
A DSL for Web Services Automatic Test Data Generation

Macı́as López Henrique Ferreiro
Laura M. Castro

Department of Computer Science
University of A Coruña, Spain

{macias.lopez,hferreiro,lcastro}@udc.es

Thomas Arts
Quviq AB
Sweden

thomas.arts@quviq.com

Abstract
Testing web services requires generating wellformed XML data
compliant to a WSDL specification. The knowledge on develop-
ing QuickCheck data generators for such data is a barrier to the
use of QuickCheck by non-experts. The lack of property-based ap-
proaches for testing web services makes testing expensive and in
practice faults slip through by insufficient test coverage.

We present a domain specific language which reuses the essen-
tial part of the WSDL syntax making it straightforward to express
WSDL types as QuickCheck generators.

Making it easier to write these data generators in a language
mimicking WSDL allows a larger audience to benefit from the
advantages of property-based testing.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms reliability, verification

Keywords web services, QuickCheck, WSDL

1. Introduction
One of the main problems of testing is data generation. This prob-
lem has two sides: quantity and quality. On the one hand, testing
usually involves writing specific test cases, including test data. For
testing to be thorough, the number of test cases needs to be sig-
nificant and so is the effort to write them. On the other hand, for
testing to be effective, the data has to be complex enough to expose
non-trivial software errors.

Property-based testing (PBT [6]) is a testing approach that
can tackle the two sides of this problem. Rather than manu-
ally writing individual test cases, PBT requires developers to de-
scribe properties of the software. Then, PBT tools such as Erlang
QuickCheck [2] can automatically derive hundreds of different test
cases from those properties.

While properties describe the functional behaviour of the soft-
ware, data generators are written by developers to describe the in-
put data. These generators are the key to the significant derivation
of test cases capable of exposing non-trivial software errors. Al-
though QuickCheck provides generators for basic types (int, char,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
IFL’13 August 28-30th, Nijmegen
Copyright c© 2013 ACM [to be supplied]. . . $15.00

lists. . .), building complex data generators, possibly parametrised
by dynamic conditions, is not easy for QuickCheck non-experts.

As an example, if a function requires a list of integers greater
than a given integer N, a possible way to write a QuickCheck data
generator is this:

int_list_gt(N) ->
eqc_gen:list(?SUCHTHAT(M, eqc_gen:int(), M>N)).

Sampling this generator eqc_gen:sample(int_list_gt(5))
will return specific data instances such as:

[]
[14]
[16,11]
[18,11,19,12]
[11,18,16,18,7,12]
...

However, these kind of simple instances, and consequently such
simple generators, may not be enough to represent the required
complexity of the data. In particular, generating input data for
testing web services frequently requires the ability to observe a set
of constraints over that data defined as part of the description of the
web service. This description can be provided in a format such as
WSDL [19], or just as part of the web service documentation (i.e. a
PDF or HTML document).

As an example, an existing web service for a multimedia system
which manages the different rooms in which video streaming de-
vices are located within a household, could handle XML-formatted
data as:

<rooms>
<room>

<roomId>95926-69-43-227</roomId>
<description>Living room</description>

</room>
<room>

<roomId>926-9-43-90</roomId>
</room>
<room>

<roomId>6227-39-5-6920</roomId>
<description>Kid’s room</description>

</room>
<rooms>

To produce such data, a number of constraints have to be imple-
mented in the generators, like:

• Optional information. Web services frequently include fields
(tags, if in XML format) which are not required for proper
operation, such as the description in the example above.
However, if provided, optional information must be properly
processed.

• Number of occurrences. Web services frequently indicate a
number of occurrences of information that is expected for
proper operation. For instance, a total number of rooms be-
tween 1 and 5.

• Patterns for content. Web services frequently expect data to
fulfil certain format for proper operation, such as the four-
number code for roomId in the example above.

These constraints are common to many kinds of data, regardless
of its particular type, so the fact that developers need to take care
of them every time they need to write a data generator for a web
service is highly inefficient and error prone.

But more importantly, this naı̈ve approach to data generator
writing tends to first generate data that is later on filtered out
according to its required constraints. This makes it rather easy that
data ends up being discarded, thus spoiling generation efforts, even
if only we want a list of integers greater than 100:

> eqc_gen:sample(test_eqc:int_list_gt(100)).
** exception exit:

{"?SUCHTHAT failed to find a value
within 100 attempts.",[]}

Rather than putting a lot of effort in generating data that may be
no longer valid when we check the constraints it needs to fulfil, we
need to proceed the other way around: taking the constraints into
account when generating the data, not afterwards.

