
A Comparison of Task Oriented Programming
with GUIs in Functional Languages

Peter Achten, Pieter Koopman, Steffen Michels, Rinus Plasmeijer

Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{p.achten,pieter,s.michels,rinus}@cs.ru.nl

research paper

Abstract. In this paper we compare the expressiveness of the Task Ori-
ented Programming iTask approach of specifying interactive GUI appli-
cations with ObjectIO and Racket big-bang . ObjectIO is representative
for the large class of traditional desktop widget based toolkits aiming to
provide the programmer with full access the underlying GUI toolkit in
a functional style. In contrast, the Racket big-bang approach offers the
much more restricted setting of a single window and canvas to which the
programmer adds callback and image rendering functions in a pure func-
tional style. We demonstrate that both the Racket big-bang and iTask
approaches result in significantly smaller GUI specifications by means of
a small case study of the game of tic-tac-toe.

1 Introduction

Functional programming languages are known for allowing the concise specifica-
tion of advanced data structures and algorithms. Several excellent books explain
and illustrate this, consider for instance [1–7]. Although approaches differ, they
express clear ideas on how to go about programming the “functional way”. How-
ever, with respect to answering the question how to create GUI programs only
a few of these books (e.g. [5, 7]) have clear answers. This is in contrast with the
abundance of research that has been conducted on this subject during the past
two decades (e.g. [8–25]). Although each of these approaches provide an answer
how to program GUI applications in a functional language, they often do not
result in concise solutions. In most cases, this is caused by the fact that they are
restricted to providing an interface to the underlying GUI technology (desktop
widget library or web-based), so the programmer is still exposed to the myriad
of details of that technology.

In this paper we present the Task Oriented Programming (TOP) paradigm
[26, 27] as an answer how to program GUI applications in a concise and functional
style. In contrast to other approaches, TOP puts forward observable tasks and
task combinators as the key ingredients to construct GUI applications. The Clean
iTask library [28] is an implementation of this paradigm. This library is not a
typical GUI library because it has been designed to specify the coordination the

cooperation between human workers and computer systems using contemporary
web browser technology for rendering purposes. Hence, by its very nature it is a
multi-user system and not restricted to a particular underlying GUI technology.
Nevertheless, GUI’s can be specified in iTask . We perform a small case study
of the well-known game of tic-tac-toe. The simplicity of this game allows us to
concentrate on the GUI part. This is described in Sect. 5.

In order to substantiate the claim that the Clean iTask version is concise, we
compare its solution with two other approaches. The first approach, described
in Sect. 3, uses the ObjectIO library [11, 13] which is representative for a large
class of approaches that have chosen to abstract over desktop widget-based GUI
toolkits. Characteristic of these approaches is that the application logic is spec-
ified by means of callback functions and that the program manipulates stateful
widgets to render the GUI. The second approach, described in Sect. 4, uses the
Racket big-bang library. This approach was developed “to reconciling I/O with
purely functional programming, especially for a pedagogical setting” [25]. In this
solution the application logic is also specified by means of callback functions.
However, to concentrate on the functional part of an application, its design-
ers have rigorously eliminated everything that is concerned with manipulating
stateful widgets and restricted the setting to a single window only. The GUI is
rendered by means of a pure function that maps the program state to an im-
age in a compositional way. For these reasons Racket big-bang applications are
concise and can therefor be used to compare other approaches with.

In this paper we want to compare the approaches rather than the program-
ming languages. For this reason all case studies are expressed in Clean. We have
ported the relevant parts of the Racket libraries universe and image to Clean Ob-
jectIO . In addition, to concentrate on the GUI specifications, we have moved
the part of tic-tac-toe game that is concerned with the game logic to a separate
tictactoe module that is described in Sect. 2.

In Sect. 6 we compare and discuss the three case studies. Sect. 7 presents
related work, and Sect. 8 concludes. The versions are too long to be included
completely in this paper. Their specifications are available at https://svn.cs.
ru.nl/repos/TicTacToeCaseStudies/.

