Introduction to PROLOG

Peter Lucas
Department of Computing Science
University of Aberdeen, Aberdeen

Contents

1 Introduction 1

2 Logic programming 2

3 Programming in PROLOG 3
3.1 The declarative semantics L 4
3.2 The procedural semantics and the interpreter 6

4 Overview of the PROLOG language 13
4.1 Reading in programs oL 13
4.2 TInput and output Lo 13
4.3 Arithmetical predicates 14
4.4 Examining instantiations. oo oo 16
4.5 Controlling backtracking o oo 16
4.6 Manipulation of the database L 0oL, 19
4.7 Manipulation of terms 20

5 Suggested reading and available resources 22

1 Introduction

PROLOG is a simple, yet powerful programming language, based on the principles of first-
order predicate logic. The name of the language is an acronym for the French ‘PROgramma-
tion en LOGique’. About 1970, PROLOG was designed by A. Colmerauer and P. Roussel at
the University of Marseille, influenced by the ideas of R.A. Kowalski concerning programming
in the Horn clause subset of first-order predicate logic. The name of PROLOG has since then
been connected with a new programming style, known as logic programming.

Until the end of the seventies, the use of PROLOG was limited to the academic world.
Only after the development of an efficient PROLOG interpreter and compiler by D.H.D.
Warren and F.C.N. Pereira at the University of Edinburgh, the language entered the world
outside the research institutes. The interest in the language has increased steadily. However,
PROLOG is still mainly used by researchers, even though it allows for the development of
serious and extensive programs in a fraction of the time needed to develop a C or Java program
with similar functionality. The only explanation is that people like waisting their precious

time. Nevertheless, there are a large number of fields in which PROLOG has been applied
successfully. The main applications of the language can be found in the area of Artificial
Intelligence; but PROLOG is being used in other areas in which symbol manipulation is of
prime importance as well. Some application areas are:

e Natural-language processing;
e Compiler construction;

e The development of expert systems;

Work in the area of computer algebra;
e The development of (parallel) computer architectures;
e Database systems.

PROLOG is particularly strong in solving problems characterized by requiring complex sym-
bolic computations. As conventional imperative programs for solving this type of problems
tend to be large and impenetrable, equivalent PROLOG programs are often much shorter and
easier to grasp. The language in principle enables a programmer to give a formal specification
of a program; the result is then almost directly suitable for execution on the computer. More-
over, PROLOG supports stepwise refinement in developing programs because of its modular
nature. These characteristics render PROLOG a suitable language for the development of
prototype systems.

There are several dialects of PROLOG in use, such as for example, C-PROLOG, SWI-
PROLOG, Sicstus-PROLOG, LPA-PROLOG. C-PROLOG, also called Edinburgh PROLOG,
was taken as a basis for the ISO standard. C-PROLOG itself is now no longer in use.

The language definition of C-PROLOG is derived from an interpreter developed by D.H.D.
Warren, D.L. Bowen, L. Byrd, F.C.N. Pereira, and L.M. Pereira, written in the C program-
ming language for the UNIX operating system. Most dialects only have minor syntactical
and semantical differences with the standard language. However, there are a small number
of dialects which change the character of the language in a significant way, for example by
the necessity of adding data-type information to a program. A typical example is offered by
the version of the PROLOG language supported by Visual PROLOG. In recent versions of
PROLOG, several features have been added to the ISO standard. Modern PROLOG versions
provide a module concept and extensive interfaces to the operating system, as well as tools
for the development of graphical user interfaces. As these have not been standardized, we
will not pay attention to them here.

2 Logic programming

In more conventional, imperative languages such as C++, Java and Pascal, a program is
a specification of a sequence of instructions to be executed one after the other by a target
machine, to solve the problem concerned. The description of the problem is incorporated
implicitly in this specification, and usually it is not possible to clearly distinguish between
the description of the problem, and the method used for its solution. In logic programming,
the description of the problem and the method for solving it are explicitly separated from
each other. This separation has been expressed by R.A. Kowalski in the following equation:

algorithm = logic + control

The term ‘logic’ in this equation indicates the descriptive component of the algorithm, that
is, the description of the problem; the term ‘control’ indicates the component that tries to
find a solution, taking the description of the problem as a point of departure. So, the logic
component defines what the algorithm is supposed to do; the control component indicates
how it should be done.

A specific problem is described in terms of relevant objects and relations between objects,
which are then represented in the clausal form of logic, a restricted form of first-order predicate
logic. The logic component for a specific problem is generally called a logic program. The
control component employs logical deduction or reasoning for deriving new facts from the
logic program, thus solving the given problem; one speaks of the deduction method. The
deduction method is assumed to be quite general, in the sense that it is capable of dealing
with any logic program respecting the clausal form syntax.

The splitting of an algorithm into a logic component and a control component has a
number of advantages:

e The two components may be developed separately from each other. For example, when
describing the problem we do not have to be familiar with how the control compo-
nent operates on the resulting description; knowledge of the declarative reading of the
problem specification suffices.

e A logic component may be developed using a method of stepwise refinement; we have
only to watch over the correctness of the specification.

e Changes to the control component affect (under certain conditions) only the efficiency
of the algorithm; they do not influence the solutions produced.

An environment for logic programming offers the programmer a deduction method, so that
only the logic program has to be developed for the problem at hand.

