
Principles of Intelligent Systems:

a Knowledge-based Approach

Peter Lucas and Linda van der Gaag

ii

Preface

The present book is an introductory text book at the undergraduate level, covering the subject
of intelligent systems for students of computing science and information science.

The central topics in this book are formalisms for the representation and manipulation of
knowledge in the computer, in a few words: logic, production rules, semantic nets, frames,
formalisms for inexact reasoning, and model-based reasoning. The choice for the formalisms
discussed in the present book, has been motivated on the one hand by the requirement that at
least the formalisms which nowadays are of fundamental importance to the area of intelligent
systems must be covered, and on the other hand, that the formalisms which have been in use
for considerable time and have laid the foundation of current research into more advanced
methods should also be treated. We have in particular paid attention to those formalisms
which have been shown to be of practical importance for building intelligent systems.

In addition to formalisms, attention is given to the modelling aspects of building intelligent
systems, such as those being used in the construction of model-based systems.

Peter Lucas
21st September, 2005
Institute for Computing and Information Sciences
Radboud University Nijmegen, Nijmegen

iii

iv

Contents

Preface iii

1 Introduction 1
1.1 Intelligent systems and AI . 2
1.2 Some early examples . 3
1.3 Some recent examples . 6
1.4 Separating knowledge and inference . 7
1.5 Content of the book . 9
1.6 A problem domain . 11
Exercises . 12

2 Logic and Resolution 15
2.1 Propositional logic . 16
2.2 First-order predicate logic . 21
2.3 Clausal form of logic . 26
2.4 Reasoning in logic: inference rules . 30
2.5 Resolution and propositional logic . 32
2.6 Resolution and first-order predicate logic . 34

2.6.1 Substitution and unification . 35
2.6.2 Resolution . 38

2.7 Resolution strategies . 41
2.7.1 Semantic resolution . 43
2.7.2 SLD resolution: a special form of linear resolution 48

2.8 Applying logic for building intelligent systems 54
2.8.1 Reasoning with equality and ordering predicates 55
2.8.2 Reasoning models . 57

2.9 Logic as a representation formalism . 68
Exercises . 69

3 Production Rules and Inference 73
3.1 Knowledge representation in a production system 74

3.1.1 Variables and facts . 74
3.1.2 Conditions and conclusions . 76
3.1.3 Object-attribute-value tuples . 79
3.1.4 Production rules and first-order predicate logic 81

3.2 Inference in a production system . 84

v

vi Content

3.2.1 Top-down inference and production rules 86
3.2.2 Bottom-up inference and production rules 95

3.3 Production rules as a representation formalism 104
Exercises . 105

4 Frames and Inheritance 107
4.1 Semantic Nets . 108

4.1.1 Vertices and labelled arcs . 108
4.1.2 Inheritance . 112
4.1.3 The extended semantic net . 115

4.2 Frames and single inheritance . 117
4.2.1 Tree-shaped frame taxonomies . 117
4.2.2 Exceptions . 127
4.2.3 Inheritance and attribute facets . 130
4.2.4 Subtyping in tree-shaped taxonomies 133

4.3 Frames and multiple inheritance . 139
4.3.1 Multiple inheritance of attribute values 139
4.3.2 Subtyping in graph-shaped taxonomies 151

4.4 Frames as a representation formalism . 155
Exercises . 156

5 Reasoning with Uncertainty 159
5.1 Production rules, inference and uncertainty 160
5.2 Probability theory . 165

5.2.1 The probability function . 165
5.2.2 Conditional probabilities and Bayes’ Theorem 167
5.2.3 Application in rule-based systems . 169

5.3 The subjective Bayesian method . 172
5.3.1 The likelihood ratios . 172
5.3.2 The combination functions . 174

5.4 The certainty factor model . 179
5.4.1 The measures of belief and disbelief 180
5.4.2 The combination functions . 181
5.4.3 The certainty factor function . 183

5.5 The Dempster-Shafer theory . 187
5.5.1 The probability assignment . 187
5.5.2 Dempster’s rule of combination . 191
5.5.3 Application in rule-based systems . 194

5.6 Bayesian networks . 196
5.6.1 Knowledge representation in a Bayesian network 197
5.6.2 Evidence propagation in a Bayesian network 200
5.6.3 The reasoning method of Kim and Pearl 201
5.6.4 The reasoning method of Lauritzen and Spiegelhalter 206

Exercises . 212

Content vii

6 Model-based Reasoning 215
6.1 Diagnostic problem solving . 216
6.2 Conceptual basis of diagnosis . 218
6.3 Formal theories of diagnosis . 222

6.3.1 Consistency-based diagnosis . 222
6.3.2 Abductive diagnosis . 227
6.3.3 Set-covering theory of diagnosis . 238
6.3.4 Hypothetico-deductive diagnosis . 243

6.4 Frameworks of diagnosis . 244
6.4.1 Expressiveness of theories of diagnosis 245
6.4.2 Generalisation towards frameworks of diagnosis 246

Exercises . 253

viii Content

Chapter 1

Introduction

Artificial Intelligence (AI) is an exciting field somewhere on the edge between computing
science, mathematics, cognitive science, and philosophy, however with a strong basis in com-
puting and mathematics. As computing science, it is also a relatively new area: the first
steps towards the creation of systems that behave intelligently using computers were taken in
the mid 1950s. However, the idea of mimicking human behaviour by devices is much older,
and was, for example, already popular in the 18th century, the age of the Enlightenment,
when the art of constructing mechanical toys, calculating engines and clocks was at its hight.
Blaise Pascal (1623–1662) created a preliminary mechanical calculator in 1642, and Gottfried
Wilhelm Von Leibniz (1646–1716) built a machine, the Stepped Reckoner, that was able to
perform the four basic arithmetical operations of addition, subtraction, multiplication and
division (See Figure 1).

Although begone in the 1950s as a research area without any obvious practical applica-
tions, AI has now become main stream, with applications in almost any area of information
technology. As the research area of AI has always been looking for ways to explore new
ideas, research has moved on steadily since the early days of AI. Some of the results of early
AI research are therefore no longer recognized as belonging to AI, although they once were.
Examples include functional and object-oriented programming, theorem proving and game
playing.

During the last 20 years, the area of knowledge-based systems, one of the first areas of
artificial intelligence to be commercially fruitful, has received a lot of attention. The phrase
knowledge-based system is generally employed to indicate information systems in which some
symbolic representation of human knowledge is applied, usually in a way resembling human
reasoning. Knowledge-based systems are also called knowledge systems or expert systems.
Building knowledge-based systems for specific application domains has even become a separate
subject known as knowledge engineering.

Knowledge-based systems are not the only fruit of AI research, as the area of intelligent
systems is much broader than systems that include representations of human knowledge.
Other areas of AI research, some of them closely linked to knowledge-based systems, are:
machine learning, qualitative and model-based reasoning, decision-making, planning, and
intelligent agents. In this book, we will focus on intelligent systems in which the representation
of knowledge and reasoning with knowledge is central, i.e. topics such as machine learning
and model-based reasoning are approached from a knowledge-based point of view.

In the present chapter, we review the historical roots of AI and intelligent systems, and

1

2 Chapter 1. Introduction

Figure 1.1: The Stepped Reckoner used a special type of gear named stepped drum which
was a cylinder with nine bar-shaped teeth of incrementing length parallel to the cylinder’s
axis. When the drum is rotated by using a crank, a regular ten-tooth wheel, fixed over a
sliding axis, is rotated zero to nine positions depending on its relative position to the drum.
There is one set of wheels for each digit. This allows the user to slide the mobile axis so
that when the drum is rotated it generates in the regular wheels a movement proportional to
their relative position. This movement is then translated by the device into multiplication or
division depending on which direction the stepped drum is rotated.

briefly discuss several classical examples of knowledge-based systems. Furthermore, the basic
principles of intelligent systems are introduced and related to the subsequent chapters of the
book, where these principles are treated in significant depth. The chapter concludes with a
description of a problem domain.

1.1 Intelligent systems and AI

Although the digital computer was originally designed to be a number processor, even in
the early days of its creation there was a small core of researchers engaged in non-numerical
applications. The efforts of these researchers eventually led to what is known since the
Dartmouth Summer Seminar in 1956, where now famous people such as John McCarthy, Alan
Newell, Marvin Minsky, and Hebert Simon met to establish the field, as artificial intelligence
(AI), the area of computer science concerned with systems producing results for which human
behaviour would seem necessary.

The early areas of attention in the 1950s were theorem proving and problem solving. In
both fields, the developed computer programs are characterized by being based on complex
algorithms which have a general solving capability, independent of a specific problem domain
and which furthermore operate on problems posed in rather simple primitives.

Theorem proving is the field concerned with proving theorems automatically from a given
set of axioms by a computer. The theorems and axioms are expressed in logic, and logical
inference rules are applied to the given set of axioms in order to prove the theorems. The
first program that actually constructed a mathematical proof of a theorem in number theory
was developed by Martin Davis as early as 1954. Nevertheless, the major breakthrough
in theorem proving did not come until halfway the sixties. Only after the introduction of
an inference rule called resolution, did theorem proving become interesting from a practical
point of view. Further progress in the field during the seventies came from the development
of several refinements of the original resolution principle.

Researchers in the field of problem solving focused on the development of computer sys-
tems with a general capability for solving different types of problems. The best known system
is GPS (General Problem Solver), developed by Alan Newell, Herbert Simon and Jack Shaw.

1.2. Some early examples 3

A given problem is represented in terms of an initial state, a wished for final state and a set
of transitions to transform states into new states. Given such a representation by means of
states and operations, GPS generates a sequence of transitions that transform the initial state
into the given final state when applied in order. GPS has not been very successful. First,
representing a non-trivial problem in terms which could be processed by GPS proved to be
no easy task. Secondly, GPS turned out to be rather inefficient. Since GPS was a general
problem solver, specific knowledge of the problem at hand could not be exploited in choosing
a transition on a given state, not even if such knowledge indicated that a specific transition
would lead to the solution of the problem more efficiently. In each step GPS examined all
possible transitions, thus yielding an exponential time complexity. Although the success of
GPS as a problem solver has been rather limited, GPS initiated a significant shift of atten-
tion in artificial intelligence research towards more specialized systems. This shift in attention
from general problem solvers to specialized systems in which the reasoning process could be
monitored using knowledge of the given problem, is generally viewed as a breakthrough in
artificial intelligence.

With the significant increase in computational power in modern computers, it is now
less obvious than a decade ago that constructing general problem solvers is infeasible, and to
some extent recent research has seen a return to general problem solvers. A typical example of
success of modern general problem solvers is exemplified the research done by IBM’s Thomas
J. Watson Research Center, which finally led to the defeat of chess grand master Garry
Kasparov by a programme, Deep Blue, on an RS/6000 SP parallel supercomputer in May
1997. However, it is now generally recognized that domain knowledge often plays a crucial
role in problem solving, and therefore should be taken into account if possible.

For problems arising in practice in many domains, there are no well-defined solutions
which can be found in the literature. The knowledge an expert in the field has, is generally
not laid down in clear definitions or unambiguous algorithms, but merely exists in rules of
thumb and facts learnt by experience, called heuristics. So, the knowledge incorporated in
an knowledge-based system is highly domain dependent. The success of knowledge-based
systems is mainly due to their capability for representing heuristic knowledge and techniques,
and for making these applicable for computers. Generally, knowledge-based systems are able
to comment upon the solutions and advice they have given, based on the knowledge present
in the system. Moreover, knowledge-based systems offer the possibility for integrating new
knowledge with the knowledge that is already present, in a flexible manner.

1.2 Some early examples

The first knowledge-based systems were developed as early as the late 1960s. However, it took
until the 1970s before the research actually started on a large scale. At the time knowledge-
based systems were often called expert systems. Currently, the term expert systems is still
used as a synonym for knowledge-based systems, in particular if it contains a lot of domain
knowledge, but some people prefer to use the term ‘knowledge-based system’ or ‘knowledge
systems’.

The early knowledge-based systems mostly concerned the field of medical diagnosis. The
best-known knowledge-based system in medicine, developed in the seventies, is MYCIN. The
development of this knowledge-based system took place at Stanford University; especially
Edward (Ted) Shortliffe played an important role in its development. The MYCIN system is

4 Chapter 1. Introduction

Preliminary
Inference maker

Mass
Spectrum

Atomic
Constituents

Structure
Generator

Badlist

Goodlist

Generated
Structures

Predictor
Predicted

Mass spectra

Consistency
Check

Consistent
Predicted Spectra

Evaluation
Function

Proposed
Structures

Figure 1.2: Structure of Heuristic DENDRAL.

able to assist internists in the diagnosis and the treatment of a number of infectious diseases,
in particular meningitis and bacterial septicaemia. When a patient shows the signs of such
an infectious disease, usually a culture of blood and urine is made in order to determine
the bacterium species that causes the infection. Generally, it takes 24 to 48 hours before the
laboratory results become known. In case of the above mentioned infectious diseases however,
the physician will have to start treatment before these results are available, since otherwise
the disease may progress and actually cause death of the patient. Given the patient data that
are available to the system but which are apt to be incomplete and inexact, MYCIN gives an
interim indication of the organisms that are most likely to be the cause of the infection. Given
this indication, MYCIN advises the administration of a number of drugs that should control
the disease by suppressing the indicated organisms. The interaction of the prescribed drugs
among themselves and with the drugs the patient already takes, possible toxic drug reactions,
etc. are also taken into account. Moreover, MYCIN is able to comment on the diagnosis
it has arrived at, and the prescription of the drugs. The MYCIN system clearly left its
mark on the knowledge-based systems that have been developed since. Even at present, this
knowledge-based system and its derivatives are sources of ideas concerning the representation
and manipulation of medical knowledge. The MYCIN system also has given an important
impulse to the development of similar knowledge-based systems in fields other than medicine.

To a growing extent, knowledge-based systems are also being developed in technical fields.
One of the first systems with which the phrase knowledge-based system has been associated,
is Heuristic DENDRAL. The DENDRAL project commenced in 1965 at Stanford Univer-
sity. The system was developed by Joshua Lederberg, an organic chemist (and Nobel prize
winner in chemistry), in conjunction with Edward Feigenbaum and Bruce Buchanan both

1.2. Some early examples 5

well-known research scientists in artificial intelligence. The Heuristic DENDRAL system of-
fers assistance in the field of organic chemistry in determining the structural formula of a
chemical compound that has been isolated from a given sample. In determining a structural
formula, information concerning the chemical formula, such as C4H9OH for butanol, and
the source the compound has been taken from, is used as well as information that has been
obtained by subjecting the compound to physical, chemical and spectrometric tests. The
method employed is called generate-and-test, since the system first generates all plausible
molecular structures as hypotheses, which subsequently are tested against the observed data.
The original DENDRAL algorithm was developed by Joshua Lederberg for generating all
possible isomers of a chemical compound. Heuristic DENDRAL contains a subsystem, the
so-called Structure Generator, which implements the DENDRAL algorithm, but in addition
incorporates various heuristic constraints on possible structures, thus reducing the number
of alternatives to be considered by the remainder of the system. In particular, mass spec-
trometry is useful for finding the right structural formula. The structure of the system is
shown in Figure 1.2. In a mass spectrometer, the compound is bombarded with a beam of
electrons in vacuum, causing the molecule to break up into several smaller charged fragments.
These fragments are accelerated within an electrical field, and are bent off in proportion to
their mass-charge ratio, using a magnetic field. The fragments that are separated this way
cause a pattern called a spectrogram, which is recorded by means of a writing device. Such a
spectrogram shows a number of peaks corresponding to the respective mass-charge ratios of
the separated fragments. A spectrogram provides significant information about the structure
of the original chemical compound. Heuristic DENDRAL helps in interpreting the patterns in
a spectrogram. To this end, another subsystem of Heuristic DENDRAL, called the Predictor,
suggests expected mass spectrograms for each molecular structure generated by the Structure
Generator. Each expected mass spectrogram is then tested against the mass spectrogram ob-
served using some measure of similarity for comparison; this has been implemented in the
last part of the system, the Evaluation Function. Usually, more than one molecular structure
matches the pattern found in the spectrogram. Therefore, the system usually produces more
than one answer, ordered by the amount of evidence favouring them.

XCON, previously called R1, was a knowledge-based system able to configure VAX,
PDP11, and microVAX computer systems from Digital Equipment Corporation (DEC). DEC
offered the customer a wide choice in components when purchasing computer equipment, so
that each client can be provided with a custom-made system. Given the customer’s order
a configuration is made, possibly showing that a specific component has to be replaced by
another equivalent component, or that a certain component has to be added in order to arrive
at a fully operational system. The problem is not so much that the information is incomplete
or inexact but merely that the information is subject to rapid change. Moreover, configur-
ing a computer system requires considerable skill and effort. In the late seventies, DEC in
conjunction with John McDermott from Carnegie-Mellon University commenced the develop-
ment of XCON. Since 1981, XCON is fully operational. At present, XCON is supplemented
with XSEL, a system that assists DEC agents in drawing up orders.

The knowledge-based systems mentioned above are classics. Inspired by their success,
many more knowledge-based systems have been constructed since the end of the seventies.
The systems have also led to the construction of various direct derivatives. For example,
Heuristic DENDRAL has been elaborated further by incorporating improved subsystems for
generating and testing plausible molecular structures. Moreover, a system capable of learning
heuristics from example has been developed, called METADENDRAL, to ease the transfer of

6 Chapter 1. Introduction

Figure 1.3: Model of the wiring of an aeroplane.

domain knowledge for use in Heuristic DENDRAL.

1.3 Some recent examples

Intelligent systems are increasingly used in systems that are too complex to be handled
without computer-based assistance. Examples include cars, washing machines, aeroplanes,
cell-phones, computer operating systems. In some of these systems, for example components
of cars as built in the automotive industry, there is a need for explicit models of the system,
such that the model of the system can be used to aid in activities such as design, fault finding
and trouble shooting, and so on. Model-based diagnosis, i.e., the isolation of faults in a system
using explicit models of the system and actually observed behaviour, is a process that has
been investigated extensively in AI; results of this research have been incorporated into actual
products.

For example, TransDesign is a complete electrical distribution design environment. It
has been developed in cooperation with automotive engineers, and covers the design of an
entire electrical system, from concept to manufacturing support. It enables manufacturers
to design electrical harness systems and packaging details concurrently, using a mechanical
design environment. One of the nicest features of a model-based systems is that it allows
giving users feedback about a problem-solving process in terms of the actual model. An
example is shown in Figure 1.3.

Microsoft Research has also invested a great deal of money in AI research, in particular
focused on system that assist users in working with Microsoft software products, such as
Microsoft Office. In the Lumiere project, the formalism of Bayesian networks, which allows
representing and reasoning with uncertain knowledge, was investigated as the prime basis for
office assistance software. The results of this AI research is now part of Microsoft Office, and
similar systems have been subsequently incorporated into Microsoft Windows.

In other areas where reasoning with uncertain knowledge is important, such as medicine,
Bayesian networks are also gaining ground. Many researchers are currently working on sys-

1.4. Separating knowledge and inference 7

Figure 1.4: Bayesian network of gastric non-Hodgkin lymphoma. The network contains boxes
with bar-graphs displaying probability distributions. At the left side of the figure are the
patient findings; here the probability of the state that has been filled in for a patient is
equal to 1. At the right side of the diagram are predictions based on these findings and
the probabilistic information encoded in the Bayesian network. The variable ‘5-year-result’
represents the result, death or survival, after 5 years. For the chosen combination of treatment:
antibiotics, no surgery, and chemotherapy followed by radiotherapy, the probability of being
alive after 5 years is about 70%.

tem that are able to help physicians with diagnosing disease or with selecting appropriate
treatment. An example of such work is a Bayesian network model that has been designed
with the help of cancer specialists from the Netherlands Cancer Institute, and that is able to
assist in the selection of treatment (surgery, chemotherapy, radiotherapy or a combination of
the three), based on patient findings, for a rare type of cancer of the stomach, called gastric
non-Hodgkin lymphoma (See Figure 1.4 for details).

1.4 Separating knowledge and inference

In the early years, intelligent systems were usually written in a high-level programming lan-
guage. LISP, in particular, was frequently chosen for the implementation language. LISP is
still a popular language for the development of intelligent systems, although it has obtained
significant competition from Java and C++, in particular for the development of intelligent
systems that involve some numerical computation. For the development of knowledge-based
systems the situation is more clearcut: when using a high-level programming language as a
knowledge-based system building tool one has to pay a disproportionate amount of attention
to the implementation aspects of the system which have nothing to do with the field to be
modelled. Moreover, the expert knowledge of the field and the algorithms for applying this
knowledge automatically, will be highly interwoven and not easily set apart. This led to
systems that once constructed, were practically not adaptable to changing views on the field

8 Chapter 1. Introduction

of concern. Expert knowledge however has a dynamic nature: knowledge and experience are
continuously subject to changes. Awareness of these properties has led to the view that the
explicit separation of the algorithms for applying the highly-specialized knowledge from the
knowledge itself is highly desirable if not mandatory for developing knowledge-based systems.
This fundamental insight for the development of present-day knowledge-based systems is for-
mulated in the following equation, sometimes called the paradigm of knowledge-based system
design:

knowledge-based system = knowledge + inference

Consequently, a knowledge-based system typically comprises the following two essential com-
ponents:

• A knowledge base capturing the domain-specific knowledge, and

• An inference engine consisting of algorithms for manipulating the knowledge represented
in the knowledge base.

Nowadays, a knowledge-based system is rarely written in a high-level programming language.
It frequently is constructed in a special, restricted environment, called an knowledge-based
system shell or expert-system shell. An early example of such an environment was EMYCIN
(Essential MYCIN), a system that originated from MYCIN by stripping it of its knowledge
concerning infectious disease. Several more general tools for building knowledge-based sys-
tems, more like special-purpose programming languages, have also become available, where
again such a separation between knowledge and inference is enforced. These systems will be
called knowledge-based system builder tools and are also known as expert-system builder tools.

The domain-specific knowledge is laid down in the knowledge base using a special knowledge-
representation formalism. In a knowledge-based system shell or a knowledge-based system
builder tool, one or more knowledge-representation formalisms are predefined for encoding
the domain knowledge. Furthermore, a corresponding inference engine is present that is
capable of manipulating the knowledge represented in such a formalism. In developing an
actual knowledge-based system only the domain-specific knowledge has to be provided and
expressed in the knowledge-representation formalism. Several advantages arise from the fact
that a knowledge base can be developed separately from the inference engine, for instance,
a knowledge base can be developed and refined stepwise, and errors and inadequacies can
easily be remedied without making major changes in the program text necessary. Explicit
separation of knowledge and inference has the further advantage that a given knowledge base
can be substituted by a knowledge base on another subject thus rendering quite a different
knowledge-based system. The typical structure of a knowledge-based system is shown in
Figure 1.5.

