectful computations. Data
submitted using a form is transmitted over the internet as a string
as part of an HTTP request, which traditionally involves losing
associated type information.

This can in turn lead to risks; developers may assume that data
is of a certain type, and therefore discount the possibility that it
may have been modified by an attacker. One example would be

6 2013/8/21

the traversal of paginated data, in which a form is used to make a
request to retrieve the next page of data. This may involve sending
an integer detailing the current page, which could be used in a query
such as:

’SELECT ‘name‘, ‘address‘ FROM ‘staff‘ LIMIT ’ +
page + ’, 5’;

The page variable is assumed to be an integer, but may instead be
modified by an attacker to include a malicious string which would
alter the semantics of the query, allowing an attacker to execute a
blind SQL injection attack.

In this section, we present a mechanism by which we introduce
a DSL for the creation of web forms which preserve type informa-
tion, implemented as a dependent algebraic effect. Once the form
has been submitted, retrieved information is passed directly to a
developer-specified function for handling, without the need to man-
ually check and deserialise data.

We begin with a simple example of a form which requests a
user’s name, and echoes it back. Firstly, we define a form handler
which echoes back a string provided by the form handler. It has
one argument of type Maybe String, which accounts for the pos-
sibility that the user may have specified incorrect data within the
form.

sayHello : Maybe String ->
FormHandler [CGI (InitialisedCGI TaskRunning)]

sayHello (Just name) = output ("Hello, " ++ name ++ "!")
sayHello _ = output "Error!"

We then specify this in a list of handlers, detailing the argu-
ments, available effects, handler function and unique identifier:

handlers : HandlerList
handlers = [(handler args=[FormString],

effects=[CgiEffect],
fn=sayHello,
name="sayHello")

]

We also define a form to take in a name from the user, and
specify that it should use the sayHello handler.

showHelloForm : UserForm
showHelloForm = do

addTextBox "Name" FormString Nothing
useEffects [CgiEffect]
addSubmit sayHello handlers

Finally, we specify that if data has been submitted for process-
ing, then it should be passed to the form handler. If not, then the
form should be shown.

cgiHello : CGIProg [] ()
cgiHello = do

handler_set <- isHandlerSet
if handler_set then do

handleForm handlers
return ()

else do
addForm "nameform" "helloform" showHelloForm
return ()

main : IO ()
main = runCGI [initCGIState] cgiHello

When this CGI application is invoked, it will begin by outputting a
form to the page, requesting a name from the user. Upon submis-
sion of the form, the form handler will be invoked, and the name
will be used in the output.

In Sections 4.1 and 4.2, we examine implementation of the
form-handling system: namely, the effect which allows the creation

of forms, and the handling code which deserialises the data and
passes it to the user-specified handler function.

4.1 Form Construction
Each form element is specified to hold a particular type of data,
which, assuming that the correct type of data is specified by the
user, is passed directly to the handler function. In order to encap-
sulate this, we firstly define the allowed data types as part of an
algebraic data type, FormTy.

data FormTy = FormString
| FormInt
| FormBool
| FormFloat
| FormList FormTy

Recalling that types in IDRIS are first-class, we may use this to
convert between abstract and concrete representations of allowed
form types:

interpFormTy : FormTy -> Type
interpFormTy FormString = String
interpFormTy FormInt = Int
interpFormTy FormBool = Bool
interpFormTy FormFloat = Float
interpFormTy (FormList a) = List (interpFormTy a)

In order to specify a form, we once again use Effects. By record-
ing the type of each form element as it is added in the type of
the form, we may statically ensure that the user-supplied handler
function is of the correct type to handle the data supplied by the
form: the specification of an incompatible handler will result in a
compile-time type error.

IDRIS allows for implicit arguments to be bound across a block
of code through using notation. We may therefore parameterise the
form data types over the types associated with each form element,
and the effects required by the handler function.

using (G : List FormTy, E : List WebEffect)
data FormRes : List FormTy ->

List WebEffect -> Type where
FR : Nat ->

List FormTy ->
List WebEffect ->
String ->
FormRes G E

data Form : Effect where
AddTextBox : (label : String) ->

(fty : FormTy) ->
(Maybe (interpFormTy fty)) ->
Form (FormRes G E)

(FormRes (fty :: G) E) ()
...

