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Abstract
We present the implementation of Mezzo, a programming language
based on the notion of permission that provides strong guarantees
about aliasing, ownership and mutable state. The unique features
of Mezzo make its implementation challenging, both from a formal
and a technical perspective. In this paper, we formalize the core
operations used for type-checking, and give corresponding algo-
rithms. Two central operations, subtraction and merging, are de-
tailed. Both operations are closely related to shape analysis and
frame inference.

1. Introduction
Mezzo is a strict, functional programming language in the spirit of
ML [9]. Mezzo is based on the concept of permission, which blends
together the type of an object as well as the state the object is in.

The type system of Mezzo differs significantly from that of ML.
Writing a type-checker for the language thus poses several new
challenges. The purpose of this paper is to show how we managed
to design a type-checker that could account for the many novel
features of the Mezzo type system.

One could think of Mezzo as separation logic turned into a type
system. Our main contribution is a presentation of type-checking
that is capable of dealing with the frame inference problem (com-
puting the portions of the heap that are left untouched by a call to a
sub-routine) and the join problem (finding a description of the heap
that subsumes two, more precise descriptions), within the context
of ML. This implies dealing with arbitrary, higher-order quantifiers;
with duplicable and non-duplicable portions of the heap; with sub-
typing relations. These issues, to the best of our knowledge, have
not yet been dealt with in the literature. Before discussing the type-
checking of Mezzo, we offer a quick introduction to help the reader
become acquainted with the core concepts of the language. We use
the example of the map function, which will be recurring through-
out the present paper. We refer the reader to a more exhaustive doc-
ument [9] for a more thorough introduction to the language1.

1 The reader familiar with Mezzo already should know that in the present
document, we omit the syntactic conventions of the surface syntax of
Mezzo. Therefore, the consumes keyword is not mentioned, and neither
is the name introduction construct. This means that, in the present paper,
any permission found in a function’s argument will be consumed from
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1.1 Introduction to permissions
The syntax of types is detailed in Figure 1, while the syntax of
expressions is omitted, as it forms a fairly standard dialect of ML.
Types have kinds: permissions (empty, p ∗ q, x@ t) have kind
perm, regular types (arrow, constructor, tuple) have kind type. The
only types with kind term are program variables x. We informally
refer to some of the type-checking rules; these are discussed more
formally in §2.

Let us start by introducing the definition of immutable lists.

data list a =
| Nil
| Cons { head: a; tail: list a }

If e1 is an expression that creates a list of elements with type
a, writing “let x = e1 in e2” generates a new permission “x
@ list a”, which is available in e2. Permissions do not exist at
runtime, and are purely an artefact of the type system.

At any program point, a current permission is available. When
execution starts, the current permission is empty. As program ex-
ecution advances, the current permission evolves, possibly becom-
ing the conjunction of several permissions.

Permissions have an ownership reading: the permission “x @
list a” not only grants its owner the right to use x as a list,
but it also embodies the ownership of the list. Whoever owns
“x @ list a” owns a list spine, made up of a succession of
Cons cells, as well as the elements themselves. Here, a is a type
variable; the ownership reading of the elements depends on the
actual instantiation of a.

Permissions may disappear, for instance when calling a func-
tion. Here is the type of the map function. Square brackets denote
universal quantification.

val map: [a, b] ((a -> b), list a) -> list b

The map function requires a pair of a function and a list. What
happens whenever one wishes to call the map function is described
in rule APPLICATION (Figure 3). Calling map with (f, l) requires
exhibiting the permissions “f @ a -> b” and “l @ list a”.
The signature of map indicates that the function does not hand back
these permissions: they are consumed. The caller will, however,
obtain a fresh permission “ret @ list b”, where ret denotes
the return value of the function.

In Mezzo, permissions are either duplicable or exclusive. A du-
plicable permission denotes shared, read-only knowledge, while an
exclusive permission denotes uniquely-owned, read-write knowl-
edge. The unique-owner property allows the owner of a mutable
object to change its type, which is safe as the system guarantees no
one else knows about the object. A third mode, affine, exists, which
is a superset of the two.

the caller. We also do not mention the adoption/abandon mechanism, and
discard mode constraints from the discussion.
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Duplicable permissions can be copied at any time. Function
types, for instance, are duplicable. Back to the map example, this
means that the caller will not lose the permission “f @ a -> b”,
since it can save a copy of it before calling map. What about “l @
list a”?

Determining whether “l @ list a” may be copied or not is
non-trivial, and depends on what the type variable a happens to be.
If l is a list of duplicable elements, e.g. if we have “l @ list
int”, then this permission denotes a read-only fragment of the
heap. It is thus duplicable. If, however, l is a list of exclusive ele-
ments, e.g. if we have “l @ list (ref int)”, then the permis-
sion is affine2.

1.2 Type-checking by example
Let us consider the implementation of the map function. We give a
high-level overview of the type-checking of the function. This al-
lows subsequent sections to pick specific steps of the type-checking
to illustrate the discussion.

1 val rec map [a, b] (
2 f: (a -> b),
3 l: list a
4 ): list b =
5 match l with
6 | Nil ->
7 l
8 | Cons { head = h; tail = t } ->
9 let h’ = f h

10 and t’ = map f t in
11 Cons { head = h’; tail = t’ }
12 end

Type-checking in Mezzo is performed in a forward manner
similar to symbolic execution. One starts by assuming the pre-
condition or, in Mezzo lingo, by adding the function’s arguments
to the current permission, and then moves forward, updating the
permission as type-checking progresses through the program. Thus,
at line 5, permissions for f, l and map are available (FUNCTION):

f @ a -> b * l @ list a * map @ [a, b] (...) -> list b

Functions must be annotated with the type of their arguments, as
well as their return type. Functions can only close over duplicable
permissions. A function type is therefore duplicable. For the sake of
brevity, we will from there on omit the permissions for f and map.
The reader can safely assume that they remain available throughout
the whole body of map. We thus have:

l @ list a

When the type-checker enters the Nil branch of the match con-
struct (line 6), the permission is refined to:

l @ Nil

Nil is a structural type that asserts that l is a block in the heap
whose tag is Nil, that has zero fields.

Naming ret the return value of the function, we obtain after
line 7:

l @ Nil * ret = l

This is our first encounter of the singleton type. Having the permis-
sion “x @ =y” means that x and y are equal; in particular, if they
are pointers, they point to the same object in the heap. We write “x
= y”, as syntactic sugar.

2 l itself does not denote a read-write portion of the heap, as the list cells are
immutable; the permission “l @ list a” is therefore neither duplicable
nor exclusive: it is affine.

Similarly, entering the Cons branch (line 8), the type-checker
refines l @ list a into the following permission:

l @ Cons { head: a; tail: list a }

This permission is expanded (DECOMPOSEBLOCK).

l @ Cons { head = h; tail = t } * h @ a * t @ list a

Just like the “ret = l” example above, we write “head = h” to
signify “head: =h”3

The two function calls at lines 9 and 10 consume permissions
from the environment (APPLICATION, FRAME): calling f consumes
“h @ a”, which is subtracted from the environment, while a per-
mission for h’ is returned. Similarly, calling map consumes “t @
list a” which is traded for a new permission for t’. The two op-
erations are performed in sequence, which gives in the end:

l @ Cons { head = h; tail = t } *
h’ @ b * t’ @ list b

The return value, which we call again ret, is then created:

l @ Cons { head = h; tail = t } *
h’ @ b * t’ @ list b *
ret @ Cons { head = h’; tail = t’ }

The type-checker now needs to type-check the match construct.
Two distinct permissions are available, one for the Nil branch, and
another one for the Cons branch. The type-checker needs to apply
subsumption rules on both permissions, until they match. This is
called the merge operation, and constitutes the topic of §4. Here,
the type-checker sees that ret is either Nil or Cons. It thus decides
to reconcile the two permissions for ret as “ret @ list b”.

