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The recent increased interest in information fusion methods for solving complex problem, such as in
image analysis, is motivated by the wish to better exploit the multitude of information, available from
different sources, to enhance decision-making. In this paper, we propose a novel method, that advances
the state of the art of fusing image information from different views, based on a special class of probabi-
listic graphical models, called causal independence models. The strength of this method is its ability to
systematically and naturally capture uncertain domain knowledge, while performing information fusion
in a computationally efficient way. We examine the value of the method for mammographic analysis and
demonstrate its advantages in terms of explicit knowledge representation and accuracy (increase of at
least 6.3% and 5.2% of true positive detection rates at 5% and 10% false positive rates) in comparison with
previous single-view and multi-view systems, and benchmark fusion methods such as naïve Bayes and
logistic regression.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The increasing number and heterogeneity of information
sources and techniques for data acquisition, especially in complex
domains such as image analysis, has produced vast amounts of
information, giving rise to an increasing demand for combined pro-
cessing of information to extract valuable knowledge and make
better decisions. The term information fusion is used when such
merging of information from different sources is done
automatically.

There have been given numerous definitions of the notion of
information fusion in the past 20 years (Boström et al., 2007); its
key point is that the synergy of multiple sources should lead to
more effective support, i.e., better decisions or actions, e.g. in terms
of accuracy, than when these sources were used separately. Yet,
this should be done without sacrificing computational efficiency,
as otherwise the fusion of information might be intractable. Often,
in fusing image information one also has to deal with the inherent
uncertainty of the information, e.g. due to measurement or inter-
pretation errors. The fusion of such uncertain image information
is the subject of this paper.

Given the rich expertise of human interpreters and the comput-
ing power of intelligent computer-based systems, we believe that
their integration is the main road for building smarter computer-
ll rights reserved.
aided detection (CAD) systems. In this work, we adopted this
synergistic principle to develop a novel CAD system for automated
multi-view image analysis by combining knowledge derived from
the analysis of the way humans interpret images, on the one hand,
and image information automatically extracted by a CAD system
for image interpretation, on the other hand. In particular, we built
a multi-stage system using Bayesian networks—one type of probabi-
listic graphical model—which are especially promising in bridging
the gap between the capabilities of humans and computer-aided
interpretation, as they can support the explicit representation of ex-
pert knowledge, handle uncertainty and missing information, and
allow combining multiple sources of knowledge.

The application domain of this paper is the analysis of X-ray
images, or mammograms, for breast cancer detection in screening
programs, which will be referred to as mammographic analysis in
the remainder of the paper. In mammographic analysis, the major-
ity of current CAD systems are mainly used to analyze single
images only and often act as prompt systems, meant to focus the
radiologist’s attention to particular image regions, rather than pro-
viding overall classification of the patient’s condition. They have no
or limited capability to capture the working principles employed
by radiologists. An example of one of such principles is multi-view
mammographic analysis, where the radiologists judge for the pres-
ence of cancer on the basis of two projections, or views, of the same
breast: mediolateral oblique (MLO), taken under 45� angle and
showing part of the pectoral muscles, and craniocaudal (CC), taken
head to toe. Human readers also normally compare image parts
and different images of the breasts to each other, i.e., they interpret
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potentially suspicious regions in the context of all other available
image information.

The system and the results presented here extend and improve
upon our multi-view methods described in (van Engeland et al.,
2006; Samulski and Karssemeijer, 2008; Velikova et al., 2009a;
Velikova et al., 2009b). The basic idea of all these methods is to
use links between the regions automatically detected by a single-
view CAD system in two breast views, or projections, in order to im-
prove the region and patient-based classification. In (van Engeland
et al., 2006; Samulski and Karssemeijer, 2008), the main focus was
on the cancer detection at a region level rather than at a patient
level, although the latter is the ultimate aim of breast-cancer
screening programs. Linking of regions was performed twice, using
each of the views as a starting point, which resulted in asymmetrical
links between any two regions characterized by a correspondence
score.

In existing methods, supervised classification methods are used
to combine information. With increasing complexity, however, this
traditional approach becomes less attractive. To model reading of
mammograms, many sources of information have to be combined.
For example, multiple views may include different projections as
well as different exams in a temporal screening sequence. The
presence of multiple features such as microcalcifications and
masses may have to be combined, where it is not only the detec-
tion of these features, but also the question whether they are more
indicative for malign or benign processes that plays a role in deci-
sion making processes. Most of these image interpretation tasks
have been addressed as separate problems in the literature. Com-
bining them in a consistent manner is far from trivial. One of the
problems one has to deal with is missing data, as not all informa-
tion sources are available for all cases in the training database. To
tackle this problem we propose to use a hybrid method, where
sources of information provided by systems previously developed
for specific subtasks are combined in a probabilistic manner. It is
noted that this method also allows inclusion of non-imaging infor-
mation like age and breast cancer risk to be accounted for in a
proper manner.