2 The Game Logic of Tic-tac-toe

In this section we present the tictactoemodule that contains the data structures
and computations that are used by all versions of the tic-tac-toe case study.

definition module tictactoe

import StdOverloaded, StdMaybe

:: Game = { board :: TicTacToe // the current board
, names :: Players // the current two players
, turn :: TicTac } // the player at turn

:: Players = { tic :: Name // the tic player takes even turns
, tac :: Name } // the tac player takes odd turns

:: Name :== String

:: TicTacToe :== [[Tile]]

:: Tile = Clear | Filled TicTac

:: TicTac = Tic | Tac

:: Coordinate = {col :: Int, row :: Int}

instance ~ TicTac

instance == TicTac, Tile, Coordinate

name_of :: Players TicTac -> Name

init_game :: Players -> Game

game_over :: TicTacToe -> Bool

it_is_a_draw :: TicTacToe -> Bool

winner :: TicTacToe -> Maybe TicTac

free_coordinates :: TicTacToe -> [Coordinate]

add_cell :: Coordinate TicTac TicTacToe -> TicTacToe

tiles :: TicTacToe -> [(Coordinate,Tile)]

The minimum information required to guide a game of tic-tac-toe is collected
in the Game record, containing the current board, the names of the two players,
and their turn. An initial game situation for two players is created by init_game.
A tic-tac-toe board is represented as a 3× 3 matrix of tiles. In an initial board,
all tiles are Clear. Tile coordinates are zero-based and run from left-to-right and
top-to-bottom. When player t updates a tile at coordinate c in board b, then
this results in a new board add_cell c t b. The coordinates of all Clear cells in a
board b are returned by free_coordinates b, and the current status of all tiles is
returned by tiles b. The first player who succeeds in filling a horizontal, vertical,
or diagonal line of exclusively Tics or Tacs wins, and is determined by the function
winner b. When the board is entirely filled but does not produce a winner, then
the game has come to a draw, which is computed by it_is_a_draw b. The function
game_over computes whether a game is over because somebody has won or the
game has come to a draw.

3 Tic-tac-toe in Object I/O

In this section we present the ObjectIO version of tic-tac-toe. Because of the
size of the specification, 117 lines of type and function definitions, we highlight
only the key parts. In ObjectIO , the GUI is rendered by means of stateful wid-
gets (windows, controls, canvas, and so on). The behavior of these elements is
controlled by means of callback functions that manipulate both the state of the
widgets as well as the shared logical state of the program. It is the task of each
and every callback function to keep the state of the widgets ‘in sync’ with the
logical state of the program. The logical state, GameSt, is the Game defined in Sect. 2
as well as a record of the identification values of the stateful widgets:

1:: GameSt = { game :: Game // the current game
2, ids :: GameIds } // the GUI identification values
3:: GameIds = { nameId :: Id // the name tag of the current player
4, turnId :: Id // the turn-indicator

5, tileIds :: [Id] } // the tic-tac-toe tiles

Fresh GameIds are created with open_GameIds. GUI programs start with startIO:

1Start :: *World -> *World

2Start world

3# (ids,world) = open_GameIds world

4= startIO SDI {game = init_game names, ids = ids}

5(start_tictactoe o get_player_names names)

6[ProcessClose closeProcess] world

7where names = {tic="Mr.␣Tic",tac="Mrs.␣Tac"}

The key parameters are the initial value of the shared logical state (the second ar-
gument on line 4) and the GUI initialization function (line 5) which first asks the
user to enter more appropriate names than the suggested ones (get_player_names)
after which it can actually create the GUI (start_tictactoe).

Getting the player names is not a difficult task (Fig. 1 (left)), yet the specifi-
cation is verbose. A modal dialog and its controls have to be created. The button
callback function needs to read the text input elements and close the dialog and
its controls. The key aspect of get_player_names is its signature:

get_player_names :: Players (PSt .ls) -> (Players,PSt .ls)

The polymorphic type tells us that this task works for any interactive program.
More importantly, the new player names are not stored as a side effect in the
process state but returned as an ordinary function result. This is only possible
because this function creates and fully handles a modal dialog.

Fig. 1. The main screens in ObjectIO .

The start_tictactoe function receives the new player names and creates the
main interface: a single window that displays the current board as well as an in-
dication which player is currently playing (Fig. 1 (middle)). Despite its verbosity
we show its complete specification.

1start_tictactoe :: (Players,PSt GameSt) -> PSt GameSt

2start_tictactoe (names,pSt=:{ls=gameSt=:{ids}})

3# gameSt = {gameSt & game = init_game names}

4# window = Window "TicTacToe"

5(LayoutControl

6(ListLS

7[ListLS

8[let tileId = ids.tileIds !! (row*3+col)

9coord = {col=col,row=row}

10in CustomButtonControl {w=(wsize.w-textw)/3,h=wsize.h/3}
11(tile_look Clear)

12[ControlId tileId

13, ControlFunction (noLS (tile_pressed tileId coord))

14, ControlResize resize_a_third

15, ControlPos (if (col == 0) Left RightToPrev,zero)]

16\\ col <- [0..2]]

17\\ row <- [0..2]]