One may object that the type-checker is doing unnecessary
work. Indeed, the return type of the map function constitutes a type
annotation that tells us already what we should seek to obtain. We
could skip the merge operation (reconciling the two permissions)
altogether, and merely assert that ret @ list b is a permission
that is available in both branches. Even though this is actually what
our type-checker does in this particular case, type annotations are
not always available. We thus discuss the general procedure.

The merge operation decided that we should try to obtain “ret
@ list b”. This implies subtracting “ret @ list b” from each
branch, which consumes permissions. As the constructor Nil is
duplicable, we are left, in the Nil branch, with:

l @ Nil * ret = l

while the Cons branch now only contains:

l @ Cons { head = h; tail = t } *
ret @ Cons { head = h’; tail = t’ }

The permission “h’ @ b * t’ @ list b” is gone, for b is a type
variable which is, lacking any other information, considered non-
duplicable, or affine. The permission for ret is retained, though,
as it denotes a Cons block in the heap which is immutable, hence
duplicable.

Continuing the reconciliation, the type-checker infers that “f @
a -> b * map @ ...” is a valid conjunction for both branches,
meaning that the final conjunction obtained after the match con-
struct is:

ret @ list b * f @ a -> b * map @ ...

The final step consists in matching the final permission above
with the expected return type for the function. This is, again,

3 In practice, the type-checker introduces automatic names for the head
and tail fields when expanding the permission, then performs pattern-
matching, which results in additional equations that identify the user-
provided names with the type-checker names.
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κ ::= type | term | perm | κ→ κ kind

T, t, P ::= type or permission
X variable (a, x, . . .)
t→ t function type
(~t ) tuple type
A {~f : ~t} structural type
T ~T n-ary type application
∀(X : κ) T universal quantification
∃(X : κ) T existential quantification
=x singleton type
(t | P ) type/permission conjunction
x@ t atomic permission
empty empty permission
P ∗ P permission conjunction

D ::= algebraic data type definition
data mutable? d ( ~X : ~κ) = ~b

adopts t

b ::= A {~f : ~t} algebraic data type branch

Figure 1. Syntax of types and permissions

achieved by performing the subtraction of “ret @ list b”. The
remaining permission is discarded; in this case, the subtraction
merely serves as a way to assert that a particular permission is
available.

1.3 Challenges for a type-checker
The example of the map function highlights several salient points.

• The representation of a permission is not unique; one may “un-
fold” a structural permission (tuple, constructor) by introducing
singleton types; one may also float out quantifiers (EXISTSSTAR)
or permissions (MIXSTAR). We start by introducing prefixed per-
missions, along with a normalized representation (§2) of a per-
mission.
• The discussion mentions in several occasions that the type-

checker needs to perform a subtraction, an operation that is
required for implementing the typing rules from Figure 3. This
implies recombining permissions using rule SUBSUMPTION.
Which subsumption rules should be applied? In what order?
There is a wide range of options for subsumption. We present
an algorithm formulation of subtraction along with an imple-
mentation strategy (§3).
• Subtraction allows one to type-check function calls (extracting

a permission, obtaining a remainder), function bodies (check-
ing that the return type is satisfied), but we need an addi-
tional operation to type-check disjunctions, that is, match and
if-then-else expressions. This is the merge operation. We
present an algorithm that leverages subtraction (§4).

2. The representation of permissions
Subsumption rules and typing rules are shown in Figure 2 and
Figure 3. Our typing judgements are of the form K;P ` e : t,
meaning that under kinding environment K, using permission P ,
expression e is shown to have type t.

This formulation gives no clue as to how one can effectively
type-check a Mezzo program. Type-checking a function call re-
quires a combination of APPLICATION and FRAME: how does one
compute the part that is framed out? Similarly, the LET rule men-

q ::= quantifier
∀(x : κ) universal (rigid) quantification
∃(x : κ) existential (flexible) quantification
∃(x : κ = τ) instantiated existential

V ::= nil | q,V a prefix is a list of quantifiers

Figure 4. Syntax of prefixes

tions x@ t1, but t1 will most certainly be of the form (t′1 | Q)
where Q is a permission big enough to type-check e2 with type t2.
How does one know the value of t2 or Q?

2.1 Why is type-checking difficult?
We need to adopt a presentation where we carry a current permis-
sion P , and where a type-checking step takes P and returns P ′,
as this will form the basis of an algorithm. Finding the right repre-
sentation for P is difficult, though. Indeed, a “good” representation
shall satisfy quite a few constraints, which we review below.

• The existence of possibly several permissions for the same
variable requires exploration of a solution space.
• Our conjunction operator ∗, unlike that of separation logic,

works on non-exclusively owned portions of the heap. Indeed,
some permissions can be duplicated, while some others cannot.
When subtracting a permission, whether it will be consumed
and disappear depends on whether it is duplicable or not.
• We mention in §1.3 the various, equivalent ways of representing

a permission. Function types can also be represented in various
equivalent ways: for instance,

x@ ∀a,∀(y : term).(=y | y@ a)→ () ≡ x@ ∀a, a→ ()

Indeed, first-class functions are central in ML-like languages.
We thus need to compare function types during the subtraction,
something that other works do not need to do. We cannot use a
syntactic criterion, as we often want powerful reasoning when
comparing function types (for instance, implicit η-expansion).
• We manipulate quantifiers, both universal and existential. They

may stem from user-provided quantifiers (polymorphic function
types, one-shot functions), or be introduced by the translation of
the name introduction construct found in the surface syntax [9].
They may appear in arbitrary order, which requires careful
treatment to ensure they are properly introduced. Moreover,
quantifiers may refer to variables that have kind term (e.g. x)
type (e.g. t) or perm (e.g. x@ t). A quantifier at kind term
refers to a program variable; this is akin to first-order logic:
we’re quantifying over the program variable x that may appear
in x@ t. A quantifier at kind type or perm is different; such a
quantifier may refer to an entire permission x@ t, not just x.
This would be the equivalent of second-order logic.

Per the first item, we know that we are bound to use a conjunc-
tion; a map from variables to types would not work. The second
item encourages us to use an expanded representation. Indeed,

l@ Cons {head = h; tail = t} ∗ h@ a ∗ t@ list a

is more precise than:

l@ Cons {head : a; tail : list a}

The former conjunction tells us that the permission for l is dupli-
cable, while the latter is more conservative and tells us that the
permission for l is affine. The last two items highlight the difficulty
of dealing with singleton types and quantifiers.
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DUPLICATE
P is duplicable
P ≤ P ∗ P

COSTAR
P1 ≤ P2 Q1 ≤ Q2

P1 ∗Q1 ≤ P2 ∗Q2

EQUALSFOREQUALS
(y1 = y2) ∗ [y1/x]P
≡ (y1 = y2) ∗ [y2/x]P

COPYDUP
u is duplicable

x@ t ∗ y@ u ≤ x@ [u/=y]t

DECOMPOSEBLOCK
y@ A {F [f : t]}

≡ ∃(x : term) (y@ A {F [f = x]} ∗ x@ t)

DECOMPOSETUPLE
y@ (. . . , t, . . .)

