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Unsupervised learning is often used to obtain insight into the underlying structure of medical data, but it is not
always clear how to use such structure in an effective way. In this paper, we propose a probabilistic framework
for predicting disease dynamics guided by latent states. The framework is based on hidden Markov models and
aims to facilitate the selection of hypotheses that might yield insight into the dynamics. We demonstrate this by
using clinical trial data for psychotic depression treatment as a case study. The discovered latent structure and
proposed outcome are then validated using standard depression criteria, and are shown to provide new insight

into the heterogeneity of psychotic depression in terms of predictive symptoms for different interventions.

1. Introduction

Much about disease processes is unknown, as often the only avail-
able information about a disease are the patient’s symptoms and signs.
This might result in an incomplete understanding of a medical disorder,
which can in many cases be overcome by latent variable modeling. In
spite of requiring extra modeling efforts, latent variables can enhance
our understanding of the problem domain by capturing unmeasured
quantities (e.g. related to the underlying physiology) and their re-
lationship to observed quantities [24], and might as well provide better
fitted models [25]. Hence, by using latent variables, one can try to
reconstruct the underlying structure of the process at hand by using
observed data.

Unsupervised learning is the machine learning task that aims to
generate representations of the underlying structure of the data. Well-
established usage of unsupervised learning in medical data includes,
e.g., the discovery of underlying patient groups using clustering
methods [15,16], which might help improve diagnosis and provide new
insight into more effective treatment selection [1]. Other applications
include feature selection from unlabeled data [12] where manual fea-
ture extraction might be not available or incomplete. Patient mon-
itoring and alerting for the identification of clinical outliers has also
been tackled by unsupervised techniques [7,12]. Yet, when applied to
medical data, unsupervised techniques generate output that often

makes experts confront themselves with questions like what else can we
do with this structure?. This is particularly of interest in cases where it
might be difficult to define hypotheses in advance to be tested, hence
some form of exploratory data analysis must be conducted.

We show in this paper that unsupervised learning methods, in
particular hidden Markov models (HMMs) [18], can be used not only to
describe the underlying structure but also to support the formulation of
meaningful medical outcomes. Previous research suggested that the
formulation of clinical outcomes might be guided by latent-variable
models [16,10], with the advantage of reducing the hypothesis space to
be explored by inspecting model properties. By using HMMs, we claim
that one can explore hypotheses on disease dynamics by inspecting
model characteristics such as transition dynamics, latent states, etc.

In order to illustrate the usage of HMMs on disease dynamics, we
make use of data from a clinical trial originally designed to compare
pharmacological treatments to psychotic depression (PD) [22]. PD is a
severe medical condition that is associated with a high burden of dis-
ease and relatively low remission rates following pharmacological
treatment [19]. Although recent research has considered PD as a
homogeneous subtype of major depressive disorder [23], the possibility
that this subtype itself is heterogeneous should also be considered,
which would stimulate the development of subgroup adjusted prog-
nostics and treatment modifications. In this work, we apply HMMs to
one of the largest pharmacological trials of patients with PD conducted
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so far [22], aiming to explore potential differences in course char-
acteristics in the whole sample of patients and differences in sensitivity
to treatment between medication groups.

The contributions of this paper are as follows. We present a proce-
dure to guide the exploration of hypotheses on disease dynamics by
means of HMMs. We then apply this methodology to yield insight into
the dynamics of PD treatments by exploring clinically meaningful
outcomes. The hypotheses generated using the method are then tested
based on standard clinical characterization of response and remission in
PD. To the best of our knowledge, this is the first effort into a more
systematic, data-driven approach for exploring hypotheses on disease
dynamics based on probabilistic graphical models.

The remainder of this paper is organized as follows. In Section 2 the
relevant work related to this paper is discussed. In Section 3 the pro-
posed framework for exploring insight into latent disease dynamics is
introduced. In Section 4 the psychotic depression data used as case
study is described together with some descriptive statistics. In Section 5
the HMM proposed for modeling PD dynamics is detailed. The experi-
mental results are shown in Section 6. The obtained results are vali-
dated in Section 7. Section 8 summarizes the paper and gives sugges-
tions for future work.

