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1 Introduction

The aim of this set of exercises is to build up experience in developing Bayesian networks
for realistic clinical problems. The exercises included in this assignment learn you something
about the relationship between consulting Bayesian networks, using tools such as SamIam or
Genie (See below), and problem solving.

We start by describing two software tools for building Bayesian networks by hand. This
is followed by a summary of basic theory and simple examples in Section 3. Some exercises
with real-world example Bayesian networks are included in Section 4. Problem solving using
Bayesian networks is discussed in Section 5.

2 Software tools

SamIam is a software tool for the creation and consultation of Bayesian networks. Bayesian
networks are graph-based formalisms for the representation and manipulation of uncertain
knowledge, based on probability theory. The exercises described in this document are meant
to increase your understanding of what Bayesian networks are, and to enhance your impression
of what can be done with Bayesian networks.

The SamIam software package can be downloaded at:

http://reasoning.cs.ucla.edu/samiam/

SamIam is java-based and runs on all operating systems. An alternative package is Genie,
a Windows-based system, which, however, also runs on Linux using wine; it contains much
more functionality than SamIam. However, as a consequence of this, Genie it is less easy to
use than SamIam. Genie can be downloaded at:

http://genie.sis.pitt.edu/

The book “Bayesian Artificial Intelligence” [2] also mentions a number of alternative software
packages.

In the remainder of this practical it is assumed that you use SamIam; when you use Genie

instead some exercises need be slightly changed.

3 Basic aspects of Bayesian networks

In the first few exercises, we go through the basic aspects of Bayesian networks.
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FLU (FL)
(yes/no)

PNEUMONIA (PN)
(yes/no)

FEVER (FE)
(yes/no)

MYALGIA (MY)
(yes/no)

TEMP

(≤ 37.5/> 37.5)

P (FL = y) = 0.1

P (PN = y) = 0.05

P (FE = y | FL = y, PN = y) = 0.95

P (FE = y | FL = n, PN = y) = 0.80

P (FE = y | FL = y, PN = n) = 0.88

P (FE = y | FL = n, PN = n) = 0.001

P (MY = y | FL = y) = 0.96

P (MY = y | FL = n) = 0.20

P (TEMP ≤ 37.5 | FE = y) = 0.1

P (TEMP ≤ 37.5 | FE = n) = 0.99

Figure 1: Bayesian network describing some signs and symptoms of flu and pneumonia;
variable names have been abbreviated.

3.1 What is a Bayesian network?

A Bayesian network B is defined as a pair B = (G,P ), where G = (V (G), A(G)) is an
acyclic directed graph with a set of vertices (or nodes) V (G) = {X1,X2, . . . ,Xn} and a set
of arcs A(G) ⊆ V (G) × V (G), and where P is a joint probability distribution defined on the
variables corresponding to the vertices V (G) [5]. The basic property of a Bayesian network is
that the joint probability distribution P (X1,X2, . . . ,Xn) is equivalent to the product of the
(conditional) probabilities which are specified for the network; formally:

P (X1,X2, . . . ,Xn) =

n∏

i=1

P (Xi | π(Xi))

where π(Xi) is the set of parents of the vertex corresponding to the variable Xi. Thus, P (Xi |
π(Xi)) are the (conditional) probability distributions which are specified for the variable Xi,
for i = 1, . . . , n, in creating a Bayesian network.

Consider the Bayesian network in Figure 1, which concerns the signs and symptoms of
flu and pneumonia. Its implementation for SamIam is in the file flu.net in the directory
http://www.cs.ru.nl/∼peterl/teaching/CI/networks. Figure 2 displays a screen-shot of
SamIam after the network has been loaded.

◮ Start SamIam and load the flu network. Check whether all probabilities are identical to those
in Figure 1 by right clicking on the vertices and inspecting the ‘properties’, and determine the
correspondence between the probabilities P (Xi | π(Xi)), e.g. P (fe = y | fl = y,pn = n), and
the numbers in the table.
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Figure 2: Screen-shot of SamIam with the flu example network.

◮ Select from the ‘Mode’ menu the ‘Query mode’. Next, from the ‘Query’ menu select from the
‘Show monitors’ submenu the option ‘Show All’. The marginal probabilities P ∗(Xi) will now be
displayed in monitor windows. Instantiating variables, i.e. after assigning values to variables,
can be done by left clicking into a probability bar. What are the probabilities P ∗(fever = yes),
P ∗(temp > 37.5), P ∗(flu = yes), P ∗(pneumonia = yes) and P ∗(myalgia = yes)?

