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Abstract. Learning the structure of a Bayesian network from data is a difficult
problem, as its associated search space is superexponentially large. As a conse-
quence, researchers have studied learning Bayesian networks with a fixed structure,
notably naive Bayesian networks and tree-augmented Bayesian networks, which
involves no search at all. There is substantial evidence in the literature that the
performance of such restricted networks can be surprisingly good. In this paper, we
propose a restricted, polynomial time structure learning algorithm that is not as
restrictive as both other approaches, and allows researchers to determine the right
balance between classification performance and quality of the underlying proba-
bility distribution. The results obtained with this algorithm allow drawing some
conclusions with regard to Bayesian-network structure learning in general.

1 Introduction

Health care is currently in the process of being transformed, albeit slowly, by
the introduction of information technology into patient care. It is expected
that one of the most significant consequences of this will be the future avail-
ability of huge quantities of clinical data, at the moment still hidden in paper
records, for the purpose of data mining and knowledge discovery. This will
allow exploiting these data in the construction of decision-support systems;
these systems may play a role in improving the quality of patient care. Many
see Bayesian networks as the appropriate tools in this context, as they are
intuitive, even to the novice, and allow for incorporating qualitative knowl-
edge of (patho)physiological mechanisms as well as of statistical information
that is amply available in medicine.

In the past decade, much emphasis has been put on building Bayesian
networks based on (medical) expert knowledge [1,15,16,21,22]. Unfortunately,
building a Bayesian network for a realistic medical problem in this way may
take years. With the future availability of huge quantities of clinical data
in mind, learning Bayesian-network structures from data becomes appealing,
raising the important question as to when structure learning will pay off.

⋆ Published in: J.A. Gâmez, S. Moral, and A. Salmeron (Eds.), Advances in
Bayesian Networks, Studies in Fuzziness and Soft Computing, volume 146, pages
217–232. Springer-Verlag, Berlin, 2004.
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One would expect that the more faithful a Bayesian-network’s structure is
in reflecting the statistical independences hidden in the underlying data, the
better its performance. However, previous research by Domingos and Paz-
zani has shown that, however crude as Bayesian networks, naive Bayesian
classifiers often outperform more sophisticated network structures as well as
other types of classifiers [10]. In addition, Friedman et al. [11], and Cheng
and Greiner [4] have shown that so-called tree-augmented Bayesian networks
(TANs), which in comparison to naive Bayesian classifiers incorporate extra
dependences among features in the form of a tree structure often outperform
naive Bayesian classifiers. These results explain why naive Bayesian classifiers
and TANs are looked upon by researchers as being state-of-the-art classifier
models.

There is a problem, though, with this research; most of the conclusions are
based on experimental results obtained with datasets from the UCI Machine
Learning Repository. It is not easy to judge the quality of these datasets, but
since the majority of these datasets are medical in nature, and as the author
is a medical doctor it is at least possible to say to what extent these medi-
cal datasets can be considered to be characteristic for the field of medicine.
One observation is that even for such complicated disorders as diabetes and
breast cancer, the available datasets contain only a few attributes (8 and
10, respectively). It appears that many of these datasets are biased as med-
ically significant variables have often not been included. For the purpose of
studying Bayesian-network learning these datasets are therefore less suitable,
because many of the relationships between variables that participate in the
disorder’s causative mechanisms cannot be revealed as the relevant variables
are missing. Unfortunately, when it comes to comparing results with other
work, using datasets from the UCI repository is almost inevitable.

In this paper, we investigate the hypothesis that both naive Bayesian net-
works and TANs can be seen as end-points in a more general construction
process, and that somewhere between these two extremes better models are
to be found. In addition, the effects of entering partial evidence on the per-
formance of networks are studied. This mirrors the practical situation that
when a model is actually used in medical practice, not all patient data will
be readily available.

For learning and evaluation purposes, we used a clinical research dataset of
diseases of the liver and biliary tract [27]. This dataset is uncommon in that it
contains data of a significant number of patients, with each patient described
by a significant number of attributes. This dataset has been put together with
great care. In order to be able to compare our results with results obtained
by others, two datasets (the lymphoma and hepatitis datasets) were selected
from the UCI Machine Learning Repository. These two were considered to
be the best medical datasets available in this repository, even though still
troublesome from a medical viewpoint.
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Bayesian networks and their variants are introduced in the next section in
the context of biomedical research, as are the clinical datasets that were used
in this study. Next, the algorithm which is studied in this paper is described in
Section 3. The results achieved with this algorithm are summarised in Section
4. These are subsequently discussed against the backdrop of Bayesian-network
structure learning in Section 5.