2. Related work

Probabilistic graphical models have been extensively used in med-
icine and psychiatry. Recently, network models have shown to provide
new insight into depression and other disorders by exploring symptom
pathways [21,4]. These models, however, do not employ latent vari-
ables and instead claim that disease complexity emerges from direct
connections between symptoms. On the other hand, latent-variable
models such as hidden Markov models have been also extensively used
in medical domains. One advantage of HMMs is that one can easily
incorporate domain knowledge into the model, e.g., by constraining
model transitions and emissions [12].

When using HMMs to capture disease dynamics, it is often the case
that the number of latent states is determined in advance, as researchers
might be interested in a specific subset among all possible models.
Hosenfeld et al. [8] have used a two-state HMM to investigate the hy-
pothesis that patients switch between two stable states (symptom-free
versus depressed) in major depressive disorder. To investigate the re-
lationship between cognition and psychotic symptoms in Alzheimer’s
disease, Seltman et al. [20] have defined a four-state continuous-time
HMM. By opposition, one might argue that by not imposing an a priori
number of or already known latent states, a more ample set of possible
models is considered, which can lead to more insight into disease dy-
namics, at the cost of a likely increased difficult to interpret such
models.

The typical usage of HMMs is in prediction or as a model to describe
the underlying structure of the data [17]. While prediction is self-ex-
planatory, the description of the underlying structure is often seen as a
set of clusters, and for that reason it is a more abstract and more dif-
ficult representation to get insight from. A much more specialized usage
of latent variables lies in the development of data-driven outcome
measures, as suggested in [16,10]. A data-driven approach to gen-
erating outcomes has the advantage that latent states might provide a
more natural, compact and empirically-oriented way to measure mul-
tiple relationships between symptoms and other observables.

More recently, HMMs have been applied to electronic health records
[9,13], which are much more large (and often heterogeneous) amounts
of data than usually seen before. Yet, such datasets are of very different
nature and thus require new methodology for using models as HMMs
for the discovery of relevant knowledge.

3. A probabilistic framework for capturing disease dynamics

In this section we discuss models suitable for capturing latent
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disease dynamics in a probabilistic framework.
3.1. Bayesian networks and hidden Markov models

In many problems, the measured variables reflect only part of the
ongoing process as it is the case with disease symptoms, which can be
seen as manifestations of some unobserved underlying disorder. Latent
variables can be used to capture such unmeasured quantities and the
way these relate to the observed ones [24], which results in a more
complete model of the problem at hand, and might also allow for a
better model fit [25]. In temporal problems, such as clinical trials for
patient treatment, one is also typically interested in the sequential re-
lationship between latent states.

Hidden Markov models are models based on latent variables that are
able to cope with uncertainty and sequential phenomena, which make
HMMs suitable for many biomedical problems [13,8,20]. In HMMs, the
observable variables typically interact only via the latent (or state)
variable [17,18], which is known as the naive-structure HMM. In this
work we opt for modeling the observation space as a Bayesian network
(BN), which allows for much more general representations of symptom
interaction. A BN is a graphical representation of probabilistic inter-
actions between random variables, where arcs represent unconditional
dependence between variables, while the absence of arcs represents
conditional (in) dependences. By modeling the observation space as a
BN, more insight into the problem can be obtained by a more concise
latent-state representation [3].

When learning hidden Markov models, one often resorts to learning
algorithms able to handle missing data due to the latent variables of
HMMs. The expectation-maximization algorithm (EM) [5,18] is a well-
known approach used for learning HMMs from data. In this paper, we
use the EM approach tailored for structured observation spaces (see,
e.g., [3,14]), as the observation space is given as a general Bayesian
network.

3.2. State trajectories

Before we describe how to use HMMs to obtain insight into disease
processes, we first introduce some notation and definitions. Let us de-
note by S the random variable representing the latent states to be
modeled, where S takes values on the set dom(S) = {s;, ...,Sx}, such that
each s € dom(S) is called a latent (or hidden) state. We denote by
{Xi, ....Xpn} the set of observable variables, such that the ith observation
X; takes values on some set dom(X;). In medical domains, each X; will
often refer to measured data such as symptoms, lab exams, medication,
etc., while the latent variable S will refer to some state of the underlying
disease (e.g. a disease remitting situation). The disease process of in-
terest is assumed discrete over the time points {0, ..., T}, where the value
of the latent variable and the observables that hold at time t will be
denoted by S® and X"’ respectively. For a discrete time interval [£, 5],
the notation S®2 will be used.