18) [ControlResize resize_proportional

19, ControlViewSize {wsize & w=wsize.w-textw}]

20:+: CustomControl {w=boxw,h=boxw} (tile_look (Filled gameSt.game.turn))

21[ControlId ids.turnId]

22:+: TextControl names.tic [ControlId ids.nameId

23, ControlWidth (PixelWidth (textw-boxw))]

24)

25[WindowClose (noLS closeProcess)

26, WindowViewSize wsize]

27= snd (openWindow Void window {pSt & ls = gameSt})

28where wsize = {w=600, h=600}

29boxw = 18

30textw = 80

Instead of rendering the board as a single image we prefer to create it as a
composition of nine interactive elements (lines 4-17) that control one tile each.
This simplifies rendering (tile_look) and handling user interaction (tile_pressed).
In addition, tile_look is reused to indicate the current user glyph (lines 20-21).

The tile rendering function manipulates a canvas of abstract type *Picture.
We include its specification to illustrate the details one is concerned with despite
the fact that only very basic graphics need to be produced.

1tile_look :: Tile SelectState UpdateState *Picture -> *Picture

2tile_look tile selectSt {newFrame} picture

3= frame (cell (unfill newFrame picture))

4where {x,y} = newFrame.corner1

5{w,h} = rectangleSize newFrame

6linewidth = min (w/5) (h/5)
7(mw,mh) = (w/2, h/2)
8cell = case tile of
9Clear = id

10Filled t = appPicture (if (t == Tic) cross nought

11o setPenSize linewidth)

12frame = appPicture (draw newFrame o setPenColour LightGrey)

13nought = drawAt {x=x+mw,y=y+mh} {oval_rx=mw,oval_ry=mh}

14cross = drawLine {x=x, y=y} {x=x+w,y=y+h}

15o drawLine {x=x+w,y=y} {x=x,y=y+h}

Whenever the player presses the customized tile button control the callback
function tile_pressed is evaluated:

1tile_pressed :: Id Coordinate (PSt GameSt) -> PSt GameSt

2tile_pressed tid c pSt=:{ls=gameSt=:{game=game=:{board,names,turn},ids},io}

3# io = disableControl tid io

4# io = setControlLook tid True (True,tile_look (Filled turn)) io

5# io = setControlText ids.nameId (name_of names (~turn)) io

6# io = setControlLook ids.turnId True (True,tile_look (Filled (~turn))) io

7# gameSt = {gameSt & game = {game & board = add_cell c turn board, turn = ~turn}}

8# pSt = {pSt & ls = gameSt, io = io}

9= check_game_over pSt

The key aspect to observe is that this function has an effect on the stateful
widgets (lines 3-6) that have to be kept ‘in sync’ with the logical state (line 7).
Both states are passed to the function that checks whether the game is over.

1check_game_over :: (PSt GameSt) -> PSt GameSt

2check_game_over pSt=:{ls={game={board,names,turn}}}

3| game_over board = openNotice notice pSt

4| otherwise = pSt

5where
6won = winner board

7accolade = if (isNothing won)

8["It␣is␣a␣draw."]

9["Congratulations,␣" +++ name_of names (~turn) +++ "!","You␣won."]

10notice = Notice (accolade ++ ["","Do␣you␣want␣to␣play␣another␣game?"])

11(NoticeButton "Yes" (noLS (new_game o get_player_names names)))

12[NoticeButton "No" (noLS closeProcess)]

Whenever the game happens to be over, a notice (Fig. 1 (right)) is opened to
congratulate the player. If the player presses the “No” button, then the entire
program is stopped. If she decides to play a new game, she can enter new player
names and have the new_game function take care of the remaining details:

1new_game :: (Players,PSt GameSt) -> PSt GameSt

2new_game (names,pSt=:{ls,io})

3= {pSt & ls = gameSt

4, io = setControlText gameSt.ids.nameId gameSt.game.names.tic

5(setControlLook gameSt.ids.turnId True

6(True,tile_look (Filled gameSt.game.turn))

7(setControlLooks [(tid,True,(True,tile_look Clear))

8\\ tid <- gameSt.ids.tileIds]

9(enableControls gameSt.ids.tileIds io)))

10}

11where gameSt = {ls & game = init_game names}

All tiles are cleared and made available for playing, the first player’s glyph and
name is set, and the process state is ‘synced’.