≡ ∃(x : term) (y@ (. . . ,=x, . . .) ∗ x@ t)

EXISTSATOMIC
x@ ∃(X : κ) t ≡ ∃(X : κ) (x@ t)

EXISTSSTAR
P1 ∗ ∃(X : κ) P2 ≡ ∃(X : κ) (P1 ∗ P2)

EQUALITYREFLEXIVE
empty ≤ (x = x)

MIXSTAR
x@ t ∗ P ≡ x@ (t | P )

FOLD
A {~f : ~t} is an unfolding of T ~T

x@ A {~f : ~t} ≤ x@ T ~T

COARROW
u1 ≤ t1 t2 ≤ u2

x@ t1 → t2 ≤ x@ u1 → u2

COMMUTEARROW

x@ (∃(α : κ).t)→ u ≡ x@ ∀(α : κ).(t→ u)

SUB
∀(x : term).x@ t− x@ u

t ≤ u

Figure 2. Selected permission subsumption rules

APPLICATION
K;x1 @ t2 → t1 ∗ x2 @ t2 ` x1 x2 : t1

LET
K;P ` e1 : t1 K,x : term;x@ t1 ` e2 : t2

K;P ` let x = e1 in e2 : t2

FUNCTION
K, ~X : ~κ, x : term;P ∗ x@ t1 ` e : t2 P is duplicable

K;P ` fun [ ~X : ~κ] (x : t1) : t2 = e : ∀( ~X : ~κ) t1 → t2

FRAME
K;P1 ` e : t

K;P1 ∗ P2 ` e : (t | P2)

Figure 3. Selected typing rules

2.2 Prefixes
We quantify over the free variables of a permission using a prefix V .
The syntax of prefixes is presented in Figure 4. The type variables
are introduced with a kind κ, which, if missing, is assumed to be
type.

A prefix V ′ is more precise than V if V ′ can be obtained from V
by:

• instantiating existential quantifiers,
• inserting existential quantifiers,
• appending arbitrary quantifiers.

Type-checking initially starts with the permission empty, then
threads it through various program points. Permissions are added
(when entering function bodies, or when a function call returns) and
removed (when exiting function bodies, or performing a function
call). Thus, the type-checker carries a prefixed permission V.P .

We define restrict(V ′,V) to be the smallest prefix of V ′ that
contains all the variables quantified in V . We see its usage in §3.3.

2.3 Normal form for a permission
We maintain the following invariants.

Existential quantifiers Existential quantifiers are all hoisted into
the prefix.

Expanded form All structural permissions (tuples, constructors)
are expanded, meaning that their fields are all singleton types.
All function types have a domain that is a singleton type; struc-
tural permissions in the domain of function types are also ex-
panded.

No hidden permissions All permissions nested inside structural
types using (t | P ) are floated out into the outer conjunction.

No redundant permissions Some conjunctions, such as x@ Nil ∗
x@ list a, are redundant. We simplify these.

Let us now explain how these invariants are enforced.

Existential quantifiers The existence of EXISTSATOMIC allows
us to move existential quantifiers into the prefix. Along with
rules DECOMPOSEBLOCK and DECOMPOSETUPLE, any existentially-
quantified type that was found “inside” a tuple or a constructor will
be assigned to a fresh name, thus making EXISTSATOMIC applica-
ble. The reason why existential quantifiers must be hoisted out is
the topic of §3.5.

Expanded form Combining EQUALITYREFLEXIVE, COSTAR, MIXSTAR

and EXISTSINTRO allows one to derive the following subtyping rule,
which we call DECOMPOSE:

DECOMPOSE
t ≡ ∃(x : term).((=x | x@ t))

Intuitively, one can always give a name to the portion of the heap
denoted by type t. Rules DECOMPOSEBLOCK and DECOMPOSETUPLE

allow us to enforce the expanded form invariant on structural types,
while DECOMPOSE allows the invariant to be respected in the do-
main of functions, in combination with COARROW.

This invariant is important for two reasons. First, having it sim-
plifies the application of rules TUPLE and CONSTRUCTOR, as t is
already of the form =x, meaning that we don’t have to introduce
an extra variable y. Second, it reveals “implicit” existential quan-
tifiers which are then moved into the prefix. Again, the technical
discussion on why it is important to eagerly move existentials into
the prefix takes place in §3.5.

No hidden permissions Decomposition, along with MIXSTAR,
allows enforcing this invariant. Having this invariant simplifies
the reasoning all throughout the present paper, as we don’t have
to consider the case where the permission we’re looking for is
“stashed” inside another one.

No redundant permissions The algorithm applies a last set of
rules to further simplify P . The following conjunction is not in-
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consistent:

x@ list a ∗ x@ Cons {head = h; tail = t}
It can be simplified into:

x@ Cons {head = h; tail = t} ∗ h@ a ∗ t@ list a

Another is example is

x@ (=y1,=y2) ∗ x@ (=z1,=z2)

which is simplified into

x@ (=y1,=y2) ∗ y1 = z1 ∗ y2 = z2

A similar rule exists for constructors.

All the subsumption rules used for normalization are reversible,
meaning that we do not lose information when applying them.
Applying a non-reversible rule (e.g. FOLD) is a bad idea, as it will
lose information about the current permission.

Once the normalization procedure is in place, one can imple-
ment the addition of a permission, which boils down to applying
the normalization rules above. Additions take place when entering
function bodies, and when returning from function calls.

2.4 Data structures of the type-checker
The type checker of Mezzo is written in OCaml. Representing a
current permission P is done using the following data structures.

Persistent union-find We use a union-find structure to keep track
of equalities between variables, that is, permissions of the form
x = y. The union-find is persistent, as it facilitates backtracking
and branching on disjunctions. Moreover, the union-find maps
the representative of an equivalence class x to a list of types,
which represent the permissions available for x.

Floating permissions Permissions that are not of the form x@ t
are not attached to a program variable; they are abstract. We
dub them “floating permissions”, and store them in a separate
list.

Flexible variables Flexible variables (introduced later on, in §3.3)
are implemented using unification variables. A flexible variable
is a globally unique atom. We keep a persistent map of these
atoms to a structure containing the variable’s level as well as its
instantiation, if any. This structure allows inserting existential
quantifiers at arbitrary position (FLEX-TUPLE-L).

Levels In order to efficiently check the non-occurrence premise of
a rule such as INSTANTIATION, we use levels [10]. This prevents
illegal instantiations, and allows for an efficient implementation
of the “is local” check during merges (§4). The restrict(V ′,V)
operation is implemented by restricting the flexible variables of
V ′ to the maximum level of V .

3. The subtraction operation
The basic building block of a type-checking algorithm is the sub-
traction operation, as mentioned at numerous occasions in §1.1.
A subtraction extractsQ from P , computing the remainderR. This
operation is used when exiting function bodies, to check that the re-
turn type is satisfied (the remainder R is then discarded), and when
calling functions, to compute the part of the current permission that
is consumed by the function call, and the remainder (the frame).
This problem is known as frame inference in separation logic.

3.1 Subtraction examples
Subtractions can be found in the map example. At line 9, for in-
stance, a call to f takes place. Rule APPLICATION requires a permis-
sion for f that is a function type; we happen to possess one, namely

“f @ a -> b”. Consistently with §1.1, we omit this permission,
for brevity. The function is called with argument h. We thus need
to obtain “h @ a” from the current permission; in other words, we
need to perform the following subtraction:

l @ Cons { head = h; tail = t } *
h @ a * t @ list a

- h @ a

Will “h @ a” disappear? As the type variable a is abstract, we
have to be conservative: a could be anything, and denote uniquely-
owned data. We thus take a conservative stance, and assume “h @
a” is not a duplicable permission. It is affine, and we cannot save a
copy of it. Thus, the subtraction consumes the permission, leading
to the following remainder:

l @ Cons { head = h; tail = t } * t @ list a

(This subtraction is followed by the addition of “h’ @ b” to the
current permission, as per the return type of the function f. Ad-
dition is a much easier operation which we briefly mentioned in
§2.3.)