In an HMM, one typically considers a few assumptions [11]: it is
assumed that the model is time homogeneous (i.e. the model para-
meters are the same for every time point), the symptoms from different
time points interact only mediated by the state variables, and the state
variables form a first-order Markov chain. In spite of being Markovian
with regard to the latent states, an HMM does not imply Markovian
dynamics on the observation space.

HMMs can be used to predict the hidden states associated to ob-
servations, i.e. to compute the set of states that better explain the ob-
servations. The set of most likely states depends on the optimality cri-
terion chosen according to the intended usage of such predictions [18].
In this paper, we seek for the states which are individually most likely,
as we are interested in the chances that a patient will transition to one
or more states that might represent, e.g., disease recovery. Hence, the
average number of times a state is predicted to occur is the quantity of
interest. This differs from the so-called Viterbi path, where one seeks for
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the most likely state sequence jointly taken over {0, ..., T}.

In order to predict the states which are individually most likely, one
first computes the distribution of latent states at each time point t
conditional on the complete patient’s symptom data (i.e. the data over
all the process duration):

¥ (s) = P(S® = 5O, . X)) )

where y,(s) is the notation used in Baum-Welch algorithm for HMMs
[18]. After this has been done, the sequence of states for a given patient
is obtained by selecting the most likely state at each time t:

8, = argmaXsedom(s)¥; (5) )

for all t € {0, .., T}. This can be interpreted as assigning patients in
states. For brevity sake, we do not index the predictions of Eq. (2) by
patient, although it should be clear that there is a set of predictions
S, t €10, ..., T}, for each patient.

3.3. Exploring medical outcomes

One way to obtain insight into disease dynamics is by considering
transition dynamics between latent states. This is convenient because
each latent state can take into account multiple symptom dimensions at
once, which makes reasoning over patient trajectory very natural. Once
the states are discovered, a detailed outcome measure that provide
insight into treatment dynamics can be formulated.

We propose a procedure to build outcome measures in Fig. 1. The
procedure selects a set of baseline states.#; based on a selection criterion.
From the remaining states, a set of target states.7, are to be selected
based on its own criterion. Once .% and .7, are obtained, state reach-
abilities from .%; states to .%; states are calculated. By varying the time
interval between two given states of .7}, and .7, the resulting prob-
abilities reach(i, j, t;, ;) indicate the temporal influence of a baseline
state over a target state. Such state reachabilities can then be used to
compose a rich outcome measure, e.g., by making =0 and
L € {1, .., T}, which will result in a reachability trend as indicated in
Fig. 1.

3.4. Selecting states

The selection of baseline states of Fig. 1 can be viewed in general
terms as a function f: dom(S) — {0, 1}, as shown in Definition 3.1.

Definition 3.1 (Baseline state). We say that a latent state s € dom(S) is a
baseline state iff f(s) = 1. The set of baseline states is given by:

S = {s € dom(S): f(s) =1} 3

The set of target states .%, of Fig. 1 can be defined analogously.

We define in the following different criteria for selecting baseline
and target states either by using model parameters or predicted patient
trajectories (or both). These definitions can be seen as particular in-
stantiations of the function f from Definition 3.1. For notation con-
venience, we denote by D the set of patients, which typically corre-
sponds to the data used to learn the model.

Definition 3.2 (Baseline-state criterion 1). We say that a latent state
s € dom(S) is a baseline state iff §, = s holds for at least one patient of
D.

In other words, Definition 3.2 labels a state as a baseline state if one
or more patients are predicted to be in this state at the process start
(i.e. att = 0). A more strict selection criterion of baseline states would
specify a degree of uncertainty concerning the predictions made at
baseline, as shown in Definition 3.3.

Definition 3.3 (Baseline-state criterion 2). We say that a latent state
s € dom(S) is a baseline state iff all the following conditions hold for at
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least one patient of D:

5 =5
® ¥ (s) > owhere 0 < o < 1 is the minimal degree of uncertainty.