In (Velikova et al., 2009b) we already proposed a multi-view
CAD system based on probabilistic modeling. The linking of breast
projections and view classification was modeled using Bayesian
networks and single-view region features. Some improvement in
the discrimination between cancerous and non-cancerous patients
was obtained in comparison to the single-view CAD system, but
the modeling scheme was rather limited by the requirement for
a fixed, equal number of regions detected per breast projection
as by the simplified definition of a link as being only true or false.
Furthermore, the modeling at a breast and patient level was using
a relatively simple logistic regression method. This motivated us to
develop the more advanced multi-view fusion method presented
in this paper. Major differences are the following: (1) the modeling
has unifying and systematic nature based on a special type of
Bayesian network, called causal independence models, at all levels
of analysis—link, region, breast and patient—following the human
reader’s practice, (2) the model is redesigned to allow handling
of a varying number of suspicious regions detected per projection,
and (3) more complex links are introduced, making use of corre-
spondence scores and multi-view features generated by a recently
developed two-view analysis method (Samulski and Karssemeijer,
2011). The proposed generic modeling principles allow straightfor-
ward application to potentially any problem of information fusion.
To evaluate the method we compare our method against standard
probabilistic methods, such as naïve Bayes and logistic regression,
and our previous single- and multi-view systems (Samulski and
Karssemeijer, 2011; Velikova et al., 2009b).

In the next section we formalize the problem of information
fusion and discuss the theoretical background related to Bayesian
networks and causal independence models. The main contribution
of this work is the causal probabilistic modeling scheme, described
in Section 3, followed by its application on real mammographic
data and discussion of the results in Section 4. Conclusions are gi-
ven in Section 5.
2. Uncertain information fusion

2.1. Basic principles

The general problem of uncertain information fusion can be for-
mulated as follows. Suppose that a number of sources of evidence
are given, indicated by e1, e2, . . . , en, which provide uncertain infor-
mation about a hypothesis h. Our goal then is to merge the informa-
tion from the variables ei to draw a conclusion about the
hypothesis h, i.e.,

h ¼ f ðe1; e2; . . . ; enÞ; ð1Þ

where f is a general fusing scheme with the characteristic that the
more e1, e2, . . . , en tell about h, the higher the certainty about h.
The problem of uncertainty information fusion inevitably becomes
relevant as soon as one wishes to solve problems of sufficient
complexity.

The crucial bottleneck of uncertain information fusion,
expressed by Eq. (1), is the modeling of the interaction between
the uncertain sources of evidence e1, . . . , en. Although this interac-
tion can be quite naturally expressed by the family of probability
distributions P(HjE1, . . . , En), where each instantiation of the vari-
ables E1 = e1, . . . , En = en leads to a joint conditional probability dis-
tribution P(HjE1 = e1, . . . , En = en), this will in general lead to a
specification that is exponential in the size of the domains of the
variables E1, . . . , En.

In the early days of information fusion, researchers, therefore,
discarded this intuitively appealing probabilistic approach. Instead,
typical early solutions tried to take advantage of particular ways of
decomposing the function f of Eq. (1), for example by defining f in
terms of a binary function g with

f ðe1; . . . ; enÞ ¼ gðe1; gðe2; . . . ; gðen�1enÞ � � �Þ:

If the order in which the function g is applied does not matter for
the result, then the function f is called symmetric and the function
g is associative, i.e., g(ei, g(ej, ek)) = g(g(ei, ej), ek), and commutative,
i.e., g(ei, ej) = g(ej, ei). These properties make it much easier to fuse
uncertain information: the merge can be done pairwise in any pos-
sible order.

Many of the early attempts can be characterized in this fashion,
such as the certainty-factor (CF) calculus, introduced by Shortliffe
and Buchanan (Shortliffe and Buchanan, 1975), quantifying the
uncertainty in the degree to which available evidence supports a
hypothesis. The CFs of rules with the same hypothesis and different
pieces of evidence are combined in any order without affecting the
result using binary, associative and commutative functions (Lucas
and van der Gaag, 1991). Although, CF calculus has been justifiably
criticized for its lack of a principled foundation, it has also been
proved that a significant fragment of CF calculus can be mapped
to Bayesian networks, which perhaps explains the good perfor-
mance of the systems that employed the CF calculus (Lucas,
2001). To further relax the restrictions of probability theory for
mutually exclusiveness of hypotheses, alternative approaches have
been developed to handle uncertainty in a general sense. One
example is belief theory with its representative: Dempster–Shafer
theory of evidence (Dempster, 1967; Shafer, 1976). The theory
has been popular for a long time as it includes a function for fusion
of uncertain information, known as Dempster’s combination rule
(Dempster, 1967), which is again associative and commutative.
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Alternative information fusion methods, which preserve the asso-
ciative and commutative properties, are based on simple aggrega-
tion operators such as (weighted) average, minimum, maximum,
or a combination of them. Such methods have been investigated
in a recent paper for fusion of multiple images at an exam level
to improve the retinal image screening for diabetic retinopathy
(Niemeijer et al., 2009). Other current studies for decision- and
feature-based fusion in medical imaging, using statistical methods
or traditional classifiers (such as neural networks), have been
proposed in (Jesneck et al., 2006; Calhoun and Adali, 2009).