Representing the knowledge that is to be used in the process of problem solving is a central
topic of AI, i.e. the topic of knowledge representation. A suitable knowledge-representation
formalism should:

• Have sufficient expressive power for encoding the particular domain knowledge;

• Posses a clean semantic basis, such that the meaning of the knowledge present in the
knowledge base is easy to grasp, especially by the user;

• Permit efficient algorithmic interpretation;

1.5. Content of the book 9

User Interface

Explanation

Facilities

Trace

Facilities

Inference Engine

Knowledge-based System

Knowledge Base

User

Figure 1.5: Global architecture of a knowledge-based system.

• Allow for explanation and justification of the solutions obtained by showing why certain
questions were asked of the user, and how certain conclusions were drawn.

Part of these conditions concerns the form (syntax) of a knowledge-representation formalism;
others concern its meaning (semantics). Unfortunately, it turns out that there is not a
single knowledge-representation formalism which meets all of the requirements mentioned.
In particular, the issues of expressive power of a formalism and its efficient interpretation
seem to be conflicting. However, as we shall see in the following chapters, by restricting
the expressive power of a formalism (in such a way that the domain knowledge can still be
represented adequately), we often arrive at a formalism that does indeed permit efficient
interpretation.

Developing a specific knowledge-based system is done by consulting various knowledge
sources, such as human experts, text books, and databases. If data are being used, machine
learning will be used to extract knowledge from data. However, building a knowledge-based
system with the help of human experts is a task requiring high skills; the person performing
this task is called the knowledge engineer. The process of collecting and structuring knowledge
in a problem domain is called knowledge acquisition. If, more in particular, the knowledge
is obtained by interviewing domain experts, one speaks of knowledge elicitation. Part of the
work of a knowledge engineer concerns the selection of a suitable knowledge-representation
formalism for presenting the domain knowledge to the computer in an encoded form.

1.5 Content of the book

We now present a short overview of the subjects which will be dealt with in this book.
From the proliferation of ideas that arose in AI, four types of knowledge-representation

formalisms have emerged:

• Logic,

• Production rules,

10 Chapter 1. Introduction

• Semantic nets and frames,

• Uncertainty formalisms.

In the four subsequent chapters, we shall deal with the question how knowledge can be
represented using these respective knowledge-representation formalisms. These formalisms
can be seen as offering building blocks for the actual building intelligent systems. For an
actual system, a formalism is often used in a particular fashion, which, in itself, is also part of
the knowledge-representation enterprise. For example, a system that is used for the diagnosis
of defects in a car is based on principles different from an intelligent systems that helps in
route planning of a car, even if exactly the same formalism, for example production rules, is
used for its implementation.

Associated with each of the knowledge-representation formalisms are specific methods for
handling the represented knowledge. Inferring new information from the available knowledge
is called reasoning or inference. With the availability of the first digital computers, automated
reasoning in logic became one of the first subjects of research, yielding results which concerned
proving theorems from mathematics. However, in this field, the immanent conflict between the
expressiveness of the logic required for representing mathematical problems and its efficient
interpretation was soon encountered. Sufficiently efficient algorithms were lacking for applying
logic in a broader context. In 1965 though, Alan Robinson formulated a general inference
rule, known as the resolution principle, which made automated theorem proving more feasible.
In Chapter 2 we pay attention to the representation of knowledge in logic and automated
reasoning with logical formulas; it will also be indicated how logic can be used for building a
knowledge-based system.

Since the late sixties, considerable effort in artificial intelligence research has been spent
on developing knowledge-representation formalisms other than logic, resulting in the before-
mentioned production rules and frames. For each of these formalisms, special inference meth-
ods have been developed that on occasion closely resemble logical inference. Usually, two
basic types of inference are discerned. The phrases top-down inference and goal-directed in-
ference are used to denote the type of inference in which given some initial goal, subgoals
are generated by employing the knowledge in the knowledge base until such subgoals can be
reached using the available data. The second type of inference is called bottom-up inference
or data-driven inference. When applying this type of inference, new information is derived
from the available data and the knowledge in the knowledge base. This process is repeated
until it is not possible any more to derive new information. The distinction between top-down
inference and bottom-up inference is most explicitly made in reasoning with production rules,
although the two types of reasoning are distinguished in the context of the other knowledge-
representation formalisms as well. The production rule formalism and its associated reasoning
methods are the topics of Chapter 3.

Chapter 4 is concerned with the third major approach in knowledge representation: se-
mantic nets and frames. These knowledge representation schemes are characterized by a
hierarchical structure for storing information. Since semantic nets and frames have several
properties in common and the semantic net generally is viewed as the predecessor of the
frame formalism, these formalisms are dealt with in one chapter. The method used for the
manipulation of knowledge represented in semantic nets and frames is called inheritance.

As we have noted before, knowledge-based systems are used to solve real-life problems
which do not have a predefined solution to be found in the relevant literature. Generally, the
knowledge that is explicitly available on the subject is incomplete or uncertain. Nevertheless,

1.6. A problem domain 11

a human expert often can arrive at a sound solution to the given problem using such deficient
knowledge. Consequently, knowledge-based systems research aims at building systems capable
of handling incomplete and uncertain information as well as human experts are. Several
models for reasoning with uncertainty have been developed. Some of these will be discussed
in Chapter 5.

In Chapter 6 we will focus on model-based approached to the development of intelligent
systems, where in particular model-based diagnosis will be studied. In Chapter 7 the principles
of machine learning will covered.

Finally, Chapter 8 deals with a number of well-known tools for the construction of intel-
ligent systems. Discussed are OPS5, a special-purpose programming language designed for
developing production systems, the closely related language and environment CLIPS, and the
theorem-proving system Otter.

1.6 A problem domain

In each of the three subsequent chapters, a specific knowledge-representation formalism and
its associated inference method will be treated. An example that will be used in some of the
chapters concerns the representation and reasoning with a logical circuit. This is a simple
example that is useful to illustrate a number of issues.

Consider Figure 1.6 that depicts a schematic representation of a full-adder. The full-adder
is an example of a circuit that is of practical use in electronics; it is also simple enought to
allow us to illustrate particular ideas. The full-adder consists of two exclusive OR gates (ex1
and ex2), two AND gates (ad1 and ad2) and one OR gate (or1). There are three inputs
i1, i2 and i3, and two outputs o1 and o2. Both inputs and outputs can be either 0 or 1.
Output o1 represents the sum of the inputs, whereas o2 stands for the carry-out, i.e. a bit
that represents overflow. For example, if i1 = 1, i2 = 1, i3 = 0, then o1 = 0 and o2 = 1. This
represents the binary number 102. The input i3 is used to keep overflow information from
previous computations; it is called the carry-in.

There are various AI approaches to problem solving that can be studied using this simple
example. For example, one could design a representation and reasoning method to simulate
the behaviour of the full-adder. This can be done by representing individual components—
gates and wiring—of the full-adder, with associated behaviour, and combining these to obtain
an overall behaviour. Note that although, for example, ex1 and ex2 are separate gates, their
behaviour needs only be described once, i.e. it is possible to provide a generic description of
the behaviour of these components.

The same description of the full-adder can also be used to diagnose defective components,
i.e. it can be used for diagnosis. This can be done by assuming that particular components
are faulty whereas others are behaving normally. These assumptions have an effect on the
simulated behaviour, and by comparing the behaviour observed in reality with the predic-
tions made by simulation, it is possible to establish which components are faulty. Ways to
accomplish this are discussed in Chapters 2 and 6.

The kind of knowledge concerning the full-adder, an example of a logical circuit, as pre-
sented above, is called deep knowledge. Deep knowledge entails the detailed structure and
function of some system in the domain of discourse. Clearly, deep knowledge may be valuable
for diagnostic reasoning, that is, reasoning aimed at finding the cause of failure of some sys-
tem. However, it is also possible to base a diagnosis on experience gathered in the course of

12 Chapter 1. Introduction

fa

ex 1

ad1

ad2

ex 2

or 1

i1

i2

i3

o1

o2

Figure 1.6: Full-adder.

time in dealing with defective systems. For example, based on experience it might be said that
if the output o1 is always equal to 0 irrespective of the input, component ex1 is faulty. This
kind of knowledge is often called shallow knowledge to distinguish it from deep knowledge.
As one can see, no knowledge concerning the structure and function is used here; instead, the
empirical association between observations “‘o1 is equal to 0 irrespective of the values of the
inputs” is used as evidence for the diagnosis of a faulty component. Many knowledge-based
systems only contain such shallow knowledge, since this is the kind of knowledge employed
in daily practice by field experts for rapidly handling the problems they encounter. However,
using deep knowledge frequently leads to a better justification of the solution proposed by the
system. Other examples of the application of deep and shallow knowledge will be met with
in the next chapters. It is not always easy to sharply distinguish between deep and shallow
knowledge in a problem domain.

Exercises

1. One of the questions raised in the early days of artificial intelligence was: ‘Can machines
think?’. Nowadays, the question remains the subject of heated debates. This question
was most lucidly formulated and treated by A. Turing in the paper ‘Computing Ma-
chinery and Intelligence’ which appeared in Mind, vol. 59, no. 236, 1950. Read the
paper by A. Turing, and try to think what your answer would be when someone posed
that question to you.

2. Read the description of GPS in section 1.1 of this chapter again. Give a specification
of the process of shopping in terms of an initial state, final state, and transitions, as
would be required by GPS.

3. An important component of the HEURISTIC DENDRAL system is the Structure Gen-
erator subsystem which generates plausible molecular structures. Develop a program
in PROLOG or LISP that enumerates all possible structural formulas of a given alkane
(that is, a compound having the chemical formula CnH2n+2) given the chemical formula
as input for n = 1, . . . , 8.

1.6. A problem domain 13

4. The areas of knowledge engineering and software engineering have much in common.
However, there are also some evident distinctions. Which similarities and differences do
you see between these fields?

5. Give some examples of deep and shallow knowledge from a problem domain you are
familiar with.

6. Mention some problem areas in which knowledge-based systems can be of real help.

14 Chapter 1. Introduction

Chapter 2

Logic and Resolution

One of the earliest formalisms for the representation of knowledge is logic. The formalism is
characterized by a well-defined syntax and semantics, and provides a number of inference rules
to manipulate logical formulas on the basis of their form in order to derive new knowledge.
Logic has a very long and rich tradition, going back to the ancient Greeks: its roots can
be traced to Aristotle. However, it took until the present century before the mathematical
foundations of modern logic were laid, amongst others by T. Skolem, J. Herbrand, K. Gödel,
and G. Gentzen. The work of these great and influential mathematicians rendered logic firmly
established before the area of computer science came into being.

Already from the early 1950s, as soon as the first digital computers became available,
research was initiated on using logic for problem solving by means of the computer. This
research was undertaken from different points of view. Several researchers were primarily
interested in the mechanization of mathematical proofs: the efficient automated generation
of such proofs was their main objective. One of them was M. Davis who, already in 1954,
developed a computer program which was capable of proving several theorems from number
theory. The greatest triumph of the program was its proof that the sum of two even numbers
is even. Other researchers, however, were more interested in the study of human problem
solving, more in particular in heuristics. For these researchers, mathematical reasoning served
as a point of departure for the study of heuristics, and logic seemed to capture the essence of
mathematics; they used logic merely as a convenient language for the formal representation
of human reasoning. The classical example of this approach to the area of theorem proving
is a program developed by A. Newell, J.C. Shaw and H.A. Simon in 1955, called the Logic
Theory Machine. This program was capable of proving several theorems from the Principia
Mathematica of A.N. Whitehead and B. Russell. As early as 1961, J. McCarthy, amongst
others, pointed out that theorem proving could also be used for solving non-mathematical
problems. This idea was elaborated by many authors. Well known is the early work on
so-called question-answering systems by J.R. Slagle and the later work in this field by C.C.
Green and B. Raphael.

After some initial success, it soon became apparent that the inference rules known at
that time were not as suitable for application in digital computers as hoped for. Many AI
researchers lost interest in applying logic, and shifted their attention towards the development
of other formalisms for a more efficient representation and manipulation of information. The
breakthrough came thanks to the development of an efficient and flexible inference rule in
1965, named resolution, that allowed applying logic for automated problem solving by the

15

16 Chapter 2. Logic and Resolution

computer, and theorem proving finally gained an established position in artificial intelligence
and, more recently, in the computer science as a whole as well.

Logic can directly be used as a knowledge-representation formalism for building expert
systems; currently however, this is done only on a small scale. But then, the clear semantics
of logic makes the formalism eminently suitable as a point of departure for understanding
what the other knowledge-representation formalisms are all about. In this chapter, we first
discuss the subject of how knowledge can be represented in logic, departing from propositional
logic, which although having a rather limited expressiveness, is very useful for introducing
several important notions. First-order predicate logic, which offers a much richer language for
knowledge representation, is treated in Section 2.2. The major part of this chapter however
will be devoted to the algorithmic aspects of applying logic in an automated reasoning system,
and resolution in particular will be the subject of study.

2.1 Propositional logic

Propositional logic may be viewed as a representation language which allows us to express
and reason with statements that are either true or false. Examples of such statements are:

‘A full-adder is a logical circuit’
‘10 is greater than 90’

Clearly, such statement need not be true. Statements like these are called propositions and
are usually denoted in propositional logic by uppercase letters. Simple propositions such as
P and Q are called atomic propositions or atoms for short. Atoms can be combined with
so-called logical connectives to yield composite propositions. In the language of propositional
logic, we have the following five connectives at our disposal:

negation: ¬ (not)
conjunction: ∧ (and)
disjunction: ∨ (or)
implication: → (if then)
bi-implication: ↔ (if and only if)

For example, when we assume that the propositions G and D have the following meaning

G = ‘A Bugatti is a car’
D = ‘A Bugatti has 5 wheels’

then the composite proposition

G ∧D

has the meaning:

‘A Bugatti is a car and a Bugatti has 5 wheels’

However, not all formulas consisting of atoms and connectives are (composite) propositions.
In order to distinguish syntactically correct formulas that do represent propositions from those
that do not, the notion of a well-formed formula is introduced in the following definition.

2.1. Propositional logic 17

Definition 2.1 A well-formed formula in propositional logic is an expression having one of
the following forms:

(1) An atom is a well-formed formula.

(2) If F is a well-formed formula, then (¬F) is a well-formed formula.

(3) If F and G are well-formed formulas, then (F ∧ G), (F ∨ G), (F → G) and (F ↔ G)
are well-formed formulas.

(4) No other formula is well-formed.

EXAMPLE 2.1

Both formulas (F ∧(G→ H)) and (F ∨(¬G)) are well-formed according to the previous
definition, but the formula (→ H) is not.

In well-formed formulas, parentheses may be omitted as long as no ambiguity can occur; the
adopted priority of the connectives is, in decreasing order, as follows:

¬ ∧ ∨ → ↔

In the following, the term formula is used as an abbreviation when a well-formed formula is
meant.

EXAMPLE 2.2

The formula P → Q ∧R is the same as the formula (P → (Q ∧R)).

The notion of well-formedness of formulas only concerns the syntax of formulas in proposi-
tional logic: it does not express the formulas to be either true or false. In other words, it tells
us nothing with respect to the semantics or meaning of formulas in propositional logic. The
truth or falsity of a formula is called its truth value. The meaning of a formula in propositional
logic is defined by means of a function w : PROP→ {true, false} which assigns to each propo-
sition in the set of propositions PROP either the truth value true or false. Consequently, the
information that the atom P has the truth value true, is now denoted by w(P) = true, and
the information that the atom P has the truth value false, is denoted by w(P) = false. Such
a function w is called an interpretation function, or an interpretation for short, if it satisfies
the following properties (we assume F and G to be arbitrary well-formed formulas):

(1) w(¬F) = true if w(F) = false, and w(¬F) = false if w(F) = true.

(2) w(F ∧G) = true if w(F) = true and w(G) = true; otherwise w(F ∧G) = false.

(3) w(F ∨G) = false if w(F) = false and w(G) = false ; in all other cases, that is, if at least
one of the function values w(F) and w(G) equals true, we have w(F ∨G) = true.

(4) w(F → G) = false if w(F) = true and w(G) = false; in all other cases we have
w(F → G) = true.

(5) w(F ↔ G) = true if w(F) = w(G); otherwise w(F ↔ G) = false .

18 Chapter 2. Logic and Resolution

Table 2.1: The meanings of the connectives.
F G ¬F F ∧G F ∨G F → G F ↔ G

true true false true true true true
true false false false true false false
-false true true false true true false
false false true false false true true

Table 2.2: Truth table for P → (¬Q ∧R).
P Q R ¬Q ¬Q ∧R P → (¬Q ∧R)

true true true false false false
true true false false false false
true false true true true true
true false false true false false
false true true false false true
false true false false false true
false false true true true true
false false false true false true

These rules are summarized in Table 2.1. The first two columns in this table list all possible
combinations of truth values for the atomic propositions F and G; the remaining columns
define the meanings of the respective connectives. If w is an interpretation which assigns to
a given formula F the truth value true, then w is called a model for F .

By repeated applications of the rules listed in table 2.1, it is possible to express the truth
value of an arbitrary formula in terms of the truth values of the atoms the formula is composed
of. In a formula containing n different atoms, there are 2n possible ways of assigning truth
values to the atoms in the formula.

EXAMPLE 2.3

Table 2.2 lists all possible combinations of truth values for the atoms in the formula
P → (¬Q ∧ R); for each combination, the resulting truth value for this formula is
determined. Such a table where all possible truth values for the atoms in a formula
F are entered together with the corresponding truth value for the whole formula F , is
called a truth table.

Definition 2.2 A formula is called a valid formula if it is true under all interpretations. A
valid formula is often called a tautology. A formula is called invalid if it is not valid.

So, a valid formula is true regardless of the truth or falsity of its constituent atoms.

EXAMPLE 2.4

The formula ((P → Q) ∧ P) → Q is an example of a valid formula. In the previous
example we dealt with an invalid formula.

Definition 2.3 A formula is called unsatisfiable or inconsistent if the formula is false under
all interpretations. An unsatisfiable formula is also called a contradiction. A formula is called
satisfiable or consistent if it is not unsatisfiable.

2.1. Propositional logic 19

example:example:example:

always falsesometimes true
sometimes false

always true

unsatisfiablesatisfiable

invalidvalid

P ∧ ¬PP ∨QP ∨ ¬P

Figure 2.1: Relationship between validity and satisfiability.

Table 2.3: Truth table of ¬(P ∧Q) and ¬P ∨ ¬Q.

P Q ¬(P ∧Q) ¬P ∨ ¬Q
true true false false
true false true true
false true true true
false false true true

Note that a formula is valid precisely when its negation is unsatisfiable and vice versa.

EXAMPLE 2.5

The formulas P ∧ ¬P and (P → Q) ∧ (P ∧ ¬Q) are both unsatisfiable.

Figure 2.1 depicts the relationships between the notions of valid, invalid, and satisfiable, and
unsatisfiable formulas.

Definition 2.4 Two formulas F and G are called equivalent, written as F ≡ G, if the truth
values of F and G are the same under all possible interpretations.

Two formulas can be shown to be equivalent by demonstrating that their truth tables are
identical.

EXAMPLE 2.6

Table 2.3 shows that ¬(P ∧Q) ≡ ¬P ∨ ¬Q.

Using truth tables the logical equivalences listed in Table 2.4 can easily be proven. These
equivalences are called laws of equivalence. Law (a) is called the law of double negation; the
laws (b) and (c) are called the commutative laws; (d) and (e) are the so-called associative

20 Chapter 2. Logic and Resolution

Table 2.4: Laws of equivalence.
¬(¬F) ≡ F (a)
F ∨G ≡ G ∨ F (b)
F ∧G ≡ G ∧ F (c)
(F ∧G) ∧H ≡ F ∧ (G ∧H) (d)
(F ∨G) ∨H ≡ F ∨ (G ∨H) (e)
F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) (f)
F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) (g)
F ↔ G ≡ (F → G) ∧ (G→ F) (h)
F → G ≡ ¬F ∨G (i)
¬(F ∧G) ≡ ¬F ∨ ¬G (j)
¬(F ∨G) ≡ ¬F ∧ ¬G (k)

laws, and (f) and (g) are the distributive laws. The laws (j) and (k) are known as the laws
of De Morgan. These laws often are used to transform a given well-formed formula into a
logically equivalent but syntactically different formula.

In the following, a conjunction of formulas is often written as a set of formulas, where the
elements of the set are taken as the conjunctive subformulas of the given formula.

EXAMPLE 2.7

The set S = {F ∨G,H} represents the following formula: (F ∨G) ∧H.

Truth tables can be applied to determine whether or not a given formula follows logically
from a given set of formulas. Informally speaking, a formula logically follows from a set of
formulas if it is satisfied by all interpretations satisfying the given set of formulas; we say
that the formula is a logical consequence of the formulas in the given set. The following is a
formal definition of this notion.

Definition 2.5 A formula G is said to be a logical consequence of the set of formulas F =
{F1, . . . , Fn}, n ≥ 1, denoted by F � G, if for each interpretation w for which w(F1∧· · ·∧Fn) =
true, we have w(G) = true.

EXAMPLE 2.8

The formula R is a logical consequence of the set of formulas {P ∧ ¬Q,P → R}. Thus
we can write {P ∧ ¬Q,P → R} � R.

Note that another way of stating that two formulas F and G are logically equivalent, that is,
F ≡ G, is to say that both {F} � G and {G} � F hold. This tells us that the truth value of
F and G are explicitly related to each other, which can also be expressed as � (F ↔ G).

Satisfiability, validity, equivalence and logical consequence are semantic notions; these
properties are generally established using truth tables. However, for deriving logical conse-
quences from of a set of formulas for example, propositional logic provides other techniques
than using truth tables as well. It is possible to derive logical consequences by syntactic
operations only. A formula which is derived from a given set of formulas then is guaranteed

2.2. First-order predicate logic 21

to be a logical consequence of that set if the syntactic operations employed meet certain con-
ditions. Systems in which such syntactic operations are defined, are called (formal) deduction
systems. Various sorts of deduction systems are known. An example of a deduction system is
an axiomatic system, consisting of a formal language, such as the language of propositional
logic described above, a set of inference rules (the syntactic operations) and a set of axioms.
In Section 2.4 we shall return to the subject of logical deduction.