Definition 3.3 allows one to specify the minimal uncertainty on the
state prediction that is acceptable. For example, with o = 0.95, one
imposes that the baseline state must have been predicted with low
uncertainty at ¢t = 0. This notion defines how strict one is for deeming a
state as a baseline state. Note that parameters such as the minimal
degree of certainty and the minimum number of patients (the previous
definitions required at least one patient) are part of the selection cri-
terion and may be adjusted by the user.

For target states, Definition 3.4 presents a criterion based solely on
model parameters.

Definition 3.4 (Target-state criterion). Let s € dom(S) — .% be a non-
baseline state. We say that s is a target state iff P(s — s) > p, where
0< p<1and P(s; — ;) is the transition probability between states s;
and s;.

One can use Definition 3.4 by setting, e.g., p = 0.95, which would
choose non-baseline states that have a high self-transition probability.
Depending on the selection criteria, the target states could act as pos-
sible final states to the process at hand by representing different patient
recovery in terms of symptom severity.

4. Data
4.1. Patients
All patients had participated in the DUDG (Dutch University

Depression Group) study [22], a 7 week double-blind randomized
clinical trial originally designed for comparing the effectiveness of

Temporal patient data

learn model

dom(S)

Latent states

baseline-state target-state

criteria criteria

Sy: Baseline states

Sy C dom(S)

S.: Target states
Se Cdom(S) - Sy

‘ State reachability ‘

reach(i, j, t1,ta) = P(S12) = s; | (1) = s;)
S; € Sb7 s5 € Se

\ Reachability trend \

{reach(i,j,t1,t2): to > t1 > 0, fixed}

Fig. 1. Procedure to guide the generation of outcome measures based on latent-
state models.
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Table 1

Composition of the HAM-D score for depression. For any patient, the HAM-D
score is obtained by the summing the scores of all the symptoms. The grading of
items with range 0-4 is as follows: 0 — absent, 1 — mild or trivial, 2 and 3 -
moderate, 4 — severe. For the other items, the grading is: 0 — absent, 1 - slight or
doubtful, 2 - clearly present.

Item No. Symptom Score range
1 Depressed mood 0-4
2 Guilt 0-4
3 Suicide 0-4
4 Insomnia (initial) 0-2
5 Insomnia (middle) 0-2
6 Insomnia (delayed) 0-2
7 Work and interests 0-4
8 Retardation (psychomotor) 0-4
9 Agitation 0-2
10 Anxiety (psychic) 0-4
11 Anxiety (somatic) 0-4
12 Somatic symptoms (gastrointestinal) 0-2
13 Somatic symptoms (general) 0-2
14 Genital symptoms 0-2
15 Hypochondriasis 0-4
16 Loss of insight 0-2
17 Loss of weight 0-2

venlafaxine, imipramine and venlafaxine plus quetiapine (V+Q, for
brevity) in PD. The dataset originally included 122 participants aged
18-65 who met DSM-IV-TR criteria for a unipolar major depressive
episode with psychotic symptoms and a 17-item Hamilton Depression
Rating Scale (HAM-D [6]) score of at least 18 (both at the screening
visit and at baseline). Table 1 describes the symptom items used to
compose the HAM-D score of each patient, which is obtained by sum-
ming the score on each item. The resultant HAMD-D score indicates
severity of depression as follows: normal (0-7), mild depression (8-13),
moderate depression (14-18), severe depression (19-22), and very se-
vere depression (greater than or equal to 23).

Because of insufficient information about the specific nature of
psychotic symptoms, three patients were not included in the current
study resulting in a dataset with 119 patients. From the total group, 59
(49,6%) were females; the mean age was 51.1 (SD 10.9) years. Forty
patients were randomized to treatment with imipramine, 38 to venla-
faxine and 41 to V+Q.

4.2. Baseline and follow-up variables

Severity of depression (HAM-D, represented as a continuous vari-
able) and the presence of psychotic symptoms (each represented as a
dichotomized variable) were measured at baseline (i.e. before treat-
ment starts) and weekly thereafter. Psychotic symptoms are delusions
and hallucinations (totals at baseline, 36 and 9 in imipramine, 37 and
11 in venlafaxine, and 38 and 9 in V+Q respectively). At baseline,
mean [SD] HAM-D scores were 32.5 [4.9] in imipramine, 31.7 [4.6] in
venlafaxine, and 31.6 [5.4] in V+Q.