Submit : (mkHandlerFn ((reverse G), E)) ->
String ->
Form (FormRes G E) (FormRes [] []) String

The implementation of the form effect also contains other con-
structs for additional form elements such as radio buttons and check
boxes, but are omitted in the interest of brevity.

We make use of the resource associated with the effect, FormRes,
to construct the form. The resource allows us to record the types
associated with each form element and the HTML required to dis-
play the form. The constructor, FR, requires the number of elements
in the form in order to allow for the naming of new elements, the
list of element types, the list of effects supported by the handler
function, and the currently generated HTML for the form.

By parameterising the resource over a list of the types associ-
ated with each element and the effects supported by the handler

7 2013/8/21

function, we may ensure that only a handler function that is com-
patible with the submitted data may be specified. It is necessary to
keep track of the element types at both the type and value level as
we must use the values in later computations when serialising the
handler function.

By adding elements to the form, the list of form types G is
updated, as seen in the output value of AddTextBox. Addition-
ally, HTML for the form element is generated, and stored in the
resource. The generated HTML is subsequently returned by the
addSubmit function in order for it to be displayed on the web page.

To specify a form instance, we define a function of type
UserForm:

UserForm : Type
UserForm = EffM m [FORM (FormRes [])

(FormRes [])] String

All forms are required to include a submit button, as mandated
by the requirement that the input and output resource contains an
empty list of types; this requirement is fulfilled as per the output
resource type of the AddSubmit operation. As the creation of a
form is a return ()function which does not include side effects,
we do not restrict the handler to IO as with previously-discussed
effects, instead denoting the fact that it may be run in any handler
with the implicit variable m.

Handlers may only be associated with a form if they have
argument types corresponding to the types associated with the form
elements. Additionally, we wish to name the function in order for it
to be serialised, whilst requiring a proof that the specified name is
associated with the function. If this were not the case, it would be
possible to specify a function which satisfies the type requirement,
without guaranteeing that it the serialised data corresponded to that
function, thus rendering the check pointless.

Before associating a handler function with the form, we must
specify the effects available to the handler. This is done through
the use of the useEffects, which updates the list of effects in
the type of the form resource. By doing this, we may subsequently
use the effects in calculations at the type level, in particular when
calculating the type of the handler function for the form.

useEffects : (effs : List WebEffect) ->
EffM m [FORM (FormRes G E)]

[FORM (FormRes G effs)] ()
useEffects effs = (UseEffects effs)

Whilst it is not possible to serialise arbitrary effects due to the asso-
ciated difficulties with serialising initial resource environments, we
allow for three effects to be serialised: CGI, SQLITE and SESSION.
This is, however, not an inherent limitation as the Effects library
permits introduction of additional effects within an effectful com-
putation. We may specify a handler function of type FormHandler:

FormHandler : List EFFECT -> Type
FormHandler effs = Eff IO effs ()

In order to associate a handler with a form, we may call the
addSubmit function:

addSubmit :
(f : mkHandlerFn ((reverse G), E)) ->
(fns : HandlerList) ->
{default tactics

{ applyTactic findFn 100; solve; }
prf : FnElem f fns} ->

EffM m [FORM (FormRes G E)]
[FORM (FormRes [] [])]
String

addSubmit f handlers {prf} = (Submit f name)
where name : String

name = getString’ f handlers prf

Let us look at each aspect of this function in turn. Firstly, the
mkHandlerFn function calculates the required type of the handler
function from the list of types associated with the form elements,
and the effects we specified with useEffects. Note that since we
prepend types to the list of FormTys as opposed to appending them,
we must reverse the list.

MkHandlerFnTy : Type
MkHandlerFnTy = (List FormTy, List WebEffect)

mkHandlerFn’ : List FormTy -> List WebEffect -> Type
mkHandlerFn’ [] effs = FormHandler (interpWebEffects effs)
mkHandlerFn’ (x :: xs) effs = Maybe (interpFormTy x) ->

mkHandlerFn’ xs effs

mkHandlerFn : MkHandlerFnTy -> Type
mkHandlerFn (tys, effs) = mkHandlerFn’ tys effs

The mkHandlerFn function takes a tuple describing the arguments
and web effects available to the handler function. When construct-
ing the function type, we encase all arguments withing Maybe type,
in order to handle failure should the supplied data fail to parse to
the specified type.