2.2 First-order predicate logic

In propositional logic, atoms are the basic constituents of formulas which are either true or
false. A limitation of propositional logic is the impossibility to express general statements
concerning similar cases. First-order predicate logic is more expressive than propositional
logic, and such general statements can be specified in its language. Let us first introduce the
language of first-order predicate logic. The following symbols are used:

• Predicate symbols, usually denoted by uppercase letters. Each predicate symbol has
associated a natural number n, n ≥ 0, indicating the number of arguments the predicate
symbol has; the predicate symbol is called an n-place predicate symbol. 0-place or
nullary predicate symbols are also called (atomic) propositions. One-place, two-place
and three-place predicate symbols are also called unary, binary and ternary predicate
symbols, respectively.

• Variables, usually denoted by lowercase letters from the end of the alphabet, such as x,
y, z, possibly indexed with a natural number.

• Function symbols, usually denoted by lowercase letters halfway the alphabet. Each
function symbol has associated a natural number n, n ≥ 0, indicating its number of
arguments; the function symbol is called n-place. Nullary function symbols are usually
called constants.

• The logical connectives which have already been discussed in the previous section.

• Two quantifiers: the universal quantifier ∀, and the existential quantifier ∃. The quan-
tifiers should be read as follows: if x is a variable, then ∀x means ‘for each x’ or ‘for all
x’, and ∃x means ‘there exists an x’.

• A number of auxiliary symbols such as parentheses and commas.

Variables and functions in logic are more or less similar to variables and functions in for
instance algebra or calculus.

Before we define the notion of an atomic formula in predicate logic, we first introduce the
notion of a term.

Definition 2.6 A term is defined as follows:

(1) A constant is a term.

(2) A variable is a term.

(3) If f is an n-place function symbol, n ≥ 1, and t1, . . . , tn are terms, then f(t1, . . . , tn) is
a term.

22 Chapter 2. Logic and Resolution

(4) Nothing else is a term.

So, a term is either a constant, a variable or a function of terms. Recall that a constant may
also be viewed as a nullary function symbol. An atomic formula now consists of a predicate
symbol and a number of terms to be taken as the arguments of the predicate symbol.

Definition 2.7 An atomic formula, or atom for short, is an expression of the form
P (t1, . . . , tn), where P is an n-place predicate symbol, n ≥ 0, and t1, . . . , tn are terms.

EXAMPLE 2.9

If P is a unary predicate symbol and x is a variable, then P (x) is an atom.
Q(f(y), c, g(f(x), z)) is an atom if Q is a ternary predicate symbol, c is a constant,
f a unary function symbol, g a binary function symbol, and x, y and z are variables.
For the same predicate symbols P and Q, P (Q) is not an atom, because Q is not a term
but a predicate symbol.

Composite formulas can be formed using the five connectives given in Section 2.1, together
with the two quantifiers ∀ and ∃ just introduced. As was done for propositional logic, we now
define the notion of a well-formed formula in predicate logic. The following definition also
introduces the additional notions of free and bound variables.

Definition 2.8 A well-formed formula in predicate logic, and the set of free variables of a
well-formed formula are defined as follows:

(1) An atom is a well-formed formula. The set of free variables of an atomic formula
consists of all the variables occurring in the terms in the atom.

(2) Let F be a well-formed formula with an associated set of free variables. Then, (¬F) is
a well-formed formula. The set of free variables of (¬F) equals the set of free variables
of F .

(3) Let F and G be well-formed formulas and let for each of these formulas a set of free
variables be given. Then, (F ∨ G), (F ∧ G), (F → G) and (F ↔ G) are well-formed
formulas. The set of free variables of each of these last mentioned formulas is equal to
the union of the sets of free variables of F and G.

(4) If F is well-formed formula and x is an element of the set of free variables of F , then
both (∀xF) and (∃xF) are well-formed formulas. The set of free variables of each of
these formulas is equal to the set of free variables of F from which the variable x has
been removed. The variable x is called bound by the quantifier ∀ or ∃.

(5) Nothing else is a well-formed formula.

Note that we have introduced the notion of a formula in the preceding definition only from a
purely syntactical point of view: nothing has been said about the meaning of such a formula.

Parentheses will be omitted from well-formed formulas as long as ambiguity cannot occur;
the quantifiers then have a higher priority than the connectives.

Definition 2.9 A well-formed formula is called a closed formula, or a sentence, if its set of
free variables is empty; otherwise it is called an open formula.

2.2. First-order predicate logic 23

EXAMPLE 2.10

The set of free variables of the formula ∀x∃y(P (x)→ Q(y, z)) is equal to {z}. So, only
one of the three variables in the formula is a free variable. The formula ∀x(P (x)∨R(x))
has no free variables at all, and thus is an example of a sentence.

In what follows, we shall primarily be concerned with closed formulas; the term formula will
be used to mean a closed formula, unless explicitly stated otherwise.

In the formula ∀x(A(x) → G(x)) all occurrences of the variable x in A(x) → G(x) are
governed by the associated universal quantifier; A(x) → G(x) is called the scope of this
quantifier.

EXAMPLE 2.11

The scope of the universal quantifier in the formula

∀x(P (x)→ ∃yR(x, y))

is P (x)→ ∃yR(x, y); the scope of the existential quantifier is the subformula R(x, y).

In propositional logic, the truth value of a formula under a given interpretation is obtained by
assigning either the truth value true or false to each of its constituent atoms according to this
specific interpretation. Defining the semantics of first-order predicate logic is somewhat more
involved than in propositional logic. In predicate logic, a structure representing the ‘reality’
is associated with the meaningless set of symbolic formulas: in a structure the objects or
elements of the domain of discourse, or domain for short, are enlisted, together with functions
and relations defined on the domain.

Definition 2.10 A structure S is a tuple

S = (D, {f̄n
i : Dn → D,n ≥ 1}, {P̄m

i : Dm → {true, false},m ≥ 0})

having the following components:

(1) A non-empty set of elements D, called the domain of S;

(2) A set of functions defined on Dn, {f̄n
i : Dn → D,n ≥ 1};

(3) A non-empty set of mappings, called predicates, from Dm to the set of truth values
{true , false}, {P̄m

i : Dm → {true, false},m ≥ 0}.

The basic idea underlying the definition of a structure is that we associate functions f̄n
i to

function symbols fi and predicates P̄m
i to predicate symbols Pi. Hence, we have to express

how a given meaningless formula should be interpreted in a given structure: it is not possible
to state anything about the truth value of a formula as long as it has not been prescribed
which elements from the structure are to be associated with the elements in the formula.

EXAMPLE 2.12

24 Chapter 2. Logic and Resolution

Consider the formula A(c). We associate the predicate having the intended meaning
‘is a car’ with the predicate symbol A. The formula should be true if the constant
representing a Bugatti is associated with c; on the other hand, the same formula should
be false if the constant representing a Volvo truck is associated with c. However, if we
associate the predicate ‘Truck’ with A, the truth values of A(c) for the two constants
should be opposite to the ones mentioned before.

In the following definition, we introduce the notion of an assignment, which is a function that
assigns elements from the domain of a structure to the variables in a formula.

Definition 2.11 An assignment (valuation) v to a set of formulas F in a given structure S
with domain D is a mapping from the set of variables in F to D.

The interpretation of (terms and) formulas in a structure S under an assignment v now
consists of the following steps. First, the constants in the formulas are assigned elements from
D. Secondly, the variables are replaced by the particular elements from D that have been
assigned to them by v. Then, the predicate and function symbols occurring in the formulas
are assigned predicates and functions from S. Finally, the truth values of the formulas are
determined.

Before the notion of an interpretation is defined more formally, a simple example in which
no function symbols occur, is given. For the reader who is not interested in the formal aspects
of logic, it suffices to merely study this example.

EXAMPLE 2.13

The open formula

F = A(x)→ O(x)

contains the unary predicate symbols A and O, and the free variable x. Consider the
structure S consisting of the domain D = {bugatti , volvo-truck, alfa-romeo} and the set
of predicates comprising of the following elements:

• a unary predicate Car, with the intented meaning ‘is a car’, defined by
Car(bugatti) = true, Car(alfa-romeo) = true and Car(volvo-truck) = false , and

• the unary predicate FourWheels with the intended meaning ‘has four wheels’,
defined by FourWheels(bugatti) = false, FourWheels(volvo-truck) = false and
FourWheels(alfa-romeo) = true.

Let us take for the predicate symbol A the predicate Car, and for the predicate symbol
O the predicate FourWheels. It will be obvious that the atom A(x) is true in S under
any assignment v for which Car(v(x)) = true; so, for example for the assignment
v(x) = alfa-romeo, we have that A(x) is true in S under v. Furthermore, F is true
in the structure S under the assignment v with v(x) = alfa-romeo, since A(x) and
O(x) are both true in S under v. On the other hand, F is false in the structure
S under the assignment v′ with v′(x) = bugatti, because Car(bugatti) = true and
FourWheels(bugatti) = false in S. Now, consider the closed formula

F ′ = ∀x(A(x)→ O(x))

and again the structure S. It should be obvious that F ′ is false in S.

2.2. First-order predicate logic 25

Table 2.5: Laws of equivalence for quantifiers.
¬∃xP (x) ≡ ∀x¬P (x) (a)
¬∀xP (x) ≡ ∃x¬P (x) (b)
∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x) (c)
∃x(P (x) ∨Q(x)) ≡ ∃xP (x) ∨ ∃xQ(x) (d)
∀xP (x) ≡ ∀yP (y) (e)
∃xP (x) ≡ ∃yP (y) (f)

Definition 2.12 An interpretation of terms in a structure S = (D, {f̄n
i }, {P̄

m
i }) under an

assignment v, denoted by IS
v , is defined as follows:

(1) IS
v (ci) = di, di ∈ D, where ci is a constant.

(2) IS
v (xi) = v(xi), where xi is a variable.

(3) IS
v (fn

i (t1, . . . , tn)) = f̄n
i (IS

v (t1), . . . , I
S
v (tn)), where f̄n

i is a function from S associated
with the function symbol f

n

i .

The truth value of a formula in a structure S under an assignment v for a given interpretation
IS
v is obtained as follows:

(1) IS
v (Pm

i (t1, . . . , tm)) = P̄m
i (IS

v (t1), . . . , I
S
v (tm)), meaning that an atom Pm

i (t1, . . . , tm) is
true in the structure S under the assignment v for the interpretation IS

v if
P̄m

i (IS
v (t1), . . . , I

S
v (tm)) is true, where P̄m

i is the predicate from S associated with Pm
i .

(2) If the truth values of the formulas F and G have been determined, then the truth values
of ¬F , F ∧G, F ∨G, F → G and F ↔ G are defined by the meanings of the connectives
as listed in Table 2.1.

(3) ∃xF is true under v if there exists an assignment v′ differing from v at most with regard
to x, such that F is true under v′.

(4) ∀xF is true under v if for each v′ differing from v at most with regard to x, F is true
under v′.

The notions valid, invalid, satisfiable, unsatisfiable, logical consequence, equivalence and
model have meanings in predicate logic similar to their meanings in propositional logic. In
addition to the equivalences listed in Table 2.4, predicate logic also has some laws of equiva-
lence for quantifiers, which are given in Table 2.5. Note that the properties ∀x(P (x)∨Q(x)) ≡
∀xP (x) ∨ ∀xQ(x) and ∃x(P (x) ∧Q(x)) ≡ ∃xP (x) ∧ ∃xQ(x) do not hold.

We conclude this subsection with another example.

EXAMPLE 2.14

We take the unary (meaningless) predicate symbols C, F , V , W and E, and the con-
stants a and b from a given first-order language. Now, consider the following formulas:

(1) ∀x(C(x)→ V (x))

26 Chapter 2. Logic and Resolution

(2) F (a)

(3) ∀x(F (x)→ C(x))

(4) ¬E(a)

(5) ∀x((C(x) ∧ ¬E(x))→W (x))

(6) F (b)

(7) ¬W (b)

(8) E(b)

Consider the structure S in the reality with a domain consisting of the elements and
bugatti, which are assigned to the constants a and b, respectively. The set of predicates
in S comprises the unary predicates Car, Fast, Vehicle, FourWheels, and Exception,
which are taken for the predicate symbols C, F , V , W , and E, respectively. The
structure S and the mentioned interpretation have been carefully chosen so as to satisfy
the above-given closed formulas, for instance by giving the following intended meaning
to the predicates:

Car = ‘is a car’
Fast = ‘is a fast car’
Vehicle = ‘is a vehicle’
FourWheels = ‘has four wheels’
Exception = ‘is an exception’

In the given structure S, the formula numbered 1 expresses the knowledge that every
car is a vehicle. The fact that an alfa-romeo is a fast car, has been stated in formula 2.
Formula 3 expresses that every fast car is a car, and formula 4 states that an alfa-romeo
is not an exception to the rule that cars have four wheels, which has been formalized
in logic by means of formula 5. A Bugatti is a fast car (formula 6), but contrary to
an alfa-romeo it does not have 4 wheels (formula 7), and therefore is an exception to
the last mentioned rule; the fact that Bugattis are exceptions is expressed by means of
formula 8.

It should be noted that in another structure with another domain and other predicates,
the formulas given above might have completely different meanings.

2.3 Clausal form of logic

Before turning our attention to reasoning in logic, we introduce in this section a syntactically
restricted form of predicate logic, called the clausal form of logic, which will play an important
role in the remainder of this chapter. This restricted form however, can be shown to be as
expressive as full first-order predicate logic. The clausal form of logic is often employed, in
particular in the fields of theorem proving and logic programming.

We start with the definition of some new notions.

Definition 2.13 A literal is an atom, called a positive literal, or a negation of an atom,
called a negative literal.

2.3. Clausal form of logic 27

Definition 2.14 A clause is a closed formula of the form

∀x1 · · · ∀xs(L1 ∨ · · · ∨ Lm)

where each Li, i = 1, . . . ,m, m ≥ 0, is a literal, with Li 6= Lj for each i 6= j, and x1, . . . , xs,
s ≥ 0, are variables occurring in L1 ∨ · · · ∨ Lm. If m = 0, the clause is said to be the empty
clause, denoted by �.

The empty clause � is interpreted as a formula which is always false, in other words, � is an
unsatisfiable formula.

A clause

∀x1 · · · ∀xs(A1 ∨ · · · ∨Ak ∨ ¬B1 ∨ · · · ∨ ¬Bn)

where A1, . . . , Ak, B1, . . . , Bn are atoms and x1, . . . , xs are variables, is equivalent to

∀x1 · · · ∀xs(B1 ∧ · · · ∧Bn → A1 ∨ · · · ∨Ak)

as a consequence of the laws ¬F ∨G ≡ F → G and ¬F ∨¬G ≡ ¬(F ∧G), and is often written
as

A1, . . . , Ak ← B1, . . . , Bn

The last notation is the more conventional one in logic programming. The commas in
A1, . . . , Ak each stand for a disjunction, and the commas in B1, . . . , Bn indicate a conjunction.
A1, . . . , Ak are called the conclusions of the clause, and B1, . . . , Bn the conditions.

Each well-formed formula in first-order predicate logic can be translated into a set of
clauses, which is viewed as the conjunction of its elements. As we will see, this translation
process may slightly alter the meaning of the formulas. We shall illustrate the translation
process by means of an example. Before proceeding, we define two normal forms which are
required for the translation process.

Definition 2.15 A formula F is in prenex normal form if F is of the form

Q1x1 · · ·QnxnM

where each Qi, i = 1, . . . , n, n ≥ 1, equals one of the two quantifiers ∀ and ∃, and where M
is a formula in which no quantifiers occur. Q1x1 . . . Qnxn is called the prefix and M is called
the matrix of the formula F .

Definition 2.16 A formula F in prenex normal form is in conjunctive normal form if the
matrix of F is of the form

F1 ∧ · · · ∧ Fn

where each Fi, i = 1, . . . , n, n ≥ 1, is a disjunction of literals.

EXAMPLE 2.15

Consider the following three formulas:

∀x(P (x) ∨ ∃yQ(x, y))
∀x∃y∀z((P (x) ∧Q(x, y)) ∨ ¬R(z))
∀x∃y((¬P (x) ∨Q(x, y)) ∧ (P (y) ∨ ¬R(x)))

28 Chapter 2. Logic and Resolution

The first formula is not in prenex normal form because of the occurrence of an existential
quantifier in the ‘inside’ of the formula. The other two formulas are both in prenex
normal form; moreover, the last formula is also in conjunctive normal form.

The next example illustrates the translation of a well-formed formula into a set of clauses.
The translation scheme presented in the example however is general and can be applied to
any well-formed formula in first-order predicate logic.

EXAMPLE 2.16

Consider the following formula:

∀x(∃yP (x, y) ∨ ¬∃y(¬Q(x, y)→ R(f(x, y))))

This formula is transformed in eight steps, first into prenex normal form, subsequently
into conjunctive normal form, amongst others by applying the laws of equivalence listed
in the tables 2.4 and 2.5, and finally into a set of clauses.

Step 1. Eliminate all implication symbols using the equivalences F → G ≡ ¬F ∨G and
¬(¬F) ≡ F :

∀x(∃yP (x, y) ∨ ¬∃y(Q(x, y) ∨R(f(x, y))))

If a formula contains bi-implication symbols, these can be removed by applying the
equivalence

F ↔ G ≡ (F → G) ∧ (G→ F)

Step 2. Diminish the scope of the negation symbols in such a way that each negation
symbol only governs a single atom. This can be accomplished by using the equivalences
¬∀xF (x) ≡ ∃x¬F (x), ¬∃xF (x) ≡ ∀x¬F (x), ¬(¬F) ≡ F , together with the laws of De
Morgan:

∀x(∃yP (x, y) ∨ ∀y(¬Q(x, y) ∧ ¬R(f(x, y))))

Step 3. Rename the variables in the formula using the equivalences ∀xF (x) ≡ ∀yF (y)
and ∃xF (x) ≡ ∃yF (y), so that each quantifier has its own uniquely named variable:

∀x(∃yP (x, y) ∨ ∀z(¬Q(x, z) ∧ ¬R(f(x, z))))

Formulas only differing in the names of their bound variables are called variants.

Step 4. Eliminate all existential quantifiers. For any existentially quantified variable
x not lying within the scope of a universal quantifier, all occurrences of x in the for-
mula within the scope of the existential quantifier can be replaced by a new, that is,
not previously used, constant symbol c. The particular existential quantifier may then
be removed. For instance, the elimination of the existential quantifier in the formula
∃xP (x) yields a formula P (c). However, if an existentially quantified variable y lies
within the scope of one or more universal quantifiers with the variables x1, . . . , xn,
n ≥ 1, then the variable y may be functionally dependent upon x1, . . . , xn. Let this
dependency be represented explicitly by means of a new n-place function symbol g such
that g(x1, . . . , xn) = y. All occurrences of y within the scope of the existential quan-
tifier then are replaced by the function term g(x1, . . . , xn), after which the existential

2.3. Clausal form of logic 29

quantifier may be removed. The constants and functions introduced in order to allow
for the elimination of existential quantifiers are called Skolem functions.

The existentially quantified variable y in the example lies within the scope of the uni-
versal quantifier with the variable x, and is replaced by g(x):

∀x(P (x, g(x)) ∨ ∀z(¬Q(x, z) ∧ ¬R(f(x, z))))

Note that by replacing the existentially quantified variables by Skolem functions, we lose
logical equivalence. Fortunately, it can be shown that a formula F is satisfiable if and
only if the formula F ′, obtained from F by replacing existentially quantified variables
in F by Skolem functions, is satisfiable as well. In general, the satisfiability of F and F ′

will not be based on the same model, since F ′ contains function symbols not occurring
in F . In the following, it will become evident that this property is sufficient for our
purposes.

Step 5. Transform the formula into prenex normal form, by placing all the universal
quantifiers in front of the formula:

∀x∀z(P (x, g(x)) ∨ (¬Q(x, z) ∧ ¬R(f(x, z))))

Note that this is allowed because by step 3 each quantifier applies to a uniquely named
variable; this means that the scope of all quantifiers is the entire formula.

Step 6. Bring the matrix in conjunctive normal form using the distributive laws:

∀x∀z((P (x, g(x)) ∨ ¬Q(x, z)) ∧ (P (x, g(x)) ∨ ¬R(f(x, z))))

Step 7. Select the matrix by disregarding the prefix:

(P (x, g(x)) ∨ ¬Q(x, z)) ∧ (P (x, g(x)) ∨ ¬R(f(x, z)))

All variables in the matrix are now implicitly considered to be universally quantified.

Step 8. Translate the matrix into a set of clauses, by replacing formulas of the form
F ∧ G by a set of clauses {F ′, G′}, where F ′ and G′ indicate that F and G are now
represented using the notational convention of logic programming:

{P (x, g(x)) ← Q(x, z)), P (x, g(x)) ← R(f(x, z))i}

or the notation used in automated theorem proving:

{P (x, g(x)) ∨ ¬Q(x, z), P (x, g(x)) ∨ ¬R(f(x, z))}

We conclude this subsection with the definition of a special type of clause, a so-called Horn
clause, which is a clause containing at most one positive literal.

Definition 2.17 A Horn clause is a clause having one of the following forms:

(1) A←

(2) ← B1, . . . , Bn, n ≥ 1

(3) A← B1, . . . , Bn, n ≥ 1

A clause of the form 1 is called a unit clause; a clause of form 2 is called a goal clause.

Horn clauses are employed in the programming language PROLOG. We will return to this
observation in Section 2.7.2.

30 Chapter 2. Logic and Resolution

2.4 Reasoning in logic: inference rules

In the Sections 2.1 and 2.2 we described how a meaning could be attached to a meaningless set
of logical formulas. This is sometimes called the declarative semantics of logic. The declarative
semantics offers a means for investigating for example whether or not a given formula is a
logical consequence of a set of formulas. However, it is also possible to answer this question
without examining the semantic contents of the formulas concerned, by applying so-called
inference rules. Contrary to truth tables, inference rules are purely syntactic operations
which only are capable of modifying the form of the elements of a given set of formulas.
Inference rules either add, replace or remove formulas; most inference rules discussed in this
book however add new formulas to a given set of formulas. In general, an inference rule
is given as a schema in which a kind of meta-variables occur that may be substituted by
arbitrary formulas. An example of such a schema is shown below:

A,A→ B

B

The formulas above the line are called the premises, and the formula below the line is called
the conclusion of the inference rule. The above-given inference rule is known as modus ponens,
and when applied, removes an implication from a formula. Another example of an inference
rule, in this case for introducing a logical connective, is the following schema:

A,B

A ∧B

Repeated applications of inference rules give rise to what is called a derivation or deduction.
For instance, modus ponens can be applied to draw the conclusion S from the two formulas
P ∧ (Q ∨R) and P ∧ (Q ∨R)→ S. It is said that there exists a derivation of the formula S
from the set of clauses {P ∧ (Q ∨R), P ∧ (Q ∨R)→ S}. This is denoted by:

{P ∧ (Q ∨R), P ∧ (Q ∨R)→ S} ⊢ S

The symbol ⊢ is known as the turnstile.