2 Background

In this section, the methods and datasets used in this study are reviewed. In
addition, the medical context of this research is sketched.

2.1 Bayesian Network Classifiers

A Bayesian network B is defined as a pair B = (G, Pr), where G is a directed,
acyclic graph G = (V (G), A(G)), with a set of vertices V (G) = {V1, . . . , Vq},
representing a set of discrete stochastic variables V , and a set of arcs A(G) ⊆
V (G)×V (G), representing conditional and unconditional stochastic indepen-
dences among the variables, modelled by the absence of arcs among vertices.
The basic property of a Bayesian network is that any variable corresponding
to a vertex in the graph G is conditionally independent of its non-descendants
given its parents; this is called the local Markov property [6]. On the vari-
ables V is defined a joint probability distribution Pr(V1, . . . , Vq), taking into
account the conditional independence relationships modelled by the network,
i.e. the following equality holds:

Pr(V1, . . . , Vq) =

q∏

k=1

Pr(Vk | π(Vk))

here, π(Vk) stands for the set of parents of vertex Vk. In the following, Vk or
V refers to a (free) variable; a specific value of a variable is denoted by vk or
v. Furthermore, expressions of the form ©Xf(X) are abbreviated notations
of f(x1) ◦ · · · ◦ f(xp), where x1, . . . , xp are elements in the domains of the
variables X1, . . . , Xp, and ◦ is a binary operator.

Bayesian-network models conforming to the topology shown in Figure
1(a) correspond to the situation where a distinction is made between evi-
dence (feature) variables Ei and a class variable C, with the evidence vari-
ables assumed to be conditionally independent given the class variable. In
the following such networks will be called naive Bayesian networks by way of
analogy with the special form of Bayes’ rule, nicknamed “naive Bayes’ rule”,
for which the same assumptions hold. A naive Bayesian network is normally
used to determine the class value with maximum a posteriori probability, i.e.

cmax = argmaxC{Pr(C | E)}
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Fig. 1. Naive Bayesian network (a); and tree-augmented Bayesian network (b).

with given evidence E ⊆ {E1, . . . , Em}.

A naive Bayesian network lacks important probabilistic dependence in-
formation, but has the advantage that the assessment of the required proba-
bilities Pr(Ej | C) and Pr(C) is straightforward. Determination of the a pos-
teriori probability distribution Pr(C | E) is computationally speaking trivial.
One would expect that adopting such strong simplifying assumptions may be
at the expense of reduced performance. However, Domingos and Pazzani have
convincingly shown that naive Bayesian networks yield surprisingly powerful
classifiers, much more robust than previously thought [10]. This can be ex-
plained by noting that when classifying cases based on, for example, a single
class and a number of feature variables, a structured Bayesian network may
be optimal in the sense that it may fit the underlying probability distribution
of the data best, but this does not necessarily imply that its performance in
terms of percentage of correctly classified cases is optimal as well [29]. This
explains why the naive Bayes’ rule is becoming increasingly popular, after
having fallen into disgrace two decades ago.

Building upon work from the late 1960s by Chow and Liu [5], Friedman
et al. [11], subsequently showed that when the evidence variables are linked
together as a directed tree, and these variables are then connected to the
class variable as in a naive Bayesian network, the resulting network, called a
tree-augmented naive (TAN) Bayesian network, or TAN for short (see Fig-
ure 1(b)), often outperforms a naive Bayesian network. The method uses a
minimum-cost spanning tree algorithm in selecting branches for the TAN,
where the used cost measure is the negative value of the mutual information
between variables Ei, Ej , i 6= j: IPr(Ei, Ej), also referred to as the Kullback-
Leibler divergence [19], where Pr is a probability distribution estimate based
on the data. Friedman et al. suggest using mutual information between vari-
ables Ei, Ej conditioned on the class variable C [11]:

IPr(Ei, Ej | C) =
∑

Ei,Ej,C

Pr(Ei, Ej , C) · log
Pr(Ei, Ej | C)

Pr(Ei | C) Pr(Ej | C)
(1)

which offers advantages when focusing on building a classifier, as the condi-
tional mutual information takes class influences into account.
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2.2 Bayesian Models in Medicine