To store a reference to a handler function, we use the HandlerFn
type:

HandlerFn : Type
HandlerFn = (ft ** (mkHandlerFn ft, String))

The ** notation denotes a dependent pair, wherein one argument, in
this case the concrete handler function, depends on another, namely
MkHandlerFnTy data used to construct the type of the handler
function. We also store a unique string identifier, which is used to
serialise a reference to the handler function.

In order to abstract away from this implementation detail, we
make use of IDRIS syntax rewriting rules. This allows us to define
the following syntax rewrite rule:

syntax
"handler args=" [args] ", effects=" [effs] ", fn=" [fn]
", name=" [name] = ((args, effs) ** (fn, name))

We may then define handlers in a more intuitive fashion, without
being concerned with the implementation details. This allows us to
write a handler with one String argument, making use of the CGI
effect, associated with the sayHello handler function as follows:

handler args=[FormString],
effects=[CgiEffect],
fn=sayHello,
name="sayHello"

We then store each HandlerFn in a HandlerList.

HandlerList : Type
HandlerList = List HandlerFn

To enforce the requirement that a supplied handler function must
reside in the list of available handlers, and therefore allow us to
retrieve the name with which to serialise the handler, we require a
list membership proof, FnElem f fns, which statically guarantees
that a given item resides in a list.

data FnElem : mkHandlerFn ((reverse G), E) ->
HandlerList -> Type where

FnHere : {xs : HandlerList, f :
mkHandlerFn ((reverse G), E)} ->

FnElem f ((((reverse G), E) ** (f, fStr)) :: xs)
FnThere : {xs : HandlerList, f :

mkHandlerFn ((reverse G), E)} ->
FnElem f xs -> FnElem f (x :: xs)

FnElem is parameterised over G and E, the types of the form
elements and the effects used by the handler function. FnHere

8 2013/8/21

demonstrates that the element is at the head of the current point
of the list, whereas FnThere demonstrates that the element is at
some point further in the list. We may then use linguistic reflection
and a simple automated proof search to automatically generate the
proof at compile time, should one exist. The proof may then be
used in subsequent computations: in our case, we use it to retrieve
the unique identifier for the function. If the automated proof search
fails, compilation will fail.

Finally, we must serialise the argument types, supported effects,
and return type of the handler function, in order to allow the form
data to be correctly deserialised and ensure that the correct handler
function is executed on the server.

Although sending details of the handler function to the client
may appear to be a security risk, we envisage that the use of
symmetric encryption or a cryptographic nonce would alleviate
this. Ultimately, we hope to implement a web server with persistent
state, which would eliminate the need for serialisation altogether.

Running form construction is achieved as an operation of the
CGI effect, AddForm, which then outputs the generated HTML to
the page. The generated metadata describing the handler function
is serialised as a hidden HTML field.

4.2 Form Handling
Once the form has been submitted, a web application may han-
dle the submitted data by invoking the HandleForm CGI oper-
ation. This will check for the existence of the hidden handler
field, which contains the previously serialised metadata about
the form handling function, before deserialising the data into a
MkHandlerFnTy.

With this data, we may then look up the function in the list of
registered handlers by using the serialised unique handler identifier.
In order to apply the handler function to the data submitted in the
form, we must first prove to the type-checker that the deserialised
MkHandlerFnTy is the same as the one retrieved from the list
of registered handlers. We do this by making use of the decEq
function, which determines whether two types are equal, returning
a proof of equality if so, and a proof of inequality if not.