◮ Left click on the green bar associated with the value ‘> 37.5’ of the variable temp (which
will turn red as a consequence); in this way you enter values for a variable. Note whether
the probabilities P ∗(fever = yes), P ∗(temp > 37.5), P ∗(flu = yes), P ∗(pneumonia = yes)
and P ∗(myalgia = yes) have changed after you entered the evidence into the network.

The marginal probability distribution P ∗(Xi) for each variable Xi in a Bayesian network is
computed using the probabilistic information P that is supplied with the network. Of course,
if you enter a value for a variable into a Bayesian belief network, its probability distribution
may, and in most cases actually will, change. So, P ∗ denotes this new, updated, probability
distribution. Thus it holds, for example, that P ∗(temp > 37.5) = 1 after you have entered
the value ‘> 37.5’ for the variable temp into the network; this is what could be expected,
as we know that ‘temp > 37.5’ must hold with absolute certainty (as we have observed it).
However, it still holds that P (temp > 37.5 | fe = y) = 0.9, and the remaining probabilities
P (temp | fe) are also unchanged. Also note that P (Xi) (so again the original probability
distribution P ), which is the marginal probability distribution for variable Xi, has also not
changed, as it is by definition the probability distribution for a variable Xi without taking
into account evidence E . Of course, if you have entered evidence into the network, you will
normally not see P (Xi) displayed on the screen (but see below).

There is a straightforward relationship between the original probability distribution P
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and the updated probability distribution P ∗:

P ∗(Xi) = P (Xi | E)

or if we now focus on the variable temp, it holds that

P ∗(temp > 37.5) = P (temp > 37.5 | temp > 37.5) = 1

So, we can compute this updated probability distribution P ∗ simply by using the probability
distribution P . As the computation rules we use are the same, whether or not we take
evidence E into account, we will simply denote any probability distribution resulting from
the computations by P ∗(Xi) (the updated marginal probability distribution for variable Xi).
And so we sometimes have that P ∗(Xi) = P (Xi), whereas sometimes it holds that P ∗(Xi) 6=
P (Xi).

◮ Remove the evidence ‘temp > 37.5’ from the network by left clicking on the red bar of the
temp vertex. Now, enter the evidence ‘ flu = no’ into the network. Compare

P ∗(pneumonia), which you obtain now, with the P ∗(pneumonia) as computed in the second
exercise above, i.e. before entering any evidence into the network. Also compare this result
with the results you obtain if you in addition enter ‘temp > 37.5’ into the network. Try to
explain the behaviour you observe.

3.2 A Bayesian network models (conditional) independence

A Bayesian network is really a graphical representation of stochastic (statistical) dependences
and independences among variables. By adding arcs between two vertices we express that its
two corresponding variables may influence each other, i.e. may be dependent. By removing
arcs between vertices, we are saying that the corresponding variables are (conditionally)
independent. The type of dependence and independence we are dealing with is determined
by the direction of arcs and whether or not particular variables are instantiated. In the next
few exercises, we have a more detailed look at this very important issue.

Firstly, consider the possible three patterns which can occur within any Bayesian network,
dependent on the direction of the arcs with respect to a central variable X2 [1]:

• Diverging arcs:

X1 X2 X3

Here we have that instantiating variable X2 blocks flowing (probabilistic) information,
i.e. the influence, from X1 to X3 (and vice versa; recall that it is possible to reason
in the reverse direction). This means that if X2 is not instantiated, instantiating X1

may change the marginal probability distribution P ∗(X3) (and vice versa), but if X2

is instantiated, instantiating X1 will not change P ∗(X3) (and vice versa). This can be
expressed formally using the independence relationship ⊥⊥ as follows: X1 ⊥⊥ X3 | X2.

• Serial arcs:

X1 X2 X3
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Here also we have that instantiating variable X2 will block flowing (probabilistic) in-
formation from X1 to X3 (and vice versa): X1 ⊥⊥ X3 | X2. So, the structure of this
situation is different from the first one, but the independence relationship modelled is
identical to the first one.

• Converging arcs:

X1 X2 X3

This situation is completely different (and actually the opposite) of the other two, as here
it holds that instantiating X2 will make X1 and X3 in fact dependent, i.e. X1 6⊥⊥ X3 | X2

(the same holds for the successors of X2 if present), whereas if X2 is not instantiated,
then X1 and X3 are independent, i.e. formally: X1 ⊥⊥ X3 | ∅.