As early as in the 1960s, computer programs were already developed to in-
vestigate the applicability of a computerised version of the naive Bayes’ rule
to the problem of medical management of disease, in particular diagnosis
[35]. Diagnosis of liver disease and congenital heart disease were among the
first subjects for which computer-based Bayesian models were constructed
[26,37]. Since then, the construction and validation of such computer-based
systems have been undertaken by several research groups in various medical
domains [3,8,12,14,17,24,36]. A frequently cited medical application from the
early 1970s to the end of the 1980s is the ‘acute abdominal pain program’
developed by De Dombal et al., a program capable of diagnosing causes of ab-
dominal pain, such as perforated peptic ulcer [7–9]. As in most of these early
systems, it was assumed that the elements in the diagnostic class were mutu-
ally exclusive and exhaustive, and that the observable findings that constitute
the evidence are conditionally independent given the class variable [23]. In
some cases, the underlying probability distributions were based on a clinical
dataset, whereas in others subjective estimates by experienced clinicians were
taken [34].

As soon as Bayesian-network technology became available at the end of
the 1980s, biomedical researchers started developing Bayesian networks, usu-
ally using expert knowledge as a foundation. Examples of early Bayesian-
network systems include Pathfinder [14–16], a system aimed at supporting
pathologists in the diagnosis of white-blood-cell tumours, and MUNIN, a
system meant to assist neurologists in the interpretation of electromyograms
[1]. There is also some work from the early 1990s were researchers compared
various other representation formalisms, such as classification rules and pro-
totype representation, to Bayesian networks in an attempt to gain insight
into the pros and cons of exploiting probability theory for medical decision
support [18,28,33]. The last word about this topic has not yet been said [30].

Modern Bayesian networks in medicine not only concern diagnostic ap-
plications, but are also able to assist in the prediction of prognosis and in
the selection of optimal treatment if a Bayesian network is augmented with
decision theory. Examples are a system that assists in the prediction of the
outcome of treatment for non-Hodgkin lymphoma of the stomach, and in the
selection of optimal treatment for this disorder [21], and a system that assists
in the diagnosis of mechanically ventilated pneumonia of patients in the ICU
and in the selection of optimal antibiotic treatment for this disorder [22]. As
mentioned above, machine learning and statistics increasingly play a part in
the construction process of network models in medicine.

2.3 The Datasets

We review the three datasets that have been used in the evaluation of the
algorithm.
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The Copenhagen Computer Icterus (COMIK) group has been working
for more than a decade on the development of a system for diagnosing
disease of the liver and biliary disease, known as the Copenhagen Pocket
Chart [24,25]. It has been based on the analysis of data of 1002 jaundiced pa-
tients. The Copenhagen Pocket Chart classifies a given jaundiced patient into
one of four different diagnostic categories: acute non-obstructive, chronic non-
obstructive, benign obstructive, and malignant obstructive jaundice, based on
the values of 21 variables to be filled in by the clinician. Table 1 shows the
Pocket Chart, where ‘no’ and ‘ob’ stand for non-obstructive and obstructive,
respectively, ‘ac’ and ‘ch’ stand for acute and chronic, respectively, and ‘be’
and ‘ma’ stand for ‘benign’ and ‘malignant’. For the selection of relevant
variables, the order of the likelihood ratios λj = Pr(ej | c)/ Pr(ej | ¬c) was
used to select 24 relevant variables from 107 initially given variables Ej ; this
subset was reduced to 21 relevant variables by using Bayes’ rule, by which
the impact on the classification performance of omitting additional variables
was studied.

The chart offers a compact representation of three logistic regression equa-
tions [2,13]: Sc =

∑nc

k ωc
kec

k, c ∈ {non-obstructive, acute, benign}, with result-
ing a posteriori probability distributions:

Pr(c | E) = [1 + exp−Sc]
−1

Assuming stochastic independence, the probability of acute obstructive jaun-
dice, for example, is computed as follows: Pr(acute obstructive jaundice |
E) = Pr(ac | E) · Pr(ob | E).

The performance and usefulness of this classification scheme has been
extensively investigated by research groups in several countries, such as in
Sweden [20] and the Netherlands [32], using retrospective data from patients.
These studies showed that, when taking the diagnostic conclusions of expert
clinicians as a point of reference, the system is able to produce a correct
conclusion (one of the four possible diagnostic categories) in about 75–77%
of jaundiced patients.