4 Tic-tac-toe in Racket big-bang

In this section we present tic-tac-toe using the Racket big-bang approach. It con-
sists of 63 lines of type and function specifications. The conciseness is mainly
due to the absence of stateful widgets. Instead, the programmer designs a logi-
cal state model that reflects the stages an interactive program passes through.
Rendering is handled by a pure function that maps this logical state to an im-
age. In this way the rendering of the GUI is automatically kept ‘in sync’ with
the logical state. Similarly, only one keyboard and mouse callback function need
to be specified. They are only concerned with the logical state. Termination is
handled via a predicate that tests the current state value, again a pure function.
From this account it follows that the logical state should be designed first:

1:: GameSt = EnterNames Players TicTac | Play Game | Accolades Game | Stop

2

3initGameSt :: Players -> GameSt

4initGameSt players = EnterNames players Tic

GameSt describes the separate stages of tic-tac-toe (entering names, playing the
game, receiving accolades, and termination).

An interactive application is started using the big_bang function.

1Start :: *World -> (GameSt,*World)

2Start world = big_bang (initGameSt {tic="Mr.␣Tic",tac="Mrs.␣Tac"})

3[Name "Tic␣Tac␣Toe"

4, To_draw (render wsize, Just (wsize.w,wsize.h))

5, On_key keys

6, On_mouse mice

7, Stop_when (\game -> case game of Stop -> True; _ -> False)

8] world

9where wsize = {w=450,h=375}

Besides the initial state (line 2), big_bang needs to know the state transition
functions. These are keys and mice that handle keyboard and mouse input re-
spectively. The termination predicate gameOver :: GameSt -> Bool returns True only
for the Stop game state. The only mandatory clause of big_bang is the rendering
function, render, which is parameterized with the canvas size. This overloaded
operation renders the various components (GameSt, TicTacToe, Tile, and TicTac).

Racket has a comprehensive drawing package, 2htdp/image, in which images
are specified in a compositional style rather than canvas-modifying operations.
For the sake of this case study we have implemented only a small part of the
package: basic images (empty_image, text, circle, rectangle, and square) and image
combinators (add_line, overlay(_align), beside(_align), and above(_align)). Render-
ing the GameSt (see Fig. 2) covers a case for each stage of the game state:

1class render a :: Size a -> Image

2instance render GameSt where
3render size (EnterNames players turn)

4= overlay [above [text ("Player␣" <+ if (turn==Tic) 1 2) 24 Black

5, overlay [text (name_of players turn) 24 Black

Fig. 2. The main screens in Racket big-bang .

6, rectangle size.w 30 Solid White]]

7, rectangle size.w size.h Solid LightGrey]

8render size (Play {board,turn,names})

9= beside_align TopY [render size board

10, render {w=16,h=16} turn

11, text (name_of names turn) 12 Black]

12render size (Accolades {board,turn,names})

13= above_align LeftX [render size board

14, case winner board of
15Just t = text ("The␣winner␣is␣" <+ name_of names t)

1624 Black

17nothing = text "It’s␣a␣draw..." 24 Black

18, text "Press␣Enter␣to␣play␣another␣game" 24 DarkGrey

19, text "Press␣Escape␣to␣stop." 24 DarkGrey]

20render size Stop

21= empty_image

For entering the player names, we have chosen to design a simple screen in which
the name of one player is entered (lines 3-7). When playing the game, the tic-
tac-toe board, the player glyph and name are displayed beside each other (lines
8-11). When receiving the accolades, the final board is shown above the name of
the winner, if any, and information how to proceed (lines 12-19). The final state
is rendered as the empty image (lines 20-21).

In order to make the rendering complete, the instances for the remaining
components need to be defined. They are self-explanatory:

1instance render TicTacToe where
2render size board = above [beside [render {w=64,h=64} cell

3\\ cell <- row]

4\\ row <- board]

5instance render Tile where
6render {w,h} Clear = square (min w h) Outline Black

7render {w,h} (Filled turn) = overlay [square (min w h) Outline Black

8, render {w=w-2,h=h-2} turn]

9instance render TicTac where
10render {w,h} Tic = add_line (add_line empty_image

110 0 w h Black ((min w h)/5))
12w 0 0 h Black ((min w h)/5)
13render {w,h} Tac = overlay [circle (3*(min w h)/10) Solid White

14, circle ((min w h)/2) Solid Black]

The keyboard plays a role in the EnterNames and Accolades stage of tic-tac-toe.