With this proof, we may then use the with construct, inspired
by views in Agda [9], to rewrite the arguments on the left hand side.
This allows us to construct a function which, given the handler
stored in the list of handlers, the data required to construct the
function type and the MkHandlerFnTy deserialised from the form,
determines whether the two MkHandlerFnTys are decidably equal.
If so, we may rewrite this on the left hand side, and therefore
demonstrate that the recorded function may also be used to handle
the form data. If not, the computation is abandoned and an error is
shown.

checkFunctions : (reg_fn_ty : MkHandlerFnTy) ->
(frm_fn_ty : MkHandlerFnTy) ->
mkHandlerFn reg_fn_ty ->
Maybe (mkHandlerFn frm_fn_ty)

checkFunctions reg_ty frm_ty reg_fn with
(decEq reg_ty frm_ty)

checkFunctions frm_ty frm_ty reg_fn | Yes refl =
Just reg_fn

checkFunctions reg_ty frm_ty reg_fn | No _ = Nothing

We may then parse the arguments according to the types specified
by the handler function, and then apply the arguments to the handler
function through the use of partial application. Finally, we may run
the handler function, ensuring that all updates made to the CGI state
are propagated.

5. Extended Example: Message Board
Using these components, we may now consider a larger example
of a message board which allows users to register, log in, view and
create threads, and list and create new posts in threads.

Firstly, we create a database schema in which to record in-
formation stored by the message board. We create three tables:
Users, which contains a unique User ID, usernames and pass-
words; Threads, which contains a unique thread ID, a title, and the
ID of the user who created the thread; and Posts, which contains
a unique post ID, the ID of the thread to which each post belongs,
the content of the post, and the ID of the user that created the post.

Secondly, we use a GET variable, action, to indicate which
page of the message board should be displayed, and pattern-match
on these to call the appropriate function which displays the page.
Some pages, such as the page which shows all of the posts in a
thread, require a second argument, thread id.

5.1 Handling requests
The entry point to any CGI application is the main function. From
here, we run the remainder of the program through a call to runCGI,
which we initialise with empty initial environments for the CGI,
Session and SQLite effects, so they may be used in further compu-
tations.

main : IO ()
main = do (runCGI [initCGIState,

InvalidSession, ()]
handleRequest)

return ()

We specify a function, handleRequest, which firstly calls isHandlerSet
to determine whether submitted form data must be handled. If so,
then the form handling routine is called, which executes the corre-
sponding handler function as specified in Section 4.2. If not, then
the handleNonFormRequest function is called, which inspects
the GET variables in order to display the correct page.

handleRequest : CGIProg [SESSION
(SessionRes SessionUninitialised),
SQLITE ()] ()

handleRequest = do
handler_set <- isHandlerSet
if handler_set then do

lift’ (handleForm handlers)
Effects.return ()

else do
action <- lift’ (queryGetVar "action")
thread_id <- lift’ (queryGetVar "thread_id")
handleNonFormRequest action (map strToInt thread_id)

5.2 Thread Creation
We specify four forms: one to handle registration, one to handle
logging in, one to handle the creation of new threads, and one to
handle the creation of new posts. One such example would be the
form used to create a new thread, which contains elements for the
title of the new thread and the content of the first post of the new
thread.

newThreadForm : UserForm
newThreadForm = do

addTextBox "Title" FormString Nothing
addTextBox "Post Content" FormString Nothing
useEffects [CgiEffect, SessionEffect, SqliteEffect]
addSubmit handleNewThread handlers

The form consists of two text boxes: one for the title of the
thread, and one for the content of the first post. Both are of type
String, as denoted by the FormString argument, and both have
no default value. The handler function may make use of the CGI,
SESSION and SQLITE effects, and the handler function is specified

9 2013/8/21

as handleNewThread. The handlers argument refers to the list
of form handlers, and is of the following form:

handlers : HandlerList
handlers = [
(handler args=[FormString, FormString],

effects=[CgiEffect, SessionEffect, SqliteEffect],
fn=handleRegisterForm,
name="handleRegisterForm"),

(handler args=[FormString, FormString],
effects=[CgiEffect, SessionEffect, SqliteEffect],
fn=handleNewThread,
name="handleNewThread"),

...
]

Creating a new thread requires a user to be logged in, so that the
thread starter may be recorded in the database. In order to do
this, we make use of the session handler. We define a function
withSession, which attempts to retrieve the session associated
with the current request, and if it exists, executes a function which
is passed the associated session data. If not, then a failure function
is called instead. Should the form handler function be called with
invalid arguments, an error is shown.