3 Programming in PROLOG

The programming language PROLOG can be considered to be a first step towards the practi-
cal realization of logic programming; as we will see in below, however, the separation between
logic and control has not been completely realized in this language. Figure 1 shows the re-
lation between PROLOG and the idea of logic programming discussed above. A PROLOG
system consists of two components: a PROLOG database and a PROLOG interpreter.

A PROLOG program, essentially a logic program consisting of Horn clauses (which how-
ever may contain some directives for controlling the inference method), is entered into the
PROLOG database by the programmer. The PROLOG interpreter offers a deduction method,
which is based on a technique called SLD resolution (See [3] for details).

Solving a problem in PROLOG starts with discerning the objects that are relevant to the
particular problem, and the relationships that exist between them.

Example. In a problem concerning sets, we for instance take constants as separate objects
and the set as a whole as another object; a relevant relation between constants and sets is
the membership relation. &

algorithm = logic + control

what how

Horn It
clauses resolution
PROLOG PROLOG
database interpreter

Figure 1: The relationship between PROLOG and logic programming.

When we have identified all relevant objects and relations, it must be specified which facts
and rules hold for the objects and their interrelationships.

Example. Suppose that we are given a problem concerning sets. We may for example have
the fact that a certain constant a is a member of a specific set S. The statement ‘the set X
is a subset of the set Y, if each member of X is a member of Y’ is a rule that generally holds
in set theory. <

When all facts and rules have been identified, then a specific problem may be looked upon as
a query concerning the objects and their interrelationships. To summarize, specifying a logic
program amounts to:

e Specifying the facts concerning the objects and relations between objects relevant to
the problem at hand;

e Specifying the rules concerning the objects and their interrelationships;

e Posing queries concerning the objects and relations.

3.1 The declarative semantics

Information (facts, rules, and queries) is represented in PROLOG using the formalism of Horn
clause logic. A Horn clause takes the following form:

B+ A,..., A,

where B, Ay,..., Ay, n > 0, are atomic formulas. Instead of the (reverse) implication symbol,
in PROLOG usually the symbol :- is used, and clauses are terminated by a dot. An atomic
formula is an expression of the following form:

P(tb'"vtm)

Formal Name | In PROLOG Name

A — unit clause | A. fact
«— By,...,B, goal clause | 7- By,...,B,. query
A« By,...,B, clause A:-By,...,B,. rule

Table 1: Horn clauses and PROLOG.

where P is a predicate having m arguments, m > 0, and ti,...,t,, are terms. A term is
either a constant, a variable, or a function of terms. In PROLOG two types of constants
are distinguished: numeric constants, called numbers, and symbolic constants, called atoms.
(Note that the word atom is used here in a meaning differing from that of atomic formula,
thus deviating from the standard terminology of predicate logic.) Because of the syntactic
similarity of predicates and functions, both are called functors in PROLOG. The terms of a
functor are called its arguments. The arguments of a functor are enclosed in parentheses, and
separated by commas.

Seen in the light of the discussion from the previous section, the predicate P in the atomic
formula P(ti,...,t,) is interpreted as the name of the relationship that holds between the
objects t1, ..., ty, which occur as the arguments of P. So, in a Horn clause B :- A1,..., Ay,
the atomic formulas B, Ai,..., A,, denote relations between objects. A Horn clause now is
interpreted as stating:

‘B (is true) if A; and Ay and ... and A,, (are true)’

Aq, ..., A, are called the conditions of the clause, and B its conclusion. The commas between
the conditions are interpreted as the logical A, and the :- symbol as the (reverse) logical
implication «.

If n = 0, that is, if conditions A; are lacking in the clause, then there are no conditions
for the conclusion to be satisfied, and the clause is said to be a fact. In case the clause is a
fact, the :- sign is replaced by a dot.

Both terminology and notation in PROLOG differ slightly from those employed in logic
programming. Table 1 summarizes the differences and similarities. The use of the various
syntactic forms of Horn clauses in PROLOG will now be introduced by means of examples.

Example. The PROLOG clause
/*x1%x/ member (X, [X]_]).

is an example of a fact concerning the relation with the name member. This relation concerns
the objects X and [X|_] (their meaning will be discussed shortly). The clause is preceded
by a comment; in PROLOG, comments have to be specified between the delimiters /* and
x/. O

If a clause contains one or more conditions as well as a conclusion, it is called a rule.
Example. Consider the PROLOG clause
/*2x/ member (X, [_1Y]) :- member(X,Y).

which is a rule concerning the relation with the name member. The conclusion member (X, [_|Y])
is only subjected to one condition: member (X,Y). <

If the conclusion is missing from a clause, then the clause is considered to be a query to the
logic program. In case a clause is a query, the sign :- is usually replaced by the sign 7-.

Example. The PROLOG clause
/*3%x/ ?- member(a, [a,b,c]).
is a typical example of a query. <

A symbolic constant is denoted in PROLOG by a name starting with a lower-case letter.
Names starting with an upper-case letter, or an underscore sign, _, indicate wariables in
PROLOG. A relation between objects is denoted by means of a functor having a name starting
with a lower-case letter (or a special character, such as &, not having a predefined meaning in
PROLOG), followed by a number of arguments, that is the objects between which the relation
holds. Recall that arguments are terms, that is, they may be either constants, variables, or
functions of terms.