A more sophisticated subtraction takes place when type-checking
the whole match construct. The type-checker decides (and the rea-
son for this is the topic of §4) to extract “ret @ list b” from
both branches. Thus, the following subtraction takes place in the
Cons branch:

l @ Cons { head = h; tail = t } *
ret @ Cons { head = h’; tail = t’ }
h’ @ b * t’ @ list b *

- ret @ list b

The type-checker uses a syntactic criterion and figures out that if
we could show that ret is a well-formed Cons cell, this would
be enough to justify that it is also a list (FOLD). The type-checker
hence tries to perform the following subtraction:

l @ Cons { head = h; tail = t } *
ret @ Cons { head = h’; tail = t’ }
h’ @ b * t’ @ list b *

- ret @ Cons { head: b; tail: list b }

Applying DECOMPOSEBLOCK and floating up existential quantifiers
through EXISTSSTAR, this amounts to showing that:

∃h’’, ∃t’’ (
l @ Cons { head = h; tail = t } *
ret @ Cons { head = h’; tail = t’ }
h’ @ b * t’ @ list b *

- ret @ Cons { head = h’’; tail = t’’ } *
h’’ @ b * t’’ @ list b

)

One can instantiate h’’ and t’’ with h’ and t’ respectively.
The subtraction then becomes straightforward. Again, the type
variable b being abstract, the permission “h’ @ b * t’ @ list
b” disappears. Conversely, “ret @ Cons { head = h’; tail
= t’ }” is duplicable4: a copy of the permission can be saved
through DUPLICATE. The final remainder of the subtraction is thus:

l @ Cons { head = h; tail = t } *
ret @ Cons { head = h’; tail = t’ }

3.2 Formally defining subtraction
The result of a subtraction of Q from P under V is a remainder R
along with a more precise prefix V ′. We write:

V.
(
P −Q

)
= V ′.R

4 The permission denotes an immutable block, whose fields are singleton
types, which are themselves duplicable.
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SUBSUMPTION
P ≤ P ′ Q′ ≤ Q V.P ′ −Q′ = V ′.R

V.P −Q = V ′.R

EMPTY
V.P − empty = V.P

STAR
V.P −Q = V ′.R V ′.R−Q′ = V ′′.R′

V.P −Q ∗Q′ = V ′′.R′

ARROW
V,∀(y : term).P ∗ y@ t′1 − y@ t1 = V ′.P ′

V ′, ∀(z : term).P ′ ∗ z@ t2 − z@ t′2 = V ′′.P ′′

V.P ∗ x@ t1 → t2 − x@ t′1 → t′2 = restrict(V ′′,V).P

APP

Vi, ∀(y : term).P ∗ y@ ui
vi
� y@ u′i = V ′.P ′

Vi+1 = restrict(V ′,Vi)
V0.P ∗ x@ t ~u− x@ t ~u′ = Vn.P

FORALL-L
V, ∃(α : κ).P −Q = V ′.R

V.(∀(α : κ).P )−Q = V ′.R

FORALL-R
V, ∀(α : κ).P −Q = V ′.R

V.P − (∀(α : κ).Q) = V ′.R

EXISTS-L
V,∀(α : κ).P −Q = V ′.R

V.(∃(α : κ).P )−Q = V ′.R

EXISTS-R
V,∃(α : κ).P −Q = V ′.R

V.P − (∃(α : κ).Q) = V ′.R

UNKNOWN
V.P − x@ unknown = V ′.P

VARIABLEPERM

V.P ∗ p− p = V.P

VARIABLE

V.P ∗ x@ α− x@ α = V.P

TUPLE
Vi,∀(y : term).Pi ∗ y@ ti − y@ t′i = Vi+1.Pi+1

V0.P0 ∗ x@ (~t)− x@ (~t′) = Vn.Pn

CONSTRUCTOR
Vi,∀(y : term).Pi ∗ y@ ti − y@ t′i = Vi+1.Pi+1

V0.P0 ∗ x@ A {~f : ~t} − x@ A {~f : ~t′} = Vn.Pn

SUBSTITUTEFLEXIBLE
V,∃(α : κ = τ),V ′.[τ/α]P − [τ/α]Q = V ′′.R

V,∃(α : κ = τ),V ′.P −Q = V ′′.R

INSTANTIATION
V, ∃(α : κ = τ),V ′.P −Q = V ′′.R V ′#τ

V,∃(α : κ),V ′.P −Q = V ′′.R

EXISTSINTRO
V, ∃(α : κ),V ′.P −Q = V ′′.R

V,V ′.P −Q = V ′′.R

Figure 5. The rules of subtraction

VARIANCE-CO
V.P ∗ x@ t− x@ t′ = V ′.P ′

V.P ∗ x@ t
co
� x@ t′ = V ′.P ′

VARIANCE-CONTRA
V.P ∗ x@ t′ − x@ t = V ′.P ′

V.P ∗ x@ t
contra
� x@ t′ = V ′.P ′

VARIANCE-INV
V.P ∗ x@ t− x@ t′ = V ′.P ′

V ′.P ′ ∗ x@ t′ − x@ t = V ′′.P ′′

V.P ∗ x@ t
inv
� x@ t′ = V ′′.P ′′

VARIANCE-BI

V.P ∗ x@ t
bi
� x@ t′ = V ′.P ′

Figure 6. Variance-dependent subtraction

where P and Q may themselves be prefixed. This is analo-
gous to the frame inference problem, for which several algo-
rithms have been proposed [2, 6, 8]. Calcagno et al. write this
as δ ` H∗?frame [4] when assuming an existing procedure for
frame inference.

In the algorithmic presentation of the subtraction, we often wish
to focus the subtraction on a particular variable x. We write:

V.
(
P ∗ x@ t− x@ t′

)
= V ′.R

We sometimes need to keep only the duplicable parts of a
permission. If P = p1 ∗ . . . ∗ pn, this merely consists in dropping
all permissions pi that do not satisfy the “is duplicable” predicate.
We write P .

3.3 Flexible variables vs. rigid variables
In a subtraction V.(P − Q), one can think of P as our current
hypothesis, and of V and Q as our goal. Thus, Q is, like V , in
positive position, while P is in negative position. Consider:

∀(x : term).
(
x@ ∃a.a− x@ ∃b.b

)
In the example above, the quantifier ∃a is in negative position,
meaning that it turns into a universal when moved into the outer
prefix. The ∃b quantifier, being in positive position, moves un-
changed into the outer prefix. We obtain:

∀(x : term),
(
∀a,∃b.x@ a− x@ b

)
We say that a is a rigid variable, while b is an uninstantiated flexible
variable. This subtraction problem admits the following solution,

where b is instantiated:

∀(x : term), ∀a,∃(b = a).empty

The treatment of flexible and rigid variables is a central issue
and constitutes the topic of §3.5.

3.4 An algorithmic presentation of type-checking
The subtraction operation (Figure 5) provides a set of rules that an
algorithm can choose to apply; the rules make it explicit which part
of a permission is preserved, and which permission is returned. The
subtraction rules work at a lower level than the type-checking rules;
yet, they leave plenty of non-determinism, meaning that an actual
algorithm needs an implementation strategy in order to know which
rules should be applied (§3.5).