handleNewThread :
Maybe String -> Maybe String ->
FormHandler [CGI (InitialisedCGI TaskRunning),

SESSION (SessionRes SessionUninitialised),
SQLITE ()]

handleNewThread (Just title) (Just content) = do
withSession (addNewThread title content) notLoggedIn
return ()

handleNewThread _ _ = do
outputWithPreamble "<h1>Error</h1>
There was

an error posting your thread."
return ()

Once we have loaded the session data from the database, we then
check whether the UserID variable is set, which demonstrates that
a user has successfully logged into the system, and allows us to use
the ID in subsequent computations. The database operation to insert
the thread into the database is performed by the threadInsert
function, which makes use of the executeInsert library function.
This function abstracts over the low-level resource usage protocol,
enabling for provably-correct database access without the excess
boilerplate code. In addition, the function also returns the unique
row ID of the last item which was inserted, which may be used in
subsequent computations. In the case of the message board, we use
this to associate the first post of the thread with the thread being
inserted.

threadInsert : Int ->
String ->
String ->
Eff IO [SQLITE ()] Bool

threadInsert uid title content = do
let query = "INSERT INTO ‘Threads‘

(‘UserID‘, ‘Title‘) VALUES (?, ?)"
insert_res <- (executeInsert DB_NAME query

[(1, DBInt uid), (2, DBText title)]
case insert_res of

Left err => return False
Right thread_id => postInsert uid thread_id content

5.3 Listing Threads
Listing the threads in the database is achieved through the use of
the executeSelect library function, which in turn returns either a
ResultSet or an error.

getThreads : Eff IO [SQLITE ()] (Either String ResultSet)
getThreads =

executeSelect DB_NAME query [] collectThreadResults
where query = "SELECT ‘ThreadID‘, ‘Title‘, ‘UserID‘,

‘Username‘ FROM ‘Threads‘ NATURAL JOIN ‘Users‘"

Once the result set has been retrieved, we may iterate through the
results and output them to the page, including a link to a page
which shows the posts associated with the thread. Since we know
the structure of the returned row from designing the query, we may
pattern match on each returned row to make use of the returned
values.

traverseThreads : ResultSet ->
Eff IO [CGI (InitialisedCGI TaskRunning)] ()

traverseThreads [] = return ()
traverseThreads (x::xs) = do traverseRow x

traverseThreads xs
where traverseRow : List DBVal ->

Eff IO [CGI (InitialisedCGI TaskRunning)] ()
traverseRow ((DBInt thread_id)::

(DBText title)::
(DBInt user_id)::
(DBText username)::[]) =

(output $ "<tr><td>
<a href=\"?action=showthread&thread_id=" ++
(show thread_id) ++ "\">" ++
title ++ "</td><td>" ++
username ++ "</td></tr>")

traverseRow _ = return ()

5.4 Authentication
Once a user submits the login form, the associated handler queries
the database to ascertain whether a user with the given username
and password exists through a call to the authUser function. If so,
then the session handler is invoked, and a session is initialised with
the user ID retrieved from the database. The session ID is then set as
a cookie using the CGI effect, so that it may be used in subsequent
requests. Any failures, for example with creating a new session or
querying the database, are reported to the user.

handleLoginForm (Just name) (Just pwd) = do
auth_res <- lift’ (authUser name pwd)
case auth_res of

Right (Just uid) => do
set_sess_res <- setSession uid
if set_sess_res then do

lift’ (output $ "Welcome, " ++ name)
return ()

else do
lift’ (output "Could not set session")
return ()

Right Nothing => do
lift’ (output "Invalid username or password")
return ()

Left err => do
lift’ (output $ "Error: " ++ err)
return ()

Implementations for the insertion and display of posts, alongside
registration, are similar in form to those described above, and are
as such omitted from this paper.

Although we have described a relatively simple application,
we have shown that through the use of embedded domain-specific
languages, we may write verified code that fails to compile should
resources be incorrectly accessed. Additionally, we have used the
form handling mechanism to simply handle the arguments passed
by the user. Importantly, we have shown that dependent types
can be used to increase confidence in an (albeit simplified) real-
world application, without requiring developers to supply proofs or
indeed work explicitly with dependent types.