2.2. Probabilistic methods

2.2.1. Bayes theorem and Bayesian networks
Although, initially probability theory was mostly discarded as a

method for information fusion, for the reasons mentioned at the
beginning of this section, there is early work that explored proba-
bility theory by employing Bayes’ theorem:

PðHjE1; . . . ; EnÞ ¼ aPðE1; . . . ; EnjHÞPðHÞ; ð2Þ

where a is a normalizing constant. Assuming that the pieces of evi-
dence Ei are all conditionally independent given the hypothesis H,
i.e., P(EijH, Ej) = P(EijH) for i – j, yields:

PðE1; . . . ; EnjHÞ ¼
Yn

k¼1

PðEkjHÞ:

This approach is often called naı̈ve Bayes or idiot’s Bayes. Note
that this independence assumption renders the use of Bayes’ theo-
rem again associative and commutative in evidence Ei. In order to
use the method, one needs a probability distribution P(EijH) for
each information source, and the prior probability distribution
P(H). Hence, the naïve Bayes (NB) classifier combines the naïve
Bayesian network model with a decision rule ((Domingos and Paz-
zani, 1997)). A common choice is the most probable hypothesis – a
maximization criterion – and then the classifier is defined by:

NBðe1; . . . ; enÞ ¼ arg max
h

PðH ¼ hÞ
Yn

k¼1

PðEk ¼ ekjH ¼ hÞ: ð3Þ

Despite its naïve design and apparently oversimplified assump-
tions, the naïve Bayes classifier often demonstrates good classifica-
tion performance in many complex real-world situations; for
example, in robotics it is used for information fusion of maps
obtained by different sensors of a robot exploring the same area
(Moravec, 1988). Another advantage is that it requires a small
amount of training data to estimate the network parameters (the
conditional probability distributions). Therefore, it is also consid-
ered in this study as one of the benchmark probabilistic methods
to compare against the proposed causal model.

More recently, researchers have explored more general indepen-
dence constraints on a joint probability distribution P(H, E1, . . . , En),
in the form of Bayesian networks. A Bayesian network (BN) is
defined as a pair B ¼ ðG; PÞ, where G is an acyclic directed graph
(ADG) G = (V, E) and P is a joint probability distribution of a set of
random variables. There exists a 1–1 correspondence between the
nodes in V and the random variables; the (directed) edges, or arcs,
E # (V � V) correspond to direct causal relationships between the
variables. A Bayesian network offers a compact representation of
the joint probability distribution P in terms of local conditional prob-
ability distributions (CPDs) or tables (CPTs), if the variables are dis-
crete, by taking into account the conditional independences
represented by the ADG. In contrast to discriminative (classifica-
tion) tools such as neural networks, a Bayesian network is a gener-
ative model (no input and output variables are explicitly defined),
which allows easy integration of domain knowledge and work with
missing data, while the network can still be used for discriminative
tasks.

Bayesian networks have already been exploited for information
fusion in a number of studies. Mnatsakayan et al. propose in
(Mnatsakanyan et al., 2009) a manually constructed Bayesian net-
work using the knowledge of experienced epidemiologists to fuse
data from various sources to improve the identification of influ-
enza-like epidemiologically relevant events. To account for time
changes, Zhang and Ji propose a dynamic Bayesian network
(DBN) for merging image sequences to perform facial expression
understanding (Zhang and Ji, 2005).

2.2.2. Causal independence models
To provide an efficient way to specify interactions among ran-

dom variables in a compact fashion, the notion of causal indepen-
dence has been introduced (Heckerman and Breese, 1996). Causal
independence arises when multiple causes (parent nodes) lead to
a common effect (child node) through interaction of independent
uncertain processes. This type of models allows in a systematic
way to decompose a probability distribution in terms of Boolean
interactions among local parameters. Such a decomposition makes
it easier and tractable to deal with problems involving a large num-
ber of causes, which is often the case in many domains such as
medicine.

The general structure of a causal-independence model, as de-
fined in (Visscher et al., 2009), expresses the idea that causes
C1, . . . , Cn influence a given common effect E through intermediate
variables I1, . . . , In; the intermediate variable Ik is considered to be
a contribution of the cause variable Ck to the common effect E. The
way in which the intermediate effects Ik, and indirectly also the
causes Ck, interact is represented by an interaction function f. A nat-
ural class of interaction functions f are the symmetric Boolean func-
tions. There are 2n+1 of such functions, with n the number of
arguments; typical examples are the binary logical functions OR,
AND and XOR, which are all associative and commutative. In mam-
mography, for example, the order of regions does not play a role in
determining whether or not there is suspicion for breast cancer.

A useful feature of symmetric Boolean functions is their decom-
posability in terms of exact Boolean functions. The exact function eq

checks whether there are exactly q trues among its arguments, i.e.,
eq(I1, . . . , In) = 1, if

Pn
k¼1Ik ¼ q with Ik equal to 0 or 1. In decision

making under uncertainty there is a natural tendency to aggregate
available uncertain information until a threshold is passed. The
threshold function sq is a symmetric Boolean function that allows
us to model this principle; it checks whether there are at least q
trues among its arguments, i.e., sq(I1, . . . , In) = 1, if

Pn
k¼1Ik P q. Note

that the logical OR function is a threshold function sq with q = 1
and the AND function is a threshold function sq with q = n. The con-
ditional probability of the effect variable E given the causes
C1, . . . , Cn in a noisy threshold model with interaction function sq

is given by:

Psq ðejC1; . . . ;CnÞ ¼
X

q6l6n

X

elðI1 ;...;InÞ

Yn

k¼1

PðIkjCkÞ: ð4Þ

Hence, the computation of Psq ðejC1; . . . ;CnÞ in a noisy threshold
model involves only summation and product of a linear number
of parameters and this can again be done in pairs by counting the
number of truths, making its application easy and attractive for
complex realistic problems. An example illustrating causal indepen-
dence models with exact and threshold functions is given in Appen-
dix A. More details on this topic can be found in (Visscher et al.,
2009).

Despite, the wide spectrum of information fusion methods
there is still a need for further research to allow effective, compu-
tationally feasible and systematic merge of information sources.
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Given the sound theoretical basis and computational advantages of
causal independence models, we use them as basic elements in the
novel model for multi-view image analysis, presented in the next
section, which possesses the properties for practically useful
application.