In this paper, we show how we overcome these two issues by
defining a DSL which developers can use instead of writing their
own data generators. We have designed this DSL taking inspiration
from WSDL elements (constraints and keywords), to lower the en-
try barrier from web service developers even further.

Thus, the contributions of this work are the following:

• The definition of a DSL to express web services data.
• An enabling mechanism for non-expert QuickCheck users to

define their own web service data generators.
• We provide a target for automatic testing of web services.

2. The problem of data generation
The advantages of the use of PBT [12] are highly dependent on the
definition of good generators for data [7, 11, 16]. As we mentioned
in the introduction, writing data generators that produce data taking
into account constraints which are not data-type inherent is chal-
lenging. Besides, these kind of constraints are indeed applicable to
different kinds of data types.

Take for instance our previous example of room information
that could be sent to a web service for multimedia management.
This example is borrowed from a real web service [9], with the
excerpt of WSDL definition shown in Fig. 1.

This defines an operation to create rooms which takes as param-
eter a user-defined complex type, createRoomParams. This type
consists of a sequence, which represents a fixed-length list of the
elements it contains: a roomId (a string), and a description,
which can be present or not, as reflected by the use of the con-
straints minOccurs=0, maxOccurs=1. These WSDL occurrence
modifiers can be applied to any WSDL element and, if not present,
the convention is minOccurs=1, maxOccurs=1.

For testing this functionality, we would like to generate data like
the one shown in Fig. 2.

For generating such data, we could write a set of generators that
produce a list of rooms:

createRoomParams() ->
eqc_gen:list(room()).

...
<wsdl:operation name="CreateRoom"

pattern="http://www.w3.org/ns/wsdl/in-out"
style="http://www.w3.org/ns/wsdl/style/iri"
wsdlx:safe="true">

<wsdl:documentation>
It creates a new household with the specified values.
</wsdl:documentation>

<wsdl:input element="msg:createRoomParams"/>
<wsdl:output element="msg:createRoomResponse"/>

</wsdl:operation>
...
<xsd:element name="createRoomParams">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="roomId"
type="xsd:string" />

<xsd:element name="description"
type="xsd:string"
minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
...

Figure 1. Samples of test data

Test data 1: <rooms></rooms>

Test data 2: <rooms>
<room>

<roomId>5-5-0-10</roomId>
<description>za</description>

</room>
</rooms>

Test data 3: <rooms>
<room>

<roomId>8-1-1-9</roomId>
</room>

</rooms>

Test data 4: <rooms>
<room>

<roomId>13-5-10-12</roomId>
<description>rtmsj</description>

</room>
<room>

<roomId>12-5-6-7</roomId>
</room>
<room>

<roomId>8-2-6-11</roomId>
<description>ydi</description>

</room>
</rooms>

Figure 2. Samples of test data

each of which has an identifier and –optionally- a description, so
we write a generic optional utility function to be used with any
generator G:

room() ->
{roomId(), optional(description())}.

optional(G) ->
eqc_gen:oneof([[], G]).

To comply with the web service specification, room identifiers
are four-number codes:

roomId() ->
{eqc_gen:nat(),
eqc_gen:nat(),
eqc_gen:nat(),
eqc_gen:nat()}.

and descriptions are just strings of printable characters:

description() ->
eqc_gen:non_empty(eqc_gen:list(printable_char())).

An eqc_gen:sample(rooms()) produces output like

[]
[{ { 5,5,0,10}, "za"},

{ {8,1,1,9}, []}]
[{ {12,5, 6, 7}, []},

{ {13,5,10,12},"rtmsj"},
{ { 8,2, 6,11}, "ydi"}]

...

which formatted into XML would look like the test samples in
Fig. 2, any of which could be used to feed the web services func-
tionalities that receive a list of rooms (i.e. create rooms, delete
rooms, etc.), and specifically the createRoom service in Fig. 1.

Even thought the generated data we have just shown may seem
suitable for testing purposes, it presents a series of concerning
issues.

First, take into account we cannot tell the difference between
an empty description and a non-present description. Both are repre-
sented using the empty list ([]). With the previous generators, we
cannot generate these two different representations:

Test data 1: <room>
<roomId>12-5-6-7</roomId>

</room>

Test data 2: <room>
<roomId>12-5-6-7</roomId>
<description></description>

</room>

Figure 3. Non-differentiable test data

which, with testing in mind, constitute two different and equally
relevant test cases. Both test cases should end up dealing with the
same data (i.e. a room with certain ID and empty description), but
we want to test that indeed this is the case.