10 2013/8/21

6. Related Work
Meijer [10] implemented a CGI library which was among the first
libraries to handle web scripting monadically, and allows the user
to implement application logic without having to consider the low-
level details such as parsing in CGI data from the environment, or
printing headers to the remote browser. The library also provides
support for cookies and basic form handling.

Thiemann [18] further adds the notion of a CGI Session for
maintaining state, and provides more sophisticated form-handling
methods. In particular, callbacks may be associated with submit
buttons, with nameless representations for form inputs. Due to
the unavailability of full dependent types in Haskell, however,
this implementation does not statically verify the suitability of
the callback function for the form inputs. Both implementations
of the CGI library, being built upon monads, mean that the use
of additional effects such as database access is achieved either
through monad transformers or the ability to perform arbitrary IO
operations. Both of these approaches are limited—the former does
not scale well to multiple effects, and the latter allows for the
introduction of errors by allowing the violation of resource usage
protocols.

Plasmeijer and Achten [13] describe an alternative approach to
type-safe form handling which does not require the use of depen-
dent types through the interactive Data, or iData abstraction. In-
stead of processing being triggered by form submission, as in the
approach described in this paper, applications created in the iData
toolkit are instead edit-driven. This means that upon a component
being edited, a computation occurs, given the state of the current
form. This is then saved to be used in future computations. Should
a user enter invalid data, for example by entering text in a field
designated for integers, the change will be reverted. This is demon-
strated practically through the use of iData to implement a confer-
ence management system [14].

The concept of iData is taken further by the introduction of
iTasks [15], which make use of a workflow system to allow mul-
tiple iData forms to interact with one another. This is achieved
through the use of high-level combinators which allow the imple-
mentation of concepts such as recurseion, sequence and choice in a
scalable fashion. These high-level abstractions are elegant, but the
style and syntax differ substantially from a traditional web appli-
cation. Our approach takes the concept of type-safe input handling
and uses it in a more traditional fashion, whilst retaining the type-
retention guarantees afforded by iData elements.

UrWeb [5] is a library built for the Ur language, which does
not use dependent types but does have a more expressive type sys-
tem, making extensive use of record types and type-level computa-
tion. By using these concepts, UrWeb may generate provably cor-
rect and unexploitable DOM code and SQL queries from records,
without requiring developers to supply proofs. In contrast to using
runtime code generation, which is prone to obscure code genera-
tion errors, UrWeb makes use of its static type system to guarantee
that metaprograms—in this case, generated SQL and DOM code—
must be correct and secure. Such ideas regarding the use of static
checking of metaprogram generation will be extremely useful when
considering an object-relational mapping system, which we hope to
implement in the near future. It will also be interesting to see how
such concepts may be applied with a yet more expressive type sys-
tem involving full dependent types.

WebDSL [19] is a domain-specific language written primarily
to introduce new abstractions which aim to reduce the amount of
boilerplate code that must be written and maintained by develop-
eres. WebDSL is built on top of Java, which often includes a large
amount of redundant code such as accessor and mutator functions
within entity classes. The Java Persistence API (JPA) [1] provides
an object-relational mapping through the use of Java 5 annotations,

which may then be used to construct database tables. These anno-
tations soon become complex, however, and coupled with redun-
dant boilerplate code, data model declarations may soon become
unwieldy. Through the use of WebDSL, these data model declara-
tions can be much more compactly declared, and elaborated into
Java code by parsing the data-modelling DSL into an abstract syn-
tax tree, applying rewrite rules, and pretty-printing. WebDSL also
applies similar concepts to implement a template system for such
objects, which allows the data to be used in code generation. We
look to implement many of these ideas, but as effects within the
IdrisWeb framework, as with the form construction effect.

7. Conclusions
Dependently-typed languages have, remained relatively unused for
practical purposes outside of academia. Advances in embedded
domain-specific languages have allowed many of the advantages
of such languages, including the additional guarantees given by
the successful compilation of a program (assuming the use of
specific enough types) to be adopted without the additional proofs
traditionally required by users of such languages.