EXAMPLE 2.17

Consider the set of formulas {P,Q,P ∧Q→ S}. If the inference rule

A,B

A ∧B

is applied to the formulas P and Q, the formula P ∧ Q is derived; the subsequent
application of modus ponens to P ∧Q and P ∧Q→ S yields S. So,

{P,Q,P ∧Q→ S} ⊢ S

Now that we have introduced inference rules, it is relevant to investigate how the declarative
semantics of a particular class of formulas and its procedural semantics, described by means
of inference rules, are interrelated: if these two notions are related to each other, we are in the
desirable circumstance of being able to assign a meaning to formulas which have been derived
using inference rules, simply by our knowledge of the declarative meaning of the original set

2.4. Reasoning in logic: inference rules 31

of formulas. On the other hand, when starting with the known meaning of a set of formulas,
it will then be possible to derive only formulas which can be related to that meaning. These
two properties are known as the soundness and the completeness, respectively, of a collection
of inference rules.

More formally, a collection of inference rules is said to be sound if and only if for each
formula F derived by applying these inference rules on a given set of well-formed formulas S
of a particular class (for example clauses), we have that F is a logical consequence of S. This
property can be expressed more tersely as follows, using the notations introduced before:

if S ⊢ F then S � F .

In other words, a collection of inference rules is sound if it preserves truth under the operations
of a derivation. This property is of great importance, because only by applying sound inference
rules it is possible to assign a meaning to the result of a derivation.

EXAMPLE 2.18

The previously discussed inference rule modus ponens is an example of a sound inference
rule. From the given formulas F and F → G, the formula G can be derived by applying
modus ponens, that is, we have {F,F → G} ⊢ G. On the other hand, if F → G and
F are both true under a particular interpretation w, then from the truth Table 2.1 we
have that G is true under w as well. So, G is a logical consequence of the two given
formulas: {F,F → G} � G.

The reverse property that by applying a particular collection of inference rules, each logical
consequence F of a given set of formulas S can be derived, is called the completeness of the
collection of inference rules:

if S � F then S ⊢ F .

EXAMPLE 2.19

The collection of inference rules only consisting of modus ponens is not complete for all
well-formed formulas in propositional logic. For example, it is not possible to derive the
formula P from ¬Q and P ∨Q, although P is a logical consequence of the two formulas.
However, by combining modus ponens with other inference rules, it is possible to obtain
a complete collection of inference rules.

The important question now arises if there exists a mechanical proof procedure, employing a
particular sound and complete collection of inference rules, which is capable of determining
whether or not a given formula F can be derived from a given set of formulas S. In 1936,
A. Church and A.M. Turing showed, independently, that such a general proof procedure does
not exist for first-order predicate logic. This property is called the undecidability of first-order
predicate logic. All known proof procedures are only capable of deriving F from S (that is,
are able to prove S ⊢ F) if F is a logical consequence of S (that is, if S � F); if F is not a
logical consequence of S, then the proof procedure is not guaranteed to terminate.

However, for propositional logic there do exist proof procedures which always terminate
and yield the right answer: for checking whether a given formula is a logical consequence of a
certain set of formulas, we can simply apply truth tables. So, propositional logic is decidable.

32 Chapter 2. Logic and Resolution

The undecidability of first-order predicate logic has not refrained the research area of
automated theorem proving from further progress. The major result of this research has been
the development of an efficient and flexible inference rule, which is both sound and complete
for proving inconsistency, called resolution. This is sometimes called refutation completeness
(see below). However, the resolution rule is only suitable for manipulating formulas in clausal
form. Hence, to use this inference rule on a set of arbitrary logical formulas in first-order
predicate logic, it is required to translate each formula into the clausal form of logic by means
of the procedure discussed in Section 2.3. This implies that resolution is not complete for
unrestricted first-order predicate logic. The formulation of resolution as a suitable inference
rule for automated theorem proving in the clausal form of logic has been mainly due to J.A.
Robinson, who departed from earlier work by D. Prawitz. The final working-out of resolution
in various algorithms, supplemented with specific implementation techniques, has been the
work of a large number of researchers. Resolution is the subject of the remainder of this
chapter.

2.5 Resolution and propositional logic

We begin this section with a brief, informal sketch of the principles of resolution. Consider a
set of formulas S in clausal form. Suppose we are given a formula G, also in clausal form, for
which we have to prove that it can be derived from S by applying resolution. Proving S ⊢ G
is equivalent to proving that the set of clauses W , consisting of the clauses in S supplemented
with the negation of the formula G, that is W = S ∪{¬G}, is unsatisfiable. Resolution on W
now proceeds as follows: first, it is checked whether or not W contains the empty clause �;
if this is the case, then W is unsatisfiable, and G is a logical consequence of S. If the empty
clause � is not in W , then the resolution rule is applied on a suitable pair of clauses from W ,
yielding a new clause. Every clause derived this way is added to W , resulting in a new set of
clauses on which the same resolution procedure is applied. The entire procedure is repeated
until some generated set of clauses has been shown to contain the empty clause �, indicating
unsatisfiability of W , or until all possible new clauses have been derived.

The basic principles of resolution are best illustrated by means of an example from propo-
sitional logic. In Section 2.6 we turn our attention to predicate logic.

EXAMPLE 2.20

Consider the following set of clauses:

{C1 = P ∨R,C2 = ¬P ∨Q}

These clauses contain complementary literals, that is, literals having opposite truth
values, namely P and ¬P . Applying resolution, a new clause C3 is derived being the
disjunction of the original clauses C1 and C2 in which the complementary literals have
been cancelled out. So, application of resolution yields the clause

C3 = R ∨Q

which then is added to the original set of clauses.

The resolution principle is described more precisely in the following definition.

2.5. Resolution and propositional logic 33

Definition 2.18 Consider the two clauses C1 and C2 containing the literals L1 and L2 re-
spectively, where L1 and L2 are complementary. The procedure of resolution proceeds as
follows:

(1) Delete L1 from C1 and L2 from C2, yielding the clauses C ′
1 and C ′

2;

(2) Form the disjunction C ′ of C ′
1 and C ′

2;

(3) Delete (possibly) redundant literals from C ′, thus obtaining the clause C.

The resulting clause C is called the resolvent of C1 and C2. The clauses C1 and C2 are said
to be the parent clauses of the resolvent.

Resolution has the important property that when two given parent clauses are true under a
given interpretation, their resolvent is true under the same interpretation as well: resolution
is a sound inference rule. In the following theorem we prove that resolution is sound for the
case of propositional logic.

THEOREM 1 (soundness of resolution) Consider two clauses C1 and C2 containing com-
plementary literals. Then, any resolvent C of C1 and C2 is a logical consequence of {C1, C2}.

Proof: We are given that the two clauses C1 and C2 contain complementary literals. So, it
is possible to write C1 and C2 as C1 = L∨C ′

1 and C2 = ¬L∨C ′
2 respectively for some literal

L. By definition, a resolvent C is equal to C ′
1 ∨ C

′
2 from which possibly redundant literals

have been removed. Now, suppose that C1 and C2 are both true under an interpretation w.
We then have to prove that C is true under the same interpretation w as well. Clearly, either
L or ¬L is false. Suppose that L is false under w, then C1 obviously contains more than one
literal, since otherwise C1 would be false under w. It follows that C ′

1 is true under w. Hence,
C ′

1 ∨ C
′
2, and therefore also C, is true under w. Similarly, it can be shown that the resolvent

is true under w if it is assumed that L is true. So, if C1 and C2 are true under w then C is
true under w as well. Hence, C is a logical consequence of C1 and C2. ♦

Resolution is also a complete inference rule. Proving the completeness of resolution is beyond
the scope of this book; we therefore confine ourselves to merely stating the property.

EXAMPLE 2.21

In the definition of a clause in Section 2.3, it was mentioned that a clause was not allowed
to contain duplicate literals. This condition appears to be a necessary requirement for
the completeness of resolution. For example, consider the following set of formulas:

S = {P ∨ P,¬P ∨ ¬P}

It will be evident that S is unsatisfiable, since P ∨P ≡ P and ¬P ∨¬P ≡ ¬P . However,
if resolution is applied to S then in every step the tautology P ∨ ¬P is derived. It is
not possible to derive the empty clause �.

Until now we have used the notion of a derivation only in an intuitive sense. Before giving
some more examples, we define the notion of a derivation in a formal way.

34 Chapter 2. Logic and Resolution

¬P ∨Q ¬Q P

¬P

�

Figure 2.2: A refutation tree.

Definition 2.19 Let S be a set of clauses and let C be a single clause. A derivation of C
from S, denoted by S ⊢B C, is a finite sequence of clauses C1, C2, . . . , Cn, n ≥ 1, where each
Ck either is a clause in S or a resolvent with parent clauses Ci and Cj , i < k, j < k, i 6= j,
from the sequence, and C = Cn. If Cn = �, then the derivation is said to be a refutation of
S, indicating that S is unsatisfiable.

EXAMPLE 2.22

Consider the following set of clauses:

S = {¬P ∨Q,¬Q,P}

From C1 = ¬P ∨Q and C2 = ¬Q we obtain the resolvent C3 = ¬P . From the clauses
C3 and C4 = P we derive C5 = �. So, S is unsatisfiable. The sequence of clauses
C1, C2, C3, C4, C5 is a refutation of S. Note that it is not the only possible refutation of
S. In general, a set S of clauses may have more than one refutation.

Notice that by the choice of the empty clause � as a formula that is false under all interpre-
tations, which is a semantic notion, the proof-theoretical notion of a refutation has obtained
a suitable meaning. A derivation can be depicted in a graph, called a derivation graph. In the
case of a refutation, the vertices in the derivation graph may be restricted to those clauses and
resolvents which directly or indirectly contribute to the refutation. Such a derivation graph
has the form of a tree and is usually called a refutation tree. The leaves of such a tree are
clauses from the original set, and the root of the tree is the empty clause �. The refutation
tree for the derivation discussed in the previous example is shown in Figure 2.2. Note that
another refutation of S gives rise to another refutation tree.

2.6 Resolution and first-order predicate logic

An important feature of resolution in first-order predicate logic, taking place in the basic
resolution method, is the manipulation of terms. This has not been dealt with in the previous
section, where we only had atomic propositions, connectives and auxiliary symbols as building
blocks for propositional formulas. In this section, we therefore first discuss the manipulation
of terms, before we provide a detailed description of resolution in first-order predicate logic.

2.6. Resolution and first-order predicate logic 35

2.6.1 Substitution and unification

The substitution of terms for variables in formulas in order to make these formulas syntac-
tically equal, plays a central role in a method known as unification. We first introduce the
notion of substitution formally and then discuss its role in unification.

Definition 2.20 A substitution σ is a finite set of the form

{t1/x1, . . . , tn/xn}

where each xi is a variable and where each ti is a term not equal to xi, i = 1, . . . , n, n ≥ 0;
the variables x1, . . . , xn differ from each other. An element ti/xi of a substitution σ is called
a binding for the variable xi. If none of the terms ti in a substitution contains a variable, we
have a so-called ground substitution. The substitution defined by the empty set is called the
empty substitution, and is denoted by ǫ.

Definition 2.21 An expression is a term, a literal, a conjunction of literals or a disjunction
of literals; a simple expression is a term or an atom.

A substitution σ can be applied to an expression E, yielding a new expression Eσ which is
similar to E with the difference that the variables in E occurring in σ have been replaced by
their associated terms.

Definition 2.22 Let σ = {t1/x1, . . . , tn/xn}, n ≥ 0, be a substitution and E an expression.
Then, Eσ is an expression obtained from E by simultaneously replacing all occurrences of
the variables xi by the terms ti. Eσ is called an instance of E. If Eσ does not contain any
variables, then Eσ is said to be a ground instance of E.

EXAMPLE 2.23

Let σ = {a/x,w/z} be a substitution and let E = P (f(x, y), z) be an expression. Then,
Eσ is obtained by replacing each variable x in E by the constant a and each variable z
by the variable w. The result of the substitution is Eσ = P (f(a, y), w). Note that Eσ
is not a ground instance.

The application of a substitution to a single expression can be extended to a set of expressions,
as demonstrated in the following example.

EXAMPLE 2.24

Application of the substitution σ = {a/x, b/z} to the set of expressions {P (x, f(x, z)),
Q(x,w)} yields the following set of instances:

{P (x, f(x, z)), Q(x,w)}σ = {P (a, f(a, b)), Q(a,w)}

The first element of the resulting set of instances is a ground instance; the second one
is not ground, since it contains the variable w.

36 Chapter 2. Logic and Resolution

Definition 2.23 Let θ = {t1/x1, . . . , tm/xm} and σ = {s1/y1, . . . , sn/yn}, m ≥ 1, n ≥ 1, be
substitutions. The composition of these substitutions, denoted by θσ, is obtained by removing
from the set

{t1σ/x1, . . . , tmσ/xm, s1/y1, . . . , sn/yn}

all elements tiσ/xi for which xi = tiσ, and furthermore, all elements sj/yj for which yj ∈
{x1, . . . , xm}

The composition of subtitutions is associative, i.e., for any expression E and substitutions
φ, θ and σ we have that E(φσ)θ = Eφ(σθ); the operation is not commutative. Let θ =
{t1/x1, . . . , tm/xm} be a substitution, and let V be the set of variables occurring in {t1, . . . , tm},
then θ is idempotent, i.e., E(θθ) = Eθ, iff V ∩ {x1, . . . , xm} = ∅.

Note that the last definition gives us a means for replacing two substitutions by a single
one, being the composition of these substitutions. However, it is not always necessary to
actually compute the composition of two subsequent substitutions σ and θ before applying
them to an expression E: it can easily be proven that E(σθ) = (Eσ)θ. The proof of this
property is left to the reader as an exercise (see Exercise 2.11); here, we merely give an
example.

EXAMPLE 2.25

Consider the expression E = Q(x, f(y), g(z, x)) and the two substitutions
σ = {f(y)/x, z/y} and θ = {a/x, b/y, y/z}. We compute the composition σθ of σ and
θ: σθ = {f(b)/x, y/z}. Application of the compound substitution σθ to E yields the
instance E(σθ) = Q(f(b), f(y), g(y, f(b))). We now compare this instance with (Eσ)θ.
We first apply σ to E, resulting in Eσ = Q(f(y), f(z), g(z, f(y))). Subsequently, we
apply θ to Eσ and obtain the instance (Eσ)θ = Q(f(b), f(y), g(y, f(b))). So, for the
given expression and substitutions, we have E(σθ) = (Eσ)θ.

In propositional logic, a resolvent of two parent clauses containing complementary literals,
such as P and ¬P , was obtained by taking the disjunction of these clauses after cancelling
out such a pair of complementary literals. It was easy to check for complementary literals
in this case, since we only had to verify equality of the propositional atoms in the chosen
literals and the presence of a negation in exactly one of them. Now, suppose that we want
to compare the two literals ¬P (x) and P (a) occurring in two different clauses in first-order
predicate logic. These two literals are ‘almost’ complementary. However, the first literal
contains a variable as an argument of its predicate symbol, whereas the second one contains
a constant. It is here where substitution comes in. Note that substitution can be applied to
make expressions syntactically equal. Moreover, the substitution which is required to obtain
syntactic equality of two given expressions also indicates the difference between the two. If
we apply the substitution {a/x} to the example above, we obtain syntactic equality of the
two atoms P (x) and P (a). So, the two literals ¬P (x) and P (a) become complementary after
substitution.

The unification algorithm is a general method for comparing expressions; the algorithm
computes, if possible, the substitution that is needed to make the given expressions syntacti-
cally equal. Before we discuss the algorithm, we introduce some new notions.

2.6. Resolution and first-order predicate logic 37

Definition 2.24 A substitution σ is called a unifier of a given set of expressions {E1, . . . , Em}
if E1σ = · · · = Emσ,m ≥ 2. A set of expressions is called unifiable if it has a unifier.

Definition 2.25 A unifier θ of a unifiable set of expressions E = {E1, . . . , Em}, m ≥ 2, is
said to be a most general unifier (mgu) if for each unifier σ of E there exists a substitution λ
such that σ = θλ.

A set of expressions may have more than one most general unifier; however, a most general
unifier is unique but for a renaming of the variables.

EXAMPLE 2.26

Consider the set of expressions {R(x, f(a, g(y))), R(b, f(z,w))}. Some possible unifiers
of this set are σ1 = {b/x, a/z, g(c)/w, c/y}, σ2 = {b/x, a/z, f(a)/y, g(f(a))/w} and σ3 =
{b/x, a/z, g(y)/w}. The last unifier is also a most general unifier: by the composition
of this unifier with the substitution {c/y} we get σ1; the second unifier is obtained by
the composition of σ3 with {f(a)/y}.

The unification algorithm, more precisely, is a method for constructing a most general unifier
of a finite, non-empty set of expressions. The algorithm considered in this book operates in
the following manner. First, the left-most subexpressions in which the given expressions differ
is computed. Their difference is placed in a set, called the disagreement set. Based on this
disagreement set a (‘most general’) substitution is computed, which is subsequently applied
to the given expressions, yielding a partial or total equality. If no such substitution exists,
the algorithm terminates with the message that the expressions are not unifiable. Otherwise,
the procedure proceeds until each element within each of the expressions has been processed.
It can be proven that the algorithm either terminates with a failure message or with a most
general unifier of the finite, unifiable set of expressions.

EXAMPLE 2.27

Consider the following set of expressions:

S = {Q(x, f(a), y), Q(x, z, c), Q(x, f(a), c)}

The left-most subexpression in which the three expressions differ is in the second argu-
ment of the predicate symbol Q. So, the first disagreement set is {f(a), z}. By means of
the substitution {f(a)/z} the subexpressions in the second argument position are made
equal. The next disagreement set is {y, c}. By means of the substitution {c/y} these
subexpressions are also equalized. The final result returned by the unification algorithm
is the unifier {f(a)/z, c/y} of S. It can easily be seen that this unifier is a most general
one.

The following section shows an implementation of the unification algorithm. In the next
section we discuss the role of unification in resolution in first-order predicate logic.

38 Chapter 2. Logic and Resolution

2.6.2 Resolution

Now that we have dealt with the subjects of substitution and unification, we are ready for a
discussion of resolution in first-order predicate logic. We start with an informal introduction
to the subject by means of an example.

EXAMPLE 2.28

Consider the following set of clauses:

{C1 = P (x) ∨Q(x), C2 = ¬P (f(y)) ∨R(y)}

As can be seen, the clauses C1 and C2 do not contain complementary literals. However,
the atoms P (x), occurring in C1, and P (f(y)), occurring in the literal ¬P (f(y)) in the
clause C2, are unifiable. For example, if we apply the substitution σ = {f(a)/x, a/y}
to {C1, C2}, we obtain the following set of instances:

{C1σ = P (f(a)) ∨Q(f(a)), C2σ = ¬P (f(a)) ∨R(a)}

The resulting instances C1σ and C2σ do contain complementary literals, namely P (f(a))
and ¬P (f(a)) respectively. As a consequence, we are now able to find a resolvent of
C1σ and C2σ, being the clause

C ′
3 = Q(f(a)) ∨R(a)

The resolution principle in first-order predicate logic makes use of the unification algorithm
for constructing a most general unifier of two suitable atoms; the subsequent application of the
resulting substitution to the literals containing the atoms, renders them complementary. In
the preceding example, the atoms P (x) and P (f(y)) have a most general unifier θ = {f(y)/x}.
The resolvent obtained after applying θ to C1 and C2, is

C3 = Q(f(y)) ∨R(y)

The clause C ′
3 from the previous example is an instance of C3, the so-called most general

clause: if we apply the substitution {a/y} to C3, we obtain the clause C ′
3.

It should be noted that it is necessary to rename different variables having the same
name in both parent clauses before applying resolution, since the version of the unification
algorithm discussed in the previous section is not capable of distinguishing between equally
named variables actually being the same variable, and equally named variables being different
variables because of their occurrence in different clauses.

EXAMPLE 2.29

Consider the atoms Q(x, y) and Q(x, f(y)) occurring in two different clauses. In this
form our unification algorithm reports failure in unifying these atoms (due to the occur
check). We rename the variables x and y in Q(x, f(y)) to u and v respectively, thus
obtaining the atom Q(u, f(v)). Now, if we apply the unification algorithm again to com-
pute a most general unifier of {Q(u, f(v)), Q(x, y)}, it will come up with the (correct)
substitution σ = {u/x, f(v)/y}.

2.6. Resolution and first-order predicate logic 39

We already mentioned in Section 2.3 that the meaning of a formula is left unchanged by
renaming variables. We furthermore recall that formulas only differing in the names of their
(bound) variables are called variants.

From the examples presented so far, it should be clear by now that resolution in first-order
predicate logic is quite similar to resolution in propositional logic: literals are cancelled out
from clauses, thus generating new clauses. From now on, cancelling out a literal L from a
clause C will be denoted by C\L.

Definition 2.26 Consider the parent clauses C1 and C2, respectively containing the literals
L1 and L2. If L1 and ¬L2 have a most general unifier σ, then the clause (C1σ\L1σ) ∨
(C2σ\L2σ) is called a binary resolvent of C1 and C2. Resolution in which each resolvent is a
binary resolvent, is known as binary resolution.

A pair of clauses may have more than one resolvent, since they may contain more than one
pair of complementary literals. Moreover, not every resolvent is necessarily a binary resolvent:
there are more general ways for obtaining a resolvent. Before giving a more general definition
of a resolvent, we introduce the notion of a factor.

Definition 2.27 If two or more literals in a clause C have a most general unifier σ, then
the clause Cσ is said to be a factor of C.

EXAMPLE 2.30

Consider the following clause:

C = P (g(x), h(y)) ∨Q(z) ∨ P (w, h(a))

The literals P (g(x), h(y)) and P (w, h(a)) in C have a most general unifier σ = {g(x)/w,
a/y}. So,

Cσ = P (g(x), h(a)) ∨Q(z) ∨ P (g(x), h(a)) = P (g(x), h(a)) ∨Q(z)

is a factor of C. Note that one duplicate literal P (g(x), h(a)) has been removed from
Cσ.