More importantly, there are cases in which this inability to tell
the difference may coerce our capability of expressing relevant
situations. In contrast with the previous example, in which we want
to allow both the presence of an empty description and the absence
of a description at all, the list of rooms can be empty, but should
never be absent. In other words, when invoking functionalities such
as create rooms or delete rooms, this is valid input data:

<rooms></rooms>

but the absence of data is not a valid input.
This behaviour, which we can link to the use of the occurrence

contraints in the WSDL definition of the web service, is not lim-
ited to this example. A non-exhaustive list of WSDL element con-
straints that can be used to describe web services is:

• length of elements (length, minLenght, maxLength), not
only strings but also lists of items

• patterns (regular expressions) of strings, dates, numbers

• enumerations, which define a list of acceptable values for any
basic type

• whitespace handling (preserve, replace, or collapse tabs,
spaces, carriage returns. . .)

There are other indicators which can be applied to a set of
WSDL elements to define order restrictions, such as:

• all: specifies that the child elements can appear in any order,
and that each child element must occur only once

• choice: specifies that either one child element or another can
occur

• sequence: specifies that the child elements must appear in a
specific order

or the already mentioned occurrence restrictions (maxOccurs,
minOccurs).

Our DSL defines a set of constructs which can be used to-
gether with basic data type generators provided by tools like Quviq
QuickCheck in order to generate data which needs to comply with
those kinds of contraints. These constructs will be used in a sim-
ilar way to other utility functions such as eqc gen:non empty,
eqc gen:choose, or eqc gen:oneof provided by QuickCheck,
or the optional showed earlier.

Thus, taking as example the createRoomParams operation at
the beginning of this section (cf. Fig. 1), our main goal is to define
a wsdlType/1 function that generates valid data according to the
WSDL specification. We have used a WSDL-inspired syntax.

createRoomParams() ->
wsdlType(tag("room",

[tag("roomId",string()),
minOccurs(0,maxOccurs(1,tag("description",

string())
))

])
).

Figure 4. CreateRoomParams data generator

3. DSL for data generation
We designed our DSL as a deep embedding [8] of a WSDL com-
binator language in Erlang. This has allowed us to easily integrate
with Erlang QuickCheck 1.

From the point of view of a QuickCheck user, writing data
generators using our DSL means:

1. Using a number of combinators which closely resemble WSDL
elements and constraint modifiers. This will create an internal
data structure representing the desired data type.

2. Wrapping these combinators in a wsdlType/1 function call.
This function will transform the aforementioned internal struc-
ture into a data generator.

Internally, the DSL is structured using an opaque abstract syntax
tree (AST) which represents either basic or complex types, and a list
of attributes which add restrictions to them:

AST ::= Empty | Int | String | .. |
Sequence | Union | List |
{Tag, Attributes, AST}

1 In the rest of this paper, we refer to Erlang QuickCheck or Quviq
QuickCheck simply as QuickCheck.

Every constructor in the AST is represented by the general form
{Tag, Attrs, Content}. In the case of predefined WSDL types,
such as basic types (integers, strings. . .) or complex types (se-
quences. . .), we use a specialised version where the Tag is an atom
with its textual representation.

The Attributes are key-value pairs representing WSDL pre-
defined constraint modifiers (minOccurs, maxLength, etc.), or the
attributes of a generic XML element.

The Content of each data description can be the empty list, so
that a suitable QuickCheck generator is used in a second phase, or
else a literal which represents the identity generator.

For example, the integer 5 is represented in our AST as follows:

{int, [], 5}.

A generator for 8-char strings is represented as:

{string, [{length, 8}], []}.

And one of our room examples is represented as:

{room, [],
{sequence, [],

[{roomId, [], "8124-24-39"},
{description, [{minOccurs,0},{maxOccurs,1}],

{string, [], []}}]}}.

We show here how the tag/2 function is used to create a XML
element by providing its name and contents (cf. Fig. 4). The con-
tent of a room is a sequence of two elements: a roomId and a
description. They are similarly built, being relevant the second
one in which we use the minOccurs/2 and maxOccurs/2 combi-
nators to make it an optional element. Lastly, string/0 creates an
empty string element, which will be identified as a place where an
string generator is needed.

Once we have built the AST, the wsdlType/1 wrapper involves
a two-step process:

1. Consistency checks on the existing constraints, namely, the
coherence between constraints (i.e. minLength = 3 and max-
Length = 5) and application to suitable data types (i.e. length
of a string).