Example. Consider the three clauses from the preceding examples once more. member is a
functor having two arguments. The names a, b, and c in clause 3 denote symbolic constants;
X and Y are variables. <

In PROLOG, a collection of elements enclosed in square brackets denotes a list. It is possible
to explicitly decompose a list into its first element, the head of the list, and the remaining
elements, the tail of the list. In the notation [X|Y], the part in front of the bar is the head
of the list; X is a single element. The part following the bar denotes its tail; Y itself is a list.

Example. Consider the list [a,b,c]. Now, [al| [b,c]] is another notation for the same list;
in this notation, the head and the tail of the list are distinguished explicitly. Note that the
tail again is a list. &

Each clause represents a separate piece of knowledge. So, in theory, the meaning of a set
of clauses can be specified in terms of the meanings of each of the separate clauses. The
meaning of a clause is called the declarative semantics of the clause. Knowledge of the
declarative semantics of first-order predicate logic helps in understanding PROLOG. Broadly
speaking, PROLOG adheres to the semantics of first-order logic. However, there are some
differences, such as the use of negation as finite failure which will be discussed below.

Example. Consider the clauses 1, 2 and 3 from the preceding examples once more. Clause
1 expresses that the relation with the name member holds between a term and a list of terms,
if the head of the list equals the given term. Clause 1 is not a statement concerning specific
terms, but it is a general statement; this can be seen from the use of the variable X which
may be substituted with any term. Clause 2 represents the other possibility that the constant
occurs in the tail of the list. The last clause specifies the query whether or not the constant
a belongs to the list of constants a, b, and c. <

3.2 The procedural semantics and the interpreter

In the preceding section we have viewed the formalism of Horn clause logic merely as a formal
language for representing knowledge. However, the Horn clause formalism can also be looked

upon as a programming language. This view of Horn clause logic is called its procedural
semantics.

In the procedural semantics, a set of clauses is viewed as a program. Each clause in the
program is seen as a procedure (entry). In the clause

B:—Al,...,An.

we look upon the conclusion B as the procedure heading, composed of a procedure name,
and a number of formal parameters; Aq,..., A, is then taken as the body of the procedure,
consisting of a sequence of procedure calls. In a program all clauses having the same predicate
in their conclusion, are viewed as various entries to the same procedure. A clause without
any conclusion, that is, a query, acts as the main program. Here no strict distinction is
made between both types of semantics; it will depend on the subject dealt with, whether the
terminology of the declarative semantics is used, or the terminology of procedural semantics
is preferred. In the remainder of this section we shall discuss the PROLOG interpreter.

When a PROLOG program has been entered into the PROLOG database, the main pro-
gram is executed by the PROLOG interpreter. The way the given PROLOG clauses are
manipulated, will be demonstrated by means of some examples.

Example. The three clauses introduced in Section 3.1 together constitute a complete PRO-
LOG program:

/* 1x/ member (X, [X]_]1).
/*x 2%/ member (X, [_]Y]) :-
member (X,Y).

/* 3%/ ?- member(a, [a,b,c]).

Clauses 1 and 2 are entries to the same member procedure. The body of clause 2 consists of
just one procedure call. Clause 3 fulfills the role of the main program. <

Let us suppose that the PROLOG database initially contains the first two clauses, and that
clause 3 is entered by the user as a query to the PROLOG system. The PROLOG interpreter
tries to derive an answer to the query using the information stored in the database. To this
end, the interpreter employs two fundamental techniques: matching and backtracking.

Matching of clauses

To answer a query, the PROLOG interpreter starts with the first condition in the query
clause, taking it as a procedure call. The PROLOG database is subsequently searched for a
suitable entry to the called procedure; the search starts with the first clause in the database,
and continues until a clause has been found which has a conclusion that can be matched with
the procedure call. A match between a conclusion and a procedure call is obtained, if there
exists a substitution for the variables occurring both in the conclusion and in the procedure
call, such that the two become (syntactically) equal after the substitution has been applied
to them. Such a match exists

e If the conclusion and the procedure call contain the same predicate, and

e If the terms in corresponding argument positions after substitution of the variables are
equal; one then also speaks of a match for argument positions.

Applying a substitution to a variable is called instantiating the variable to a term. The most
general substitution making the selected conclusion and the procedure call syntactically equal,
is called the most general unifier (mgu) of the two. The algorithmic and theoretical basis of
matching is given by unification (See [3] for details).

If we have obtained a match for a procedure call, the conditions of the matching clause
will be executed. In case the matching clause has no conditions, the next condition from the
calling clause is executed. The process of matching (and instantiation) can be examined by
means of the special infix predicate =, which tries to match the terms at its left-hand and
right-hand side and subsequently investigates whether the terms have become syntactically
equal.

Example. Consider the following example of the use of the matching predicate =. The first
line representing a query has been entered by the user; the next line is the system’s output.

- £(X) = f(a).
X =a

As can be seen, the variable X is instantiated to a, which leads to a match of the left-hand
and right-hand side of =. &

On first thoughts, instantiation seems similar to the assignment statement in conventional
programming languages. However, these two notions differ considerably. An instantiation
is a binding of a variable to a value which cannot be changed, that is, it is not possible to
overwrite the value of an instantiated variable by some other value (we will see however, that
under certain conditions it is possible to create a new instantiation). So, it is not possible to
express by instantiation a statement like

X =X+1

which is a typical assignment statement in a language like Pascal. In fact, the ‘ordinary’
assignment which is usually viewed as a change of the state of a variable, cannot be expressed
in standard logic.