Our framework, through the use of dependent types, provides
several static guarantees. Data submitted by users is inherently
unsafe due to the possibility of attacks such as SQL injection, and
this particular threat is ameliorated due to elements to be associated
with specific types during form construction. This immediately
eliminates the possibilities of SQL injection attacks on non-string
types. Since failures are handled transparently, no runtime errors
are output to the browser, meaning that attackers may not use
such information to aid attacks. Additionally, since checking is
performed on the types of the form elements and the types of
arguments accepted by the handler, it is impossible to associate a
form with a handler incompatible with the submitted data.

Many external libraries must also adhere to a resource usage
protocol, in order to ensure correct operations. Since such libraries
do not have as expressive a type system as IDRIS, however, incor-
rect usage is still possible, for example by developers forgetting to
release acquired resources or failing to initialise a library correctly.
By creating high-level bindings to these libraries, however, we may
statically enforce these resource-usage protocols, ensuring that the
libraries are used correctly. Whilst previous work has demonstrated
that this is possible through the use of embedded DSLs [2] and
parameterised algebraic effects [4], this paper has provided more
substantial examples of real-world applications.

In particular, the framework guarantees that it is not possible
for CGI to produce an internal server error due to content being
written to the remote host prior to headers. With regard to database
access, we may statically guarantee that library calls are made in
the correct order, and calls to retrieve rows of data are made only
when more data is available. Additionally, by recording any failures
in the resource associated with the database effect, we may ensure
that any failures at certain stages in the process may be correctly
dealt with, and not propagate to further library calls—if a prepared
statement fails to compile, for example, the framework guarantees
that it will not be executed, without causing a fatal runtime error or
memory access violation.

Enforcing resource usage protocols also guards against common
programmer errors, saving debugging time by identifying errors at
compile time.

7.1 Further Work
We have shown that embedded domain-specific languages using
dependent types and algebraic effects can be used to increase con-
fidence in web applications by providing additional static guaran-
tees about runtime behaviour, but much more can be done using the
same approach.

11 2013/8/21

There are many other applications which make use of specific
resource usage protocols, for example popular libraries such as
libgcrypt2. Applying a similar approach would allow for sensitive
programs requiring cryptographic routines to be written using a
language with full dependent types, in turn adding an extra layer
of confidence in their security.

Whilst the use of CGI allows for experimenting with the use
of dependent types in a real-world scenario such as web program-
ming, there remain practical considerations about its scalability, as
a separate process must be created for each individual request. We
believe that the use of FastCGI may alleviate this, but ultimately,
we would like to create a web server written in IDRIS, which would
make more efficient usage of resources.

Since at this stage we have concentrated on the use of depen-
dent types for enforcing resource usage protocols and type-safe
form handling, we currently handle the generation of HTML in an
unstructured manner. Future work will entail a DOM library to fa-
cilitate the generation and manipulation of HTML, in turn giving
stronger guarantees about its correctness. Other planned features
include a template system, allowing for web pages to be automati-
cally generated from data, and an object-relational mapping system
which will allow users to manipulate records which can then be
automatically written to the database, instead of having to update
tables manually via SQL queries.

Type providers, as originally implemented in F# [17], are an in-
teresting method by which external data sources may be used to im-
port external information, such that it may be used during compila-
tion. Through the use of this technique, it becomes possible to make
use of the extra type information in order to statically ensure the va-
lidity of artefacts such as SQL queries and data structures. If data
structures within the program do not conform to a given database
schema, for example, then the program will not type-check and as
such will produce a compile-time error. This is extended to IDRIS
through the implementation of dependent type providers [6], which
makes use of the fact that types can be calculated by functions
to avoid generating extra code in the type provider step. Depen-
dent type providers additionally have stronger safety guarantees
as they may not generate unchecked code, but at the same time
this is matched by a decrease in expressiveness. Nonetheless, such
techniques provide a promising mechanism to verify the semantic
soundness of programs and we look to investigate their integration
in further work.

Dependently-typed languages provide great promise for the
construction of secure and correct programs. Through the use of
embedded domain-specific languages, we hope that more develop-
ers may benefit from the extra guarantees afforded by dependent
types, resulting in more stable, secure applications.

Acknowledgments
This work has been supported by the Scottish Informatics and
Computer Science Alliance (SICSA) and the EPSRC. The authors
would like to thank contributors to the IDRIS language, especially
the authors of the original Network.Cgi and SQLite libraries.