1keys :: GameSt KeyEvent -> GameSt

2keys (EnterNames players turn) key

3| key == "\\r" = if (turn==Tic) (EnterNames players Tac)

4(Play (initGame players))

5| key == "\\b" = EnterNames (alterName initStr players turn) turn

6| key == "␣" || alpha = EnterNames (alterName (flip (+++) key) players turn) turn

7| otherwise = EnterNames players turn

8where alpha = isAlpha (hd (fromString key))

9keys (Accolades game) key

10| key == "\\r" = EnterNames game.names Tic

11| key == "escape" = Stop

12keys state _ = state

13

14alterName :: (String -> String) Players TicTac -> Players

15alterName f players Tic = {players & tic = f players.tic}

16alterName f players tac = {players & tac = f players.tac}

For entering the player names a simplified text-input element is created (lines
2-8). When the user enters the return key, the next name should be entered (line
3) or the game commences (line 4). The only ‘edit’ key that is handled is the
backspace key (line 5). The name gets extended with the current key if it is
a letter or a space (line 6). All other keys do not alter the state (line 7). The
only role of the keys handler in case of the accolades (lines 9-11) is to allow the
players to choose to either play again (line 10) or stop the program (line 11).

The mouse only plays a role in the Play stage of tic-tac-toe.

1mice :: GameSt Int Int MouseEvent -> GameSt

2mice (Play game) x y mouse

3| mouse == "button-down" && isMember c (free_coordinates game.board)

4# game = {game & board = add_cell c game.turn game.board, turn = ~game.turn}

5= if (game_over game.board) Accolades Play game

6where c = {col = x / 64, row = y / 64}

7mice state _ _ _

8= state

Only if the mouse is pressed in a free tile (line 3), the board gets updated and the
next player proceeds (line 4). If the game happens to be over, then the program
moves on to the Accolades stage, otherwise it remains in the Play stage (line 5).

5 Tic-Tac-Toe in Task Oriented Programming

In this section we present the TOP iTask approach to specify tic-tac-toe. This
specification consists of 40 lines of type and function definitions. One key con-
tributing factor to its brevity is that the application’s task structure can be

expressed in a direct manner with tasks and combinators instead of indirectly
via callback functions that inspect the shared program state. In addition, a large
part of the GUI is derived generically from the data models that are used in the
specification. Only the rendering of the board requires separate attention. The
main screens of this version are shown in Fig. 3.

Fig. 3. The main screens in iTask .

Analogous to the other versions, the game starts with an initial suggestion
for the player names:

1play_tictactoe :: Task Void

2play_tictactoe = game {tic = "Mr.␣Tic", tac = "Mrs.␣Tac"}

3

4game :: Players -> Task Void

5game players = new_names players

6>>= \next_players -> play (init_game next_players)

7>>= \winner -> accolades next_players winner

A game consists of three consecutive tasks: ask the user to enter new names (line
5), then playing the game until the end (line 6), and presenting the accolades to
the winner, if any (line 7).

The new_names task uses an update task that provides the user with means to
alter the provided information in a type-safe way (Fig. 3 (left-top)).

1new_names :: Players -> Task Players

2new_names players = updateInformation "Enter␣names" [] players

The play task uses the Game structure defined in Sect. 2 to keep track of the
game progress (Fig. 3 (right)).

1:: GameSt :== Game

2

3play :: GameSt -> Task Name

4play game=:{board,turn}

5= viewInformation "Tic␣Tac␣Toe" [ViewWith show_board] game

6||- enterChoice "Choose␣coordinate:"

7[ChooseWith ChooseFromComboBox toString]

8(free_coordinates board)

9>>= \new ->

10let game‘ = { game & board = add_cell new turn board, turn = ~turn }

11in if (not (game_over game‘.board)) (play game‘)

12(if (it_is_a_draw game‘.board) (return "nobody")

13(return (name_of game‘.names (fromJust (winner game‘.board)))))

While displaying the state of the game (line 5), the play task asks the user to
choose one of the available free tiles (lines 6-8). This is recorded in the game
state (line 10). Finally, in case the game is over, the winner’s name is returned,
if any (line 11-13).

The accolades task is provided with the player and winner names:

1accolades :: Players Name -> Task Void

2accolades players winner

3= viewInformation "The␣winner␣is:" [] winner

4>>* [Always (Action "New␣Game" []) (game players)

5, Always (Action "Stop" []) (return Void)]

The user can choose to play another game (line 4) or stop altogether (line 5).
The final part of the specification defines the rendering of the tic-tac-toe

board (Fig. 3 (right)). The function show_board transforms a game state to a
rendering in html :

1show_board :: GameSt -> [HtmlTag]

2show_board {board,names,turn}

3= [H3Tag [] [Text (name_of names turn)], TileTag (16,16) turn, tictactoe]

4where
5tictactoe = TableTag [BorderAttr "0"]

6[TrTag [] [cell {col=x,row=y} \\ x <- [0..2]]

7\\ y <- [0..2]]

8cell c = case lookup1 c (tiles board) of
9Filled t = TdTag [] [TileTag (64,64) t]

10clear = TdTag [AlignAttr "center"] [Text (toString c)]

11

12TileTag (w,h) t = ImgTag [SrcAttr ("/" <+++ t <+++ ".png")

13, WidthAttr (toString w)

14, HeightAttr (toString h)]

The rendering displays the current player, the glyph she is playing with, and the
board (line 3). Image files ("Tic.png" and "Tac.png") have to be used to render
the cross and nought glyphs because in the version described in this paper, iTask
has no canvas support.