A variable in PROLOG has for its lexical scope the clause in which it occurs. Outside
that clause, the variable and the instantiations to the variable have no influence. PROLOG
does not have global variables. We shall see later that PROLOG actually does provide some
special predicates which have a global effect on the database; the meanings of such predicates,
however, cannot be accounted for in first-order logic. Variables having a name only consisting
of a single underscore character, have a special meaning in PROLOG. These variables, called
don’t-care variables, match with any possible term. However, such a match does not lead to
an instantiation to the variable, that is, past the argument position of the match a don’t care
variable looses its ‘binding’. A don’t care variable is usually employed at argument positions
which are not referred to later in some other position in the clause.

Example. In our member example, the interpreter tries to obtain a match for the following
query:

/*3%/ ?- member(a, [a,b,c]).
The first clause in the database specifying the predicate member in its conclusion, is clause 1:

/*1x/ member (X, [X]_1).

The query contains at its first argument position the constant a. In clause 1 the variable
X occurs at the same argument position. If the constant a is substituted for the variable X,
then we have obtained a match for the first argument positions. So, X will be instantiated
to the constant a. As a consequence, the variable X at the second argument position of the
conclusion of clause 1 has the value a as well, since this X is the same variable as at the
first argument position of the same clause. We now have to investigate the respective second
argument positions, that is, we have to compare the lists [a,b,c] and [al_]. Note that
the list [a,b,c] can be written as [al [b,c]]; it is easily seen that we succeed in finding a
match for the second argument positions, since the don’t care variable will match with the
list [b,c]. So, we have obtained a match with respect to the predicate name as well as to all
argument positions. Since clause 1 does not contain any conditions, the interpreter answers
the original query by printing yes:

/*3x/ ?- member(a, [a,b,c]).

yes

<&

Example. Consider again the clauses 1 and 2 from the preceding example. Suppose that,
instead of the previous query, the following query is entered:

/*3%/ ?- member(a, [b,a,c]).
Then again, the interpreter first tries to find a match with clause 1:
/*1x/ member (X, [X]_1).

Again we have that the variable X will be instantiated to the constant a. In the second
argument position of clause 1, the variable X also has the value a. We therefore have to
compare the lists [b,a,c] and [al_]: this time, we are not able to find a match for the
second argument positions. Since the only possible instantiation of X is to a, we will never
find a match for the query with clause 1. The interpreter now turns its attention to the
following entry of the member procedure, being clause 2:

/*2%/ member (X, [_]Y]) :-
member (X,Y) .

When comparing the first argument positions of the query and the conclusion of clause 2
respectively, we infer that the variable X will again be instantiated to the constant a. For
the second argument positions we have to compare the lists [b,a,c] and [_|Y]. We obtain a
match for the second argument positions by instantiating the variable Y to the list [a,c]. We
have now obtained a complete match for the query with the conclusion of clause 2. Note that
all occurrences of the variables X and Y within the scope of clause 2 will have been instantiated
to a and [a,c], respectively. So, after instantiation we have

member (a, [_|[a,c]]) :-
member (a, [a,c]).

Since, clause 2 contains a condition, its conclusion may be drawn only if the specified condition
is fulfilled. The interpreter treats this condition as a new query:

?7- member(a, [a,c]).

Figure 2: A binary tree.

This query matches with clause 1 in the same way as has been described in the previous
example; the interpreter returns success. Subsequently, the conclusion of clause 2 is drawn,
and the interpreter prints the answer yes to the original query. <

Backtracking

When after the creation of a number of instantiations and matches the system does not
succeed in obtaining the next match, it systematically tries alternatives for the instantiations
and matches arrived at so far. This process of finding alternatives by undoing previous work,
is called backtracking. The following example demonstrates the process of backtracking.

Example. Consider the following PROLOG program:

/*x1x/ branch(a,b).
/*2%/ branch(a,c).
/*3%/ branch(c,d).
/*4x/ branch(c,e).
/*5%/ path(X,X) .
/*6%/ path(X,Y) :-
branch(X,Z),
path(Z,Y).

The clauses 1-4 inclusive represent a specific binary tree by means of the predicate branch;
the tree is depicted in Figure 2. The symbolic constants a, b, ¢, d and e denote the vertices of
the tree. The predicate branch in branch(a,b) has the following intended meaning: ‘there
exists a branch from vertex a to vertex b’.

The clauses 5 and 6 for path specify under which conditions there exists a path between
two vertices. The notion of a path has been defined recursively: the definition of a path makes
use of the notion of a path again.

A recursive definition of a relation generally consists of two parts: one or more termination
criteria, usually defining the basic states for which the relation holds, and the actual recursion
describing how to proceed from a state in which the relation holds to a new, simpler state
concerning the relation.

The termination criterion of the recursive definition of the path relation is expressed above
in clause 5; the actual recursion is defined in clause 6. Note that the definition of the member
relation in the preceding examples is also a recursive definition.

Now, suppose that after the above given program is entered into the PROLOG database,
we enter the following query:

10

/*T*/ ?- path(a,d).

The interpreter first tries to obtain a match with clause 5, the first clause in the database
specifying the predicate path in its conclusion:

/*5%/ path(X,X).