3. Causal model for image information fusion

3.1. Multi-view image analysis

The objective of multi-view image analysis of a physical object
(e.g., the breast) is to determine whether or not the object has
certain characteristics (e.g., being cancerous) based on the charac-
teristics of regions (subparts) in multiple object views. Fig. 1
depicts the general multi-view detection scheme.

We have a physical object, shown in Fig. 1a, referring to an
organ, which is projected in two views, View-A and View-B shown
in Fig. 1b. Suppose we have an abnormal physical subpart (e.g.,
cancer) of the object (the dark gray ball in the middle), which is
also projected in both views (the dark gray ovals); hence, the
whole object is considered to be abnormal. An automatic single-
view system attempts to establish whether there are regions that
are abnormal in each view separately based on a number of sin-
gle-view real-valued extracted features, e.g., size, location, con-
trast. In the figure, regions A1 and B1 are correct detections of the
abnormal physical subpart, i.e., these are true positive (TP) regions,
whereas regions A2 and B2 are false positive (FP) regions. Since we
deal with projections of the same physical object, correspondence
between subparts is represented by a link (LINKij) between the de-
tected regions in each view, Ai and Bj. To every link, a value LIN-
Kij = ‘ij is assigned, where ‘ij 2 {TPTP, TPFP, FPTP, FPFP}; for
example in the figure ‘21 = FPTP. Every link is described by a set
of multi-view features, e.g., contrast difference and location differ-
ence. For every region and object, a class with values of true
(abnormal) or false is assumed to be provided apriori, e.g., by
pathology or an expert, which supervizes the training process
and provides the ground-truth data for evaluation during testing.

Multiple views corresponding to the same abnormal subpart
contain correlated characteristics whereas views corresponding
to normal parts tend to be less correlated. For example, in mam-
mography an artifactual density might appear in one view,
whereas it disappears in the other view due to the superposition
of normal tissue. To account for the interaction between the object
projections, we next present a novel Bayesian network framework
for combining image information in a probabilistic manner, where
view dependencies are modeled explicitly.

3.2. Causal probabilistic model

Our novel method is presented in Fig. 2, modeling the problem
presented in Fig. 1. We emphasize that the graphical structure of
the model is manually built using the domain knowledge whereas
the parameters (probability distributions) are learned from data.
Fig. 1. Schematic representation of multi-view image analysis with automatically
detected regions in (b) of a physical object with abnormal subpart (the dark gray
ball) in (a).
We start by modeling the multi-view dependencies between
the regions in View-A and View-B. For each of the four link values
‘ij we consider the links LINKij with a respective set of descriptors D
such as multi-view features MVFeat and correspondence scores
CorrSc(LINKij), CorrSc(LINKji) obtained from another linkage sys-
tems (e.g., as the one presented in (Samulski and Karssemeijer,
2011)). We then apply logistic regression to reliably compute the
probability P(LINKij = ‘ijjD) = 1/(1 + exp(�z)), where z is a linear
combination of the descriptors in D. Thus, for every LINKij we
obtain four probabilities corresponding to each link value.

At the second stage, we compute the probability of a region
being abnormal given the link information about the regions in
the complementary view. This is done by combining link probabil-
ities obtained from the first stage using a causal independence mod-
el, where the link probabilities are the cause variables and the
region probability is the effect variable. In computing the probabil-
ity of a region in View-A having certain abnormal characteristics
(e.g. cancer), we combine only the link probabilities for the classes
TPTP and TPFP as they correspond to a TP region in View-A, whereas
for a region in View-B, the link classes considered are TPTP and
FPTP. These link probabilities interact through the XOR function,
as only one of them can be true. Here Ij

k denotes the intermediate
variable corresponding to the link probability index k and the region
index j in the other view. Next the logical OR is used to represent the
knowledge that the probability of a region having certain character-
istics is true if at least one of the link probabilities is true.

At the third stage, we focus at the object level where the region
probabilities for the respective views computed at the previous
stage are combined using a causal independence model with a
threshold function sq, where q is the threshold. In the combining
scheme, we also integrate other features, which may contribute
to the description of the regions; for example in the current mam-
mography application we use the normality scores (NormSc), com-
puted by a single-view CAD system as good indicators for
suspiciousness, i.e., the smaller the normality score the higher
the likelihood for cancer. By varying the threshold q from 1 to
the maximum number of regions detected in both views, one can
get insight into the causal interactions between the regions and
the object. Having a value of q = 1 implies that at least one region
is required to be detected as suspisuous, and thus visible, in one
view to classify the object as suspisuous; hence, the model can
tackle situations where the abnormality is not visible on one of
the views. The best performing threshold values will depend on
the domain characteristics. For example, in mammography one
can expect that models with small threshold values (i.e., smaller
number of regions are required to be cancerous to define a breast
as cancerous) would be able to distinguish well between cancerous
and normal breasts whereas models with larger values of q might
not be able to make the distinction. This expectation follows from
the fact that breast cancer in its early stages is mostly unifocal, i.e.,
located in a single region, and not observed on multiple locations
in the breast (view).

The model just described can easily be extended with next
stages if, for example, more objects are simultaneously analyzed.
Such extension in the domain of mammogaphic analysis is
presented in Section 4.1.