2. Transformation of the AST into a data generator ready to be
consumed by QuickCheck properties. This is applied to every
place in the AST where no literal is used to describe the type.

This two-step process is needed in order to overcome the prob-
lem mentioned in Sec. 1: constraints must be checked when gen-
erating data, not afterwards. Also, constraints coherence should be
guaranteed prior to any data generation attempt, in order to avoid
wasting efforts.

3.1 CreateRoomParams detailed internal generation
In this section we show the detailed behaviour of our DSL for the
CreateRoomParams example (Fig. 4).

First, we focus on a representative fragment of the combinators
that we have used:

maxOccurs(1,tag("description",string()))

Combinators such as maxOccurs/2 above are used to apply the
attributes they represent to the AST provided as second argument.

maxOccurs(N, {Tag, Attributes, Content}) ->
{Tag, [{maxOccurs,N} | Attributes], Content}.

The function tag/2 builds a new AST using its arguments as tag
and content, respectively. The function clause pattern-matches on
the structure of the second argument to ensure that is AST-shaped:

...
tag(Name, {_,_,_} = C) ->

{Name, [], C};
...

Our DSL provides different flavours of the tag combinator
which allow the use of Content (as in the previous example), a
list of Attributes (as a key-value list) or both of them. Another
example of the use of tag in the createRoomParams/0 generator
uses a list of ASTs as second argument, thus building a WSDL
sequence:

...
tag(Name, L) when is_list(L) ->

{Name, [], sequence(L)};
...

Lastly, functions like sequence/1 and string/0 are the ones
used to build predefined WSDL types:

sequence(Elements) when is_list(Elements) ->
{sequence, [], Elements}.

string() ->
{string, [], ""}.

string(S) ->
{string, [], S}.

Some of these functions for predefined WSDL types also take a
literal in order to represent ASTs for fixed values, like string/1
above.

Once the AST is built, it is passed as parameter to the wsdlType/1
function. As we already mentioned, this function involves two
steps:

wsdlType(AST) ->
ConsistentAST = check_constraints(AST),
generate(ConsistentAST).

The first step, embodied by the check_constraints/1 func-
tion, is a compatibility check on the values of the numerical
Attributes referred to the same magnitude (e.g. min/max length,
occurrences. . .), and a domain check of the values of the other kind
of attributes (e.g. replace, preserve or collapse whitespaces
in strings). Also, check_constraints is recursive on the third
component of the AST, the Content, in order to explore the whole
structure in depth.

Finally, after ensuring the AST includes consistent information,
we use the generate function to, while preserving the AST struc-
ture, remove constraint attributes and replace the content at each
level with a suitable generator. For instance, for string contents, a
simplified version of the generation machinery is as follows:

...
generate({string, Attributes, ""}) ->

Min = proplists:get_value(minLength, Attributes),
Max = proplists:get_value(maxLength, Attributes),
Gen = ascii_char(),
?LET(N, choose(Min,Max),

{string, escaped_string(vector(N, Gen))};

generate({string, _, S}) ->
{string, S};

...

This snippet shows how we build a generator for strings (in this
case only showing how to deal with the length attribute), and also
how we use a string literal when one is provided.

For complex data types such as sequence or union, we return
a list of generators for each member of the sequence or a choice
(eqc_gen:oneof/1) among them in the case of union.

4. Using our DSL for testing web services
The main example we have used to conduct this paper, the web
service offered by a multimedia system to manage streaming de-
vices in different locations, is part of a real industrial system called
VoDKATV.

VoDKATV is an IPTV/OTT middleware that provides end-users
access to different services on a TV screen, tablet, smartphone, PC,
etc., allowing an advanced multi-screen media experience. VoD-
KATV is a distributed system composed by several components,
which are integrated through web services (cf. Fig. 5).

core

<<component>>

VoDKATV-server

<<component>>

Database

HTTP/JSON

HTTP/XML

JDBC

backend

<<component>>

AssetManager

<<component>>

EPGServer

HTTP/JSON

HTTP/XML

admin

<<component>>

OSS Admin Interface

<<component>>

BSS Admin Interface

<<component>>

Monitoring

client

<<component>>

Device

<<component>>

STB

<<component>>

PC

<<component>>

Tablet

Figure 5. VoDKATV Architecture

The main part of the VoDKATV system is the core package, that
contains the key components of the system. The core components
use backend components to get information from external systems,
for example the electronic program guide (EPG) of IPTV channels
(provided by the EPGServer component) or multimedia contents to
rent in a video on demand catalogue (provided by the AssetMan-
ager component). On the other hand, the core components are used
by the clients, i.e., the applications that end-users use to access the
system on a TV screen, smartphone or any other compatible device.
Finally, the architecture also includes administration applications to
manage and configure the system (admin package).