The other two datasets used in this study concerning lymphoma and
hepatitis, respectively, are popular medical datasets in machine-learning re-
search, and were originally donated to the research community by a research
group located in Ljubljana. The lymphoma dataset contains 148 records con-
cerning 19 variables; the hepatitis dataset contains 155 records concerning 20
variables. The lymphoma dataset has, in contrast to the other datasets, no
missing values. We have also experimented with the hepatitis dataset after
removing records with missing data, leaving 80 records.

In this paper, we study the three datasets. As our research is not concerned
with variable selection, we took either all variables (lymphoma and hepatitis
data), or those selected by the COMIK group.
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No Ac Be No Ac Be

vs. vs. vs. vs. vs. vs.

Ob Ch Ma Ob Ch Ma

Age: 31 – 64 years +7 +5 Physical

≥ 65 years +12 +5 examination:
Previous history: Spiders −6 +11

Jaundice due to −7 +8 Ascites −3 +6
cirrhosis Liver surface nodular +5

Cancer in GI-tract, Gall bladder:
pancreas, bile +10 +7 Courvoisier +16 +11
system, or breast firm or tender +5

Clinical chemistry:

Leukaemia or −13 bilirubin ≥ 200µmol/l +5 −5 +5
malignant
lymphoma

Previous biliary Alkaline phosphatase:
colics or proven 400 – 1000 U/l +6
gallstones +3 +7 −7 > 1000 U/l +11 +6

In treatment for
congestive heart
failure −5

Present history: ASAT:

40 – 319 U/l +5
≥ 2 weeks +7 ≥ 320 U/l −10 +1 +6

Upper abdominal pain: Clotting factors:
sever +9 −6 ≤ 0.55 +8 +5
slight or moderate +4 0.56 – 0.70 +5 +5

Fever: LDH ≥ 1300 U/l −5 +7
without chills −3 −5
with chills −6 −10

Intermittent jaundice +5 −5
Weight loss (≥ 2 kg) +4
Alcohol:
1 – 4 drinks per day −4 SUM left
≥ 5 drinks per day −4 +4 CONSTANTS −19 −21 −8

SUM left TOTAL SCORE

Table 1. Pocket Diagnostic Chart [27].

3 FANs: Forest-Augmented Bayesian Networks

The following algorithm, which is a variant of the modification by Friedman
et al. of the Chow and Liu algorithm [11] is studied in this paper. It allows
for exploring the search space of Bayesian-network models bounded by naive
Bayesian networks and TANs.
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Fig. 2. COMIK FAN with 11 arcs added to its naive Bayesian network backbone.

FAN Algorithm: Let k ≥ 0; assume that evidence variables Ei, i = 1, . . . , m,
a class variable C, and a dataset D, with |D| = n, are given.

(1) The conditional mutual information IPr(Ei, Ej | C) for all pairs of evi-
dence variables Ei, Ej , i 6= j, are computed using formula (1).

(2) An undirected complete graph with vertices Ei, i = 1, . . . , m, is built,
with costs attached to the edges defined by −IPr(Ei, Ej | C).

(3) A minimum-cost spanning forest for the undirected cost graph is con-
structed, containing exactly k edges.

(4) The undirected forest is transformed into a directed forest by choosing a
root vertex for every tree in the forest, and by adding an outward direction
to the branches encountered on the paths from the root to every other
vertex in the tree.

(5) The directed forest is transformed into a connected directed graph by
adding an arc (directed edge) from the class vertex C to every evidence
vertex Ei in the forest. The resulting directed graph is called a forest-
augmented network model, or FAN model for short.

(6) The conditional probability distributions of the FAN model are learnt
from the data in the dataset.

All operations are polynomial time, with step (1) being the most expensive,
O(nm2), one. Figure 3 gives a summary of the most important steps in the
algorithm.

The joint probability distribution of the FAN models were learnt using
Bayesian updating with Dirichlet priors based on the datasets of approxi-
mately 900 (COMIK), 135 (lymphoma) and 140 (hepatitis) cases, each time
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using the remainder of each dataset for testing (see below) [31]. Thus, the
conditional probability distribution for each variable Vi was computed as the
weighted average of a probability estimate and the Dirichlet prior, as follows:

Pr(Vi | π(Vi), D) =
n

n + n0

P̂rD(Vi | π(Vi)) +
n0

n + n0

Θi

where P̂rD is the probability distribution estimate based on a given dataset
D, and Θi is the Dirichlet prior. We choose Θi to be a uniform probability
distribution. The parameter n0 is equal to the number of past cases on which
the contribution of Θi is based; here we took after experimentation n0 = 5.