For a match for the respective first argument positions, the variable X will be instantiated to
the constant a. Matching the second argument positions fails, since a, the instantiation of
X, and the constant d are different from each other. The interpreter therefore tries the next
clause for path, which is clause 6:

/*6x/ path(X,Y) :- branch(X,Z),path(Z,Y).

It will now find a match for the query: the variable X occurring in the first argument position
of the conclusion of clause 6 is instantiated to the constant a from the first argument position
of the query, and the variable Y is instantiated to the constant d. These instantiations again
pertain to the entire matching clause; in fact, clause 6 may now be looked upon as having
the following instantiated form:

path(a,d) :- branch(a,Z),path(Z,d).

Before we may draw the conclusion of clause 6, we have to fulfill the two conditions branch(a,Z)
and path(Z,d). The interpreter deals with these new queries from left to right. For the query

?- branch(a,Z).
the interpreter finds a match with clause 1
/*x1%/ branch(a,b).

by instantiating the variable Z to b. Again, this instantiation affects all occurrences of the
variable Z in the entire clause containing the query; so, we have:

path(a,d) :- branch(a,b),path(b,d).
The next procedure call to be handled by the interpreter therefore is
?7- path(b,d)

No match is found for this query with clause 5. The query however matches with the conclu-
sion of clause 6:

/*6%x/ path(X,Y) :- branch(X,Z),path(Z,Y).

The interpreter instantiates the variable X to b, and the variable Y to d, yielding the following
instance of clause 6:

path(b,d) :- branch(b,Z),path(Z,d).

Note that these instantiations for the variables X and Y are allowed; the earlier instantiations
for variables X and Y concerned different variables since they occurred in a different clause
and therefore within a different scope. Again, before the query path(b,d) may be answered
in the affirmative, we have to check the two conditions of the instance of clause 6 obtained.
Unfortunately, the first condition

11

?- branch(b,Z).

does not match with any clause in the PROLOG program (as can be seen in Figure 2, there
is no outgoing branch from the vertex b).

The PROLOG interpreter now cancels the last match and its corresponding instantiations,
and tries to find a new match for the originating query. The match of the query path(b,d)
with the conclusion of clause 6 was the last match found, so the corresponding instantiations
to X and Y in clause 6 are cancelled. The interpreter now has to try to find a new match
for the query path(b,d). However, since clause 6 is the last clause in the program having
the predicate path in its conclusion, there is no alternative match possible. The interpreter
therefore goes yet another step further back.

The match of branch(a,Z) with clause 1 will now be undone by cancelling the instantia-
tion of the variable Z to b. For the query

?- branch(a,Z).
the interpreter is able to find an alternative match, namely with clause 2:
/*2%/ branch(a,c).

It instantiates the variable Z to c. Recall that the query branch(a,Z) came from the match
of the query path(a,d) with clause 6:

path(a,d) :- branch(a,Z),path(Z,d).

The undoing of the instantiation to Z, and the subsequent creation of a new instantiation
again influences the entire calling clause:

path(a,d) :- branch(a,c),path(c,d).

Instead of the condition path(b,d) we therefore have to consider the condition path(c,d).
By means of successive matches with the clauses 6, 3 and 5, the interpreter derives the answer
yes to the query path(c,d). Both conditions to the match with the original query path(a,d)
are now fulfilled. The interpreter therefore answers the original query in the affirmative. <

This example illustrates the modus operandi of the PROLOG interpreter, and, among other
things, it was demonstrated that the PROLOG interpreter examines clauses in the order
in which they have been specified in the database. According to the principles of logic
programming, a logic program is viewed as a set of clauses; so, their respective order is of
no consequence to the derived results. As can be seen from the previous example, however,
the order in which clauses have been specified in the PROLOG database may be important.
This is a substantial difference between a logic program and a PROLOG program: whereas
logic programs are purely declarative in nature, PROLOG programs tend to be much more
procedural. As a consequence, the programmer must bear in mind properties of the PROLOG
interpreter when developing a PROLOG program. For example, when imposing some order
on the clauses in the database, it is usually necessary that the clauses acting as a termination
criterion for a recursive definition, or having some other special function, are specified before
the clauses expressing the general rule.

12

4 Overview of the PROLOG language

Until now, all predicates discussed in the examples have been defined on purpose. However,
every PROLOG system offers a number of predefined predicates, which the programmer may
utilize in programs as desired. Such predicates are usually called standard predicates or built-
in predicates to distinguish them from the predicates defined by the programmer.

In this section, we shall discuss several standard predicates and their use. Only frequently
applied predicates will be dealt with here. A complete overview is usually included in the
documentation concerning the particular PROLOG system. This discussion is based on SWI-
PROLOG.

4.1 Reading in programs

By means of the predicate consult programs can be read from file and inserted into the
PROLOG database. The predicate consult takes one argument which has to be instantiated
to the name of a file before execution.

Example. The query
?7- consult(file).
instructs the interpreter to read a PROLOG program from the file with the name file. <

It is also possible to insert into the database several programs from different files. This may
be achieved by entering the following clause:

?- consult(filey),...,consult(file,,).

PROLOG offers an abbreviation for such a clause; the required file names may be specified
in a list:

7- [filey,...,file,].

4.2 Input and output

Printing text on the screen can be done by means of the predicate write which takes a
single argument. Before execution of the procedure call write(X), the variable X must be
instantiated to the term to be printed.