A total of 98 patients completed the trial (34 in imipramine, 30 in
venlafaxine, and 34 in V+Q). Data on patients who dropped out was
imputed following the last-observation-carried-forward approach, as in
the original study [22].

4.3. Depression assessment

At the end of medical treatment, patients were assessed according to
conventional criteria for response and remission of depression [22].
Response was defined as a reduction of at least 50% on the HAM-D
score compared to baseline and a score of 14 or below, and remission as
a score of 7 or below.

Journal of Biomedical Informatics 95 (2019) 103232

5. A model for psychotic depression

In this section we model the temporal latent structure of psychotic
depression treatment.

5.1. General and intervention-specific model

In order to unravel treatment dynamics of the full sample of pa-
tients, as well as specific intervention-based treatment dynamics, a set
of hidden Markov models are learned. The model learned from the full
sample is referred to as the general model, while models learned from
each intervention data are called specific models.

In order to aid comparisons of model dynamics in terms of transi-
tioning behavior, the specific and general models share the same latent
states. To this end, the general model is estimated, then each specific
model is set with the obtained latent states. Then, the transition prob-
abilities of each model are estimated using the corresponding inter-
vention-specific data.

5.2. Model parameters and structure

The observable variables in the HMM used in this work are modeled
according to the BN shown in Fig. 2, which allows for a more expressive
representation than the naive-Bayes structure by connecting Hal and
Del via HAM-D. By doing so, we impose less independence assumptions
than the naive solution, thus the model becomes more flexible in that
more dependences can be induced from data. Hence, once in a state the
observables are parameterized as follows: the psychotic symptoms are
encoded as binary random variables, while the depressive symptom
(the HAM-D score) is parameterized as a conditional Gaussian dis-
tribution (conditioned on the state and on both psychotic symptoms, as
shown in Fig. 2).

At any time point, the parameterization of each symptom is as
shown in Tables 2 and 3. For a given state s € dom(S), the distribution
of HAM-D can be obtained by marginalizing out Del and Hal and by
applying the Bayesian network factorization as follows (we omit the
time index as it is equal to t):

)
@

Del, Hal, s]

P (HAM»D

s): > p[HAM—D, Hal, Del

Del,Hal
s] p [HAM-D

As a result, the distribution of HAM-D conditional on state s is
Gaussian as it is a linear combination of the Gaussians associated to the
possible configurations of Del and Hal.

Whenever the model is in a state, observations are emitted and a

= ) P(Del, Hal

Del,Hal

%)

Latent state®

Del® Hal®

HAM-D®

Fig. 2. Graphical structure of the HMM showing the latent variable and its
direct probabilistic influence on the observables at time t. Del and Hal denote
delusions and hallucinations symptoms respectively. The domain of Del and Hal
is the set {absent, present}, while the domain of the state variable is a positive
integer which will be determined experimentally.
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Table 2

Parameterization of psychotic symptoms in the HMM.
Del, Hal and S denote delusions, hallucinations and
state variables respectively. Note that
P(Del = present|S = s) =1 — P(Del = absent|S =s) and
similarly for Hal.

Variable Distribution
Del P(Del = absent|S = s)
Hal P(Hal = absent|S = s)

Table 3

Parameterization of the HAM-D score in the HMM. The variable HAM-D is a
mixture of Gaussian distributions of the form ./"(u;, o;), where y; and g;
denote the mean and standard deviation of the ith combination of parents,
respectively. Note that the hidden state is fixed.

Distribution of HAM-D Parents (plus some S = 5)

HAM-D ~ /", 01)
HAM-D ~ ./ (45, 52)
HAM-D ~ ./ (i3, 03)
HAM-D ~ ./ (i, a3)

Del = absent, Hal = absent
Del = absent, Hal = present
Del = present, Hal = absent
Del = present, Hal = present

transition for the next time point is taken, and so on. The para-
meterization and structure discussed above are the same for all the
specific models (i.e. the models obtained from each intervention data).