As an example, consider the FAN model shown in Figure 2, which includes
every variable mentioned in the Pocket Diagnostic Chart, with the evidence
vertices forming a forest of 10 trees, of which 3 contained more than one
vertex. A similar FAN model for lymphoma is shown in Figure 4 and for
hepatitis in Figure 5.

4 Evaluation

4.1 Methods

Using the FAN algorithm described above, 21 Bayesian networks for the
COMIK dataset, 18 networks for lymphoma and 19 networks for hepatitis
were constructed. These included naive Bayesian networks, with an empty
set of added branches, and TAN models, which contained a forest consisting
of a single tree with 20 branches for the COMIK dataset, 17 branches for
the lymphoma dataset and 18 branches for the hepatitis dataset. The per-
formance of each network was evaluated using tenfold cross-validation, i.e.
the dataset was split up into 10 (almost) equal parts, and the performance of
each network was determined by evaluating the results for each of the parts,
after its underlying joint probability distribution was learnt from the other 9
parts.

Three additive components make up the error in classifying: (1) the in-
trinsic error due to noise in the data, (2) the statistical bias in the model,
and (3) the variance (model’s sensitivity to the characteristics of the dataset)
[2,10,13]. One would expect a large statistical bias for the naive Bayesian

Fig. 3. The three phases (from left to right) of the FAN algorithm.
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Fig. 4. Lymphoma FAN with 3 arcs added to its naive Bayesian network backbone.

classifier, as its independence assumptions are almost always unjustified, and
a somewhat lower one for FAN and TAN models. On the other hand, exper-
imental evidence shows that the naive Bayesian classifier has a low variance
[10]. Models with a greater representational power have a greater ability to
respond to the dataset, i.e. they have a large information-storage capacity,
and tend to have a lower bias and higher variance [2]. Tenfold cross-validation
offers a good balance between the bias and variance of learning results, and
this was also confirmed experimentally [13].

The performance of the networks was measures by comparing the clinical
diagnosis with the class value with maximum a posteriori probability. The
resulting measure is called the success rate. The success rate conveys informa-
tion about the quality of classification, but it offers only rough information
about how close the a posteriori probability distribution is to reality. More
subtle effects can be uncovered by determining for each patient case rk ∈ D,
with actual class value ck, the entropy

Ek = − lnPr(ck | E)

which has the informal meaning of a penalty: when the probability Pr(ck |E) =
1, then Ek = 0 (actually observing ck generates no information); otherwise,
Ek > 0. The total score for dataset D is now defined as the sum of the
individual scores: E =

∑n

k=1
Ek.

In order to obtain insight into the effects of partial data on the conclu-
sions drawn by each network, a part of the data for each patient was deleted
at random, with the percentage of data deleted for each patient equal to



Restricted Bayesian Network Structure Learning 11

DIE
LIVE

OUTCOME
NO

YES

ANTIVIRALS

0-10
10-20
20-30
30-40
40-50
50-60
60-70
70-80

>80

PROTIME

10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90

>90

AGE

0-33
33-80

80-120
120-160
160-200

>200

ALK-PHOSPHATE

NO
YES

SPIDERS

NO
YES

LIVER-FIRM
NO

YES

LIVER-BIG
NO

YES

SPLEEN-PALPABLE

0-0.39
0.40-0.80
0.80-1.20
1.20-2.00
2.00-3.00

>3

BILIRUBIN

NO
YES

VARICES

0-2.1
2.1-3.0
3.0-3.8
3.8-4.5

>4.5

ALBUMIN

NO
YES

STEROID

NO
YES

FATIGUE

NO
YES

MALAISE

NO
YES

ANOREXIA

0-13
13-100

100-200
200-300
300-400

>400

SGOT
MALE

FEMALE

SEX

NO
YES

ASCITES

NO
YES

HISTOLOGY

Fig. 5. Hepatitis FAN with 17 arcs added to its naive Bayesian network backbone.
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cross-validation procedure.
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12.5%, 25%, 37.5%, 50%, 67.5%, and 75%, respectively. The deleted data
only concerned test data, not data used for learning. This was only done
for the COMIK dataset. Initial results indicated that there was a significant
variation in the performance due to the randomness of the deletion process
over different networks. As an example, consider Figure 6 which depicts the
variation in the performance results of a FAN model with a forest containing
14 arcs, where each time 50% of the evidence was deleted at random from the
patient record. As a consequence, the random deletion process was repeated
20 times for each network and deletion percentage, in order to average out
this random variation. The number 20 was determined experimentally; af-
ter 10 runs with each network and deletion percentage, the average results
started to converge. The same set of random numbers was used for different
networks. Making the deletion process completely random would have made
the averaging out process computationally intractable.