References
[1] Heiko Böck. Java persistence api. In The Definitive Guide to NetBeans

Platform 7, pages 315–320. Springer, 2011.

[2] Edwin Brady and Kevin Hammond. Resource-safe systems program-
ming with embedded domain specific languages. In Practical Aspects
of Declarative Languages, pages 242–257. Springer, 2012.

2 http://directory.fsf.org/wiki/Libgcrypt

[3] Edwin C Brady. Idris—: systems programming meets full dependent
types. In Proceedings of the 5th ACM workshop on Programming
languages meets program verification, pages 43–54. ACM, 2011.

[4] Edwin C Brady. Programming and reasoning with algebraic effects
and dependent types. In Proceedings of the 18th ACM SIGPLAN In-
ternational Conference on Functional Programming, 2013. To appear.

[5] Adam Chlipala. Ur: statically-typed metaprogramming with type-level
record computation. In ACM Sigplan Notices, volume 45, pages 122–
133. ACM, 2010.

[6] David Raymond Christiansen. Dependent type providers. In Workshop
on Generic Programming (WGP ’13), 2013.

[7] Lee Garber. Security, privacy, and policy roundup. IEEE Security &
Privacy, 10(2):15–17, 2012. ISSN 1540-7993. .

[8] Imperva. Lessons Learned From the Yahoo! Hack. 2013. URL
http://www.imperva.com/download.asp?id=299.

[9] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[10] Erik Meijer. Server side web scripting in haskell. Journal of Func-
tional Programming, 10:1–18, 1 2000. ISSN 1469-7653. . URL http:
//journals.cambridge.org/article_S0956796899003561.

[11] OWASP. Cross-site Scripting (XSS). URL https://www.owasp.
org/index.php/Cross-site_scripting.

[12] OWASP. SQL Injection, 2013. URL https://www.owasp.org/
index.php/SQL_injection.

[13] Rinus Plasmeijer and Peter Achten. idata for the world wide web–
programming interconnected web forms. In Functional and Logic
Programming, pages 242–258. Springer, 2006.

[14] Rinus Plasmeijer and Peter Achten. A conference management system
based on the idata toolkit. In Implementation and Application of
Functional Languages, pages 108–125. Springer, 2007.

[15] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. itasks: exe-
cutable specifications of interactive work flow systems for the web.
SIGPLAN Not, 42:141–152, 2007.

[16] Gordon Plotkin and Matija Pretnar. Handlers of Algebraic Effects. In
ESOP 09: Proceedings of the 18th European Symposium on Program-
ming Languages and Systems, pages 80—-94, 2009.

[17] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, et al. Strongly-typed language support for internet-scale
information sources. Technical report, Technical Report. Microsoft
Research, 2012.

[18] Peter Thiemann. Wash/cgi: Server-side web scripting with sessions
and typed, compositional forms. In Practical Aspects of Declarative
Languages, pages 192–208. Springer, 2002.

[19] Eelco Visser. Webdsl: A case study in domain-specific language engi-
neering. In Generative and Transformational Techniques in Software
Engineering II, pages 291–373. Springer, 2008.

[20] W3Techs. Usage of server-side programming languages for web-
sites, July 2013. URL http://w3techs.com/technologies/
overview/programming_language/all.

12 2013/8/21

http://www.imperva.com/download.asp?id=299‎
http://journals.cambridge.org/article_S0956796899003561
http://journals.cambridge.org/article_S0956796899003561
https://www.owasp.org/index.php/Cross-site_scripting
https://www.owasp.org/index.php/Cross-site_scripting
https://www.owasp.org/index.php/SQL_injection
https://www.owasp.org/index.php/SQL_injection
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all

	Introduction
	Contributions

	An overview of the Effects framework
	Implementing Effects
	Resource Protocols as Effects

	Modelling resource usage protocols
	CGI
	Database access with SQLite
	Example Code

	A Simple Session Handler

	Type-aware form handling
	Form Construction
	Form Handling

	Extended Example: Message Board
	Handling requests
	Thread Creation
	Listing Threads
	Authentication

	Related Work
	Conclusions
	Further Work