6 Comparison

In this section we compare and discuss the versions of the tic-tac-toe case study.

The first aspect to compare concerns the code size of the GUI specifica-
tions: ObjectIO : 117 loc (100%), Racket big-bang : 63 loc (54%), iTask : 40 loc
(34%). In the ObjectIO version, 60 loc are necessary to define the modal dialogs,
the main window and its components. This explains why the Racket big-bang
version is proportionally shorter: it already implements the infrastructure for a
single-document application. Both in ObjectIO and Racket big-bang the three
separate stages of the application (entering names, playing the game, giving the
accolades) need to be rendered explicitly. This explains why the iTask version is
proportionally shorter than the other two versions: all screens except the game
playing screen are derived automatically from the model types.

In order to make a fair comparison, the three tic-tac-toe versions should
provide identical user interfaces. This has not succeeded. The Racket big-bang
version re-invents text-edit functionality in the entering names screen and re-
frains from re-inventing buttons in the accolades screen, and instead takes an
escape route by using the keyboard to allow the players to choose whether or
not to continue playing. At this stage, the iTask version has no stable support
for defining customized tasks that use canvas style graphics in combination with
event handlers. Instead we had to resort to providing the user with a choice
between the available tiles which results in a less intuitive and somewhat dis-
connected user experience.

The ObjectIO and Racket big-bang versions use pure functions (tile_look
and the render functions respectively) to render the game. In ObjectIO this is a
*Picture transformer function, whereas in Racket big-bang it computes an Image

in a compositional way. The required graphics for rendering a board are simple: a
rectangle that is either empty or filled with a circle or two lines. Only the Racket
big-bang version is proportional to this simple task: the Tile and TicTac instances
of the render function formulate the above characterization of the graphics in a
concise way. In the iTask version we were forced to ‘cheat’ by rendering these
pictures by means of pre-rendered bitmaps. It should be mentioned that we could
have done this in Racket as well because bitmaps are first-class Images.

The ObjectIO version ‘switches off’ tiles after being pressed, and uses this
to its advantage because it does not have to check whether a clear tile has been
selected. Obviously, the disadvantage is that when starting another game, you
should not forget to ‘switch on’ all tiles. In the Racket big-bang version this test
is required because the state transition must be defined for any possible mouse
event. The TOP version mimics the behavior of the ObjectIO version by limiting
the user’s choice to the empty tiles of the board. In this way, it makes explicit
what is implicit in the ObjectIO version, and what is tested afterwards in the
Racket big-bang version.

The effort required to ‘distill’ the application behavior varies greatly for the
three versions. In ObjectIO we must unravel the rendering and logical operations
and keep track of their effects on both the logical state and the set of stateful
widgets. The callback functions clearly illustrate that it is the responsibility of
the programmer to keep the logical state ‘in sync’ with the set of stateful widgets.
In Racket big-bang the situation is much easier because synchronization is dealt

with by the system. To understand the program, it suffices to study the state and
the mouse and keyboard handler state transitions. This amounts to discovering
the underlying logical state machine and its transitions. Because iTask has been
developed explicitly to deal with tasks and their evaluation order, understanding
the behavior of the application requires the least effort.

7 Related Work

The Racket 2htp/image approach of defining graphics in a compositional way
fits in a long tradition that can be traced back to Peter Henderson’s Functional
Geometry [29]. In a follow-up paper [30] he comments: “This idea is not new.
It was published in 1982, but even then it was based on contemporary views of
what was good practice in declarative systems.”. The GUI library Haggis [10]
uses a similar compositional approach and extends it to build the entire GUI of
an application.

As we have stated in the introduction, there is no lack of research on how to
program GUI applications in functional languages. A large class of these solutions
are more or less traditional, stateful, callback-oriented GUI libraries in a spirit
similar to ObjectIO ([8, 12, 20, 22] and many more). We conjecture that in these
approaches the case study will not differ too much in terms of loc and logical
structure. In this paper we have not studied the brand of functional programming
that is known as reactive animation. This paradigm was started by the seminal
paper by Elliot and Hudak [31] and spawned a number of related approaches
which are enumerated elsewhere [17]. These approaches take a radically different
view on interactive programs, using time-dependent units as building blocks
instead of stateful event handlers as in ObjectIO or Racket big-bang or observable
tasks as in iTask .