The generalized form of resolution makes it possible to cancel out more than one literal from
one or both of the parent clauses by first computing a factor of one or both of these clauses.

EXAMPLE 2.31

Consider the following set of clauses:

{C1 = P (x) ∨ P (f(y)) ∨R(y), C2 = ¬P (f(a)) ∨ ¬R(g(z))}

In the clause C1 the two literals P (x) and P (f(y)) have a most general unifier σ =
{f(y)/x}. If we apply this substitution σ to the clause C1, then one of these literals
can be removed:

(P (x) ∨ P (f(y)) ∨R(y))σ = P (f(y)) ∨ P (f(y)) ∨R(y)

= P (f(y)) ∨R(y)

40 Chapter 2. Logic and Resolution

The result is a factor of C1. The literal P (f(y)) in C1σ can now be unified with the
atom P (f(a)) in the literal ¬P (f(a)) occurring in C2, using the substitution {a/y}. We
obtain the resolvent

C3 = R(a) ∨ ¬R(g(z))

Note that a total of three literals has been removed from C1 and C2. The reader can
easily verify that there are several other resolvents from the same parent clauses:

• By taking L1 = P (x) and L2 = ¬P (f(a)) we get the resolvent P (f(y)) ∨ R(y) ∨
¬R(g(z));

• Taking L1 = P (f(y)) and L2 = ¬P (f(a)) results in the resolvent P (x) ∨ R(a) ∨
¬R(g(z));

• By taking L1 = R(y) and L2 = ¬R(g(z)) we obtain P (x)∨P (f(g(z)))∨¬P (f(a)).

We now give the generalized definition of a resolvent in which the notion of a factor is incor-
porated.

Definition 2.28 A resolvent of the parent clauses C1 and C2 is one of the following binary
resolvents:

(1) A binary resolvent of C1 and C2;

(2) A binary resolvent of C1 and a factor of C2;

(3) A binary resolvent of a factor of C1 and C2;

(4) A binary resolvent of a factor of C1 and a factor of C2.

The most frequent application of resolution is refutation: the derivation of the empty clause �

from a given set of clauses. The following procedure gives the general outline of this resolution
algorithm.

procedure Resolution(S)
clauses ← S;
while � 6∈ clauses do

{ci, cj} ← SelectResolvable(clauses);
resolvent ← Resolve(ci, cj);
clauses ← clauses ∪ {resolvent}

od

end

This algorithm is non-deterministic. The selection of parent clauses ci and cj can be done in
many ways; how it is to be done has not been specified in the algorithm. Several different
strategies have been described in the literature, each of them prescribing an unambiguous
way of choosing parent clauses from the clause set. Such strategies are called the control
strategies of resolution or resolution strategies. Several of these resolution strategies offer

2.7. Resolution strategies 41

particularly efficient algorithms for making computer-based theorem proving feasible. Some
well-known strategies are: semantic resolution, which was developed by J.R. Slagle in 1967,
hyperresolution developed by J.A. Robinson in 1965, and various forms of linear resolution,
such as SLD resolution, in the development of which R.A. Kowalski played an eminent role.
At present, SLD resolution in particular is a strategy of major interest, because of its relation
to the programming language PROLOG.

2.7 Resolution strategies

Most of the basic principles of resolution have been discussed in the previous section. However,
one particular matter, namely the efficiency of the resolution algorithm, has not explicitly
been dealt with as yet. It is needless to say that the subject of efficiency is an important one
for automated reasoning.

Unfortunately, the general refutation procedure introduced in Section 2.6.3 is quite in-
efficient, since in many cases it will generate a large number of redundant clauses, that is,
clauses not contributing to the derivation of the empty clause.

EXAMPLE 2.32

Consider the following set of clauses:

S = {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

To simplify referring to them, the clauses are numbered as follows:

(1) P

(2) ¬P ∨Q

(3) ¬P ∨ ¬Q ∨R

(4) ¬R

If we apply the resolution principle by systematically generating all resolvents, without
utilizing a more specific strategy in choosing parent clauses, the following resolvents are
successively added to S:

(5) Q (using 1 and 2)

(6) ¬Q ∨R (using 1 and 3)

(7) ¬P ∨R (using 2 and 3)

(8) ¬P ∨ ¬Q (using 3 and 4)

(9) R (using 1 and 7)

(10) ¬Q (using 1 and 8)

(11) ¬P ∨R (using 2 and 6)

(12) ¬P (using 2 and 8)

(13) ¬P ∨R (using 3 and 5)

(14) ¬Q (using 4 and 6)

(15) ¬P (using 4 and 7)

42 Chapter 2. Logic and Resolution

Q

R

R �

¬Q ¬P∨R ¬P ¬P∨R ¬Q ¬P R ¬P

¬Q ∨R ¬P ∨R ¬P ∨ ¬Q

¬P ∨Q ¬P ∨ ¬Q ∨R ¬RP

Figure 2.3: Refutation of {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}.

(16) R (using 5 and 6)

(17) ¬P (using 5 and 8)

(18) R (using 1 and 11)

(19) � (using 1 and 12)

This derivation of the empty clause � from S has been depicted in Figure 2.3 by means
of a derivation graph. As can be seen, by systematically generating all resolvents in a
straightforward manner, fifteen of them were obtained, while, for instance, taking the
two resolvents

(5′) ¬P ∨R (using 2 and 3)

(6′) R (using 1 and 5′)

would lead directly to the derivation of the empty clause:

(7′) � (using 4 and 6′)

In the latter refutation, significantly less resolvents were generated.

The main goal of applying a resolution strategy is to restrict the number of redundant clauses
generated in the process of resolution. This improvement in efficiency is achieved by in-
corporating particular algorithmic refinements in the resolution principle. Some important
resolution strategies will be discussed in the following two sections.

2.7. Resolution strategies 43

2.7.1 Semantic resolution

Semantic resolution is the name of a class of resolution strategies all having in common
that the process of resolution is controlled by the declarative semantics of the clauses to
be processed. We will briefly introduce the general idea and present some special forms of
semantic resolution informally.

Basic ideas

Consider an unsatisfiable set of clauses S. It is possible to divide the set of clauses S into
two separate subsets on the basis of a particular interpretation I: the subset S1 contains the
clauses from S which are false in I, and the subset S2 contains the clauses which are true in
I. Since S is unsatisfiable, no interpretation can ever make all clauses either true or false.
So, the clause set S is split into two non-empty subsets. This semantic splitting can be used
as the basis for a control strategy in which one of the parent clauses is chosen from S1, and
the other one from S2. The generated resolvent is either added to S1 or to S2, dependent
upon the interpretation I. In the next example, the particulars of this form of resolution are
illustrated.

EXAMPLE 2.33

Consider once more the following unsatisfiable set of clauses: S = {P,¬P ∨ Q,¬P ∨
¬Q ∨R,¬R}. Furthermore, consider the interpretation I, defined by

I(P) = false,

I(Q) = false, and

I(R) = false.

Using this interpretation, we divide the set S into the following two subsets S1 and S2:

S1 = {P}

S2 = {¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

The reader can verify that using the control strategy mentioned above, only the resol-
vents Q, ¬Q ∨R, ¬P ∨R, R and � will successively be generated.

A further refinement of the described strategy can be obtained by assigning a particular order
to the literals in the clauses. For example, in propositional logic an ordering is imposed on
the propositional symbols occurring in the set of clauses. Resolution now is restricted not
only by requiring that the two parent clauses are selected from the different subsets S1 and S2

of S (obtained from an interpretation I), but in addition, by demanding that the literal from
the clause selected from S1 to be resolved upon, is in that clause the highest one according
to the ordering imposed.

Set-of-support strategy

A popular form of semantic resolution is the set-of-support strategy. As we mentioned in
the foregoing, resolution is generally applied to prove that a specific clause G is the logical

44 Chapter 2. Logic and Resolution

consequence of a satisfiable set of clauses S. Usually such a proof is by refutation, that is, it
has the form of a derivation of the empty clause � from W = S ∪ {¬G}. The information
that the set of clauses S is satisfiable, is exploited in the set-of-support strategy to decrease
the number of resolvents generated. Obviously, it is not sensible to select both parent clauses
from S: since S is satisfiable, the resulting resolvent could never be the empty clause �. In
the set-of-support strategy a given set of clauses W is divided into two disjoint sets: the set S
being the original satisfiable set of clauses and the set T initially only containing the clauses
to be proven. The set T is called the set of support. Now, in each resolution step at least one
of the parent clauses has to be a member of the set of support. Each resulting resolvent is
added to T . It is said that these clauses ‘support’ the clauses that were to be proven, hence
the name ‘set of support’. The set-of-support strategy is a powerful control strategy, which
prevents the generation of many resolvents not contributing to the actual proof. The strategy
is both sound and complete.

EXAMPLE 2.34

Consider the following set of clauses:

W = {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

It can easily be seen that the following subset S ⊂W is satisfiable:

S = {P,¬P ∨Q,¬P ∨ ¬Q ∨R}

(For example, choose an interpretation I such that I(P) = I(Q) = I(R) = true.) The
remaining clause from W constitutes the set of support T = {¬R}; so, S ∪T = W . For
ease of exposition, we again number the clauses in S and T :

(1) P

(2) ¬P ∨ ¬Q ∨R

(3) ¬P ∨Q

(4) ¬R

Resolution using the set-of-support strategy successively generates the following resol-
vents:

(5) ¬P ∨ ¬Q (using 2 and 4)

(6) ¬Q (using 1 and 5)

(7) ¬P (using 3 and 5)

(8) � (using 1 and 7).

The set-of-support strategy can be described aptly in algorithmic form as follows:

procedure SOS-strategy(W,S)

consistent ← true;
while consistent and S 6= ∅ do

2.7. Resolution strategies 45

C ← SelectClause(S);
S ← S\{C};
resolvents ← Resolve(C,W);
W ←W ∪ {C};
Process(resolvents,W);
consistent ← � 6∈ resolvents ;
if consistent then
S ← S ∪ resolvents

fi
od;
if not consistent then

print(”Inconsistency found.”)
fi

end

The SelectClause select a clause from the set-of-support. This clause is called the given clause.
One possibility is to let S behave like a queue; in that case clauses are selected in the order
in which they appear in S.

Note that this strategy can be considered to be a form of top-down inference: the set of
support when explored using this strategy can be looked upon as a set of goals.

Hyperresolution

It is often possible to shorten the derivation obtained by binary resolution, by combining
a number of derivation steps into one. An advantage of this is that the number of newly
generated clauses is decreased and this has normally a favourable effect on the length of
derivations. Hyperresolution is a popular inference rule that exactly does this.

Definition 2.29 Let I be an interpretation for the set of clause S. A set of clauses {S1, . . . ,
Sn, N} ⊆ S is called a semantic conflict if the following holds:

(1) I(Si) = false, 1 ≤ i ≤ n;

(2) if R1 = N , then {Si, Ri} ⊢B Ri+1, i = 1, . . . , n;

(3) I(Rn+1) = false.

The clauses Si are called satellites (or electrons), the clause N is called the nucleus, and the
clause Rn+1 is known as the hyperresolvent. The inference rule:

S1, . . . , Sn, N

Rn+1

is called the hyperresolution rule. A derivation of C from S by means of hyperresolution is
denoted by S ⊢H C.

Different inference rules are obtained for particular choices of the interpretation I. One choice
leads to the rule known as positive hyperresolution, whereas the complementary choice leads
to negative hyperresolution.

46 Chapter 2. Logic and Resolution

¬A1 ∨ ¬A2 ∨ · · · ∨ ¬Am ∨ B1 ∨ B2 ∨ · · · ∨ Bn

A1

∨
C1

∨
...
∨
Cp

Dq

∨
Dq−1

∨
...
∨
A2

Am

∨
E1

∨
...
∨
Er

Figure 2.4: Nucleus and satellites.

Definition 2.30 Let I be an interpretation, such that for each positive literal L it holds that
I(L) = false, then the application of hyperresolution is called positive hyperresolution. The
satellites and the hyperresolvent are positive clauses in that case. If it holds that I(L) = true,
then the application of hyperresolution is called negative hyperresolution. The satellites and
the hyperresolvent are then negative clauses. A derivation by means of positive hyperresolution
is denoted by S ⊢P C; similarly, for negative hyperresolution a derivation is denoted by
S ⊢N C.

Positieve hyperresolution is used as a form of bottom-up problem solving, i.e., a form of data-
driven inference. The satellites can then be interpreted as data, and each newly generated
hyperresolvent (a positive clause) as newly generated data. In contrast, negative hyperreso-
lution can be seen as a form of top-down problem solving, i.e. hypothesis-driven inference.

The underlying idea of positive hyperresolution is that negative literals are deleted by the
positive satellites from the nucleus, yielding a positive clause. This is illustrated schematically
in Figure 2.4. Similarly, in negative hyperresolution positive literals are deleted.

EXAMPLE 2.35

Consider the following set of clauses:

V = {¬P ∨ ¬Q ∨R ∨ S, P ∨ S, Q ∨R, ¬R, ¬S}

Application of positive hyperresolution yields the following clause in one step:

{¬P ∨ ¬Q ∨R ∨ S, P ∨ S, Q ∨R} ⊢P R ∨ S

The nucleus of positive hyperresolution is the mixed clause: ¬P ∨ ¬Q ∨ R ∨ S; the
satellites are P ∨ S and Q ∨ R. This is the only possibility in this case. Using binary
resolution would have required two derivation steps.

2.7. Resolution strategies 47

We obtain the following derivation:

1. ¬P ∨ ¬Q ∨R ∨ S

2. P ∨ S

3. Q ∨R

4. ¬R

5. ¬S

6. R ∨ S (via clause 1, 2 en 3)

7. S (via clause 4 en 6)

8. � (via clause 5 en 7).

Negative hyperresolution yields the following:

{¬P ∨ ¬Q ∨R ∨ S, ¬R, ¬S} ⊢N ¬P ∨ ¬Q

The clause ¬P ∨ ¬Q ∨R ∨ S is again the nucleus, but this time there are two negative
(unit) clause ¬R and ¬S that act as satellites. The complete derivation of the empty
clause using negative hyperresolution is as follows:

1. ¬P ∨ ¬Q ∨R ∨ S

2. P ∨ S

3. Q ∨R

4. ¬R

5. ¬S

6. ¬P ∨ ¬Q (via clause 1, 4 en 5)

7. ¬Q (via clause 2, 5 en 6)

8. � (via clause 3,4 en 7).

In the next example we study the use of hyperresolution using predicate logic.

EXAMPLE 2.36

Consider the following clauses:

S = {Q(a) ∨R(x),
¬Q(x) ∨R(x),
¬R(a) ∨ ¬S(a),
S(x)}

First, the clause are numbered:

1. Q(a) ∨R(x)

2. ¬Q(x) ∨R(x)

3. ¬R(a) ∨ ¬S(a)

48 Chapter 2. Logic and Resolution

4. S(x).

Application of positive hyperresolution yields:

5. R(x) ∨R(a) (via clause 1 and 2)

6. � (via clause 5, 3 and 4).

The following derivation is obtained by negative hyperresolution:

5. ¬R(a) (via clause 3 and 4)

6. ¬Q(a) (via clause 5 and 2)

7. � (via clause 5, 6 and 1).

Note that in some cases, a hyperresolution step is exactly the same as the application
of binary resolution.

Hyperresolution is not only sound but also refutation complete. However, when combined
with the set-of-support strategy it is possible that refutation completeness is lost, as illustrated
by means of the following example.

EXAMPLE 2.37

Consider the set of clauses V = S ∪W , where

S = {¬P ∨ ¬R}
W= {P, R ∨ ¬Q, Q}

where S is the set-of-support. Note that W is satisfiable. Application of positive
hyperresolution with the set-of-support strategy does yield no resolvents, as it is not
possible to generate a positive clause from the clause in S as a nucleus and the clauses
in W as satellites. Note, however, that S is unsatisfiable. Negative hyperresolution is
able to find the inconsistency in this case.

2.7.2 SLD resolution: a special form of linear resolution

Linear resolution has been named after the structure of the derivation graph created by this
class of strategies: in every resolution step the last generated resolvent is taken as a parent
clause. The other parent clause is either a clause from the original set of clauses or a resolvent
that has been generated before. A special form of linear resolution is input resolution. In
this strategy, each resolution step, with the exception of the first one, is carried out on the
last generated resolvent and a clause from the original set of clauses. The former clauses are
called goal clauses; the latter clauses are called input clauses, thus explaining the name of
the strategy. Input resolution is a complete strategy for Horn clauses; for the clausal form of
logic in general however, input resolution is not complete.

A variant of input resolution which currently attracts a great deal of attention is SLD
resolution for Horn clauses. In this resolution strategy, input resolution is extended with a
selection rule which determines at every step which literal from the goal clause is selected for
resolution. The remainder of this section discusses SLD resolution.

An SLD derivation is defined as follows:

2.7. Resolution strategies 49

G0 C1, θ1

G1

Gn−1 Cn, θn

Gn

Figure 2.5: Derivation tree of SLD resolution.

Definition 2.31 Let {Ci} be a set of Horn clauses with

Ci = B ← B1, . . . , Bp

where p ≥ 0, and let G0 be a goal clause of the form

G0 = ← A1, . . . , Aq

where q ≥ 0. An SLD derivation is a finite or infinite sequence G0, G1, . . . of goal clauses,
a sequence C1, C2, . . . of variants of input clauses and a sequence θ1, θ2, . . . of most general
unifiers, such that each Gi+1 is derived from Gi = ← A1, . . . , Ak and Ci+1 using θi+1 if the
following conditions hold:

(1) Aj is the atom in the goal clause Gi chosen by the selection rule to be resolved upon,
and

(2) Ci+1 is an input clause of the form

Ci+1 = B ← B1, . . . , Bp

(in which variables have been renamed, if necessary), such that Ajθi+1 = Bθi+1, where
θi+1 is a most general unifier of Aj and B.

(3) Gi + 1 is the clause

Gi+1 = ← (A1, . . . , Aj−1, B1, . . . , Bp, Aj+1, . . . , Ak)θi+1

If for some n ≥ 0, Gn = �, then the derivation is called an SLD refutation and the
number n is called the length of the refutation.

Note that a new goal clause Gi+1 is the resolvent of the last computed resolvent Gi and (a
variant of) an input clause Ci+1. Figure 2.5 shows the general form of a derivation tree by
SLD resolution. In this figure the sequence of successive goal clauses (resolvents) G0, G1, . . .
has been indicated.

EXAMPLE 2.38

50 Chapter 2. Logic and Resolution

← P (u, b) P (v,w)← R(v), {u/v, b/w}

← R(u) R(g(x))← T (x, y, f(x)), {g(x)/u}

← T (x, y, f(x)) T (a, b, f(a)), {a/x, b/y}

�

Figure 2.6: An SLD refutation.

Consider the following set of Horn clauses:

{R(g(x))← T (x, y, f(x)), T (a, b, f(a)), P (v,w) ← R(v)}

Furthermore, let the following goal clause be given:

← P (u, b)

The clause set obtained by adding the goal clause to the original set of clauses is un-
satisfiable. This can be proven using SLD resolution. Figure 2.6 depicts this proof by
SLD refutation as a derivation tree.

SLD resolution is both sound and complete for Horn clauses. It furthermore is similar to
the set-of-support strategy in the sense that it is also a resolution strategy controlled by
a set of goals. So, SLD resolution is a form of top-down inference as well. In general it
is advantageous to restrict applying the resolution principle to clauses satisfying the Horn
clause format: various resolution algorithms for propositional Horn clause logic are known to
have a worst-case time complexity almost linear in the number of literals. When applying
some resolution strategy suitable for the clausal form of logic in general, we always have to
face the danger of a combinatorial explosion. Moreover, for systems based on SLD resolution
many efficient implementation techniques have been developed by now, one of which will
be discussed in the next section. But there definitely are problems for which a resolution
strategy applying some form of bottom-up inference turns out to be more efficient than SLD
resolution.

Before introducing the notion of a search space for SLD resolution, we give another ex-
ample.

EXAMPLE 2.39

Consider the following set of Horn clauses:

C1 = P (x)← P (f(x))

C2 = P (f(f(a)))←

2.7. Resolution strategies 51

← P (a) P (x)← P (f(x)), {a/x}

← P (f(a)) P (x)← P (f(x)), {f(a)/x}

← P (f(f(a))) P (x)← P (f(x)), {f(f(a))/x}

← P (f(f(f(a))))

Figure 2.7: Infinite derivation tree by SLD resolution.

If these clauses are ‘tried’ in the order in which they are specified, then for the goal
clause ← P (a) no refutation is found in a finite number of steps, although the resulting
set of clauses obviously is unsatisfiable. The corresponding derivation tree is shown in
Figure 2.7. However, if the clauses C1 and C2 are processed in the reverse order C2, C1,
then a refutation will be found in finite time: the resulting refutation tree is shown in
Figure 2.8.

Now let the search space for SLD resolution for a given goal on a set of clauses be a graph
in which every possible SLD derivation is shown. Such a search space is often called an SLD
tree. The branches of the tree terminating in the empty clause � are called success branches.
Branches corresponding to infinite derivations are called infinite branches, and the branches
representing derivations which have not been successful and cannot be pursued any further
are called failure branches. The level of a vertex in an SLD tree is obtained by assigning the
number 0 to the root of the tree; the level of each other vertex of the tree is obtained by
incrementing the level of its parent vertex by 1.

EXAMPLE 2.40

Figure 2.9 shows the SLD tree corresponding to SLD resolution on the set of clauses from
the previous example. The right branch of the tree is a success branch and corresponds
to the refutation depicted in Figure 2.8; the left branch is an example of a failure branch.

It can easily be seen that a specific, fixed order in choosing parent clauses for resolution such
as in the previous example, corresponds to a depth-first search in the search space. Note that
such a depth-first search defines an incomplete resolution procedure, whereas a breadth-first
search strategy defines a complete one. Although SLD resolution is both sound and complete
for Horn clauses, in practical realizations for reasons of efficiency, variants of the algorithm
are used that are neither sound nor complete. First of all, in many implementations the

52 Chapter 2. Logic and Resolution

← P (a) P (x)← P (f(x)), {a/x}

← P (f(a)) P (x)← P (f(x)), {f(a)/x}

← P (f(f(a))) P (f(f(a))), ǫ

�

Figure 2.8: Refutation by SLD resolution.

← P (a)

← P (f(a))

← P (f(f(a)))

. . . �

C1

C1

C1 C2

Figure 2.9: An SLD tree.