Rule SUBSUMPTION is central, as it allows powerful recombina-
tions of a permission on both sides of the subtraction (§3.6, §2.3).

Rules EMPTY and STAR are standard. The ∗ conjunction being
commutative and associative, rule STAR leaves the order of subtrac-
tions unspecified. The algorithm is free to apply an efficient strategy
(§3.6).

Rules UNKNOWN and VARIABLE are standard. There is no
subtraction rule for singleton types as it can be derived from
EQUALITYREFLEXIVE and SUBSUMPTION.

Rules FORALL-L, FORALL-R, EXISTS-L and EXISTS-R deal with
quantifiers; they are discussed in §3.5. The right-hand side of a
subtraction preserves the nature of the quantifier (it refers, like the
prefix, to the goal that we’re trying to prove); the left-hand side,
however, flips quantifiers (it is our current hypothesis).
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FLEX-TUPLE-L
V, ∃(~β : ~κ)∃(α : κ = (~β))),V ′.P ∗ x@ (~t)− x@ α = V ′′.R

V, ∃(α : κ),V ′.P ∗ x@ (~t)− x@ α = V ′′.R

FLEX-CONSTRUCTOR-L
V, ∃(~β : ~κ)∃(α : κ = A {~f : ~β})),V ′.P ∗ x@ A {~f : ~t} − x@ α = V ′′.R

V, ∃(α : κ),V ′.P ∗ x@ A {~f : ~t} − x@ α = V ′′.R

FLEX-DEFAULT
V, ∃(α : κ = t),V ′.P ∗ x@ t− x@ α = V ′′.R

V, ∃(α : κ),V ′.P ∗ x@ t− x@ α = V ′′.R

Figure 7. Instantiation of flexible variables

Rules TUPLE and CONSTRUCTOR descend into structural permis-
sions. The remainders are chained, ensuring that a permission con-
sumed in the i-th subtraction is no longer available in subsequent
subtractions.

Rule APP is somehow complex; let us review it. First of all,
we compare the parameters of the type applications according to
the standard notion of variance. A type can be either covariant or
contravariant in is i-th parameter. A type that is neither is invariant.
A type that is both is bivariant, meaning it makes no use of its

parameter. The
vi
� symbol allows the rule to pick the appropriate

operation from Figure 6 according to vi, the variance of the i-th
parameter.

APP takes the duplicable restriction of the current permission
P before comparing the arguments of the type application. This is
crucial, as performing:

V.y@ ref int ∗ x@ list (=y)− x@ list (ref int)

should be forbidden. The list may have length two, meaning we
would need two copies of y@ ref int, which is not duplicable!

As a first approximation, let us then write the premise as:

V.P ∗ y@ ui

vi
� y@ u′

i = V ′.P ′

The resulting P ′ should be discarded. Indeed, performing

V.x@ list (a | Q)− x@ list a

should not giveQ as a remainder. Indeed, the type (a | Q) may not
be available, as x may be Nil; therefore, Q may be not available at
all!

This is still not precise enough. If α is a flexible variable, our
approximation allows the following subtraction to succeed.

∀(x : term), ∃α.x@ t α α− x@ t int ()

Indeed, the approximation does not carry the flexible variable in-
stantiations from one premise to another. This is the reason why we
need to number our prefixes, and use restrict to import the flexible
variable instantiations from one prefix onto the next.

ARROW is perhaps the most powerful rule. It first starts by tak-
ing the restriction of P to its duplicable bits. A closure in Mezzo
can only capture duplicable variables (function types are duplica-
ble); the corresponding function comparison rule behaves the same
way. It then subtracts the domains; this is a contravariant position,
meaning the order of the subtraction is changed. Then, it uses the
remainder to compare codomains. Any information contained in t′1
is then carried over, which amounts to performing an η-expansion.
A complete example that highlights the η-expansion rule is avail-
able in §3.8.

The resulting environment is then discarded, and the flexible
variable instantiations are retained.

3.5 Implementation: introducing quantifiers
The order in which we introduce quantifiers in a prefix V is of
particular importance. Consider, for instance, the subtraction from
§3.3. We luckily chose the right order for introducing quantifiers:

the ∀a.∃b prefix allows picking b = a via INSTANTIATE, which
solves the subtraction. If we were, however, to introduce b first,
the prefix would be ∃b.∀a, meaning that the instantiation could not
succeed. Indeed, the two quantifiers cannot commute, meaning that
the freshness premise from INSTANTIATE is not satisfied.

Quantifier introduction via normalization We thus need to ea-
gerly introduce universal (rigid) quantifiers. This is the raison
d’être of the normalization. By hoisting all possible existential
quantifiers out of our current hypothesis P , we are able to intro-
duce them as universal variables in the prefix V (§2.3).

One may wonder why normalization introduces singleton types
in the domain of arrows. Let us consider the following subtraction
problem, which we already mentioned in §2.1. This subtraction
should succeed (we omit the term kind annotation, for clarity);
however, performing it naïvely leads to a failure.

no proof
∀f,∃x,∀y.

(
y = x ∗ y@ a− y@ a

)
∀f,∃x.

(
f @ (=x | x@ a)→ ()− f @ a→ ()

) FUNCTION

∀f.
(
f @ ∀x.(=x | x@ a)→ ()− f @ a→ ()

) FORALL-L

Indeed, finding an x such that for any y, we have x = y is
impossible, however powerful the type-checker may be. The y
quantifier was introduced too late. We have to perform extra work
in order to introduce y earlier; this can be achieved by introducing
a singleton type in the arrow’s domain. The type-checker properly
takes care of it, using a combination of DECOMPOSE, COARROW and
COMMUTEARROW. The example above can thus be type-checked, as
shown in Figure 8.

Quantifier introduction using rules Normalization is not enough,
because it only extrudes existential quantifiers. Rule EXISTS-R
(resp. FORALL-L) introduces a flexible variable. At this stage, we
should introduce all possible rigid variables. Failing to do that
would lose instantiation options for the flexible variable. The type-
checker thus aggressively searches for rigid variables, that is, exis-
tential quantifiers on the left-hand side (resp. universal quantifiers
on the right-hand side), before appending an existential variable to
the prefix.

Exploration Eagerly introducing all possible rigid variables be-
fore introducing an existential seems to be enough to ensure we
never make mistakes about the order of our quantifiers. This is not
the case. Consider the following subtraction:

(∃α,∀β.(α, β))− (∃α′, ∀β′.(α′, β′))

At first, the type-checker chooses to apply EXISTS-L to make sure
the rigid variable α is introduced first. The type-checker is then
confronted with a choice between FORALL-L and EXISTS-R which
both introduce a flexible variable. The former choice leads to the
prefix ∀α∃β∃α′∀β′ and, ultimately, a failure, while the latter leads
to the prefix ∀α∃α′∀β∃β′, which admits a trivial solution. The
type-checker has no way to figure out in advance which choice is
the right one, and tries both solutions.
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SUBSUMPTION

...
∀f.