3.3. Objective evaluation scheme

Given the multi-stage nature of the proposed model, we next
propose an objective cross-validation scheme to evaluate the clas-
sification performance of the model. We split the data in a number
of subsets (folds) and for every data split i and every stage S, one
subset is used only for testing (TestS) and never for training at
different stages of the model. In such a way, the test and training
sets are kept independent over the stages, as done in practice.
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Fig. 2. Multi-stage causal probabilistic model for the problem of multi-view image analysis presented in Fig. 1.
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Furthermore, we split the training data (TrainS) into two equally-
sized subsets Set-j, which are used to train two classifiers Classi-
fier-j, j = 1, 2, at each stage. These classifiers are applied to the
alternative training subset to create the training data (TrainS+1)
for the subsequent stage in the model, which can be considered
as validation data. This approach helps prevent overtraining the
model in the later stages by reducing the tendency of the model
to get fitter to the same training data only. The two classifiers are
also applied to the test set, resulting into two sets of test results
at every stage. These two sets are further combined by taking their
mean, which produces again one test set for the next stage of the
model (TestS+1). The evaluation scheme is given in Fig. 3.

We note that the proposed scheme can be extended or modified
depending on the available data and task at hand. For example,
depending on the number of cases, which in screening mammogra-
phy is becoming easily available, one may also consider more splits
of the training data and thus training more ‘‘experts’’. Also, other
combination functions, such as max, may also be applied, but for
the application at hand it is sufficient to consider the mean.

4. Application to mammographic analysis

In this section we explore the use of the proposed causal inde-
pendence model for practical image analysis tasks and we consider
mammographic analysis as an example, selected because we have
Fig. 3. Evaluation scheme for a multi-s
much experience with it. In contrast to the previous research in
this area (Good et al., 1999; van Engeland and Karssemeijer,
2007; Paquerault et al., 2002; Qian et al., 2007; Zheng et al.,
2006; Wei et al., 2009), which mostly explores neural networks
or linear discriminant analysis for multi-view mammographic
analysis, the probabilistic methodology proposed in the current
study has the advantages of fusing uncertain information typically
inherent in the domain (e.g., obscure lesions) in a systematic fash-
ion at all levels of analysis, being easily extended to more informa-
tion sources (such as multimodality or patient data), and providing
not only strong predictive power but also an insight in the results
obtained–properties desired especially by medical experts.

4.1. Causal model for mammographic analysis

We applied the causal probabilistic model described in Section
3.2 to multi-view mammographic analysis. The model is built upon
the results from our previous CAD systems. Fig. 4 depicts the auto-
matic interpretation of the mammographic examination of one pa-
tient, consisting of four mammograms (two MLO and two CC
images). The original images are input to the single-view CAD
(SV-CAD) system, which for every image independently segments
the breast, detects regions of interest, extract region features and
use them to compute the region’s likelihood for cancer (NormSc(Ai)
and NormSc(Bj) in Fig. 2) using a neural network classifier.
tage model with cross-validation.
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The resulting regions from the MLO and CC views for the same
breast are then analyzed in parallel to establish links between
them. This is done by a multi-view linking (Linker) system using
a kNN classifier, where multi-view features are extracted and used
as input to compute a correspondence score for two regions repre-
senting the same lesion; for the full description of SV-CAD and
Linker, their methodological principles, scheme and correspond-
ing features the reader is referred to (Samulski and Karssemeijer,
2011).

Finally, our multi-view causal model (MV-CAD-Causal) uses
the multi-view features and the correspondence scores as input
to compute the probability for a link, region, breast and the whole
exam being cancerous considering the available information from
all the images simultaneously. This modeling process is inspired
by the way the radiologists perform their analysis work in practice
and is an example of information fusion. In comparison to the
Linker system, the advantage of our causal method is making
the links symmetric, i.e., for every two regions in MLO and CC
views there is only one probability per link class, in contrast to
the former system where two independent link probabilities for
every two regions exist.

The multi-view causal model summarized in Fig. 2 was subse-
quently employed for mammographic analysis. A breast corre-
sponds to the physical object in Fig. 1a and the MLO and CC
views correspond to View-A and View-B in Fig. 1b, with respective
detected regions. The object characteristic we are interested in is
the detection of cancer, so we compute probabilities for cancer of
the regions at the second stage of the model and of both left and
right breast at the third stage. For this specific application, we ex-
tend the multi-view causal model with a fourth stage, modeling
the exam level considered eventually in the screening practice;
see Fig. 5. The term exam refers to a patient who has undergone
a mammographic examination, which usually comprises the set
Fig. 4. Schematic representation of the multi-view CAD system development based on
image, breast and exam-for each of the three systems.
of four mammographic images from the two views of both breasts.
At this stage, we combine the probabilities for the left and right
breast, obtained from the third stage, and their respective single-
view normality scores (NormSc(BREAST)) using a causal indepen-
dence model to compute the probability for an exam being
cancerous. Two combination functions are used and compared:
the logical OR and the MAX function. As two alternatives to this
information fusion approach at an exam level, we use naïve Bayes
(MV-CAD-NB) (see Eq. (3)) and logistic regression (MV-CAD-LR) as
combination methods for computing the exam probability for can-
cer using the same input information as for the causal model. The
naïve Bayes model contains one parent node (P(EXAM) and 4 chil-
dren nodes (P(LBr), NormSc(LBr), P(RBr) and NormSc(RBr))
whereas logistic regression makes the prediction by fitting the data
to a logistic curve: P(EXAM = cancer) = 1/(1 + exp(�z)), where z is a
linear combination of the probabilities for both breasts being can-
cerous and their respective normality scores. Naïve Bayes and lo-
gistic regression are two common methods used for probabilistic
classification tasks due to their simple nature, easy training and
in many cases superior performance in comparison to more com-
plex models. We also note that the naïve Bayes classifier and logis-
tic regression are the only two other efficient methods that respect
the principles of information fusion as described in Section
2.Therefore we choose them as benchmark methods for compari-
son with the causal independence model in this study.
4.2. Data description, training and evaluation