Example. The clause

?7- write(output).

prints the term output on the screen. Execution of the call
?7- write(’This is output.’).

results in

This is output.

When the clause

13

?- create(Output) ,write(Output) .

is executed, the value to which Output is instantiated by a call to some user-defined predi-
cate create will be printed on the screen. If the variable Output is instantiated to a term
containing uninstantiated variables, then (the internal representation of) the variables will be
shown as part of the output. <

The predicate nl just prints a new line, causing output to start at the beginning of the next
line. nl takes no arguments.

We also have some means for input. The predicate read reads terms entered from the
keyboard. The predicate read takes only one argument. Before executing the call read (X),
the variable X has to be uninstantiated; after execution of the read predicate, X will be
instantiated to the term that has been entered. A term entered from the keyboard has to end
with a dot, followed by a carriage return.

4.3 Arithmetical predicates

PROLOG provides a number of arithmetical predicates. These predicates take as arguments
arithmetical expressions; arithmetical expressions are constructed as in usual mathematical
practice, that is, by means of infix operators, such as +, -, * and /, for addition, subtraction,
multiplication, and division, respectively. Generally, before executing an arithmetical predi-
cate all variables in the expressions in its left-hand and right-hand side have to be instantiated
to terms only containing numbers and operators; the arguments will be evaluated before the
test specified by means of the predicate is performed. For example, in a condition X < Y
both X and Y have to be instantiated to terms which upon evaluation yield numeric constants,
before the comparison is carried out. The following arithmetical relational predicates are the
ones most frequently used:

> Y.
<Y.

>= Y.
=< Y.
=:=Y.
=\= Y.

Ll B B -]

The last two predicates express equality and inequality, respectively. Note that the earlier
mentioned matching predicate = is not an arithmetical predicate; it is a more general predicate
the use of which is not restricted to arithmetical expressions. Furthermore, the predicate =
does not force evaluation of its arguments.

Besides the six arithmetical relational predicates shown above, we also have in PROLOG
an infix predicate with the name is. Before executing

?7- X is Y.

only the right-hand side Y has to be instantiated to an arithmetical expression. Note that the
is predicate differs from =:= as well as from the matching predicate =; in case of =:= both X
and Y have to be instantiated to arithmetical expressions, and in case of the matching predicate
neither X nor Y has to be instantiated. If in the query shown above X is an uninstantiated
variable, it will after execution of the query be instantiated to the value of Y. The values of

14

both left-hand and right-hand side are subsequently examined upon equality; it is obvious
that this test will always succeed. If, on the other hand, the variable X is instantiated to a
number (or the left-hand side itself is a number), then the condition succeeds if the result of
evaluating the right-hand side of is equals the left-hand side, and it fails otherwise. All other
uses of the predicate is lead to a syntax error.

Example. Consider the following queries and answers which illustrate the differences and

similarities between the predicates =, =:=, and is:
7- 3 = 2+41.

no

?7- 3 is 2+1.

yes

7- 3 =:= 2+1.

yes

7- 3+1 = 3+1.
yes

?7- 3+1
yes

= 3+1.

7- 3+1 is 3+1.

7- 143 = 3+1.

7- 143
yes

1= 3+1.

The following examples illustrate the behaviour of these predicates in case the left-hand side
is an uninstantiated variable. PROLOG returns by showing the computed instantiation:

7- X is 2+1.

X=3

7- X = 2+1.

X =2+1

We have left out the example 7- X =:= 2+1, since it is not permitted to have an uninstanti-
ated variable as an argument to =:=. &

The predicates =:= and is may only be applied to arithmetical arguments. The predicate =

however, also applies to non-arithmetical arguments, as has been shown in Section 3.2.

Example. Execution of the query

15

?7- X = [a,b].

leads to the instantiation of the variable X to the list [a,b]. In case the predicate =:= or
the predicate is would have been used, the PROLOG interpreter would have signaled an
error. <

4.4 Examining instantiations

A number of predicates is provided which can be used to examine a variable and its possible
instantiation. The predicate var taking one argument, investigates whether or not its argu-
ment has been instantiated. The condition var(X) is fulfilled if X at the time of execution
is uninstantiated; otherwise, the condition fails. The predicate nonvar has a complementary
meaning.

By means of the predicate atom, also taking one argument, it can be checked whether the
argument is instantiated to a symbolic constant. The predicate atomic, which also takes a
single argument, investigates whether its argument is instantiated to a symbolic or numeric
constant. The one-argument predicate integer tests if its argument is instantiated to an
integer.

Example. Consider the following queries specifying the predicates mentioned above, and
answers of the PROLOG interpreter:

?- atomic([a]).
no

?7- atomic(3).
yes

?- atom(3).
no

?- atom(a).
yes

?7- integer(a).
no

<&

4.5 Controlling backtracking

PROLOG offers the programmer a number of predicates for explicitly controlling the back-
tracking behaviour of the interpreter. Note that here PROLOG deviates from the logic
programming idea.

The predicate call takes one argument, which before execution has to be instantiated to
a procedure call; call takes care of its argument being handled like a procedure call by the
PROLOG interpreter in the usual way. Note that the use of the call predicate allows for
‘filling in’ the program during run-time.

16

The predicate true takes no arguments; the condition true always succeeds. The predi-
cate fail also has no arguments; the condition fail never succeeds. The general application
of the predicate fail is to enforce backtracking, as shown in the following example.