2.7. Resolution strategies 53

‘expensive’ occur check has been left out from the unification algorithm, thus destroying the
soundness; the lack of the occur check might lead to circular variable bindings and yield
‘resolvents’ that are no logical consequences of the set of clauses. Furthermore, often the
original clauses are ‘tried’ in some specific order, such as for example the order in which the
clauses have been specified; the next input clause is only examined after the previous one has
been fully explored. As a consequence, the algorithm might not be able to find a proof of a
given theorem: due to an inappropriate choice of the order in which the clauses are processed,
an infinite derivation tree can be created. This way, completeness of SLD resolution will be
lost.

We have mentioned before that SLD resolution is of major interest because of its relation
with the programming language PROLOG. In PROLOG, the control strategy employed is
roughly an implementation of SLD resolution; the variant used however, is neither sound
nor complete. In most (standard) PROLOG systems, the selection rule picks the leftmost
atom from a goal for resolution. A depth-first strategy for searching the SLD tree is used:
most PROLOG systems ‘try’ the clauses in the order in which they have been specified.
Furthermore, in many PROLOG systems, for efficiency reasons, the occur check has been left
out from the implementation.

The Horn clause subset of logic is not as expressive as the full clausal form of logic is. As
is shown in the following example, this might lead to problems when translating the logical
formulas into the Horn clause subset. We next show what solution PROLOG offers to this
problem.

EXAMPLE 2.41

In Section 2.2 we defined the following predicates with their associated intended mean-
ing:

Car = ‘is a car’
Fast = ‘is a fast car’
Vehicle = ‘is a vehicle’
FourWheels = ‘has four wheels’
Exception = ‘is an exception’

The formula ∀x(Car(x) → Vehicle(x)) represents the knowledge that every car is a
vehicle. This formula is logically equivalent to ∀x(¬Car(x)∨Vehicle(x)) and results in
the following PROLOG clause:

vehicle(X) :- car(X).

The knowledge that a Bugatti is a fast car, is represented in PROLOG by a single fact:

fast(bugatti).

The implication

∀x((Car(x) ∧ ¬Exception(x))→ FourWheels(x))

54 Chapter 2. Logic and Resolution

stating that almost every car, except for instance a Bugatti, has four wheels. This
formula is equivalent to

∀x(¬(Car(x) ∧ ¬Exception(x)) ∨ FourWheels(x))

and to the formula

∀x(¬Car(x) ∨ Exception(x) ∨ FourWheels(x))

in disjunctive normal form. Unfortunately, it is not possible to translate this formula
directly into PROLOG representation, since the clause contains two positive literals
instead of at most one.

However, it is possible to represent the knowledge expressed by the clause in PROLOG,
by means of the rather special programming trick offered by the meaning of the standard
predicate not, which will be discussed below. The PROLOG clause we arrive at is the
following:

fourwheels(X) :-

car(X),

not(exception(X)).

Note that in the analogous example in Section 2.2 it was necessary to specify that
an alfa-romeo is not an exception to the general rule that cars have four wheels. In
fact, for a correct behaviour of a proof procedure it was necessary to specify for each
artery explicitly whether or not it is an exception to the rule. In most applications
however, it is unreasonable to expect users to explicitly express all negative information
relevant to the employed proof procedure. This problem can be handled by considering
a ground literal ¬P proven if an attempt to prove P using SLD resolution has not
succeeded. So, in the particular case of the example, it is assumed that the goal clause
not(exception(alfa-romeo)) is proved.

The inference rule that a negative literal is assumed proven when the attempt to prove the
complementary literal has failed is called negation as failure. Negation as failure is similar
to the so-called closed-world assumption which is quite common in database applications.
In PROLOG, an even stronger assumption, known as negation as finite failure, is made by
taking ¬P proven only if proving P using SLD resolution has failed in a finite number of
steps. The PROLOG predicate not is the implementation of this negation as finite failure
and therefore should not be taken as the ordinary negation: it is an extra-logical feature of
PROLOG.

2.8 Applying logic for building intelligent systems

In the preceding sections, much space has been devoted to the many technical details of
knowledge representation and automated reasoning using logic. In the present section, we
shall indicate how logic can actually be used for building a logic-based intelligent system. As

2.8. Applying logic for building intelligent systems 55

logic offers suitable basis for model-based systems, more about the use of logic in the context
of intelligent systems will said in Chapter 6.

In the foregoing, we have seen that propositional logic offers rather limited expressiveness,
which in fact is too limited for most real-life applications. First-order predicate logic offers
much more expressive power, but that alone does not yet render the formalism suitable for
building intelligent systems. There are some problems: any automated reasoning method
for full first-order logic is doomed to have a worst-case time complexity at least as bad as
that of checking satisfiability in propositional logic, which is known to be NP-complete (this
means that no one has been able to come up with a better deterministic algorithm than an
exponentially time-bounded one, although it has not been proven that better ones do not
exist). Furthermore, we know that first-order predicate logic is undecidable; so, it is not
even sure that an algorithm for checking satisfiability will actually terminate. Fortunately,
the circumstances are not always as bad as that. A worst-case characterization seldom gives
a realistic indication of the time an algorithm generally will spend on solving an arbitrary
problem. Moreover, several suitable syntactic restrictions on first-order formulas have been
formulated from which a substantial improvement of the time complexity of the algorithm is
obtained; the Horn clause format we have paid attention to is one such restriction.

Since syntactic restrictions are only acceptable as far as permitted by a problem domain,
we consider some examples, such as the logical circuit introduced in Chapter 1. However, first
we discuss special standard predicates that are often used in modelling practical applications.

2.8.1 Reasoning with equality and ordering predicates

The special binary predicate symbols > (ordering predicate) and = equality predicate are
normally specified in infix position, since this is normal mathematical practice. Both equality
and the ordering predicates have a special meaning, which is described by means of a collection
of axioms. The meaning of the equality predicate is defined by means of the following four
axioms:

E1 (reflexivity): ∀x(x = x)

E2 (symmetry): ∀x∀y(x = y → y = x)

E3 (transitivity): ∀x∀y∀z(x = y ∧ y = z → x = z)

E4 (substitutivity): ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn) → f(x1, . . . , xn) =
f(y1, . . . , yn)), and ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn ∧ P (x1, . . . , xn)) →
P (y1, . . . , yn))

Axiom E1 states that each term in the domain of discourse is equal to itself; axiom E2

expresses that the order of the arguments of the equality predicate is irrelevant. Axiom E3

furthermore states that two terms which are equal to some common term, are equal to each
other. Note that axiom E2 follows from the axioms E1 and E3; nevertheless, it is usually
mentioned explicitly. The three axioms E1, E2 and E3 together imply that equality is an
equivalence relation. Addition of axiom E4 renders it a congruence relation. The first part
of axiom E4 states that equality is preserved under the application of a function; the second
part expresses that equal terms may be substituted for each other in formulas.

EXAMPLE 2.42

56 Chapter 2. Logic and Resolution

Consider the following set of clauses S:

S = {¬P (f(x), y) ∨Q(x, x), P (f(a), a), a = b}

Suppose that, in addition, we have the equality axioms. If we add the clause ¬Q(b, b) to
S, the resulting set of clauses will be unsatisfiable. This can easily be seen informally as
follows: we have P (f(a), a) ≡ P (f(b), a) using the given clause a = b and the equality
axiom E4. Now, we replace the atom P (f(a), a) by the equivalent atom P (f(b), a) and
apply binary resolution.

The explicit addition of the equality axioms to the other formulas in a knowledge base suffices
for rendering equality available for use in an intelligent system. However, it is well known
that proving theorems in the presence of the equality axioms can be very inefficient, since
many redundant clauses may be generated using resolution. Again, several refinements of the
(extended) resolution principle have been developed to overcome the inefficiency problem. For
dealing with equality, the resolution principle has for example been extended with an extra
inference rule: paramodulation. Informally speaking, the principle of paramodulation is the
following: if clause C contains a term t and if we have a clause t = s, then derive a clause by
substituting s for a single occurrence of t in C. Therefore, in practical realizations equality is
often only present implicitly in the knowledge base, that is, it is used as a ‘built-in’ predicate.

Another, more restrictive way to deal with equality is demodulation, which adds direc-
tionality to equality, meaning that one side of the equality may be replaces (rewitten) by the
other side, but not the other way around.

Definition 2.32 A demodulator is a positive unit clause with equality predicate of the form
(l = r), where l and r are terms. Let C ∨ Lt a clause; where Lt indicates that the literal L
contains the term t. Let σ be a substitution such that lσ = t, then demodulatie is defined as
the inference rule:

C ∨ Lt, (l = r)

C ∨ Lt→rσ

where Lt→rσ indicates that term t is rewritten to rσ.

Thus a demodulator (l = r) can be interpreted as a rewrite rule l → r with a particular
orientation (here from left to right).

EXAMPLE 2.43

Consider the demodulator

(brother (father (x)) = uncle(x))

and the clause

(age(brother (father (John))) = 55)

Application of the demodulator yields

(age(uncle(John)) = 55)

The applied substitution was σ = {Jan/x}.

2.8. Applying logic for building intelligent systems 57

In many real-life applications, a universally quantified variable ranges over a finite domain
D = {ci | i = 1, . . . , n, n ≥ 0}. The following property usually is satisfied: ∀x(x = c1 ∨ x =
c2 ∨ . . . ∨ x = cn), with ci 6= cj if i 6= j. This property is known as the unique names
assumption; from this assumption we have that objects with different names are different.

EXAMPLE 2.44

Consider the following set of clauses S:

S = {¬P (x) ∨ x = a}

We suppose that the equality axioms as well as the unique name assumption hold. Now,
if we add the clause P (b) to S, we obtain an inconsistency, since the derivable clause
b = a contradicts with the unique name assumption.

The ordering predicates < and > define a total order on the set of real numbers. They express
the usual, mathematical ‘less than’ and ‘greater than’ binary relations between real numbers.
Their meaning is defined by means of the following axioms:

O1 (irreflexivity): ∀x¬(x < x))

O2 (antisymmetry): ∀x∀y(x < y → ¬(y < x))

O3 (transitivity): ∀x∀y∀z((x < y ∧ y < z)→ x < z)

O4 (trichonomy law): ∀x∀y((x < y ∨ x = y ∨ x > y)

Axiom O1 states that no term is less that itself; axiom O2 expresses that reversing the order of
the arguments of the predicate < reverses the meaning. Axiom O3 furthermore states that if
a term is less than some other term, and this term is less than a third term, then the first term
is less than the third one as well. Note that axiom O2 follows from O1 and O3. The axioms
O1, O2 and O3 concern the ordering predicate <. The axioms for the ordering predicate
> are similar to these: we may just substitute > for < to obtain them. Axiom O4 states
that a given term is either less than, equal to or greater than another given term. Again, in
practical realizations, these axioms usually are not added explicitly to the knowledge base,
but are assumed to be present implicitly as ‘built-in’ predicates or as evaluable predicates,
that after it has been checked that all variables are instantiated to constants, are evaluated
as an expression, returning true or false.

2.8.2 Reasoning models

In this section, a number of examples will be discussed in order to give the reader a feeling
how real-world models look like. Of course, given the space available, the examples discussed
are still toy examples, but nevertheless inspired by the realistic problems.

58 Chapter 2. Logic and Resolution

i1

i2

i3

o1 = f1(i1, i2, i3)

o2 = f2(i1, i2, i3)

Figure 2.10: Black-box logical circuit.

Functional models

In Chapter 1 we have discussed logical circuits as examples of deep knowledge. Here, we
study a logical formalisation of this circuit and dicuss ways in which a specification of a
logical circuit can be used for simulation purposes.

A logical circuit can be considered a black-box with inputs i1, . . . , in and outputs o1, . . . , om,
such that ok = fk(i1, . . . , in), as shown in Figure 2.10. For simplicities sake it is assumed that
ij and ok are Boolian variables which can take values false and true, normally in this context
of Boolean logic represented as 0 and 1. Hence, the functions fk are Boolean functions of n
Boolean variables. The following components make up the internals of a circuit:

• gates, and

• wires, connecting the gates.

Here, the following gates with two inputs and one output are distinguished:

• the AND-gate,

• the OR-gate,

• the XOR-gate (‘exclusive’ OR).

In addition, we have the NOT-gate (or ‘inverter’) which has one input and one output. Logical
gates are drawn using pictograms as shown in Figure 2.11.

Let L = (C,A,B, I,O) be a logical circuit, where C denotes a set of components, A their
properties, and B represents the wires; I and O are sets of inputs and outputs, respectively.
If x ∈ C is a components, then, for example, Andg(x) indices an AND-gate.

Input and outputs are specified as follows:

• i(k, x) is the kth input of gate x;

• o(k, x) is the kth output of gate x.

The wires B are represented by the predicate symbol

Connects(x, y)

indicating that gates x and y are connected by a wire. Values of input or output signals are
specified as follows

v(k) = b

indicating that input or output k transmits a signal with value b. For example, v(i(1, a)) = 1
indicates that the first input of component a is equal to 1.

The properties of the gates can now be specified as follows:

2.8. Applying logic for building intelligent systems 59

(a) NOT-gate (b) OR-gate

(c) AND-gate (d) XOR-gate

Figure 2.11: Pictograms of gates.

∀x((Andg(x) ∧
(v(i(1, x)) = 1) ∧
(v(i(2, x)) = 1))
→
(v(o(1, x)) = 1))

∀x∀n((Andg(x) ∧
(v(i(n, x)) = 0))
→
(v(o(1, x)) = 0))

∀x∀n(Org(x) ∧
(v(i(n, x)) = 1))
→
(v(o(1, x)) = 1))

∀x((Org(x) ∧
(v(i(1, x)) = 0) ∧
(v(i(2, x)) = 0))
→
(v(o(1, x)) = 0))

∀x∀z((Xorg(x) ∧
(v(i(1, x)) = z) ∧
(v(i(2, x)) = z))
→
(v(o(1, x)) = 0))

∀x∀y∀z((Xorg(x) ∧
(v(i(1, x)) = y) ∧
(v(i(2, x)) = z) ∧
(y 6= z))

60 Chapter 2. Logic and Resolution

fa

ex 1

ad1

ad2

ex 2

or 1

i1

i2

i3

o1

o2

Figure 2.12: The full adder.

→
(v(o(1, x)) = 1))

The binary predicate symbol Connects is used to specify properties of wires, and these prop-
erties are also part of the set A:

∀x∀y∀z((Connects(x, y) ∧
(v(x) = z))
→
(v(y) = z))

Now, let us again consider the full-adder circuit already introduced in Chapter 1.

EXAMPLE 2.45

The full-adder shown in Figure 2.12 consists of the following gates:

Adder (fa)
Xorg(ex 1)
Xorg(ex 2)
Andg(ad1)
Andg(ad2)
Org(or1)

where Adder (fa); represents the entire full-adder, i.e. the back-box as shown in Figure
2.10. The three inputs to the circuit are specified as follows:

v(i(1, fa)) = 1
v(i(2, fa)) = 0
v(i(3, fa)) = 1

i.e. we have that i1 = 1, i2 = 0 and i3 = 1. Similarly, the outputs o1 and o2 are
represented as follows:

2.8. Applying logic for building intelligent systems 61

v(o(1, fa)) = 0
v(o(2, fa)) = 1

Hence, it holds that o1 = 0 and o2 = 1. Finally, we need to specify the wires connecting
the gates:

Connects(i(1, fa), i(1, ex 1))
Connects(i(2, fa), i(2, ex 1))
Connects(i(1, fa), i(1, ad 1))
Connects(i(2, fa), i(2, ad 1))
Connects(i(3, fa), i(2, ex 2))
Connects(i(3, fa), i(1, ad 2))
Connects(o(1, ex 1), i(1, ex 2))
Connects(o(1, ex 1), i(2, ad 2))
Connects(o(1, ad 2), i(1, or 1))
Connects(o(1, ad 1), i(2, or 1))
Connects(o(1, ex 2), o(1, fa))
Connects(o(1, or 1), o(2, fa))

Note that we have not indicated that the Connects predicate is symmetric, i.e. signals
go in one direction only.

An obvious application of a logical circuit is simulation. As this would amount to transforming
input into output, positive hyperresolution, i.e. a form of bottom-up inference, seems most
suitable. We thus obtain the following specification of the problem we need to solve:

C ∪B ∪A ∪ {v(i(k, j)) = b | for certain k, j} ∪ {¬v(o(x, y)) = z} ⊢P �

Note that ¬v(o(x, y)) = z has to be included in order make sure that the empty clause � is
derived.

Spatial and anatomical reasoning

In certain fields of medicine, for example neurology, knowledge concerning the anatomy of the
human body is of major importance. The form of automated reasoning in which knowledge
concerning the anatomy of the human body is applied, is known as anatomical reasoning or,
more in general, as spatial reasoning.

The point of departure for any intelligent system implementing anatomical reasoning, is
the axiomatization of the basic anatomical relations. The more precise the description of
the anatomical structures must be, the more complex the resulting axiomatization will be.
Not always is a precise three-dimensional specification of anatomical relations required. In
our approach to anatomical reasoning, it suffices to indicate only that certain anatomical
structures are connected to each other in a qualitative way, as axiomatized by the Connected
predicate. This predicate is defined as a transitive, irreflexive relation, as follows:

∀x∀y∀z(Connected(x, y) ∧ Connected(y, z)→ Connected(x, z))
∀x(¬Connected(x, x))

62 Chapter 2. Logic and Resolution

internal

III: hyperacusis

V: deafness

IV: herpes auditory duct

II: taste loss

I: drooping mouth

level

auditory duct

stapedius nerve

facial canal

Figure 2.13: Levels in the facial nerve.

Note that the Connected predicate is by its transitive and irreflexive properties also antisym-
metric. (So, a theorem prover is capable of detecting an inconsistency given the formulas
Connected(a, b) and Connected(b, a) from the two axioms given above.)

As a starting point for our discussion concerning the specification of anatomical reasoning
in logic, we consider an actual example (the diagnosis of lesions of the facial nerve) taken
from a textbook of neurology.

The classical picture of facial palsy is well known. These patients have a mouth that
droops and may draw to the opposite side. They cannot wrinkle the forehead or close the
eye at the affected side. Facial palsy is due to a lesion of the facial nerve (cranial nerve
VII); this nerve can be affected by a large variety of disorders. The severity and nature of
the complaints and signs that may be observed in the patient depend on the level of facial
nerve lesion. Knowledge of the branching pattern of the nerve and the consequences of a
lesion of a particular branch is important in diagnostic problem solving. Figure 2.13 gives a
schematic overview of the branching pattern of this nerve. The facial nerve is a mixed nerve;
it contains motor fibers that supply striated muscle fibers, sensory fibers that carry taste from
the anterior two-third of the tongue and some sensation, and parasympathetic fibers.

The facial nerve emerges from the brain stem and leaves the skull via the internal auditory
meatus. Next, a small nerve is branched off (the stapedius nerve), that supplies the stapedius
muscle (a small muscle that is attached to the ear drum, regulating its tension). The facial
nerve proceeds its way through the facial canal (in the temporal bone), next branching off
the chorda tympani, a nerve mostly consisting of parasympathetic fibers that supply the
submandibular and sublingual glands. The facial nerve leaves the facial canal through the
stylomastoid foramen. Finally, it splits up in a number of branches that supply the superficial
musculature of the face and scalp (e.g. orbicularis oris et oculi, buccinator, platysma).

A bit simplified, we distinguish the following five levels of facial nerve lesions (consult
again Figure 2.13):

Level 1: A lesion outside the stylomastoid foramen produces signs such as drooping of the

2.8. Applying logic for building intelligent systems 63

mouth. The patient cannot whistle, wink, close the eye or wrinkle the forehead. When
the patient attempts to close the eye, the eye bulb will turn upward (Bell’s sign).

Level 2: A lesion of the nerve in its course through the facial canal will result in all the signs
as present in a level 1 lesion, but in addition there is reduced salivation (lesion of the
chorda tympani) and loss of taste in the anterior two-thirds of the tongue.

Level 3: All signs of a level 2 lesion are present, but in addition the stapedius nerve is
affected, causing hyperacusis (due to paralysis of the stapedius muscle).

Level 4: A lesion of the geniculate ganglion is usually due to herpes zoster, in which case
herpetic lesions are visible on the ear drum and external auditory canal (Ramsay Hunt
syndrome). Typically, a patient will experience pain in and behind the ear.

Level 5: A lesion in the internal auditory meatus is usually associated with acoustic nerve
(cranial nerve VIII) involvement, because the last nerve also runs through this canal.
In addition to the signs mentioned for lower level lesions, deafness will be present.

This completes the description of the neurological knowledge involved in diagnosing facial
nerve lesions.

In formalizing this knowledge using first-order predicate logic, we start by completing
the axiomatization of the anatomical relationships by giving a domain-specific fill-in for the
Connected predicate. The atom Connected(x, y) is intended to mean that the facial nerve
runs from level x up to level y:

Connected(stylomastoid foramen,chorda tympani)
Connected(chorda tympani,stapedius nerve)
Connected(stapedius nerve,geniculate ganglion)
Connected(geniculate ganglion,internal auditory meatus)

Note that we have employed anatomical terms to denote the various levels.
To relate anatomical structures and signs that may arise due to facial nerve lesion, we

have to express that the signs associated with a lesion at a certain level x includes all the
signs of a lesion at a lower level y:

∀x∀y(Lesion(x) ∧ Connected(y, x)→ Lesion(y))

This completes our axiomatization of the knowledge that forms the basis of logical anatomical
reasoning.