As a way to validate the capabilities of our DSL for testing real
web services, we have used VoDKATV as case study. In particular,
we have used the web service provided by the VoDKATV-server
component which returns data in XML format. As it is shown in
Fig. 5, this web service is used by administration components to
configure the VoDKATV system, which includes room and device
management functionalities.

All in all, given the number of web-service-based component
integration scenarios present in this system, web service testing,
and specifically data generation for web service testing, is very
relevant to VoDKATV developers. Naturally, this style of integra-
tion is not unique to VoDKATV, and is also a very commonly used
means of integration with third-party components, applications or
systems [17].

Prior to the introduction of our DSL, the testing performed by
VoDKATV developers on this web service consisted of a manually-
written test suite of unit test cases. The data in those test cases had

been manually produced as well, and inspection of the test cases
revealed that the same data had been copied and pasted in different
test cases.

VoDKATV developers were familiar with PBT, and actually
used it in other parts of the system, written in Erlang. Difficulty to
write proper generators was referred by them as one of the reasons
not to engage in QuickCheck usage as far as web services were con-
cerned, alongside with difficulties to model web service operations
and behaviour, and time required to put the machinery in place to
communicate PBT tools like QuickCheck with HTTP/XML-based
interfaces.

Even though at these stage we yet to develop a whole method-
ology to effectively test all web services available operations in an
automatic fashion using PBT, we have been able to use our DSL
to produce QuickCheck generators and automatically build data to
feed the web services, instead of the manually-written data in the
test suite. In doing so, we were able to detect unspecified behaviour
of the VoDKATV system when the rooms to be created contained
strange characters (for instance, ä) as part of their descriptions. Be-
ing it an optional field, the rooms were created anyway, but the web
service itself crashed badly and the web server returned a severe er-
ror message which revealed data of the internals of the application
(i.e. complete error paths).

Such behaviour had never been triggered using the test cases in
the manually-written test suite, because developers writing the test
data would commonly used sensible, real-like strings using com-
mon characters to them. The problem was reported and diagnosed
by VoDKATV developers as a case of bad handling of character
encodings withing the server.

5. Related work
Most of the research carried out about web services testing focuses
on methods to create good test suites, from a black-box perspective.
Examples of this are [3], where authors use a technique called
Orthogonal Array Testing (OAT); the pair-wise method defined
in [13], which uses semantic information through WSDL-S [20]
and OCL [15] to generate test cases; or a partition testing technique
in [4].

Other proposals also build intermediate artefacts to help in
the process, such as [21], which builds a finite automata using
BPEL [14], or in [18] which uses UML and OCL. A complete
framework to perform testing using a WSDL specification is ex-
plained in [5], where test cases are generated using a coverage
criteria and some heuristics.

All the references above focus on the generation of test cases
and give data generation little discussion. One different example
is [10], where the authors present one fully automatic approach to
test web services and also a PBT tool is used. Although they use a
WSDL document to generate test cases, they only take into account
the main type of the inputs/outputs (integers, strings. . .), leaving
out the rest of the WSDL constraints.

In our review of the state of the art, we did not find any work
which uses a DSL or some intermediate language to build test cases
for web services testing in order to enhance test data quality. So, to
the best of our knowledge, our work is a novel contribution to this
research area.

6. Conclusions and future work
In this paper, we have described the definition of a DSL for writ-
ing QuickCheck data generators for web services. In order to lower
the entry barrier for QuickCheck non-experts, we have taken in-
spiration from the WSDL elements themselves when designing the
syntax of our DSL.

The use of the described DSL overcomes two important pitfalls
in the definition of data generators for web service data:

• the need to express constraints on data that are not type-
dependent, rather applicable to different kinds of data;

• the need to take constraints on data into account at generation
time, rather than once the data has already been generated.

As we have shown, our DSL includes

• a set of combinators that allow developers to consistently apply
constraints on all kinds of data;

• a common wrapper that interprets and transforms user-defined
generators using these combinators into QuickCheck-ready
data generators.

Consequently, we contribute not only the definition of a DSL
to express web services data, but more importantly, an enabling
mechanism for non-expert QuickCheck users to define their own
web service data generators. Also, our DSL is a target for automatic
testing of web services.