6. Results
6.1. Model dimension

The number of latent states was obtained by balancing model fit and
interpretability. Log-likelihoods were obtained from a 10-fold cross
validation procedure, where models can have from two states up to the
number of states obtained prior to model overfitting (see Appendix A
for more information). The selected number of states considers the
mean cross-validation fit and the corresponding confidence intervals
shown in Fig. A7, which is justified by the fact that in simpler models
the role of latent states is more easily understood, because the states are
likely more dissimilar in terms of associated symptom distribution and
transition patterns. Also in favor of this procedure is the fact that the
whole patient sample is split into treatment-specific data for model
learning, hence models with more states would be less stable. Appendix
A also shows scores of the Bayesian information criterion (BIC) which
support the selection based on cross validation.

6.2. Identified states

The general model has 3 latent states, as shown in Fig. 3 (top row),
where in each latent state there is one distribution for each symptom
measurement (i.e., Del, Hal and HAM-D). The states can be interpreted
as follows:

e The state Hallucinations (abbreviated as state h) is associated
with patients with high prevalence of hallucinations and moderate
prevalence of delusions. Its mean HAM-D score is the highest among
all states, while it has the narrowest tail.

e The state Delusions (abbreviated as state d) is associated with
patients with high prevalence of delusions and low prevalence of
hallucinations. Its mean HAM-D score is moderate and has wide tail.

o The state No Psychosis (abbreviated as state r) is associated with
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patients with low prevalence of psychotic symptoms and moderate
HAM-D score (though with wide variance).

6.3. Dynamics

Fig. 3 (bottom row) shows the transition behavior of the general
model. The arcs indicate transition probabilities between latent states,
e.g. the looping probability of 88.3% in state h represents the chance for
reiterating in such state over two adjacent weeks. Based on Fig. 3 (top
row) and on the previous characterization of the states, d and h can be
seen as starting states that are primarily distinguished based on the
prevalence of hallucinations in patient. Later on, depending on the
patient’s response to treatment, the patient will potentially move to
state r. The state r can be seen as a healthier state due to the absence of
psychotic symptoms, but the state does not imply depression remission
or response due to its moderate mean HAM-D. In fact, the state r
characterizes a wide range of no-psychosis patients, from those that still
have high HAM-D to those that have achieved low HAM-D.

6.4. Comparing interventions

From the obtained latent states shown in Fig. 3, we now detail an
outcome measure based on the procedure established in Section 3.3,
which will also allow for comparing interventions. Based on state tra-
jectories (Egs. (1) and (2)), at baseline 90 patients were assigned to
state d with mean (SD) probability of 100% (0), while 29 patients were
assigned to state h with mean (SD) probability of 93.6% (13.2%).
Hence, very little uncertainty was entailed by the model as to which
initial state any given patient is predicted to be in. As a consequence,
the criteria specified in Definitions 3.2 and 3.3 coincide for the PD study
case, resulting in the set of baseline states .73, = {d, h}. As for the set of
target states .7, Fig. 3 shows that the state r has a self-transition
probability of 98.2%, thus we set .7, = {r}.

Given the sets of states .} and .%,, we define the reachability as the
chances to reach the state r at time t, from one of the baseline states at
Hh= 0:

reach(i, j, i, ) = P(S® = 5;|S® = g;) 6)

reach(b, r, 0, t,) = P(S = r|S© = p) @

where b is either the state d or the state h, and t, € {1, ...,7}.

In order to compare interventions, reachability values were com-
puted from the general model (Fig. 3), as well as from the specific
models (see Appendix B). The obtained reachability values were made
further robust by a bagging procedure [2], where models are learned
from bootstrap samples to provide more stable outcome measures. In
this work, 10,000 bootstrap samples were generated, a model learned
from each one and the corresponding reachability values computed.
The reachability trend provided by the models learned from the boot-
strap samples are then used to compute confidence intervals that in-
dicate the variability of the reachability trend. In the following this idea
will be further explored for comparing the general and specific models
learned from the full sample and from each intervention data, respec-
tively.