We next specify the relationship between a lesion at a certain level and the specific anatom-
ical structures that will be affected by this lesion, expressed by the unary predicate symbol
Affected . We use a bi-implication, because given a lesion at a certain level we may want to
know which structures will be affected by this lesion; on the other hand, the observation of
malfunction of certain structures may be interpreted as evidence for a lesion at a certain level
(in Chapter 6 will see that it is more natural to use abduction for diagnostic reasoning using
causal knowledge):

(Lesion(stylomastoid foramen)↔
(Affected(orbicularis oris) ∧
Affected(orbicularis oculi) ∧

64 Chapter 2. Logic and Resolution

Affected(buccinator) ∧
Affected(frontalis muscle) ∧
Affected(platysma)))

(Lesion(chorda tympani)↔
(Affected(sensory taste fibers) ∧
Affected(sublingual gland) ∧
Affected(submaxillary gland)))

(Lesion(stapedius nerve)↔ Affected(stapedius muscle))

(Lesion(geniculate ganglion)↔ Affected(sensory fibers ear))

(Lesion(internal auditory meatus)↔ Affected(acoustic nerve))

Finally, paralysis of certain muscles and disturbed sensation will give rise to specific signs
and complaints in the patient. This knowledge is again expressed using a collection of bi-
implications:

(Affected(orbicularis oris)↔ (Sign(mouth droops) ∧
Sign(cannot whistle)))

(Affected(orbicularis oculi)↔ (Sign(cannot close eyes) ∧ Sign(Bell)))

(Affected(buccinator)↔ Sign(flaccid cheeks))

(Affected(frontalis muscle)↔ Sign(cannot wrinkle forehead))

(Affected(platysma)↔ Sign(paresis superficial neck musculature))

((Affected (sublingual gland) ∧ Affected(submaxillary gland)) ↔
Complaint (dry mouth))

(Affected(sensory taste fibers)↔ Complaint (taste loss anterior part tongue))

(Affected(stapedius muscle)↔ Complaint (hyperacusis))

(Affected(sensory fibers ear) ↔
(Complaint (pain behind ear) ∧
Complaint (pain within ear) ∧
Sign(herpetic lesions)))

(Affected(acoustic nerve)↔ Complaint(deafness))

Let T be the logical theory given above. For example, after automatic translation to clausal
form, using hyperresolution we are now capable to derive:

T ∪ {Lesion(stapedius nerve)} ∪ {¬Sign(x)} ∪ {¬Complaint (y)} ⊢P �

where for x we have mouth droops, cannot whistle, cannot close eyes, Bell, flacid cheeks,
cannot wrinkle forehead and paresis superficial neck musculature; for y we have hyperacusis,

2.8. Applying logic for building intelligent systems 65

dry mouth and taste loss anterior part tongue. Note that all results but the complaint hypera-
cusis have been derived using the anatomical axioms for the Connected predicate. Reasoning
from signs and complaints to the level of a facial nerve lesion is also possible (essentially
employing the bi-implication), but here we need a meta-level primitive that selects from the
unit clause concerning Lesion the one specifying knowledge regarding the highest level of the
lesion.

In our formalization of the anatomical reasoning model, we did not make a distinction
between left- and right-sided lesions of the facial nerve. The extension of the logical theory
to include this distinction is straightforward.

Causal reasoning

Although in the previous section we primarily focussed on the logical specification of anatom-
ical relations, implicitly other reasoning models were also involved. Some of the formulas
presented in the previous section express some relationship between cause and effect of nerve
damage, thus representing causal knowledge. The reasoning about such cause–effect relation-
ships is known as causal reasoning. In the present section, we shall study the logic of causal
reasoning in medicine, taking the logical specification of physiological processes as a point of
departure.

The representation of causal knowledge in logic is rather straightforward; it may be rep-
resented by means of a collection of logical implications of the following form:

cause → effect

where both cause and effect are conjunctions of literals. Most literals refer to the state of some
parameter; the states of all parameters together describe the entire physiological process. As
an example of a parameter consider the level of a substance in the blood; the actual level of
the substance stands for the parameter’s state.

A state is either numeric or qualitative. An example of a numeric state (of parameter
level of sodium in the blood) is expressed by the following unit clause:

conc(blood, sodium) = 125

In clinical practice, numeric parameters are often changed to qualitative states. In the above
case, we get:

conc(blood, sodium) = decreased

There are several common types of causal reasoning in medicine. We shall study the negative
feedback process and its logical specification in some detail.

In terms of cause–effect relationships, the global specification of a negative feedback pro-
cess leads to the following logical theory T (to simplify matters, we have assumed that a cause
consists of a single literal):

s→ r1
r′1 → r2

...
r′n−1 → rn
r′n → ¬s

66 Chapter 2. Logic and Resolution

chance in

blood pressure

blood volume

chance in

water-sodium exchange

chance in

aldosterone

adrenal glands

angiotensin-II

angiotensin-I

angiotensinogen

renin

apparatus

juxtaglomerular

Figure 2.14: The renin–angiotensin–aldosterone system.

where s, ri, r
′
i, 1 ≤ i ≤ n, n ≥ 1 are literals in first-order logic; the literals ri, r

′
i are similar,

in the sense that substitution of terms for variables occurring in these literals can make them
syntactically equal. Note that we have T |= ¬s; in words: the negative feedback is a semantic
consequence of the process description.

To investigate the applicability of this approach to formalizing causal reasoning in medicine,
we have chosen a particular example of a negative feedback process from the literature, viz.
the renin–angiotensin–aldosterone system. We start by giving a brief summary of the medical
knowledge involved.

The regulation of the blood pressure is accomplished by the collaborative effort of a
number of control systems in the human body. One of these control systems is the renin–
angiotensin–aldosterone system. Figure 2.14 gives a pictorial overview of this control system.
We review the regulatory factors involved.

The proteolytic enzyme renin is released by cells of the juxtaglomerular apparatus in the
kidneys. A decrease in the mean renal arterial pressure increases the renin secretion, and an
increase in the mean renal arterial pressure leads to a decrease in the renin secretion. Renin
acts on an α2-globulin (angiotensinogen) that circulates in the blood, liberating the decapep-
tid angiotensin-I . In turn, the octapeptid angiotensin-II is liberated from angiotensin-I by
angiotensin converting enzyme (ACE) that is produced in the lungs.

Angiotensin-II is a powerful arteriolar constrictor; administration of angiotensin-II leads
to an increase in arterial blood pressure. In addition, it stimulates the secretion of aldosterone,
a hormone produced by the adrenal cortex; an increase in angiotensin-II levels in the blood
increases aldosterone levels in the blood. Aldosterone stimulates active reabsorption of Na+

2.8. Applying logic for building intelligent systems 67

from the urine and the secretion of K+ to the urine. Water moves with the reabsorbed Na+

to the blood, which causes an increase in blood volume. This in turn leads to an increase in
blood pressure. Finally, an increase in blood pressure inhibits the secretion of renin. This
completes our description.

When considering the physiological process described above in terms of a causal model,
we have to analyse its behaviour in terms of causes and effects. We start this formalization
by introducing a number of predicate and function symbols and constants that will be used
to represent parameters and states. For the representation of the level of a substance in the
blood we employ the binary function symbol conc. The unary function symbol pressure stands
for blood pressure. The conversion of one substance into another substance by some enzyme,
will be represented by the binary function symbol conversion. Finally, we distinguish two
constants: decreased and increased to express the states of various parameters in a qualitative
way. Step by step, the text given above will now be translated into a logical theory T .

A decrease in the blood pressure yields an increase in renin blood levels:

pressure(blood) = decreased → conc(blood, renin) = increased

The relationship between renin levels in the blood and conversion of angiotensinogen into
angiotensin-I is expressed as follows:

∀v(conc(blood, renin) = v → conversion(angiotensinogen,angiotensin I) = v)

where the universally quantified variable v stands for increased or decreased.
The relationship between decreased or increased conversion of angiotensinogen into angiotensin-

I is represented by means of the following logical implication:

∀v(conversion(angiotensinogen,angiotensin I) = v →
conc(blood, angiotensin I) = v)

A change v in the blood level of angiotensin-I leads to an inverse change in the ACE levels,
and a similar change in angiotensin-II levels:

∀v(conc(blood, angiotensin I) = v →
(¬(conc(blood,ACE) = v) ∧ conversion(angiotensin I , angiotensin II) = v))

∀v(conversion(angiotensin I,angiotensin II) = v →
conc(blood, angiotensin II) = v)

Angiotensin-II produces arterial vasoconstriction and an increase in aldosterone levels:

conc(blood, angiotensin II) = increased
→
(Vasoconstriction(arteries,peripheral) ∧
conc(blood, aldosterone) = increased)

Arterial vasoconstriction produces an increase in bloodpressure:

Vasoconstriction(arteries,peripheral)→ pressure(blood) = increased

An increase in the aldosterone levels results in an increase of blood sodium and a decrease of
the potassium levels:

68 Chapter 2. Logic and Resolution

conc(blood, aldosterone) = increased →
(conc(blood, sodium) = increased ∧ conc(blood, potassium) = decreased)

The reabsorption of sodium is accompanied by the reabsorption of water, causing an increase
in blood volume; more in general, a change in sodium level causes a change in blood volume:

∀v (conc(blood, sodium) = v → volume(blood) = v)

The change in blood volume causes a similar change in cardiac output:

∀v(volume(blood) = v → output(heart) = v)

A change in cardiac output causes the same change in blood pressure:

∀v(output(heart) = v → pressure(blood) = v)

A change in bloodpressure causes an inverse change in renin levels:

∀v(pressure(blood) = v → ¬(conc(blood, renin) = v))

Finally, we need to express that ‘increased’ and ‘decreased’ are different notions:

¬(increased = decreased)

This completes our formalization of the causal knowledge concerning the renin–angiotensin–
aldosterone system.

After (automatic) conversion of this logical theory T to clausal form, a resolution-based
theorem prover is capable of deriving in six steps

T ∪ {pressure(blood) = decreased} ⊢ �

the last step being the derivation of

pressure(blood) = increased

among others via the intermediate derivation of

Vasoconstriction(arteries , peripheral)

yielding a contradiction with

pressure(blood) = decreased

2.9 Logic as a representation formalism

Compared to other knowledge representation formalisms in artificial intelligence, logic has
the great advantage of having a clear syntax and semantics. A logical deductive system in
principle offers a set of inference rules, which is sound and complete: each formula derived
using such a set of inference rules has a meaning that is unique in terms of the meaning of the
formulas it was derived from. So, logic offers a starting point for studying the foundations of
knowledge representation and manipulation.

First-order logic in its pure form however has hardly ever been used as a knowledge rep-
resentation formalism in intelligent systems. This is partly due to the difficulty of expressing

2.9. Logic as a representation formalism 69

domain knowledge in logical formulas. When in a specific problem domain the knowledge
is not available in a form ‘close’ to logic, a lot of energy has to be invested into converting
intelligent knowledge to logical formulas, and in this process often valuable information is
lost. Moreover, the type of logic that has been dealt with in this chapter, which is some-
times called standard logic, is not suitable for encoding all types of knowledge. For example,
reasoning about time, and reasoning about reasoning strategies to be followed, often called
meta-inference, cannot be represented directly in first-order predicate logic. Moreover, in
standard logic it is not possible to handle incomplete and uncertain information, or to deal
adequately with exceptional cases to general rules. Currently however, a lot of research is
going on concerning non-standard logics for expressing such concepts in a formal way.

Exercises

(2.1) Consider the interpretation v : PROP → {true , false} in propositional logic, which is
defined by v(P) = false , v(Q) = true and v(R) = true. What is the truth value of the
formula ((¬P) ∧Q) ∨ (P → (Q ∨R)) given this interpretation v?

(2.2) For each of the following formulas in propositional logic determine whether it is valid,
invalid, satisfiable, unsatisfiable or a combination of these, using truth tables:

(a) P ∨ (Q→ ¬P)

(b) P ∨ (¬P ∧Q ∧R)

(c) P → ¬P

(d) (P ∧ ¬Q) ∧ (¬P ∨Q)

(e) (P → Q)→ (Q→ P)

(2.3) Suppose that F1, . . . , Fn, n ≥ 1, and G are formulas in propositional logic, such that
the formula G is a logical consequence of {F1, . . . , Fn}. Construct the truth table of the
implication F1 ∧ · · · ∧ Fn → G. What do you call such a formula?

(2.4) Prove the following statements using the laws of equivalence for propositional logic:

(a) P → Q ≡ ¬P → ¬Q

(b) P → (Q→ R ≡ (P ∧Q)→ R

(c) (P ∧ ¬Q)→ R ≡ (P ∧ ¬R)→ Q

(d) P ∨ (¬Q ∨R) ≡ (¬P ∧Q)→ R

(2.5) Prove that the proposition ((P → Q) → P) → P , known as Peirce’s law, is a tautol-
ogy, using the laws of equivalence in propositional logic and the property that for any
propositions π and φ, the formula π ∨ ¬φ ∨ φ is a tautology.

(2.6) In each of the following cases, we restrict ourselves to a form of propositional logic only
offering a limited set of logical connectives. Prove by means of the laws of equivalence
that every formula in full propositional logic can be translated into a formula only
containing the given connectives:

(a) the connectives ¬ and ∨.

70 Chapter 2. Logic and Resolution

Table 2.6: Meaning of Sheffer stroke.
F G F |G
true true false
true false true
false true true
false false true

(b) the connective | which is known as the Sheffer stroke; its meaning is defined by the
truth table given in Table 2.6.

(2.7) Consider the following formula in first-order predicate logic: ∀x(P (x)∨Q(y)). Suppose
that the following structure

S = ({2, 3},∅, {A : {2, 3} → {true, false}, B : {2, 3} → {true, false})

is given. The predicates A and B are associated with the predicate symbols P and Q,
respectively. Now, define the predicates A and B, and a valuation v in such a way that
the given formula is satisfied in the given structure S and valuation v.

(2.8) Consider the following statements. If a statement is correct, then prove its correctness
using the laws of equivalence; if it is not correct, then give a counterexample.

(a) ∀xP (x) ≡ ¬∃x¬P (x)

(b) ∀x∃yP (x, y) ≡ ∀y∃xP (x, y)

(c) ∃x(P (x)→ Q(x)) ≡ ∀xP (x)→ ∃xQ(x)

(d) ∀x(P (x) ∨Q(x)) ≡ ∀xP (x) ∨ ∀xQ(x)

(2.9) Transform the following formulas into the clausal form of logic:

(a) ∀x∀y∃z(P (z, y) ∧ (¬P (x, z)→ Q(x, y)))

(b) ∃x(P (x)→ Q(x)) ∧ ∀x(Q(x)→ R(x)) ∧ P (a)

(c) ∀x(∃y(P (y) ∧R(x, y))→ ∃y(Q(y) ∧R(x, y)))

(2.10) For each of the following sets of clauses, determine whether or not it is satisfiable. If
a given set is unsatisfiable, then give a refutation of the set using binary resolution;
otherwise give an interpretation satisfying it:

(a) {¬P ∨Q,P ∨ ¬R,¬Q,¬R}

(b) {¬P ∨Q ∨R,¬Q ∨ S,P ∨ S,¬R,¬S}

(c) {P ∨Q,¬P ∨Q,P ∨ ¬Q,¬P ∨ ¬Q}

(d) {P ∨ ¬Q,Q ∨R ∨ ¬P,Q ∨ P,¬P}

(2.11) Let E be an expression and let σ and θ be substitutions. Prove that E(σθ) = (Eσ)θ.

(2.12) For each of the following sets of expressions, determine whether or not it is unifiable. If
a given set if unifiable, then compute a most general unifier:

2.9. Logic as a representation formalism 71

(a) {P (a, x, f(x)), P (x, y, x)}

(b) {P (x, f(y), y), P (w, z, g(a, b))}

(c) {P (x, z, y), P (x, z, x), P (a, x, x)}

(d) {P (z, f(x), b), P (x, f(a), b), P (g(x), f(a), y)}

(2.13) Use binary resolution to show that each one of the following sets of clauses is unsatisfi-
able:

(a) {P (x, y) ∨Q(a, f(y)) ∨ P (a, g(z)),¬P (a, g(x)) ∨Q(a, f(g(b))),¬Q(x, y)}

(b) {append (nil , x, x), append (cons(x, y), z, cons(x, u)) ∨ ¬append(y, z, u),
¬append(cons(1, cons(2,nil)), cons(3,nil), x)}

(c) {R(x, x), R(x, y) ∨ ¬R(y, x), R(x, y) ∨ ¬R(x, z) ∨ ¬R(z, y), R(a, b),¬R(b, a)}

Remark. The first three clauses in exercise (c) define an equivalence relation.

(2.14) Consider the set of clauses {¬P,P ∨Q,¬Q,R}. We employ the set-of-support resolution
strategy. Why do we not achieve a refutation if we set the set of support initially to the
clause R?

(2.15) Develop a logic knowledge base for a problem domain you are familiar with.

72 Chapter 2. Logic and Resolution

Chapter 3

Production Rules and Inference

In the early 1970s, Alan Newell and Herbert Simon introduced the notion of a production
system as a psychological model of human behaviour. In this model, part of the human knowl-
edge is being represented in separate units called productions or production rules. These units
contain information concerning actions a person has to take upon the perception of certain
stimuli from the environment. Such actions may affect a person’s view on the environmental
reality, on the one hand because previous assumptions may have to be revised, and on the
other hand because possibly new phenomena have to be explained. The model of Newell and
Simon closely resembles the two-process theory of memory in cognitive psychology, where two
different mechanisms for the storage of incoming sensory information are distinguished: the
short-term memory, and the long-term memory, respectively. The short-term memory only
contains a limited amount of rapidly decaying information. It corresponds to the part of a
production system in which input and derived data are kept. The long-term memory is for
permanent storage of information, and corresponds to the rule base of a production system in
which the production rules are specified. The production-rule formalism has been employed
by many other researchers in addition to Newell and Simon. Most of them, however, view
the production-rule formalism merely as a formal language for expressing certain types of
knowledge. The formalism has for example been used in the Heuristic DENDRAL system for
predicting the molecular structure of compounds, as has been discussed in chapter 1. Part
of the knowledge necessary for the purpose of this system has been encoded by means of
production rules. The greatest success of the formalism, however, came with the building of
the MYCIN and EMYCIN systems, in which the suitability of production rules for building
diagnostic intelligent systems was convincingly shown. Another successful system, more di-
rectly employing the work of Newell and Simon, is OPS5, and its successor CLIPS, which will
be discussed in Chapter 8.

Many present-day intelligent systems use the production-rule formalism as a knowledge
representation scheme. Practical experience with production rules has proven this formalism
to be particularly suitable in solving classification problems in which the available knowledge
takes the form of rules of thumb. In other types of applications, such as design and planning,
production rules have been applied with success as well. The suitability of the production
system approach for building certain types of intelligent systems not only depends on the
production-rule formalism itself, but also on the type of inference method employed for rule-
based reasoning.

In the present chapter, we closely look at a number of important notions from production

73

74 Chapter 3. Production Rules and Inference

systems. Section 3.1 discusses the various schemes for representing knowledge a production
system offers. We proceed by discussing the two basic reasoning methods for systems with
production rules in Section 3.2. To conclude, Section 3.3 pays attention to limitations of
production rules.

3.1 Knowledge representation in a production system

A production system offers a number of formalisms for representing expert knowledge. The
most important of these, of course, is the production-rule formalism, in which the actual
problem-solving knowledge is expressed. The entire set of production rules in a production
system is called its rule base. In addition to the production-rule formalism, a production
system provides a means for defining the objects referred to in the production rules, called the
domain declaration in this book. The rule base and the domain declaration together constitute
the knowledge base of the production system. These and other schemes for representing
knowledge will be discussed in detail in the subsequent sections.

3.1.1 Variables and facts

During a consultation of the knowledge base of a production system, information is constantly
being added, removed, or modified as a result of the application of production rules, of data
entered by the user, or as a result of querying some database. The facts that become known
to the system during a consultation, are stored in a so-called fact set, also known as the global
database or working memory of the system.

Factual information can be represented in a number of ways. One simple way is to
represent facts by means of variables which can take either a single constant or a set of
constants as a value. Note that the set of all variables defined in a production system together
with their possible values, presents a picture of the information which is relevant in the field
modelled in the system.

In general, two types of variable are discerned:

• single-valued variables, that is, variables which can take at most one constant value at
a time, and

• multi-valued variables, that is, variables which can take a set of constants for a value.

Single-valued variables are used to represent information which in the case under considera-
tion is unique; multi-valued variables are used for representing a collection of interrelated facts.

EXAMPLE 3.1

In a intelligent system, a variable with the name capabilities may be used for storing
information about the capabilities of a certain person. This variable has to be multi-
valued, because people may have more than one capability at the same time. An example
of a single-valued variable is the gender of a person.

Properties of variables, such as whether they are single- or multi-valued, and usually also
information concerning the values a variable is allowed to take, are all described in the domain

3.1. Knowledge representation in a production system 75

declaration of a knowledge base. The following definition provides a formal description of such
a domain declaration.

Definition 3.1 Let τ denote a nonempty set of constants, called a type. A typed variable
declaration is an expression of one of the following forms:

• xs : τ , where xs is a single-valued variable;

• xm : 2τ , where xm is a multi-valued variable.

Untyped variable declarations are expressions of the form xs, in the single-valued case, or
xm, in the multi-valued case. A set D of variable declarations for all variables occurring in
the knowledge base is called the domain declaration of the knowledge base.

Examples of types are the set of integer numbers, denoted by int, the set of real numbers,
denoted by real, and finite sets of constants such as {intelligent, attractive, outspoken}. Note
that a domain declaration is similar to a variable declaration part in, for instance, Pascal. It
restricts the values a variable may take.

A variable together with the value(s) it has adopted during a consultation is called a fact.

Definition 3.2 A fact is a statement having one of the following forms:

• xs = c, where c ∈ τ if xs is a single-valued variable declared as xs : τ ;

• xm = C, where C ⊆ τ if xm is a multi-valued variable declared as xm : 2τ .

A fact set has the following form:

{xs
1 = c1, . . . , x

s
p = cp, x

m
1 = C1, . . . , x

m
q = Cq}

where ci are constants and Cj are sets of constants. A variable may only occur once in a fact
set.

EXAMPLE 3.2

Consider the following domain declaration

D = gender : {female,male},
age : int,

personality : 2{intelligent,outspoken,arrogant},
hire : {yes,no}

of a knowledge base of an intelligent system. The following facts are typical elements
of a fact set after a specific consultation:

gender = male
age = 27
personality = {intelligent, outspoken}
hire = {yes}

76 Chapter 3. Production Rules and Inference

The statement ‘xs = unknown’ (or ‘xm = unknown’, respectively) is used to indicate that
the variable xs (or xm, respectively) has not been assigned an actual value; xs (or xm) is
then called unknown. The constant unknown has a special meaning: it expresses that the
inference engine has not been able to derive one or more values for the variable. Since its
meaning goes beyond (that is, meta) the contents of the fact set and the knowledge base, the
constant unknown is called a meta-constant.

It must be emphasized that a fact set is not a part of a knowledge base, but instead is
a separate component of the system. A fact set comprises information which is specific for
a particular consultation, whereas a knowledge base only contains declarations of variables
and therefore does not specify consultation-dependent values. In the following, we will fre-
quently assume that suitable variable declarations are present in the domain declaration of a
knowledge base, without explicitly referring to them.

3.1.2 Conditions and conclusions

At the beginning of this chapter, we mentioned that production rules are used for representing
problem-solving knowledge from a specific problem domain. The major part of this type of
knowledge takes the form of heuristic rules or rules of thumb, which, as we shall see, are the
informal, real-life analogies of production rules. In a heuristic rule, several conditions and
conclusions are interrelated, as follows:

if
certain conditions are fulfilled,

then
certain conclusions may be drawn.