Instead of the term blocking, one also speaks of d-separation (d irected separation). In the
first two cases, it is said that X2 d-separates X1 and X3. Instead of saying that two variables
are made dependent, we also speak of d-connection. In the third case, it is said that X1 and
X3 are d-connected by X2 (or by a successor if present).

The notions of diverging, serial and converging arcs have practical significance (otherwise
we would not have mentioned them). This can best be illustrated by looking again at the flu
example network shown in Figure 1.

◮ Have a look at the structure of the network in Figure 1, and write down on a sheet of paper
which arcs are diverging, serial or converging. Each time you have to select a single (central)
vertex, and to look at the arcs connecting this vertex to other vertices.

◮ The next step is to experimentally validate your solution to the previous problem. Start with
the diverging and serial arcs, and examine the effect of instantiating the central vertex on the
flow of probabilistic information. Next, do the same for the converging arcs. In particular,
try to find out whether variables which were originally independent, have become dependent
by instantiation of variables.

3.3 Probabilistic inference

There is little doubt that for Bayesian networks of realistic size, having access to a Bayesian
network package such as SamIam is really essential for probabilistic inference or reasoning,
because otherwise you will run the risk of becoming mad.1 However, it still makes sense to
understand how one could compute probabilities by hand, certainly for a small network, as
we as computer scientists are the people who in the end need implement software packages
such as SamIam.

Consider the Bayesian network shown in Figure 3. Computation of P (Xi), for i = 1, . . . , 4,

1More than a decade ago, I worked at the Centre of Mathematics and Computer Science (CWI,
http://www.cwi.nl) in Amsterdam. This centre is well known for its fundamental research in mathemat-
ics and computing science, even before computers became into wide-spread use. In the 1950s and early 1960s,
a group of 20 ladies, all gathered in one large room, were employed by CWI to carry out complex numerical
computations on paper. These numerical computations were of great importance, as the Dutch government
had decided in 1956 that the sea dikes in the Netherlands had to be improved. CWI was involved in finding
out how high the dikes had to be to ensure that the Netherlands would not be flooded by sea water in the next
millennium, and this involved solving complicated numerical models. As far as I know, none of these ladies
actually contracted any sort of psychiatric illness from their work.
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X3

y/n

X1

y/n
X2

y/n

X4

y/n

P (x4 | x3) = 0.4
P (x4 | ¬x3) = 0.1
P (x3 | x1, x2) = 0.3
P (x3 | ¬x1, x2) = 0.5
P (x3 | x1,¬x2) = 0.7
P (x3 | ¬x1,¬x2) = 0.9
P (x1) = 0.6
P (x2) = 0.2

Figure 3: Example network from the lectures.

goes as follows, starting with X4:

P (x4) = P (x4, x3) + P (x4,¬x3)

(marginalisation)

= P (x4 | x3)P (x3) + P (x4 | ¬x3)P (¬x3)

(conditioning)

=
∑

X3

P (x4 | X3)P (X3)

So, we need to know P (X3):

P (x3) =
∑

X1,X2

P (x3,X1,X2)

=
∑

X1,X2

P (x3 | X1,X2)P (X1,X2)

We know that
P (X1,X2) = P (X1 | X2)P (X2) = P (X1)P (X2)

as X1 and X2 are independent. The conclusion is that:

P (x4) =
∑

X3

P (x4 | X3) ·

∑

X1,X2

P (X3 | X1,X2)P (X1,X2)

= 0.31

◮ What are P (X1) and P (X2)?
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◮ The file corresponding to the Bayesian network in Figure 3 is slide-net.net in the directory
http://www.cs.ru.nl/∼peterl/teaching/CI/networks. Load this network into SamIam

and check the computations above.

As said above, normally we would use a Bayesian network tool in order to find out the effect
of particular evidence on a variable Xi, i.e. P ∗(Xi) = P (Xi | E). As the computations carried
out are similar to the one above, with the exception of the situation when reasoning in the
reverse direction of an arc has to be accomplished, because then Bayes’ rule comes into play.
For example, assume that X2 = y is entered into the network. Then, the updated marginal
probability distribution for X4 can be computed as follows:

P ∗(x4) = P (x4 | x2)

=
∑

X3

P (x4 | x2,X3)P (X3 | x2)

=
∑

X3

P (x4 | X3)P (X3 | x2)

=
∑

X3

P (x4|X3)
∑

X1

P (X3|X1, x2)P (X1|x2)

=
∑

X3

P (x4|X3)
∑

X1

P (X3|X1, x2)P (X1)

= 0.214

◮ Check these computations using SamIam.