Example. Consider the following clause:
a(X) :- b(X),fail.

When the query a(X) is entered, the PROLOG interpreter first tries to find a match for b(X).
Let us suppose that such a match is found, and that the variable X is instantiated to some term.
Then, in the next step fail, as a consequence of its failure, enforces the interpreter to look
for an alternative instantiation to X. If it succeeds in finding another instantiation for X, then
again fail will be executed. This entire process is repeated until no further instantiations can
be found. This way all possible instantiations for X will be found. Note that if no side-effects
are employed to record the instantiations of X in some way, the successive instantiations leave
no trace. It will be evident that in the end the query a(X) will be answered by no. <

The predicate not takes a procedure call as its argument. The condition not (P) succeeds if
the procedure call to which P is instantiated fails, and vice versa. Contrary to what one would
expect in case of the ordinary logical negation, PROLOG does not look for facts not (P) in the
database (these are not even allowed in PROLOG). Instead, negation is handled by confirming
failed procedure calls. This form of negation is known as negation as (finite) failure; for a
more detailed discussion of this notion the reader is referred to [2].

The cut, denoted by !, is a predicate without any arguments. It is used as a condition
which can be confirmed only once by the PROLOG interpreter: on backtracking it is not
possible to confirm a cut for the second time. Moreover, the cut has a significant side effect
on the remainder of the backtracking process: it enforces the interpreter to reject the clause
containing the cut, and also to ignore all other alternatives for the procedure call which led
to the execution of the particular clause.

Example. Consider the following clauses:

/* 1 %/ a :- b,c,d.
/* 2 %/ c :- p,q,!,r,s.
/* 3 *x/ c.

Suppose that upon executing the call a, the successive procedure calls b, p, q, the cut and
r have succeeded (the cut by definition always succeeds on first encounter). Furthermore,
assume that no match can be found for the procedure call s. Then as usual, the interpreter
tries to find an alternative match for the procedure call r. For each alternative match for
r, it again tries to find a match for condition s. If no alternatives for r can be found, or
similarly if all alternative matches have been tried, the interpreter normally would try to find
an alternative match for q. However, since we have specified a cut between the procedure
calls q and r, the interpreter will not look for alternative matches for the procedure calls
preceding r in the specific clause. In addition, the interpreter will not try any alternatives for
the procedure call c; so, clause 3 is ignored. Its first action after encountering the cut during
backtracking is to look for alternative matches for the condition preceding the call c, that is,
for b. ©

There are several circumstances in which specification of the cut is useful for efficiency or

17

even necessary for correctness. In the first place, the cut may be used to indicate that the
selected clause is the only one that can be applied to solve the (sub)problem at hand, that
is, it may be used to indicate ‘mutually exclusive’ clauses.

Example. Suppose that the condition b in the following clause has been confirmed:
a :- b,c.

and that we know that this clause is the only one in the collection of clauses having a as a
conclusion, which is applicable in the situation in which b has been confirmed. When the
condition ¢ cannot be confirmed, there is no reason to try any other clause concerning a:
we already know that a will never succeed. This unnecessary searching can be prevented by
specifying the cut following the critical condition:

a :- b,!,c.
<

Furthermore, the cut is used to indicate that a particular procedure call may never lead to
success if some condition has been fulfilled, that is, it is used to identify exceptional cases to a
general rule. In this case, the cut is used in combination with the earlier mentioned predicate
fail.

Example. Suppose that the conclusion a definitely may not be drawn if the condition b
succeeds. In the clause

a :—- b,!,fail.

we have used the cut in conjunction with fail to prevent the interpreter to look for alternative
matches for b, or to try any other clause concerning a. <

We have already remarked that the PROLOG programmer has to be familiar with the working
of the PROLOG interpreter. Since the cut has a strong influence on the backtracking process,
it should be applied with great care. The following example illustrates to what errors a careless
use of the cut may lead.

Example. Consider the following three clauses, specifying the number of parents of a person;
everybody has two of them, except Adam and Eve, who have none:

/* 1 *x/ number_of _parents(adam,0) :- !.
/* 2 %/ number_of_parents(eve,0) :— !.
/*x 3 *x/ number_of_parents(X,2).

Now, the query
?7- number_of_parents(eve,2).

is answered by the interpreter in the affirmative. Although this is somewhat unexpected,
after due consideration the reader will be able to figure out why yes instead of no has been
derived. &

For convenience, we summarize the side-effects of the cut:

18

e If in a clause a cut has been specified, then we have normal backtracking over the
conditions preceding the cut.

e As soon as the cut has been ‘used’, the interpreter has committed itself to the choice for
that particular clause, and for everything done after calling that clause; the interpreter
will not reconsider these choices.

e We have normal backtracking over the conditions following the cut.

e When on backtracking a cut is met, the interpreter ‘remembers’ its commitments, and
traces back to the originating query containing the call which led to a match with the
clause concerned.

We have seen that all procedure calls in a PROLOG clause will be executed successively, until
backtracking emerges. The procedure calls, that is, the conditions are connected by commas,
which have the declarative semantics of the logical A. However, it is also allowed to specify a
logical V in a clause. This is done by a semicolon, ;, indicating a choice between conditions.
All conditions connected by ; are evaluated from left to right until one is found that succeeds.
The remaining conditions will then be ignored. The semicolin has higher precedence than the
comma.