The data set contained 392 (332 diagnostic +60 missed by
radiologists) exams from which 218 (185 diagnostic +33 missed
by radiologists) were cancerous. All exams contained both MLO
and CC views. All cancerous breasts had one visible lesion in at
the images of one patient. The dashed lines represent the final level of modeling-



Fig. 5. Extension of the causal model in Fig. 2 for modeling exam level.
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least one view, which was verified by pathology reports to be
cancerous. Lesion contours were marked by a mammogram reader.

For each image (mammogram) we have a number of regions
(between 1 and 5) detected as suspicious by the single-view CAD
system (Samulski and Karssemeijer, 2011). The variation in the
number of regions per image was explicitly tested in our previous
work (Velikova et al., 2009b) and it was not the main focus of this
work. Based on the ground-truth data, for each region we assigned
a class value of true (TP) if the region is the true detection of cancer
and false (FP) otherwise. Every region from MLO was linked with
every region in CC and every link was described by a set of mul-
ti-view features (e.g., compactness difference, distance-to-nipple
difference, pixelwise correlation, histogram correlation, linear tex-
ture difference) and the correspondence scores computed by the
Linker system; the full description of the features and scores is gi-
ven (Samulski and Karssemeijer, 2011). To every link we assigned
one of the four link class values depending on both region classes.
To every exam we assigned a binary class with values of true (can-
cerous) and false (normal) based on the ground-truth information.

The proposed model has been built, trained and tested using the
Matlab-based Bayesian Network Toolbox ((Murphy, 2007)). The
evaluation of the model is done using ten-fold cross validation
with the same data split as the one used in (Samulski and Karsse-
meijer, 2011). The split of the data is stratified such that the per-
centage of the cancerous cases per fold–on average 55% ± 6% –
reflects the proportion of cancerous cases in the whole data. At a
link level the performance of our multi-view model is compared
with the Linker system. At a region and exam level, the bench-
mark for comparison is the SV-CAD system. For the latter, the like-
lihood for an exam being cancerous is computed by taking the
likelihood of the most suspicious region. In addition, at an exam
level the multi-view causal model is compared with MV-CAD-NB,
MV-CAD-LR and the MV-CAD-LR-LR model we proposed in (Velik-
ova et al., 2009b), using the current (splits of) data and evaluation
scheme. The classification performance is evaluated using the
Receiver Operating Characteristic (ROC) curve and the Area Under
the Curve (AUC), a standard performance measure in the medical
imaging research. The significance of the differences obtained in
the AUC measures is tested using the ROCKIT software for fully
paired data ((Metz et al., 1984)).

4.3. Results

We next present the test results obtained from the proposed
multi-view causal model and the benchmark methods for various
tasks. In addition, in Section 4.3.3, we also report results obtained
from the training data to obtain insight in the proposed training/
testing evaluation scheme.

4.3.1. Classification performance
Previous results presented in (Velikova et al., 2009a) showed

that building upon the results from the Linker system for re-com-
puting the link probabilities in our link model helps improving the
classification for the four link types. To demonstrate the advantage
of our system making the links symmetric, in Fig. 6 we display
snapshots from the MV-CAD-Causal and Linker systems with
the mammographic examination of one cancerous patient. Fig. 6a
shows the results when the user asks the CAD system for the prob-
ability of a region in the MLO view and the system’s response in-
cludes not only the requested probability but also the probability
for the most likely link with a region in CC view. The regions are
true detections of the cancer in both MLO and CC views, showing
the good linking capabilities of both multi-view systems. However,
based on the results from the link model (Stage I in Fig. 2) MV-CAD-
Causal demonstrates a better capability to classify a TPTP link, as
the link probability is nearly 1. The improved link probabilities are
used in the region model (Stage II) to obtain better region probabil-
ities in the multi-view causal model in comparison to SV-CAD.
Note that the reported scores in Fig. 6a are the normality scores
of the regions. Fig. 6b shows the results for the CC view analysis
performed by the user with the help of the CAD systems, where
the region probability in the CC view is simultaneously displayed
with the link probability and the corresponding region in
the MLO view. MV-CAD-Causal establishes the same true link in
the CC-MLO direction as in the MLO-CC direction, demonstrating
the symmetric matching naturally modeled by the multi-view cau-
sal method. For the Linker system, however, this is not the case –
the established CC-MLO link with the highest probability (close to
1) is with a FP region with a very low normality score. This result is,
of course, undesirable in practice where the radiologists would ex-
pect that the linking is unique.

In screening, the most important question eventually is
whether or not a patient is suspicious for cancer and needs to be
referred for further examination. To answer this question, in this
study, we focus on the results obtained from the last stage of our
model (ExamModel) based on the best three ObjectModel (here
‘Object’ is ‘Breast’) results with threshold q = 1, 2, 3, which is min-
imal number of cancerous regions required to define a breast as
cancerous. For threshold functions with q P 4, the performance
of ObjectModel decreases linearly starting from AUC of 0.794 and
reaching AUCs of 0.506 for q = 10 (this is the maximal number of
detected regions as suspicious by SV-CAD). This supports our
hypothesis that the models with smaller values of q in the screen-
ing mammography will perform better, as breast cancer is usually
unifocal in the initial stages of detection.