Finally, assume that instead of X2 the variable X4 is now observed with value y, so it holds
that P ∗(x4) = 1. We now get:

P ∗(x2) = P (x2 | x4)

=
P (x4 | x2)P (x2)

P (x4)

This is Bayes’ rule. Note that:

P (x4 | x2) = 0.214

P (x4) = 0.31

So, it holds that:

P ∗(x2) = 0.214 · 0.2/0.31

≈ 0.1381

◮ Check these computations using SamIam.

4 Examples of real-world Bayesian networks

Since the beginning of the 1990s researchers have been developing Bayesian networks for
many different problems, varying from hardware trouble shooting and user guidance in ap-
plying software, to medical diagnosis and treatment. However, most of the networks which
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have been developed are not in the public domain. This holds in particular for the networks
which have been developed by commercial companies such as Hewlett Packard and Microsoft.
Some of the networks which have been developed within the medical domain, though, have
been placed in the public domain. This is understandable, as in biomedical research there
is less emphasis on commercial interests. As a consequence, biomedical Bayesian networks
have gained greater visibility than the industrial ones, and some people therefore maintain
the opinion that biomedicine is the primary application field of Bayesian networks. Actually,
the reverse is true. For example, the two most well-known research groups in Bayesian belief
networks, the group at Microsoft Research in the USA and the group at the University of
Aalborg, Denmark, are not doing any work in the biomedical field at all. There is currently
also a growing interest in the automotive industry to use Bayesian networks for on-board diag-
nosis of car failure. Again, due to the stiff competition between car factories, the automotive
industry is not willing to publish their models in the public domain.

The consequence of the above is that, due to the lack of public availability of non-medical
Bayesian networks, we will focus on medical networks. At the end of this practical, however,
there is a Bayesian network discussed that has been developed together with people from
Hewlett-Packard by researchers from Aalborg University.

One should, however, keep the remarks made above in mind.

4.1 Treatment of non-Hodgkin lymphoma of the stomach

4.1.1 The problem

Non-Hodgkin lymphoma of the stomach, gastric NHL for short, is a relatively uncommon ma-
lignant disorder, accounting for about 5% of tumours of the stomach. Until recently, the cause
of gastric NHL was unknown; it is now generally believed that the main factor in the devel-
opment of this disease is a chronic infection with the bacterium Helicobacter pylori. This has
had a major effect on treatment practice. Whereas originally, as in most cancers, treatment
consisted of surgery (total or partial removal of the stomach), chemotherapy, radiotherapy
or a combination of two or three of these, there is now also a place for antibiotics. Only 10
years ago, no medical doctor would have believed you when you had said that cancer can be
treated by antibiotics. So, the impact of these recent findings has been dramatic.

Now, the selection of treatment for gastric NHL is a complicated process, because only
part of the patient findings necessary for therapy selection may be known at a particular
stage of the disease, and knowledge of adverse reactions to particular treatments in patient
groups may influence treatment selection significantly. This explains why the Netherlands
Cancer Institute in Amsterdam considered developing a Bayesian network. It was hoped that
a Bayesian network of gastric NHL might help doctors in the prescription of optimal treatment
of a patient. The network discussed here is still in prototype stage; further development needs
to take place in order to introduce it in actual clinical practice.

4.1.2 Structure of the network

The gastric NHL Bayesian network only incorporates variables that are widely used by clin-
icians in choosing the appropriate therapy for patients [4]. The relevance of most of these
variables is supported by literature on prognostic factors in gastric NHL.