(
f @ ∀x.(=x | x@ a)→ ()− f @ ∀y.(=y | y@ a)→ ()

)
DECOMPOSE

a ≡ ∃x.(=x | x@ a)

a→ () ≡ (∃x.(=x | x@ a))→ ()
COARROW

a→ () ≡ ∀x.(=x | x@ a)→ ()
COMMUTEARROW

∀f.
(
f @ ∀x.(=x | x@ a)→ ()− f @ a→ ()

)
Figure 8. Singleton types need to be introduced in the domain of arrows

3.6 Implementation: picking rules to apply
When confronted with a subtraction P−Q, the type-checker breaks
downQ into a conjunction of atomic permissions of the form x@ t
or p, where p is a type variable at kind perm. The latter can be easily
subtracted (or fail to be) through VARIABLEPERM. The former pose
more difficulties. First of all, the type-checker is unable to subtract
x@ t if x is a flexible variable, meaning that a situation where all
permissions have a flexible left-hand side is a failure. Assuming
a certain x@ t exists, where x is rigid, the type-checker is faced
with a choice. Indeed, there may exist several permissions for x:
for instance, x@ =x is always available, and it may happen that
multiple function types are available for the same variable x.

The type-checker will thus explore all possible solutions, for
each permission x@ t′ present in P . This may seem expensive, but
there is usually one “useful” permission for a given variable, which
we try first, using a syntactic criterion; situations where multiple
“useful” permissions are available happen, but pertain to the realm
of guru Mezzo code.

Once a permission is focused and the subtraction is of the form
P ′ ∗ x@ t′ − x@ t, the type-checker relies on syntactic criteria to
pick which rule to apply. Rules such as TUPLE, CONSTRUCTOR, APP

are triggered according to the shape of t. Some situations require
the use of SUBSUMPTION. For instance, when confronted with a
nominal type (e.g. list a) and a concrete type (e.g. Cons), the rule
is used in conjunction with FOLD, as follows:

FOLD

Nil ≤ list a
∀(y : term).y@ Nil− y@ Nil

CONSTRUCTOR

∀(y : term).y@ Nil− y@ list a
SUBSUMPTION

The SUBSUMPTION rule also allows one to save a copy of a per-
mission at any time, using DUPLICATE. In practice, and if possible,
we save a copy of the permission when focusing on it.

3.7 Implementation: instantiation choices
The way INSTANTIATE is formulated leaves plenty of choice for
the instantiation of a flexible variable. An implementation should
thus have a strategy for instantiating flexible variables. The solution
space is very large, and our algorithm explores only a subset of it:
it is in no way complete. The behavior of our algorithm is governed
by the rules found in Figure 7.

Rules FLEX-TUPLE-L and FLEX-CONSTRUCTOR-L express the
fact that a flexible variable should never directly instantiate to a tu-
ple type or a constructor type. This ensures that a subtraction such
as:

∃α.x@ int ∗ y@ int ∗ (=x,=y)− α
always contains α = (int, int) as a solution. Lacking these two
rules, the only solution considered by the algorithm would be
α = (=x,=y) which is often problematic (§4). These rules are
prioritized over FLEX-DEFAULT.

There are a variety of other situations where the algorithm
applies a specific strategy for instantiating flexible variables. We do

not detail these, as the discussion is quite technical, and the strategy
likely to change in the future.

3.8 A complete subtraction example
We mentioned earlier (§3.2) that the type-checker is able to per-
form:

(∀(y : term).=y → =y)− (∀a.a→ a) = empty

A perplexed Mezzo user may want to write the following η-
expansion to convince themselves of the fact (comments denote
the current permission):

fun (f: [y] (=y -> =y)): [a] (a -> a) =
fun [a] (y: a): a =

(* f @ [y] (=y -> =y) * y @ a *)
f y
(* ret @ =y * y @ a *)

In essence, a singleton type does not carry any useful information;
it merely reveals the existence of a variable, by giving a pointer
to it, and does not carry any ownership of the heap. Therefore, a
function that takes a pointer and returns it, without the ability to do
anything with it, necessarily preserves its argument untouched.

We provide a complete derivation for this subtraction in Fig-
ure 9. The key steps are highlighted in red. The original subtraction
problem is at the bottom. Moving up a few lines, we have per-
formed normalization, by introducing a singleton type in the do-
main of the function on the right. We have also introduced quanti-
fiers in the right order. We are left with two functions to compare.
The rule for functions first compares domains, which gives us x@ a
as a remainder. This remainder is carried onto the comparison of
codomains, which uses this very permission to succeed, giving the
empty result.

As a side-note, proving the converse subtraction below is trivial,
as it is just a matter of instantiating a with =y.

(∀a.a→ a)− (∀(y : term).=y → =y) = empty

4. The merge operation
When introducing the language informally (§1.2), we mentioned
that in order to type-check the match construct, the type-checker is
confronted with the following permission, from the Nil branch:

l @ Nil * ret = l

and the following permission, from the Cons branch:

l @ Cons { head = h; tail = t } *
h’ @ b * t’ @ list b *
ret @ Cons { head = h’; tail = t’ }

We went on explaining that the type-checker “magically” knew
that it should seek to obtain “ret @ list b”, a permission that
is valid in both branches. Solving this problem in general is called
the merge operation.
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The merge operation is what allows one to effectively type-
check a match or an if-then-else expression. As Mezzo po-
sitions itself as a type-checker, not a static analyzer or a program
prover, it is compulsory that disjunctions in control-flow be solved
on the spot. Indeed, a type system shall be predictable; having er-
rors that mention a particular path in the control-flow is no intuitive
behavior, and postponing errors until the end of a function body is
not acceptable either.

4.1 Why is merging difficult?
The merge problem does not admit, in general, a principal solution.
Let us see a few examples.

First example We consider a first example where both branches
of an if-then-else expression return a tuple. Please note that t
is exclusive, meaning only one copy of “x @ T” is available.

data mutable t = T

val z =
if ... then begin

let x = T in
(x, x)

end else begin
(T, T)

end

The merge above can be solved by either “z @ (T, unknown)”
or “z @ (unknown, T)”, where unknown denotes the> type, i.e.
the supertype of all types. Lacking any other annotation, the type-
checker has no way of deciding which solution should be preferred
over the other, as they are incomparable. It is to be remarked that
if the type t were to be duplicable, “z @ (T, T)” would be a
principal solution.

Second example Here is a slightly more complex example, where
sharing occurs:

val z =
let x = T in
if ... then begin

(x, x)
end else begin

let y = T in
(y, y)

end

This time, the type-checker can pick several solutions:

• picking “x @ T * z @ (=u, =u)” will preserve the permis-
sion for x while still retaining the fact the two components of
the tuple are pointers to the same block in the heap (u is exis-
tentially quantified);
• picking “x @ unknown * z @ (=u, =u) * u @ T” loses

the permission for x in favor of a “better” one for z;
• other, inferior solutions exist, such as “z @ (T, unknown)”

or “z @ (unknown, T)”, which would fail to preserve sharing
information.

The first two solutions are incomparable, as none of them implies
the other. The last two solutions, however, are derivable from the
second one. Again, if t were to be duplicable, this situation would
admit a principal solution, namely “x @ T * z @ (=u, =u) *
u @ T”.

We conjecture that a principal solution always exists (and is
always found by our algorithm) if the merge problem only contains
duplicable data, and does not contain any data type with more than
one branch.
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Third example Merging is even more difficult when nominal
types come into play.

val z =
let y = ... in
if ... then

Some { contents = y }
else

None

Let us consider the case where y refers to duplicable data, and as-
sume for the sake of example that we have “y @ int”. This merge
problem admits a principal solution, namely “z @ option (=y)
* y @ int”. One can derive “z @ option int” using COPYDUP.

In the case that y refers to non-duplicable data, e.g. if we
have “y @ ref int”, then again, this problem does not admit a
principal solution, as “z @ option (=y) * y @ ref int” and
“z @ option (ref int)” are not comparable5.

As a side-note, if y were bound in the then branch, the solutions
would be similar, except y would be existentially-quantified in the
resulting permission.