The test exam results are reported in Table 1, including the two-
sided p-values and confidence intervals for the statistical tests
against the single-view system. We observe overall improvement
in the breast cancer detection rate achieved by our multi-view sys-
tem. Furthermore, we notice that using MAX as a combination
function for the breast probabilities leads to a better distinction be-
tween cancerous and normal exams than using the logical OR. A
possible explanation might be that the latter tends to overestimate
the probability of normal exams by considering both breasts,
whereas the MAX function seems to be more appropriate given
that in screening mammography mostly one of the breasts is can-
cerous. We also notice the improvement in the exam detection rate
achieved by MV-CAD-LR-LR is statistically insignificant with
respect to SV-CAD in this study. This might be explained by the lo-
gistic regression modeling at a breast and exam level of MV-CAD-
LR-LR, applied on a smaller dataset than the one used in (Velikova
et al., 2009b), and the use of single-view region features, which are
less descriptive for the link modeling.

Next to get a better insight in the improvement of the breast
cancer detection rates, we plot the ROC curves for the best MV-
CAD-Causal (MAX), MV-CAD-LR-LR and SV-CAD at an exam le-
vel; see Fig. 7. It is interesting to observe that MV-CAD-LR-LR per-
forms worst in the very lower FP range (<15%), the range that is
most relevant in screening, and the best in the upper FP range
(>50%). In Table 2, we report the true positive detection rates at



Fig. 6. Linking results for an exam based on MV-CAD-Causal and Linker.
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false positive rates of 5% and 10% for the three systems. The results
show that the highest increase in the exam true positive detection
rate is achieved for MV-CAD-Causal, especially for q = 1.

4.3.2. Case selection in screening
An interesting application in the screening setting is to use a

CAD system for the selection of the most suspicious cases and pres-
ent them to the human expert for further analysis. Thus, the
selected cases would get special attention and if cancer is present
it is more likely that it would be detected. To test the capability of
the proposed causal fusion method, MV-CAD-LR-LR and SV-CAD

for this application, we compared the percentage of the most sus-
picious cancerous cases against various levels at which normal
exams are misclassified as cancerous. The results are presented
in Table 3.

The results show that the fusion method outperforms the
single-view CAD system by providing a higher percentage of true
cancer detected exams as most suspicious cases. It is also interest-
ing that this improvement is achieved for the low false positive lev-
els: 8%, 5% and 6% more cancerous detected exams at 2%, 5% and



Table 1
AUCs ± std. dev. obtained from the multi- and single-view systems at an exam level with the corresponding two-sided p-values and confidence intervals for the statistical tests
against SV-CAD.

Model q

1 2 3

MV-CAD-causal MAX 0.889 ± 0.016 0.884 ± 0.017 0.883 ± 0.017
p = 0.034 p = 0.045 p = 0.019
(.002, .048) (.000, .041) (.004, .043)

OR 0.879 ± 0.017 0.882 ± 0.017 0.877 ± 0.017
p = 0.249 p = 0.110 p = 0.195
(�.010, .038) (�.004, .041) (�.007, .036)

MV-CAD-NB 0.872 ± 0.017 0.861 ± 0.018 0.797 ± 0.022
p = 0.673 p = 0.766 p = 0.001
(�.024, .037) (�.038, .028) (�.109,�.029)

MV-CAD-LR 0.861 ± 0.018 0.873 ± 0.017 0.822 ± 0.021
p = 0.745 p = 0.596 p = 0.022
(�.039, .028) (�.021, .037) (�.080,�.006)

MV-CAD-LR-LR 0.875 ± 0.017
p = 0.526
(�.014, .028)

SV-CAD 0.865 ± 0.018
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Fig. 7. ROC curves at an exam level obtained from MV-CAD-Causal (MAX), MV-
CAD-LR-LR and SV-CAD.

Table 2
TP rates corresponding to FP rates of 5% and 10% obtained from MV-CAD-Causal

(MAX), MV-CAD-LR-LR and SV-CAD at an exam level.

Model TP rate

FPr = 5% FPr = 10%

MV-CAD- Causal (MAX) q = 1 0.648 0.731
q = 2 0.641 0.724
q = 3 0.621 0.712

MV-CAD-LR-LR 0.563 0.674
SV-CAD 0.585 0.679

Table 3
Percentage of selected cancerous cases vs. percentage of normal cases classified as
highly suspicious by the multi- and single-view systems.

Model Normal cases

2% 5% 10% 15% 50%

MV-CAD-Causal 59% 65% 73% 76% 93%
MV-CAD-LR-LR 39% 64% 73% 76% 92%
SV-CAD 51% 60% 67% 75% 89%
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10% of normal cases, respectively. This is a desired result in screen-
ing as the number of normal cases is considerably larger than the
cancerous ones, and thus the specificity needs to be high. Interest-
ingly, MV-CAD-LR-LR tends to have comparable percentages of se-
lected cancerous exams as MV-CAD-Causal except at 2% of normal
cases where the former selects 39% of the cancerous cases against
59% selected by the latter method.
4.3.3. Evaluation of the training/testing procedure
Finally, we evaluated the proposed objective training and test-

ing procedure presented in Section 3.3. In particular, we compared
for every of the 10 folds, the results obtained from the classifiers
built on two subsets of the training data, which are subsequently
applied to the other training subset and the test set. The concate-
nation of the results from the testing on the training subsets results
in the validation set for each fold. Table 4 presents the results ob-
tained at an exam level from MV-CAD-Causal for q = 1 and MV-

CAD-LR-LR. For the remaining values of q and the other fusion
models we observed analogous outcomes. To facilitate the compar-
ison we also report the AUCs from the single-view CAD system per
fold although they are not based on our evaluation procedure.