8 Conclusions

In this paper we have presented a case study of a GUI application, tic-tac-toe,
expressed in three different formalisms: ObjectIO , Racket big-bang , and TOP
iTask . The purpose of this case study is to compare the different formalisms
with respect to their ability to concisely and clearly specify a GUI application.
All versions use the same tictactoe module for the game logic which consists of
61 loc of type and function definitions. None of the approaches result in large
specifications: the largest, ObjectIO , is 117 loc. Their relative sizes vary greatly:
in comparison with the ObjectIO version (100%) the size of the Racket big-bang
version is 54% and the TOP iTask version is 34%. These numbers should not
be interpreted in a very strict manner because the line count is very dependent
on the layout of the code. We have attempted to define the versions in the style
that is conventional for the approaches. Nevertheless, it gives an indication of
the conciseness of the formalism.

In comparison with ObjectIO , the Racket big-bang version offers a similar
user-experience with respect to playing the game. However, we are ‘forced’ to

solve the task of entering player names and choosing how to continue after the
end of a game in a somewhat ad hoc way. The TOP iTask version does not suffer
from this issue but instead offers an awkward user experience in playing the game
because the current version lacks facilities to define manipulatable graphics.
This will be possible in a next version of the iTask system. It is interesting to
investigate to what extent the compositional style of graphics specification of
the Racket image library can be used.

Of the three versions, the application behavior is hardest to distill in the
ObjectIO version because the callback functions need to concern themselves with
the details of manipulating the set of stateful widgets as well as the logical state.
This is less of an issue in the Racket big-bang version because the rendering
of the GUI is synced automatically with the logical state. In this approach the
application is modeled as a state machine. The transitions are defined by the
event handlers. The advantage of this approach is that it is clear for the modeler
where to define the transitions, and where to look for when uncovering the
state machine. However, just as with ObjectIO , the flow of control is present
only implicitly. The TOP iTask version makes the application flow of control
explicit. The generic abstractions take care of the automatic synchronization of
the application state with respect to its rendered GUI.

As a final remark we point out that in all three systems it is possible to
turn the case study into a distributed version. In ObjectIO the programmer can
use the standard TCP library. Consequently, this addition will have a relatively
large impact on implementing a distributed version in ObjectIO . Racket provides
similar direct support for TCP, but in addition, it extends the big-bang ap-
proach with means to communicate directly with other big-bang ‘worlds’, which
together form the ‘universe’. After registering, any callback function can send
extra information to the server world with it has connected. The server world
program forwards this message to the other registered worlds. To receiver these
messages, a big-bang program must have created another event handler that is
called whenever a message is received. Consequently, in Racket big-bang creating
a distributed tic-tac-toe version proceeds in an analogous way and is proportional
to the task. Finally, in iTask work distribution is integrated by design: any task
(composition) t can be distributed to any worker u in the system by the task as-
signment operator, u @: t. Therefor, a distributed version of tic-tac-toe amounts
to creating a task structure in which all workers have a view task on the current
board, modeled as a shared state, and only one worker can update this shared
state at a time.

Acknowledgements

The authors thank Marco T. Morazán for answering our questions of Racket ,
the Universe, and everything. We thank Bas Lijnse for his advice on iTask .

References

1. Bird, R., Wadler, P.: Introduction to functional programming. Prentice Hall (1988)

2. Okasaki, C.: Purely Functional Data Structures. Cambridge Univ. Press (1998)
3. Bird, R.: Introduction to functional programming using Haskell (second edition).

Prentice Hall (1998)
4. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: How to Design Programs:

An introduction to programming and computing. MIT Press (2001)
5. Hudak, P.: The Haskell school of expression: learning functional programming

through multimedia. Cambridge University Press, New York, NY, USA (2000)
6. Hutton, G.: Programming in Haskell. Cambridge University Press (2007)
7. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: How to Design Programs,

Second Edition. MIT Press (2012)
8. Dwelly, A.: Functions and dynamic user interfaces. In: Proceedings of the 4th

International Conference on Functional Programming Languages and Computer
Architecture, FPCA ’89. (September 1989) 371–381

9. Carlsson, M., Hallgren, T.: Fudgets - a graphical user interface in a lazy func-
tional language. In: Proceedings of the 6th International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’93, Kopenhagen,
Denmark (1993)