4.2 Results

The results for the 21 FAN models of the COMIK dataset are given in Figures
7 and 8. The plot in Figure 7 clearly indicates that including more arcs into
a FAN model has no obvious beneficial effects on the performance; indeed,
the differences between the various network models for any given evidence
deletion percentage are very small.

Figure 8 makes clear that even though adding arcs has only a slight effect
on the classification performance of a network, this is less true so for the un-
derlying probability distribution, which is affected to various degrees. Figure
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Fig. 7. Success rate for different Bayesian-network topologies after random deletion
of 0% (+), 12.5% (×), 25% (⋆), 37.5% (�), 50% (�), 67.5% (◦), 75% (•) of the
evidence for each patient.
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Fig. 9. Success rate for different Bayesian network topologies using lymphoma data.

8 also shows that adding arcs has almost no effect after 11 arcs have been
added. In addition, almost no effect can be noticed if less than 50% of the
available evidence is entered.

Figures 9 and 10 summarise the results obtained for the lymphoma dataset,
whereas Figures 11 and 12 do the same for the FAN models regarding hep-
atitis. For these models, there were significant differences in performance for
different network topologies. The best performing Bayesian network of lym-
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Fig. 10. Entropy results for different Bayesian-network topologies using lymphoma
data.

phoma included three arcs, and is depicted in Figure 4; the best performing
models concerning hepatitis included 17 arcs when records with missing data
were deleted, and 16 arcs otherwise.

5 Discussion

The first conclusion that can be drawn is that if one is merely interested
in using a Bayesian network for classification purposes, developing a naive
Bayesian network may suffice, even though it may not always yield the best
model possible. This confirms previous research by others. For only one of
the datasets we were able to confirm the finding that TANs outperform naive
Bayesian classifiers. For the COMIK dataset, changes in topology gave rise
to only very small changes in performance. As the COMIK dataset can be
viewed upon as a large, good-quality clinical dataset, these conclusions, which
are statistically significant due to the dataset’s size, are worth noting. With
the two medical datasets of low quality from the UCI Repository, we were
indeed able to discover differences in performance, which indicates that there
are certain datasets for which FAN learning will be worthwhile, even if we
are only interested in classification performance.

It was also observed that adding dependence information to a Bayesian
network may improve the quality of the underlying probability distribution.
In the case of the lymphoma and hepatitis datasets this quality improve-
ment was to some extent reflected in the performance figures as well. This
means that local improvements in the quality of a Bayesian network do some-
times translate into global quality improvement, but not as a straightforward
function of the number of arcs added. The central conclusion of this work
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Fig. 11. Success rate for different Bayesian network topologies using hepatitis data
with missing values (+), and hepatitis data without missing values (×).
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Fig. 12. Entropy results for different Bayesian-network topologies using hepatitis
data with missing values (+), and hepatitis data without missing values (×).

is therefore that if one wishes to learn a Bayesian network that offers good
performance for both classification and regression problems, learning a FAN
model where the number of arcs is a parameter determined by the problem
at hand, may be an appropriate solution.

The FAN algorithm is an example of a restricted Bayesian-network struc-
ture learning algorithm [4]. By putting restrictions on the topology of the
network to be learnt using local information, it is possible to learn a struc-
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ture in polynomial time. As the Bayesian-network topology space is super-
exponentially large, other researchers usually resort to using heuristic search
methods such as hill climbing and tabu search. However, the results achieved
with these algorithms are thus far rather disappointing for real-life datasets.
We now believe that this research can only be expected to yield positive re-
sults for regression problems, and not for classification problems. The FAN
algorithm proposed in this paper can thus be regarded as providing a base
level for such more sophisticated algorithms. The future will learn whether
these algorithms are able to keep up to the expectations.
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