6.5. Reachability trend per treatment

Fig. 4 shows the reachability trends grouped by intervention. The
difference between the area under the curve (AUC) of each trend was
also computed. For the whole sample of patients, the 95% bootstrap
confidence interval (BCI) of the AUC difference was [0.17, 2.29], while
for the slope difference the AUC was [0.02, 0.17], where positive values
indicate a stronger trend in favor of state d. Under venlafaxine, the AUC
difference was [0.16,3.09], whereas the slope difference was
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state delusions

state hallucinations
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state no psychosis

[ 93 [ 55 |1
Del
ol 07 Del s Pl T
|1 [ 99 12
Hal €
e Ml ol [ o
HAM-D HAM-D HAM-D
=202 - p=202
_ p=240 o =146
o=75 o =438 :
0 20 40 0 40 0 20 40

hallucinations

delusions

no psychosis

Fig. 3. Top: marginal distributions of symptoms in the latent states of the general model (Del and Hal stand for delusions and hallucinations symptoms, respectively).
Bottom: dynamics of the general model. Labels indicate transition probabilities between states (in %).

[0.01, 0.23]. These results suggest that the initial state of the patient is
relevant under venlafaxine in that starting in state d allowed for a
significantly stronger reachability towards state r than the reachability
had the patient started in state h.

Under imipramine, the AUC difference was [ —1.62, 2.36] and the
slope difference was [—0.15,0.19]. Finally, for V+Q the AUC differ-
ence was [—0.74,3.72], and [—0.10,0.32] for the slope difference.
Hence, starting in state d for imipramine and for V+Q also provided
stronger trends towards r, but not to a significant extent. The detailed
difference BCIs per week can be found in Appendix C.

6.6. Reachability trend per starting state

Fig. 5 shows the reachability trends of Fig. 4, now grouped by
starting state. Patients can either start in state d (Fig. 5a) or in state h
(Fig. 5b). Fig. 5a suggests that if a patient had no hallucinations at
baseline (i.e. started in state d), then a stronger reachability trend
would be achieved if treated with V+ Q. For patients that had experi-
enced hallucinations (i.e. started in state h), the results suggest that the
strongest trend would be achieved with imipramine. Nevertheless, 95%
BCIs indicate that no significant differences were found when com-
paring the trends starting in h, nor when comparing those starting in d.

7. Validation

In this section we investigate if aspects of the learned model and the
formulated outcome can be associated to standard depression criteria
computed directly from the data, as means to validate the model and
the outcome.

7.1. Model validation

Associations between model outputs in the form of state trajectories
(see Section 3.2) and depression recovery (see Section 4.3) were com-
puted. For each patient, we counted the number of consecutive weeks
in which state r was predicted as the most likely state (see Eq. (2)). In
case the endpoint of patient state trajectory is not predicted as state r,
the assigned count is zero. Among the total sample, 60 patients

achieved depression response, with the state r predicted in 4.7 weeks on
the average, while the 59 patients who did not achieve response had the
state r predicted in 1.3 weeks on the average. Fig. 6 shows a histogram
of the number of patients versus the number of consecutive weeks for
which state r was predicted. A Fisher’s exact test was applied to com-
pare the counts of the two groups from Fig. 6 (responders versus non-
responders), which resulted in a p-value <0.001, suggesting that these
two groups (responders and non-responders) associate significantly
different to the number of weeks in the state r (under a 95% confidence
level).

Among the total sample, 35 patients achieved depression remission,
with the state r predicted in 5.4 weeks on the average, while the 84 who
did not achieve remission had the state r predicted in 2.0 weeks on the
average. A Fisher’s exact test to compare remitters versus non-remitters
resulted in a p-value <0.001 (histograms for remitters were omitted due
to the small numbers). These results support the claim that the state r is
meaningful in terms of distinguishing patients that achieved depression
recovery (either response or remission) from those who did not.