10. Finne, S., Peyton Jones, S.: Composing Haggis. In: Eurographics Workshop on Pro-
gramming Paradigms in Graphics, Maastricht, the Netherlands, Springer (1995)
85–101

11. Achten, P., Plasmeijer, R.: The ins and outs of Concurrent Clean I/O. Journal of
Functional Programming 5(1) (1995) 81–110

12. Claessen, K., Vullinghs, T., Meijer, E.: Structuring graphical paradigms in Tk-
Gofer. In: Proceedings of the 2nd International Conference on Functional Pro-
gramming, ICFP ’97. Volume 32(8)., Amsterdam, The Netherlands, ACM Press
(9-11, June 1997) 251–262

13. Achten, P., Plasmeijer, R.: Interactive functional objects in Clean. In Clack, C.,
Hammond, K., Davie, T., eds.: Selected Papers of the 9th International Workshop
on the Implementation of Functional Languages, IFL ’97. Volume 1467 of LNCS.,
Springer-Verlag (September 1998) 304–321

14. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: Proceedings of
the 5th Haskell Workshop, Haskell ’01. (September 2001)

15. Hanus, M.: High-level server side web scripting in Curry. In: Proceedings of the 3rd
International Symposium on the Practical Aspects of Declarative Programming,
PADL ’01, Springer-Verlag (2001) 76–92

16. Achten, P., Peyton Jones, S.: Porting the Clean Object I/O library to Haskell. In
Mohnen, M., Koopman, P., eds.: Selected Papers of the 12th International Work-
shop on the Implementation of Functional Languages, IFL ’00. Volume 2011 of
LNCS., Springer-Verlag (September 2001) 194–213

17. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and functional
reactive programming. In: Proceedings of the 4th International Summer School on
Advanced Functional Programming, AFP ’03, Oxford, UK

18. Graunke, P., Findler, R., Krishnamurthi, S., Felleisen, M.: Modeling web inter-
actions. In Degano, P., ed.: Proceedings of the 12th European Symposium on
Programming, ESOP ’03. Volume 2618 of Lecture Notes in Computer Science.

19. Elsman, M., Hallenberg, N.: Web programming with SMLserver. In: Proceed-
ings of the 5th International Symposium on the Practical Aspects of Declarative
Programming, PADL ’03, New Orleans, LA, USA, Springer-Verlag (January 2003)

20. Leijen, D.: wxHaskell: a portable and concise GUI library for Haskell. In: Pro-
ceedings of the 2004 ACM SIGPLAN workshop on Haskell, Snowbird, Utah, USA,
ACM (2004) 57–68

21. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without
tiers. In: Proceedings of the 5th International Symposium on Formal Methods
for Components and Objects, FMCO ’06. Volume 4709., CWI, Amsterdam, The
Netherlands, Springer-Verlag (7-10, November 2006)

22. Hanus, M.: Type-oriented construction of web user interfaces. In: Proceedings of
the 8th International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP ’06, ACM Press (2006) 27–38

23. Loitsch, F., Serrano, M.: Hop client-side compilation. In: Proceedings of the 7th
Symposium on Trends in Functional Programming, TFP ’07, New York, NY, USA,
Interact (2-4, April 2007) 141–158

24. Elliot, C.: Tangible functional programming. In: Proceedings of the 12th Inter-
national Conference on Functional Programming, ICFP ’07, Freiburg, Germany,
ACM Press (1-3, October 2007) 59–70

25. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: A Functional I/O Sys-
tem * or, Fun for Freshman Kids. In: Proceedings International Conference on
Functional Programming, ICFP ’09, Edinburgh, Scotland, UK, ACM Press (2009)

26. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-Oriented
Programming in a Pure Functional Language. In: Proceedings of the 2012 ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP ’12, Leuven, Belgium, ACM (September 2012) 195–206

27. Lijnse, B.: TOP to the Rescue – Task-Oriented Programming for Incident Response
Applications. PhD thesis, Radboud University Nijmegen (2013)

28. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. In Hinze, R., Ramsey, N., eds.: Proceedings
of the International Conference on Functional Programming, ICFP ’07, Freiburg,
Germany, ACM Press (2007) 141–152

29. Henderson, P.: Functional geometry. In Friedman, D., Wise, D., eds.: Confer-
ence Record of the 1982 ACM Symposium on Lisp and Functional Programming,
Pittsburgh, Pennsylvania, ACM Press (1982) 179–187

30. Henderson, P.: Functional geometry. Higher-Order and Symbolic Computation 15
(2002) 349–365

31. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of the sec-
ond ACM SIGPLAN international conference on Functional Programming, Ams-
terdam, The Netherlands, ACM (1997) 263–273