Fourth example Lists pose different difficulties.

val z =
let y = ... in
if ... then

Cons { head = y; tail = Nil }
else

Nil

Here, merging into “z @ list (=y) * y @ ...” would be a ter-
rible choice, as the user could only append y to the list afterwards!

4.1.1 Three sub-problems
The merge operation poses several difficulties.

• We need to reconcile conflicting heap shapes into a common de-
scription. This implies traversing two graphs in parallel, which
is similar to what has been done in the field of shape analy-
sis [12]. This problem is predictably and efficiently treated by
our algorithm.
• Because of mutable data, the algorithm has to decide, as in the

first example, where to “assign” a piece of mutable data. We call
this the exclusive resource allocation problem. Our algorithm
can detect and warn the user about such cases, but lacking any
backward analysis, is unable to decide which solution it should
pick. Our first two examples would trigger such a warning.
• Folding inductive predicates is also a recurring problem in the

literature; is is highlighted by the third and fourth examples. In
Mezzo, the use of singleton types poses additional difficulties,
as it offers multiple solutions for the parameter α when folding
two types into, say, list α. Our algorithm is not complete and
only considers a limited, yet predictable, subset of choices for
the parameter.

4.2 Formal definition of the merge operation
We define a root to be a program variable defined before the merge
operation, or the return value of the match expression. In the fourth
example, y is a root, as it is bound before the disjunction; z is also
a root, as it represents the value of the if-then-else expression.

We talk about the original permission (before the disjunction
in control-flow), the left and right permissions, and the destination
permission (the result of the merge operation).

5 The system would need a rule for an η-expansion of data types. We
currently do not have this, and do not plan to add it.

We define a point to be any location in the heap accessible from
a root. There are left points, right points, and destination points.

We assume a bijection ψ where ψ(x) = xl, xr means that the
left point xl and the right point xr map onto the destination point
x. Initially, ψ(ρ) = ρl, ρr , meaning that the return values from
the left and right expressions map onto the return value for the
whole match expression. We also have ψ(x) = x, x for all other
roots, that is, variables that were already defined in the original
environment.

We define the merge of prefixed, normalized environments Pl

and Pr to be:
(Vl.Pl ∨ Vr.Pr) = V.R

A more useful presentation is one that, just like subtraction, focuses
on a particular variable, and represents the working state of the
algorithm using R, which stands for permissions that have been
merged already.

ψ(x) = xl, xr

(Vl.Pl ∗ xl @ t ∨ Vr.Pr ∗ xr @ t) ∗ V.R =
(Vl.Pl ∨ Vr.Pr) ∗ V.R ∗ x@ t

The difficulties lie, first, in finding the correct ψ function and
second, in applying the right subsumption rules on Pl and Pr so
as to obtain the same type on both sides of the disjunction.

4.3 Computing the mapping
Computing the ψ function is done by traversing the left and right
permission graphs in parallel. One basically follows the structural
permissions (tuples and constructors) starting from the roots, and
associates a pair of matching points onto a destination point. We
ensure that for a pair of matching xl and xr , only one destination
x corresponds: ψ is really a bijection, meaning that it preserves
sharing.

The ψ function, once completed, maps every pair of left and
right points, reachable through the same path, onto a destination
point.

The rules that implement the building of the ψ function are
presented in Figure 10. They assume the environments to be nor-
malized, since building the ψ function is only possible if structural
types are expanded using singleton types.

4.4 Algorithmic presentation of merge
We assume the ψ function has been computed, and initially start
with:

(Vl.Pl ∨ Vr.Pr) ∗ V.empty
If V0 is the prefix of the original permission, and if dom(ψ) is the
domain of the ψ function, we define V to be:

V = V0, ∃(
−−−−−→
dom(ψ) : term)

This is restrictive: a variable that is local to the left or right per-
mission, and that has not been mapped by the ψ function, cannot
appear in the destination permission. For instance, no meaningful
permission will come out of the following merge ({t} t is the con-
crete syntax for ∃t.t):

(* f @ () -> {t} t *)
val z =

if ... then
f ()

else
f ()

Function f returns an existentially-quantified type. Per the restric-
tion above, the algorithm will not know how to merge this. The user
can solve the merge by providing a type annotation for z.
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PSI-TUPLE
ψ(x) = xl, xr xl @ (. . . ,=yl, . . .)

6 ∃y′.ψ(y′) = yl, yr xr @ (. . . ,=yr, . . .)
y fresh

ψ(y) = yl, yr

PSI-CONSTRUCTOR
ψ(x) = xl, xr xl @ A {. . . , f : =yl, . . .}

6 ∃y′.ψ(y′) = yl, yr xr @ A {. . . , f : =yr, . . .}
y fresh

ψ(y) = yl, yr

Figure 10. Computing the ψ function

MERGE-TUPLE
ψ(x) = xl, xr ψ(~y) = ~yl, ~yr

(Vl.Pl ∗ xl @ (=~yl) ∨ Vr.Pr ∗ xr @ (= ~yr)) ∗ V.R = (Vl.Pl ∨ Vr.Pr) ∗ V.R ∗ x@ (=~y)

MERGE-CONSTRUCTOR
ψ(x) = xl, xr ψ(~y) = ~yl, ~yr

(Vl.Pl ∗ xl @ A {~f : =~yl} ∨ Vr.Pr ∗ xr @ A {~f : = ~yr}) ∗ V.R = (Vl.Pl ∨ Vr.Pr) ∗ V.R ∗ x@ A {~f : =~y}

MERGE-APP
ψ(x) = xl, xr

(Vl, ∃(y : term).Pl ∗ y@ ui,l ∨ Vr, ∃(y : term).Pr ∗ y@ ui,r) = (Vl.Pl ∨ Vr.Pr) ∗ V.y@ u if t is covariant in parameter i
u = ∀α.α if t is bivariant in parameter i

ul ∈ V0 ur ∈ V0 ul = ur otherwise
(Vl.Pl ∗ t ~ul ∨ Vr.Pr ∗ t ~ur) ∗ V.R = (Vl.Pl ∨ Vr.Pr) ∗ V.R ∗ t ~u

MERGE-PERM-VAR
p ∈ V0

(Vl.Pl ∗ p ∨ Vr.Pr ∗ p) ∗ V.R = (Vl.Pl ∨ Vr.Pr) ∗ V.R ∗ p

MERGE-DEFAULT
t ∈ V0 ψ(x) = xl, xr

(Vl.Pl ∗ xl @ t ∨ Vr.Pr ∗ xr @ t) ∗ V.R = (Vl.Pl ∨ Vr.Pr) ∗ V.R ∗ x@ t

Figure 11. The merge operation

The reason for this restriction is that merging local types re-
quires packing them under an existential; the results are not pre-
dictable, and we risk merging too many types. Indeed, with this
strategy, “x@ int ∨ x@ ()” would be solved as “x@ ∃t.t”!

The rules are presented in Figure 11. We write t ∈ V0 to
signify that a type makes sense in the left, right, and destina-
tion permissions (thus rendering its merge trivial). Tuple and con-
structor types are translated using the ψ function (MERGE-TUPLE,
MERGE-CONSTRUCTOR). Function types, type variables are merged
using the default criterion, that is, syntactic equality (MERGE-DEFAULT).
MERGE-APP deserves an explanation. We can only merge type ap-
plications of the same type. In that case, we recursively merge the
parameters of the type application.