4.6 Manipulation of the database

Any PROLOG system offers the programmer means for modifying the content of the database
during run-time. It is possible to add clauses to the database by means of the predicates
asserta and assertz. Both predicates take one argument. If this argument has been in-
stantiated to a term before the procedure call is executed, asserta adds its argument as a
clause to the database before all (possibly) present clauses that specify the same functor in
their conclusions. On the other hand, assertz adds its argument as a clause to the database
just after all other clauses concerning the functor.

Example. Consider the PROLOG database containing the following clauses:

fact(a).
fact(b).
yet_another_fact(c).
and_another_fact(d).

We enter the following query to the system:
7- asserta(yet_another_fact(e)).
After execution of the query the database will have been modified as follows:

fact(a).
fact(b).
yet_another_fact(e) .
yet_another_fact(c).
and_another_fact(d).

Execution of the procedure call

19

?- assertz(fact(f)).
modifies the contents of the database as follows:

fact(a).
fact(b).
fact(f).
yet_another_fact(e).
yet_another_fact(c).
and_another_fact(d).

<

By means of the one-placed predicate retract, the first clause having both conclusion and
conditions matching with the argument, is removed from the database.
4.7 Manipulation of terms

Terms are used in PROLOG much in the same way as records are in Pascal, and structures
in C. In these languages, various operations are available to a programmer for the selection
and modification of parts of these data structures. PROLOG provides similar facilities for
manipulating terms. The predicates arg, functor and =.. (pronounced as ‘univ’) define
such operations.

The predicate arg can be applied for selecting a specific argument of a functor. It takes
three arguments:

arg(I,T,A).

Before execution, the variable I has to be instantiated to an integer, and the variable T must
be instantiated to a term. The interpreter will instantiate the variable A to the value of the
I-th argument of the term T.

Example. The procedure call:
arg(2,employee(john,mccarthy) ,A)
leads to instantiation of the variable A to the value mccarthy. <

The predicate functor can be used for selecting the left-most functor in a given term. The
predicate functor takes three arguments:

functor(T,F,N).

If the variable T is instantiated to a term, then the variable F will be instantiated to the
functor of the term, and the variable N to the number of arguments of the functor.

Example. The procedure call

functor (employee (john,mccarthy) ,F,N).

20

leads to instantiation of the variable F to the constant employee. The variable N will be
instantiated to the integer 2. <

The predicate functor may also be applied in a ‘reverse mode’: it can be employed for
constructing a term with a given functor F and a prespecified number of arguments N. All
arguments of the constructed term will be variables.

The predicate =.. also has a dual function. It may be applied for selecting information
from a term, or for constructing a new term. If in the procedure call

X=..L.

X has been instantiated to a term, then after execution the variable L will be instantiated to
a list, the first element of which is the functor of X; the remaining elements are the successive
arguments of the functor.

Example. Consider the following procedure call:
employee (john,mccarthy, [salary=10000]) =.. L.
This call leads to instantiation of the variable L to the list

[employee, john,mccarthy, [salary=10000]]

O
The predicate =.. may also be used to organize information into a term. This is achieved
by instantiating the variable L to a list. Upon execution of the call X =.. L, the variable X

will be instantiated to a term having a functor which is the first element from the list; the
remaining elements of the list will be taken as the arguments of the functor.

Example. The procedure call
X =.. [employee,john,mccarthy, [salary=10000]].

leads to instantiation of the variable X to the term employee (john,mccarthy, [salary=10000]).
<&

Note that, contrary to the case of the predicate functor, in case of the predicate =.. pre-
specified arguments may be inserted into the new term.

To conclude this section, we consider the predicate clause, which can be used for inspect-
ing the contents of the database. The predicate clause takes two arguments:

clause(Head,Body) .

The first argument, Head, must be sufficiently instantiated for the interpreter to be able
to find a match with the conclusion of a clause; the second argument, Body, will then be
instantiated to the conditions of the selected clause. If the selected clause is a fact, Body will
be instantiated to true.

21

5 Suggested reading and available resources

Readers interested in the theoretical foundation of PROLOG and logic programming should
consult Lloyd’s Foundations of Logic Programming [2]. PROLOG is one of the few program-
ming language with a simple formal semantics. This is mainly due to the declarative nature of
the language. Students of computing science should know at least something of this seman-
tics. A good starting point for the study of this semantics is knowledge of logical deduction
in predicate logic [3].

An excellent introductory book to programming in PROLOG, with an emphasis on Arti-
ficial Intelligence applications, is [1].

The PROLOG community has its own Usenet newsgroup: comp.lang.prolog. There are
quite a number of PROLOG programs in the public domain which researchers can use in their
own research. SWI-PROLOG is a good complete PROLOG interpreter and compiler, which
is freely available for Linux, Solaris and Windows at:

http://www.swi.psy.uva.nl/projects/SWI-Prolog

References

[1] 1. Bratko. PROLOG Programming for Artificial Intelligence, 3rd ed. Addison-Wesley,
Harlow, 2001.

[2] J. Lloyd. Foundations of Logic Programming, 2nd ed. Springer-Verlag, Berlin, 1987.

[3] P.J.F. Lucas and L.C. van der Gaag. Principles of Expert Systems, Addison-Wesley,
Wokingham, 1991.

22