First, the information used in the clinical management of primary gastric NHL was sub-
divided in pretreatment information, i.e. information that is required for treatment selection,
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5-YEAR-RESULT

ALIVE 0.523

DEATH 0.477

IMMEDIATE-SURVIVAL

NO 0.060

YES 0.940

EARLY-RESULT

CR 0.632

PR 0.102

NC 0.052

PD 0.213

THERAPY-ADJUSTMENT

NO 0.604

YES 0.396

BULKY-DISEASE

YES 0.314

NO 0.686

ERADICATION

NO 0.468

YES 0.532

POST-CT&RT-SURVIVAL

NO 0.016

YES 0.984

POST-SURGICAL-SURVIVAL

NO 0.045

YES 0.955

SURGERY

NONE 0.700

CURATIVE 0.250

PALLIATIVE 0.050

GENERAL-HEALTH-STATUS

POOR 0.110

AVERAGE 0.216

GOOD 0.674 HEMORRHAGE

NO 0.932

YES 0.068

HELICOBACTER-PYLORI

ABSENT 0.150

PRESENT 0.850

HELICOBACTER-TREATMENT

NO 0.550

YES 0.450

HISTOLOGICAL-CLASSIFICATION

LOW-GRADE 0.467

HIGH-GRADE 0.533

CLINICAL-STAGE

I 0.455

II1 0.262

II2 0.160

III 0.004

IV 0.120

PERFORATION

NO 0.956

YES 0.044

BM-DEPRESSION

NO 0.646

YES 0.354

CLINICAL-PRESENTATION

NONE 0.850

HEMORRHAGE 0.120

PERFORATION 0.020

OBSTRUCTION 0.010

CT&RT-SCHEDULE

NONE 0.150

RT 0.350

CT 0.250

CT-NEXT-RT 0.250

AGE

10-19 0.005

20-29 0.030

30-39 0.060

40-44 0.070

45-49 0.070

50-54 0.100

55-59 0.120

60-64 0.150

65-69 0.150

70-79 0.200

80-89 0.040

≥ 90 0.005

Figure 4: Bayesian network with prior probability distributions for gastric NHL.
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Clinical

N Age Gender Stage Grade Mass HP Presentation

1 61 m I high non-bulky − gastric perforation
2 39 m I high bulky − —
3 64 f I low non-bulky + —
4 63 m II1 high borderline + reflux oesophagitis

gastric obstruction
5 77 m II1 low non-bulky + —
6 82 f II1 high bulky − —
7 46 m II1 high non-bulky + impaired right kidney
8 60 m I high non-bulky + —
9 47 m I high bulky + —

10 67 f IV high non-bulky − —
11 73 m IV high bulky − —

Stage: Clinical stage according to the Ann Arbor classification of NHL by Musshoff
Grade: histological MALT classification
HP: H. pylori present (+) or absent (−)

Table 1: Selected features of 11 actual patients.

treatment information, i.e. the various treatment alternatives, and posttreatment information,
i.e. side effects, and early and long-term treatment results for the disease. The selected vari-
ables are shown in Figure 4. The most important pretreatment variables in the table are the
variable ‘clinical stage’, which expresses severity of the disease according to a common clinical
classification, and histological classification, which stands for the assessment by a pathologist
of tumour tissue obtained from a biopsy.

Various treatments are in use for gastric NHL such as chemotherapy, radiotherapy, and
a combination of these two, which has been represented as the single variable ‘ct&rt-

schedule’ with possible values: chemotherapy (CT), radiotherapy (RT), chemotherapy fol-
lowed by radiotherapy (CT-next-RT), and neither chemotherapy nor radiotherapy (none).
Furthermore, surgery is a therapy with is modelled by the variable ‘surgery’ with possible
values: ‘curative’, ‘palliative’ or ‘none’, where curative surgery means total or partial resection
of the stomach with the complete removal of tumour mass. Finally, prescription of antibiotics
is also possible.

The most important posttreatment variables are the variable ‘early result’, being the
endoscopically verified result of the treatment, six to eight weeks after treatment (possible
outcomes are: complete remission – i.e. tumour cells are no longer detectable –, partial
remission – some tumour cells are detectable –, no change or progressive disease), and the
variable ‘5-year result’, which represents the patient either or not surviving five years
following treatment.

4.1.3 Exercises

The following exercises are meant to give you some ideas of how a medical Bayesian network
might be used in practice. Table 1 lists features of 11 actual Dutch patients.

◮ Enter the findings of a number of patient as described in Table 1 into the network nhl.net,
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which is available in the directory http://www.cs.ru.nl/∼peterl/teaching/CI/networks,
using SamIam. For each of these patients, try to determine the treatment which yields the
best results.

◮ A typical clinical research question might be whether there is a difference between those patients
who live shorter and those that live longer than 5 years following treatment. Use the network
to answer this question. Is age also a factor that affects the results of this question, i.e. can
different patient groups be distinguished?