• If parameter i is bivariant, the type application will not use its
parameter, meaning we can pick ⊥ = ∀α.α for the resulting
ui.
• If parameter i is covariant, we can recursively merge the type

parameters; we bind a fresh rigid variable y and re-use the
merge algorithm to compute parameter ui.
• If parameter i is invariant, we rely on a syntactic equality

criterion to compute parameter ui.
• If parameter i is contravariant, we would need to perform the

intersection of two types, an operation that is not supported by
our type-checker. We approximate, and use syntactic equality
again.

4.5 Implementation strategy
Again, these rules provide very little in terms of implementation
details. With the contents of Figure 11, we are still at loss for
resolving the merge from the third example. Indeed, one needs to
apply subsumption rules before the rule MERGE-APP can apply.

Difficulties related to merging only appear when merging dis-
tinct constructors (e.g. Nil vs. Cons), or a constructor with a nom-

inal type (e.g. Cons vs. list t). Let us start with the latter, easier
case.

Cons. vs. nominal We are faced with the following disjunction,
where A is a data constructor that belongs to type t (the problem
has no solution otherwise).

Vl.Pl ∗ x@ A {~f : =~y} ∨ Vr.Pr ∗ x@ t ~u

We could be subtle here, but for the sake of clarity, we require
~u ∈ V0, which implies that all the type application’s parameters
also make sense in the left environment.

We can thus perform, in the left environment, the following
subtraction:

Vl.Pl ∗ x@ A {~f : =~y} − x@ t ~u = V ′
l .P

′
l

The left permission is weakened, but we gain in exchange a new
merge problem, which is solvable using rule MERGE-APP.

V ′
l .P

′
l ∗ x@ t ~u ∨ Vr.Pr ∗ x@ t ~u

Please note that we keep the resulting environment V ′
l .P

′
l : the sub-

traction may have consumed permissions and instantiated flexible
variables in the left permission, and we need to keep this informa-
tion for future merges.

Cons. vs. cons We are now faced with the following disjunction,
where both A and B are data constructors belonging to a common
type t.

Vl.Pl ∗ x@ A {~f : =~yl} ∨ Vr.Pr ∗ x@ A {~f : =~yr}
Again, subtraction is going to help us. We know that both these
types should fold into “t ~u”. The difficulty is we don’t know the
actual values of ~u. We can perform the following subtraction:

Vl, ∃(~αl : ~κ).Pl ∗ x@ A {~f : =~yl} − x@ t ~αl = V ′
l .P

′
l

We introduce flexible variables along with the right kinds to stand
for the parameters of the type application. The same operation is
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performed on the right-hand side, leading to the following subtrac-
tion, which is solvable using MERGE-APP:

V ′
l .P

′
l ∗ x@ t ~αl ∨ V ′

r.P
′
r ∗ x@ t ~αr

If instantiated, the type-checker automatically substitutes a flexible
variable α for its instantiation t. In the case where either one of
αl and αr is uninstantiated, the type-checker will perform the
intuitive instantiation. In the case where both remain flexible, a type
annotation is mandatory.

Instantiation choices The quality of the frequent Cons vs. cons
case depends on the choice made by the type-checker for the flex-
ible variables ~α. A heuristic is used, which the user can always
bypass using a type annotation. It mainly consists in never instan-
tiating a flexible variable with a type that contains singletons, for
fear the singletons would refer to a local variable, thus rendering
the instantiation choice useless for a merge.

4.6 Detecting exclusive resource allocation conflicts
The exclusive resource allocation conflicts from the first and second
examples can be detected easily. When one merges yl @ t ∨ yr @ t
onto ψ(y) = yl, yr , if t is exclusive, and there exists y′ such that
ψ(y′) = yl, y

′
r (resp. ψ(y′) = y′l, yr), this means that there will be

a conflict as to which of y and y′ “gets” the exclusive permission
from yl (resp. yr).

5. Related work
The entire design of Mezzo owns a great deal to separation
logic [11]; our type system can be seen as an adaptation of sep-
aration logic into a type system for an ML-like language. This is
achieved through the use of permissions: a permission is analogous
to a separation logic assertion. This design choice has numerous
consequences.

• Type annotations are mandatory for functions, meaning that the
types of the arguments are the pre-condition, while the return
type of the function is the post-condition. We do not need a
separate language for pre- and post-conditions.
• We thus do not distinguish between spatial predicates and log-

ical formulae: a permission embodies both concepts. The per-
mission “x @ list a” has a spatial reading, while a permis-
sion “x @ =y” has a logical reading.
• Algebraic (inductive) data types are central in ML-like lan-

guages, and Mezzo makes no exception. Instead of defining sep-
arate hard-wired predicates for lists, trees, doubly-linked-lists,
Mezzo naturally relies on user-defined data types (such as list)
for the spatial assertions (such as “x @ list a”).
• Disjunction is somehow easier to treat. For a pointer language,

reasoning of the form x = null ∨ x 7→ list takes place, which
requires exploring disjunctions and manipulating predicates for
list segments. Algebraic data types are tagged sums, meaning
that disjunctions are destructed explicitly via match expres-
sions, which make the job of the type-checker easier. More-
over, while loops are replaced with recursive functions, that
express different pre- and post-conditions. Combined with re-
cursive reasoning [9], this alleviates the need for list segments.

Frame inference Calcagno et al. perform a symbolic execution
of pointer programs with Smallfoot [2, 3]. They introduce a de-
cidable algorithm for inferring frame axioms, that is, portions of
the current separation logic assertion that are left untouched by a
call to a subroutine. They assume unquantified assertions, and only
consider a subset of hard-wired inductive predicates.

Nguyen et al. [8] allow user-defined inductive predicates. They
present an algorithm that, even if not complete, terminates. They
allow a limited form of quantification.

Pérez and Rybalchenko [7] have a correct and complete algo-
rithm for a fragment of separation logic with list segments. They
deal with linear formulas that contain exactly one spatial predicate,
and treat disjunction.

In the setting of Mezzo, the frame inference problem requires
dealing with duplicable and non-duplicable parts of the heap, as
well as quantifiers. To the best of our knowledge, this extends
previous work in the area.

Computing joins What we call the merge problem received com-
paratively little attention from the program proof and static analysis
communities [12, 13, 5]. There are several reasons for this. Indeed,
computing the merge, or “join” of two branches amounts to per-
forming an approximation. There are valid reasons not to do that,
such as preserving the quality of the solutions, or avoiding the com-
plexity of computing an approximation. In this case, each branch is
treated separately, which may indeed lead to an exponential number
of branches when one reaches the end of control-flow.

The need for a “join” operation arises in a different context for
pointer languages. In pointer languages, loops are central. Com-
puting the shape of a loop requires “joining” shapes that denote
successive iterations of the loop. The procedure ultimately reaches
a fixed point which then stands for the loop invariant. We do not
have this issue as loops in Mezzo are recursive functions, meaning
they are annotated.

Proving our type-checker A version of the Smallfoot program
analyzer has been proven sound using the Coq proof assistant [1].
We currently do not have any soundness or completeness result for
our type-checking algorithms.

6. Conclusion
We have presented the implementation of a type-checker for the
Mezzo language. Mezzo is based on permissions and features sin-
gleton types, constructor types, first-class functions, which make
implementing a type-checker difficult. Type-checking a Mezzo pro-
gram leverages two central operations, subtraction and merge. We
have shown how to perform both operations in the context of
Mezzo, extending previous work in the area.

In the future, we would like to obtain a completeness result for
our algorithm, even if on a limited subset of Mezzo programs. We
conjecture that our type-checker is complete when the only quanti-
fiers are at kind term. We would also like to improve inference, as
our algorithm only explores a subset of the solution space.
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