Next to the advantage of being objective and producing a reli-
able estimate of generalization performance, our evaluation proce-
dure seems to gain in classification performance as well. In
majority of cases combining the outcome of two classifiers applied
on the test set at every stage improves the prediction accuracy
with respect to the single classifiers applied on the validation set.
This is a straightforward way for fusing the ‘‘opinions’’ of two ex-
perts to get better predictions. In addition we observe a slight ten-
dency of the multi-view causal model to produce the smallest test
standard deviation across the folds as reported in the last row of
Table 4 indicating robustness. Note that these standard deviations
are across the folds and differ from the one reported in Table 1



Table 4
AUCs for the validation and the respective test sets obtained from multi- and single-
view systems at an exam level.

Fold MV-CAD-Causal (q = 1) MV-CAD-LR-LR SV-CAD

MAX OR

Val Test Val Test Val Test Val Test

1 0.779 0.898 0.768 0.904 0.718 0.900 0.865 0.843
2 0.884 0.924 0.876 0.930 0.801 0.703 0.866 0.737
3 0.783 0.875 0.774 0.869 0.655 0.865 0.865 0.858
4 0.881 0.930 0.873 0.933 0.728 0.948 0.861 0.913
5 0.890 0.897 0.883 0.885 0.761 0.911 0.872 0.864
6 0.889 0.860 0.887 0.847 0.720 0.852 0.867 0.820
7 0.826 0.907 0.820 0.890 0.683 0.939 0.863 0.939
8 0.874 0.859 0.870 0.864 0.697 0.904 0.867 0.887
9 0.870 0.786 0.867 0.764 0.769 0.890 0.878 0.890
10 0.871 0.976 0.866 0.979 0.717 0.892 0.868 0.901

Std. dev 0.043 0.051 0.045 0.058 0.043 0.069 0.005 0.057
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where the test results for all exams have first been pulled in one set
and then the AUC and standard deviation are computed.
5. Conclusion

In this paper, we presented an unified probabilistic framework
for information fusion of complimentary image views. This sys-
tematic methodology has all the characteristics one usually finds
in information fusion approaches. It is based on the theory of cau-
sal independence, providing: (i) a systematic combination of causal
information via symmetric Boolean interaction functions; (ii) a
natural and easy to understand representation of expert knowl-
edge; and (iii) a way to handle uncertain information in a probabi-
listic manner. This makes the proposed framework suitable as a
general information fusion method that can be extended easily.
We demonstrated the application of our method to the domain
of automated mammographic analysis, where the information
from multiple breast images has been merged to provide an overall
probability for a patient having cancer. The results with real mam-
mographic data showed that the causal fusion method outper-
forms the previous single- and multi-view systems, and the
Fig. A.8. Example of two probabilistic m
benchmark probabilistic methods. The results should encourage
future development of information fusion methods in the areas
of image analysis, certainly in the face of the many different
techniques already available (e.g. magnetic resonance imaging,
3D mammography, ultrasound) with undoubtedly more to come.
As pointed out in (Collins et al., 2006), the fusion of these modali-
ties in a single CAD system can considerably facilitate physicians in
the image interpretation and reduce misdiagnosis. This is one of
our current research areas.
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Appendix A. An example of causal independence model with
threshold functions

Fig. A.8a depicts an example of a Bayesian network for breast
cancer prediction. We have two binary cause variables mass
(MASS) and microcalcifications (MCAL) – the two main mammo-
graphic indicators for breast cancer (BC). In the terms of BN theory,
the former are the causes, indicated by the outgoing directed arcs,
and the latter is the effect variable. The CPT table for BC is also dis-
played, illustrating how the size of the CPT depends exponentially
on the number of causal variables; for example, adding another
causal binary variable to this model would lead to 8 (23) entries
for the CPT of BC.

By introducing the two intermediate variables I1 and I2, as done
in Fig. A.8b, such computational complexity can be tackled effi-
ciently. It is known that masses are more frequent occurring sign,
which is reflected in the conditional probability distributions
P(I1jMASS) and P(I2jMCAL). The interaction function f(I1, I2) for
the effect BC can be defined as an exact (eq) or a threshold (sq)
function with a specific threshold q (in our example – 1 or 2).

Suppose that we want to compute the probability of having
breast cancer given the states of MASS and MCAL using the thresh-
old function (s2), implying that at least 2 trues must occur among
its arguments in order for the function to be true, so:
odels for breast cancer prediction.
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Ps2 ðBC ¼ truejMASS;MCALÞ ¼
X

26l62

X

elðI1 ;I2Þ
PðI1jMASSÞPðI2jMCALÞ

¼ PðI1 ¼ truejMASSÞPðI2 ¼ truejMCALÞ:

Now suppose that MASS = true and MCAL = true. Then,

Ps2 ðBC ¼ truejMASS;MCALÞ ¼ 0:85 � 0:6 ¼ 0:51:
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