4.2 Anaesthesia problems

4.2.1 The problem

During an operation, a patient’s vital functions, such as heart rate and blood pressure, are
measured in order to act as rapidly as possible if one of these functions deteriorate. However,
many of these functions interact which each other, so that a change in one may change the
other, and this can be very confusing for the anaesthetist who is responsible for keeping a
patient stable during an operation.

The ALARM Bayesian network has been developed in order to assist anaesthetists in
interpreting changes in vital signs in patients. Again, this network was a research prototype,
and has never been used in practice. However, the network is very popular within the Bayesian
network research community, where it has been used for the evaluation of all sorts of research
ideas.

4.2.2 Structure of the network

We do not discuss the network in detail, but will focus on a small part of it. The stroke
volume of the heart, which is the amount of blood pumped out of the heart at every beat,
is determined by the amount of blood available and by the functional capabilities of the
heart muscle. In hypovolaemia, the amount of blood is significantly decreased. The variable
‘hypovolemia’ models this situation. If the heart muscle fails to meet its requirements, we
say that the patient has a left-ventricular failure; this is modelled by the variable ‘LVFailure’.
In turn, the state of the stroke volume is modelled by the variable ‘StrokeVolume’. The
cardiac output of the amount of blood pumped out of the heart per minute is the cardiac
output (CO). It is about 5 l/min. This is of course determined by the stroke volume and the
heart rate. The heart rate is modelled by the variable ‘HR’. Finally, the CO is one of the
factors that determines the blood pressure, which is modelled in the network by the variable
‘BP’. The resistance of the blood vessels to blood flow is another factor that determines blood
pressure. This is modelled by the variable ‘TPR’ (Total Peripheral Resistance). This in turn
may decrease significantly in the case of anaphylaxis. This is an allergic reaction characterised
by a drop in TPR, e.g. after having been stung by a bee.

4.2.3 Exercises

◮ Load the network alarm.net into SamIam. Find out what may happen to a patient with a
history of left ventricular failure (LVF), and low blood pressure due to anaphylaxis, e.g. after
particular drugs have been administered to the patient.
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4.3 Other networks

One other interesting Bayesian network is the one described in [3], and concerns the diagnosis
of a very rare disease: Wilson’s disease. Load the network wilson.net from:

http://www.cs.ru.nl/∼peterl/teaching/CI/networks

into SamIam, and read the explanation in Ref. [3].

5 Problem solving

As we have seen above, Bayesian networks can be used as a formalism to solve various tasks.
A common application is diagnosis, for example in medicine or in engineering. Typically, a
user enters case data into a Bayesian network, after which a diagnosis can be determined using
a probabilistic inference algorithm. Other applications are: population description, decision
making, i.e., selecting an action from a list of possible actions, prediction, and profiling.

5.1 Exercise

Consider the screenshot of the Bayesian network concerning the three different disorders
tuberculosis, lung cancer and bronchitis shown in Figure 5. This network represents the
following problem.

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bron-
chitis, or more than one of them. A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. A single chest X-ray does not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of shortness-of-breath.

5.1.1 Population description: a priori probability distribution

◮ Load the Bayesian network

http://www.cs.ru.nl/∼peterl/teaching/CI/chest clinic.net

into SamIam (or chest clinic.net into Genie) and try to establish the (in)dependences
among the variables concerned.

◮ Try to determine which vertices can act as observables or findings, as class vertices, or as
conditioning vertices.

◮ Compute the marginal probability distributions of the individual variables.

Note that class vertices are used for establishing diagnoses.

5.1.2 Establishing a diagnosis

Assume that we are dealing with a person with dyspnoea, who has visited south Asia.

◮ What is the most likely diagnosis?

◮ Does the diagnosis change if we assume that the person is a heavy smoker?
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Figure 5: Screen-shot of SamIam with the chest-clinic network.

5.1.3 Prediction

Remove all the evidence E entered into the network.

◮ Predict the likelihood that a smoker will develop dysnoea.

5.1.4 Decision making

In the first exercise in Section 4.1, we already investigated a method for decision making,
here finding the optimal treatment (optimal combination of actions) for an NHL patient.
This network is also suitable to illustrate description of a population and prediction, but it
cannot be used for diagnostic purposes as the model assumes that a diagnosis is already made
for a patient.

5.1.5 Profiling

Finally, in the second exercise in Section 4.1 we already studied profiling:

◮ Determine the characteristics of the population of NHL patients who died within 5 years, and
compare these characteristics with patients who survived more than 5 years.

All examples together illustrate the big versatility of the Bayesian network formalism.
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