In fact, this work is part of a broader research. Having this DSL
in place allows us to take the next step and use it as a target for ad-
ditional tools designed to automate the testing process. Specifically,
after addressing the syntax of web services, meaningful testing re-
quires addressing web semantics as well. We intend to provide sup-
port for QuickCheck-flavoured ways to express these semantics, in
a similar fashion to how we have mimicked WSDL constraints syn-
tax in our DSL.

This research is developed in the context of the PROWESS re-
search project [1], devoted to the improvement of web services test-
ing by applying PBT in this field. As such, our DSL will be inte-
grated with results from other project partners. For instance, Profes-
sor Thompson and his research group at the University of Kent are
working on the automatic derivation of QuickCheck state machines
from WSDL web service descriptions. Our common intention is to
have their generation tool produce suitable data generators directly
using our DSL.

Acknowledgments
This research has been partially funded by the European Frame-
work Program, FP7-ICT-2011-8 Ref. 317820, and Xunta de Galicia
CN2011/007, partially supported by FEDER funds.

References
[1] PROWESS Project (Property-based Testing for Web Services).

http://www.prowessproject.eu, July, 2013.
[2] T. Arts and J. Hughes. Erlang/quickcheck. Ninth International Er-

lang/OTP User Conference, 2003.
[3] A. Askarunisa, A. Abirami, and S. Mohan. A test case reduction

method for semantic based web services. 2010.

[4] X. Bai, S. Lee, W. Tsai, and Y. Chen. Ontology-based test modeling
and partition testing of web services. pages 465–472, 2008.

[5] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. Ws-taxi: A
wsdl-based testing tool for web services. pages 326–335, 2009.

[6] J. Derrick, N. Walkinshaw, T. Arts, C. B. Earle, F. Cesarini, L.-A. Fred-
lund, V. Gulias, J. Hughes, and S. Thompson. Property-based test-
ing: the protest project. In Proceedings of the 8th international con-
ference on Formal methods for components and objects, FMCO’09,
pages 250–271, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-
642-17070-6, 978-3-642-17070-6.

[7] G. Fink and M. Bishop. Property-based testing: a new approach
to testing for assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80,
July 1997. ISSN 0163-5948. doi: 10.1145/263244.263267. URL
http://doi.acm.org/10.1145/263244.263267.

[8] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28, 1996.

[9] Interoud Innovation S.L. VoDKATV. http://www.interoud.com.

[10] L. Lampropoulos and K. F. Sagonas. Automatic wsdl-guided test case
generation for proper testing of web services. In WWV, volume 98,
2012.

[11] S. Mouchawrab, L. C. Briand, Y. Labiche, and M. Di Penta. Assessing,
comparing, and combining state machine-based testing and structural
testing: A series of experiments. IEEE Trans. Softw. Eng., 37(2):161–
187, Mar. 2011. ISSN 0098-5589. doi: 10.1109/TSE.2010.32. URL
http://dx.doi.org/10.1109/TSE.2010.32.

[12] A. Nilsson, L. M. Castro, S. Rivas, and T. Arts. Assessing the effects
of introducing a new software development process: a methodological
description. International Journal on Software Tools for Technology
Transfer, pages 1–16, 2013.

[13] S. Noikajana and T. Suwannasart. An improved test case generation
method for web service testing from wsdl-s and ocl with pair-wise
testing technique. volume 1, pages 115–123, 2009.

[14] OASIS Project. Business Process Execution Language (BPEL).
https://www.oasis-open.org/committees/tc home.php?
wg abbrev=wsbpel.

[15] OMG. Object Constraint Language (OCL).
http://www.omg.org/spec/OCL/2.3.1/, 2012.

[16] P. Farrell-Vinay. Managing Software Testing. Auerbach Publishers,
2008.

[17] M. Stal. Web services: beyond component-based com-
puting. Commun. ACM, 45(10):71–76, Oct. 2002.
ISSN 0001-0782. doi: 10.1145/570907.570934. URL
http://doi.acm.org/10.1145/570907.570934.

[18] J. Timm and G. Gannod. Specifying semantic web service composi-
tions using uml and ocl. pages 521–528, 2007.

[19] W3C. Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl, 2001.

[20] W3C. Web Services Semantics (WSDL-S).
http://www.w3.org/Submission/WSDL-S/, 2005.

[21] Y. Zheng, J. Zhou, and P. Krause. An automatic test case generation
framework for web services. Journal of Software, 2(3):64–77, 2007.