7.2. Outcome validation

We now assess the claim of Section 6.5 that the state at baseline
leads to significantly different state reachability for the total sample
case. To this end, two distinct groups of patients were considered: pa-
tients with hallucinations at baseline (29 patients, see Section 4.2), and
patients with no hallucinations at baseline (90 patients). The HAM-D
scores of these groups at treatment endpoint were compared using a
Mann-Whitney test for independent samples, which resulted in a p-
value = 0.0007, thus suggesting that these two groups differ sig-
nificantly (under a 95% confidence level). As a consequence, the psy-
chotic symptom at baseline is predictive to depression recovery of pa-
tients in general. This evidence supports the conclusions for the model-
based outcome drawn in Section 6.5, where the psychotic symptom at
baseline was found to be predictive to reaching the state r when one
considers all the patients (Fig. 4a).
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Fig. 6. Histogram of the number of times the state r was predicted in patient
state trajectory. The two groups refer to patients who achieved depression re-
sponse (60 patients) and those who did not (59 patients). For the sake of vi-
sualization, zero consecutive weeks for non-responders was cut down (original
value was 41 patients).

8. Conclusions

This paper demonstrated that probabilistic graphical models can
reveal insight into disease dynamics by considering not only the un-
derlying structure, but also meaningful outcome measures built from
such structure. We illustrated the proposed methodology by applying
hidden Markov models to psychotic depression treatment data, where
the models were learned in a fully data-driven way.

The identified temporal symptom structure of psychotic depression
revealed that patients differed in their prognosis depending on the type
of psychotic symptoms they exhibited at baseline (hallucinations versus
delusions). This result was observed for the total sample and for the
patients that underwent venlafaxine intervention. Hence, our metho-
dology allowed to shed light on the heterogeneity of psychotic de-
pression. As future work, we plan to further investigate the clinical

Appendix A. Model selection scores
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significance of the results, as well as consider the effect of potential
confounders, such as patient demographic data.

The combination of graphical models and a data-driven approach
can be easily integrated into the investigation of other psychiatric dis-
orders as well, potentially helping physicians to understand disease
dynamics and may even support them in prescribing optimal pharma-
cological therapy. Furthermore, by applying the proposed methodology
to other diseases, it should be possible to assess the method more
broadly. It could of interest to perform different calculations of state
trajectories that reflects the availability of only partial symptom data
(e.g. to simulate an ongoing treatment), or even calculate state reach-
ability from different starting points other than the baseline point. One
could also consider adding intermediate states to the proposed frame-
work, which could allow for greater flexibility in situations where many
more latent states are obtained.
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Fig. A7 shows 10-fold cross-validation mean log-likelihoods for different number of latent states, together with 95% confidence intervals. The

higher the log-likelihood of a model the better fitted such model is.
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Fig. A7. 95% ClIs for the mean cross-validation log-likelihoods for selecting the number of states of the general HMM.
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A Mann-Whitney test was performed for comparing the cross-validation log-likelihoods shown in Fig. A7 of the 3 state model with that of other
models. The resultant p-values (number of states) were: 1.0(4), 0.91(5), 0.48(6), 0.31(7), 0.35(8); the maximum p-value of the remainder cases (9 up to
15 states) was 0.08.

In addition to the 10-fold cross validation results, BIC (Bayesian Information Criterion) scores were computed for different number of states,
which balances goodness of fit with a penalty based on the number of parameters and sample size. The BIC for a model M is defined as follows [11]:

BIC(M) = —2:In(L) + K:In(n) (A1)

where L is the maximized likelihood of the model M, K is the number of parameters of M, and n is the sample size. We seek for models that minimize
the BIC.

Fig. A8 shows the BIC scores for different models, suggesting the 3-state model achieves the minimal model selection score. This is in line with
Fig. A7, where the overlapping confidence intervals suggest that it is likely not significant the improvement achieved by models with more than 3
states, hence a suitable dimension would be 3 states.

2500

2000 +

1500

BIC (x 10°2)

1000

500

87.1 865 94.9 11

Number of states

Fig. A8. BIC scores of models with different number of latent states. The vertical dashed line indicates the number of states which led to the minimal BIC.

Appendix B. Dynamics of intervention-specific models

Fig. B9 shows the transition probabilities of each intervention-specific model. As described in Section 5.1, all the specific models and the general
model share the same latent states, which are shown in Fig. 3 (top row).
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Fig. B9. Dynamics of the intervention-specific models. Labels indicate transition probabilities between states.

Appendix C. Confidence intervals of reachability trend differences

Fig. C10 shows 95% bootstrap confidence intervals for the differences between the reachability trends of Fig. 4.
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