EXAMPLE 3.3

An example of a heuristic rule, taken from the domain of the assessment of applicants
for a job, is the following:

if
the person’s age less than 60, and
the person is intelligent, and
the person is not arrogant

then
the person will be hired

In the process of knowledge engineering, such heuristic rules have to be transformed into their
formal counterparts, that is, into production rules. A production rule just like a heuristic
rule, consists of a number of conditions and conclusions. In a production rule, which unlike
a heuristic rule is a formal statement, the conditions and conclusions comprise the following
elements:

• symbolic and numeric constant values

• variables

3.1. Knowledge representation in a production system 77

• predicates and actions

An important part of the translation process therefore concerns the identification of the vari-
ables and constants that are relevant in the heuristic rules.

EXAMPLE 3.4

Consider the preceding heuristic rule once more. In the first condition a variable age
may be identified, the second and third conditions concerns a person’s personality, and,
finally, the conclusion concerns the question whether the firm is going to hire the person.
The following constant values may be introduced to represent the information further
comprised in the heuristic rule: 60, intelligent, arrogant and yes.

Several syntactic forms have been devised for the representation of production rules. In the
present book we employ the syntax described in the following definition.

Definition 3.3 A production rule is a statement having the following form:

〈production rule〉 ::= if 〈antecedent〉 then 〈consequent〉 fi
〈antecedent〉 ::= 〈disjunction〉 {and 〈disjunction〉}∗

〈disjunction〉 ::= 〈condition〉 {or 〈condition〉}∗

〈consequent〉 ::= 〈conclusion〉 {also 〈conclusion〉}∗

〈condition〉 ::= 〈predicate〉(〈variable〉,〈constant〉)
〈conclusion〉 ::= 〈action〉(〈variable〉,〈constant〉)
〈predicate〉 ::= same | notsame | greaterthan | . . .
〈action〉 ::= add | remove | . . .

In the production-rule formalism it is assumed that the or operator has a higher precedence
than the and operator. Note that the nesting of conjunctions and disjunctions is limited; this
is typical for production systems.

A condition is built from a predicate and two associated arguments: a variable and a con-
stant. By means of its predicate, a condition expresses a comparison between the specified
constant value and the actual value(s) the specified variable has adopted. In the context of
production systems, a predicate is a function which upon evaluation returns either the truth
value true or the value false. The way predicates are evaluated is illustrated by means of the
following example.

EXAMPLE 3.5

Let F be the following fact set:

F = {age = 70, personality = {intelligent, arrogant}}

where age is a single-valued variable and personality is a multi-valued one. Now consider
the following condition:

same(personality, intelligent)

78 Chapter 3. Production Rules and Inference

The predicate same returns upon evaluation the truth value true if intelligent is one of
the constants in the set of constants adopted by the multi-valued variable personality ;
otherwise, the value false is returned. So, in the present example, the evaluation of
the condition will return the value true. In case of a single-valued variable, same tests
whether or not the constant specified as its second argument is equal to the constant
which the variable mentioned as its first argument has adopted. Given the present fact
set, the condition

lessthan(age, 60)

therefore yields the value false upon evaluation.

A conclusion is built from an action and two associated arguments. An action can be con-
sidered to operate on a variable. The most frequently applied action is add, which adds the
constant specified as its second argument to the value set of the multi-valued variable men-
tioned in its first argument; in case of a single-valued variable, the action add assigns the
constant value from its second argument to the specified variable.

EXAMPLE 3.6

Consider the fact set F :

F = {personality = {arrogant}, gender = male, age = 25}

in which personality is the only multi-valued variable. The action add in the conclusion

add(personality, outspoken)

adds the constant outspoken to the set of constant values the variable personality already
has adopted. So, after evaluation of this conclusion we have obtained the following fact
set F ′:

F ′ = {personality = {arrogant, outspoken}, gender = male, age = 25}

A production rule is built from such conditions and conclusions.

EXAMPLE 3.7

The heuristic rule informally introduced above can now be translated into the production-
rule formalism, for example as follows:

if
lessthan(age, 60) and
same(personality, intelligent) and
notsame(personality, arrogant)

then
add(hire, yes)

fi

3.1. Knowledge representation in a production system 79

To conclude, the following example discusses a production rule comprising more than one
conclusion.

EXAMPLE 3.8

The following heuristic rule:

if
the person is quiet, and
the person is calm

then
it is likely the person is introvert, and
it is conceivable that the person is stable

may be expressed in the production-rule formalism as follows:

if
same(expression, quiet) and
same(emotionality, calm)

then
add(person, introvert) also
add(person, stable)

fi

The only action we have considered up till now is the action add. If this action is the only
one specified in the consequent of a production rule, then the rule closely resembles a logical
implication, in which the conditions of the rule appear on the left of the implication symbol
and the conclusions are specified on the right of it. This interpretation, however, is no longer
valid when actions other than add have been specified in the consequent of a rule. Consider,
for example, the action remove which upon execution cancels the assignment of a specific
constant to a single-valued variable, or deletes a constant from the set of constants of a multi-
valued variable. A production rule in which this action has been specified cannot possibly be
viewed as a logical implication. More about the correspondence between the production-rule
formalism and logic will be said in Section 3.1.4.

In Table 3.1 the semantics of some frequently used predicates and actions are described.
From the special meaning of the constant unknown as discussed in the preceding section, we
have that the predicates known and notknown mentioned in the table have a special meaning
as well: they express knowledge concerning the derivability of values for variables, which
again goes beyond the contents of the fact set and the rule base of a production system. We
call such predicates meta-predicates. In Section 3.2.1 we will turn again to the meanings of
the predicates and the effects the different actions have on a fact set.

3.1.3 Object-attribute-value tuples

The production-rule formalism introduced in the preceding section does not provide a means
for specifying formal relationships between the variables of concern. In many problem do-

80 Chapter 3. Production Rules and Inference

Table 3.1: Some predicates and actions, and their meaning

Example Semantics for single-valued Semantics for multi-valued
variables variables

same(x, c) xs = c c ∈ xm

notsame(x, c) xs 6= c and xs 6= unknown c 6∈ xm and xm 6= unknown
lessthan(x, c) xs < c -
greaterthan(x, c) xs > c -
known(x) xs 6= unknown xm 6= unknown
notknown(x) xs = unknown xm = unknown
add(x, c) xs ← c xm ← xm ∪ {c}
remove(x, c) xs ← unknown if xm = {c} then xm ← unknown

else xm ← xm \ {c}

mains to be modelled however, one can often discern separate subdomains, or objects, which
are interrelated in some way. Each subdomain then is described by a number of properties
or attributes which are specific for that subdomain. The idea is illustrated in the following
example.

EXAMPLE 3.9

In the heuristic rule from Example 3.8, a description is given of the personality of a
person. Personality traits are usually described by several factors which are specific for
the person. We now may view traits as a separate object, and character and emotional
as attributes belonging to that object.

In production systems, objects are often used to explicitly group the properties which are
mentioned in the heuristic rules. The objects themselves are often even further exploited
for directing the inference process. If we extend the production-rule formalism to include
the specification of an object, predicates and actions have to be changed from binary, in
the previous case of variable-value pairs, to ternary operators. We call a tuple consisting of
an object, an attribute and a constant value, an object-attribute-value tuple, or o-a-v triple.
The following simple extension to the original syntax definition of production rules is thus
obtained:

〈condition〉 ::= 〈predicate〉(〈object〉,〈attribute〉,〈constant〉)
〈conclusion〉 ::= 〈action〉(〈object〉,〈attribute〉,〈constant〉)

Note that an object-attribute pair always explicitly indicates that the mentioned attribute
belongs to the specified object. The object-attribute pairs in an object-attribute-value tuple
just act like the variables discussed in the foregoing sections. The attributes of an object are
declared as being either single-valued or multi-valued, in a way resembling the declaration of
variables. In the sequel, we shall write o.as to denote the single-valued attribute as belonging
to the object o; we use o.am for the multi-valued case.

EXAMPLE 3.10

3.1. Knowledge representation in a production system 81

The following production rule

if
same(person, gender,male) and
same(person, behaviour, quiet) and
same(personality, emotional, stable)

then
add(personality, introvert, yes)

fi

concerns the objects person and personality. Attributes of the object personality referred
to in the rule are emotional and introvert. The attributes of the object person referred
to in the rule are gender and behaviour.

The extension of the definitions of predicates and actions with the specification of an object
enables us to express relationships between objects and their attributes. However, it is still
not possible to explicitly express relationships between objects amongst themselves in a nat-
ural way. Yet it may be desirable in an intelligent system to have this type of information
available as well. Therefore, in addition to the rule base, often an object schema is present
in an intelligent system; it is usually added to the domain declaration of a knowledge base.
An object schema defines the interrelationships between the objects, and the relationships
between the objects and their associated attributes. Figure 3.1 shows a portion of the ob-
ject schema describing some features of a person. An object is represented by an ellipse. A
solid line is used to represent a relationship between two objects. In Figure 3.1 the object
personality is called a subobject of the object person. A dashed line indicates a relationship
between an object and an associated attribute. We note that an object schema is frequently
used for storing meta-information, for example directives to the inference engine to handle
certain attributes in a special way.

person

gender

age

marital-status

personality

emotional

introvert

social

Figure 3.1: An object scheme.

3.1.4 Production rules and first-order predicate logic

In the preceding sections, we have informally discussed the meanings of predicates and actions
in a production system. In general, we can say that the semantics of production rules in a

82 Chapter 3. Production Rules and Inference

production system is described in terms of a specific inference method for applying the rules.
The only semantics for a production system available therefore is procedural in nature. This
is contrary to first-order logic which also has a neat declarative semantics. There is, however,
a strong relationship between the production-rule formalism and the formalism of first-order
logic, as we already briefly touched upon in Section 3.1.1. In most rule bases, at least part
of the production rules can be translated into first-order predicate logic in a straightforward
and natural way. This is fortunate, since it enables developing a rule base without precise
knowledge of the working of the inference engine: the declarative readings of the corresponding
logical formulas can thus be exploited.

Let us start by looking at the correspondence between conditions and conclusions in
production rules on the one hand and literals in first-order logic on the other hand. Without
loss of generality, we assume that the production system makes use of object-attribute-value
tuples. As we discussed above, the predicates same and notsame test whether the specified
attribute of some object has, respectively has not, the specified constant as a value or in its
set of values. Again, we distinguish between multi-valued and single-valued attributes. A
multi-valued attribute may be viewed as a relation A defined on the cartesian product of a
set of objects and a set of constants, that is, A ⊆ O × V , where O is the set of objects, and
V is the set of constant values. Recall that in first-order predicate logic, predicate symbols
may be employed for representing such relations. Conditions of the form same(o, am, v),
and notsame(o, am, v), containing a multi-valued attribute, may therefore be translated into
first-order logic in the literals a(o, v), and ¬a(o, v), respectively. In the single-valued case,
we have to take into account that the attribute may adopt at most one value at a time.
Single-valuedness is best expressed in first-order logic by using function symbols. Single-
valued attributes can therefore be viewed as functions a from the set of objects O to the
set of values V , that is, a : O → V . Note that for expressing the meaning of the predicate
same, we have the equality predicate = at our disposal. The following translation is now
rather straightforward: the condition same(o, as, v) is translated into the literal a(o) = v,
and the condition notsame(o, as, v) is translated into ¬a(o) = v. Many other predicates used
in production rules can be translated in much the same way. Table 3.2 summarizes some of
these translations. Note that the semantics of first-order logic implies that the unit clause
a(o, v) in the presence of the unit clause ¬a(o, v), leads to an inconsistency. In addition,
the unit clauses a(o) = v and a(o) = w, where v 6= w, are inconsistent in the presence of
the equality axioms. As can be seen from Table 3.2, the action add is treated the same

Table 3.2: Translation of conditions and actions into first-order logic.

Example Logic representation for Logic representation for
single-valued attributes multi-valued attributes

same(o, a, v) a(o) = v a(o, v)
notsame(o, a, v) ¬a(o) = v ¬a(o, v)
equal(o, a, v) a(o) = v −
lessthan(o, a, v) a(o) < v −
greaterthan(o, a, v) a(o) > v −
add(o, a, v) a(o) = v a(o, v)

3.1. Knowledge representation in a production system 83

way as the predicate same is; this reflects the transition from a procedural to a declarative
semantics. The meta-predicates known and notknown are not included in Table 3.2, since it
is not possible to express meta-information in standard first-order logic. A similar remark can
be made concerning the action remove. It is noted that special non-standard logics in which
such meta-predicates and non-monotonic actions can be expressed, have been developed. The
subject of non-standard logic, however, goes beyond the scope of the present book.

Further translation of a production rule into a logical formula is now straightforward. The
general translation scheme is as follows:

if
c1,1 or c1,2 or . . . or c1,m and ((c′1,1 ∨ c

′
1,2 ∨ . . . ∨ c

′
1,m)∧

.
cn,1 or cn,2 or . . . or cn,p ⇒ (c′n,1 ∨ c

′
n,2 ∨ . . . ∨ c

′
n,p))

then →
a1 also a2 also . . . also aq (a′1 ∧ a

′
2 ∧ . . . ∧ a

′
q)

fi

where conditions ci,j and actions ak are translated into literals c′i,j and a′k, respectively, as
prescribed by Table 3.2 From the table it can readily be seen that the kind of production
rules we have looked at, are translated into ground logical implications.

The following example illustrates the translation scheme.

EXAMPLE 3.11

Consider the following production rule:

if
greaterthan(blood, systolic-pressure, 140) and
greaterthan(heart, rate, 100) and
same(person, skin, pale) or
same(eyes, iris,wide)

then
add(person, condition, rage)

fi

Translation of this rule into first-order logic yields the following implication:

(systolic-pressure(blood) > 140 ∧
rate(heart) > 100 ∧
(skin(person, pale) ∨
eyes(iris,wide)))
→
condition(person, rage)

The formalism of first-order logic is in certain ways more flexible than the production-
rule formalism is. For instance, it is not restricted to the use of o-a-v triples only;
it allows, for example, to specify the literal systolic-pressure(person, blood) > 140, in-
stead of the first literal in the implication shown above. The latter literal is more in
correspondence with the intended meaning of the original heuristic rule.

84 Chapter 3. Production Rules and Inference

To conclude, the fact set of a production system may be translated into the logic formal-
ism much in the same way as the rule base is. A fact o.as = v concerning a single-valued
attribute as is translated into a unit clause a(o) = v. Recall that in the presence of the
equality axioms single-valuedness is guaranteed. Now consider the multi-valued case. A fact
concerning a multi-valued attribute am is translated into a set of unit clauses a(o, vi) for each
vi in the set of constant values am has adopted. However, it is not sufficient to only add these
positive clauses: it is typical for production systems that values of multi-valued attributes
not explicitly entered into the fact set, are taken implicitly by the system as being not true.
This behaviour has been copied from human problem solving. For example, a medical doctor
usually only records in a patient report the symptoms and signs that have actually been
observed in the patient; all information not explicitly recorded for the specific patient is im-
plicitly assumed to be negative. This aspect of problem solving is reflected in the meaning of
the notsame predicate. Note that this way of dealing with negations is quite different from
the meaning of a negative literal in first-order logic which only holds in a model in which
it has actually been satisfied. For a correct meaning of the notsame predicate therefore we
have to add explicitly unit clauses ¬a(o, vi) for the remaining constants vi occurring in the
type τ of am, as soon as at least one positive unit clause a(o, vj), j 6= i, occurs in the fact set
(in case of an untyped variable, we add unit clauses ¬a(o, vi) for the remaining constants vi

mentioned in the rule base). The explicit addition of negative unit clauses is called negation
by absence. It is a special case of the closed world assumption mentioned before in Chapter
2.

EXAMPLE 3.12

Consider the following domain declaration:

D = {disorderm : 2{flu,hepatitis}, ages : int}

and the fact set F = {disorderm = {flu}, ages = 70}. We obtain the following transla-
tion into first-order logic:

disorder(patient,flu)
¬disorder(patient, hepatitis)
age(patient) = 70

3.2 Inference in a production system

Several inference methods have been devised for dealing with production rules. An inference
method in a production system explicitly exploits the difference between facts and rules: it
operates on the fact set, which can be looked upon as the global working memory for the
production rules. Note that in logic, such an explicit separation between facts (unit clauses)
and rules (implications) generally is not made, although it should be noted that several
inference methods, such as SLD resolution, make use of a similar distinction.

3.2. Inference in a production system 85

Roughly speaking, an inference method selects and subsequently applies production rules
from a rule base. In applying the selected production rules, it executes the actions specified
in their conclusions. Execution of such actions may cause facts to be added to, to be modified
in, or to be deleted from the fact set. In this chapter we discuss the addition and deletion
of facts: a discussion of the modification of facts as a result of executing actions will be
postponed until Chapter 8, where we shall discuss the language OPS5 and CLIPS. Figure 3.2
shows the general idea of inference in a production system. The manipulation of production
rules and facts is depicted in the figure by means of arrows.

fact
set

rule
base

rule
evaluation

rule
selection

rule

facts

rules
add/

delete
facts

input

output

Figure 3.2: Global architecture of a production system.

The distinction between the two basic forms of inference mentioned in chapter 1 is essential
when considering production systems; they yield entirely different reasoning strategies. Before
discussing the two basic inference methods, top-down and bottom-up inference, in detail, we
introduce them informally with the help of a simplified example, in which we abstract from
the syntactical structure of conditions, conclusions, and facts. To simplify matters further,
we suppose that all conditions of the form c succeed upon evaluation in the presence of the
fact c. Now, consider Table 3.3.

Table 3.3: Production system before and after execution.

State Component Top-down Inference Bottom-up Inference

Initial Goal g −
Facts {a} {a}
Rules R1 : if b then g fi R1 : if b then g fi

R2 : if g then c fi R2 : if g then c fi
R3 : if a then b fi R3 : if a then b fi

Final Facts′ {a, b, g} {a, b, c, g}

• Top-down inference starts with a statement of one or more goals to be achieved. In our
example, we have just the single goal g. A goal may match with a conclusion of one or
more production rules present in the rule base. All production rules thus matching with
a certain goal are selected for application. In the present case, the only rule selected is
R1. Each one of the selected production rules is subsequently applied by first considering
the conditions of the rule as the new subgoals to be achieved. Roughly speaking, if
there are facts present in the fact set which match with these new subgoals, then these

86 Chapter 3. Production Rules and Inference

subgoals are taken as been achieved; subgoals for which no matching facts can be found,
are matched against the conclusions of the production rules from the rule base. Again,
matching production rules are selected for application. In our example, we have from
the rule R1 the new subgoal b, which in turn causes the selection of the production rule
R3. This process is repeated recursively. Note that in top-down inference, production
rules are applied in a backward manner. When all the subgoals, that is, the conditions
of a selected production rule, have been achieved, then the actions in the conclusions of
the rule are executed, possibly causing changes in the fact set. Since the subgoal a of
the selected production rule R3 matches with the fact a, we have that the condition of
the rule is fulfilled. Subsequently, its action is executed, yielding the new fact b. This
new fact in turn fulfills the condition b of rule R1, which led to the selection of R3.
The inference process is terminated as soon as the initially specified goals have been
achieved. Note that only production rules relevant for achieving the initially given goals
are applied. This explains why the rule R2 in table 3.3 has not been used.

• Bottom-up inference starts with a fact set, in our example {a}. The facts in the fact
set are matched against the conditions of the production rules from the rule base. If for
a specific production rule all conditions are fulfilled, then it is selected for application.
The rule is applied by executing the actions mentioned in its conclusions. So, in our
example the rule R3 will be applied first. The application of the selected production
rules is likely to result in changes in the fact set, thus enabling other production rules to
be applicable. In the present case, after the application of rule R3, we have obtained the
new fact set {a, b}, which results in the rule R1 now being applicable. The fact g added
to the fact set as a result of executing the action of rule R1, results in the subsequent
application of R2. We therefore conclude that the final fact set is equal to {a, b, c, g}.
The inference process is terminated as soon as all applicable production rules have been
processed.

Note the difference in the resulting fact sets in table 3.3 obtained from applying top-down and
bottom-up inference, respectively. As a consequence of their different inference behaviour,
top-down and bottom-up inference are suitable for developing different kinds of intelligent
systems. Top-down inference is often used in inference engines of diagnostic intelligent systems
in which the inference process is controlled by a specific goal and a small amount of data.
Bottom-up inference is most suitable for applications in which the interpretation of a vast
amount of data is important, and in which there are no preset goals. In the following section,
we first address top-down inference before discussing bottom-up inference in Section 3.2.4.

3.2.1 Top-down inference and production rules

As we discussed before, top-down inference usually is incorporated in diagnostic intelligent
systems. If it employs the variable-value representation, such a system tries to derive facts
concerning one or more preset goal variables. In a typical medical diagnostic intelligent
system for example, one could think of a multi-valued variable diagnosis, for which we want
to establish for a specific patient the set of values (that is, the possible disorders). So, in
general, top-down inference starts with a set of goals {G1, G2, . . . , Gm}, m ≥ 1, essentially
being goal variables. For this purpose, in the domain-declaration part of a knowledge base,
the variable declarations are extended to include a specification of whether or not they are
goals. In the sequel, we shall use xs

g to denote a single-valued goal variable, and xm
g to denote

3.2. Inference in a production system 87

a multi-valued goal variable. The subset of all facts concerning the goal variables in the fact
set after applying the inference algorithm is called a solution.

The top-down inference algorithm used in this book for establishing the goals Gi from the
initial set of goals, informally amounts to the following. Suppose that we are given a fixed rule
base {R1, R2, . . . , Rn}, n ≥ 1, of production rules Ri. For deriving values for a multi-valued
variable, the inference engine will try and apply production rules as long as there are produc-
tion rules available which can extend the set of constants for the goal variable by adding new
ones to it. In the single-valued case, the inference engine proceeds until a single value has
been derived for the variable, and then it terminates. If the system has not been able to derive
values for the variable from the rule base, for instance because applicable production rules
are absent, then on some occasion it will turn to the user and ask for additional information.
For this purpose a distinction is made between variables for which values may be asked from
the user, these variables are called askable variables, and variables which may not be asked.
The askability of a variable is again denoted in the domain declaration of the variables, this
time by means of a subscript a; so, we have xm

a for askable multi-valued variables and xs
a for

askable single-valued ones.

EXAMPLE 3.13

In a medical intelligent system intended for diagnosing a patient’s disorder, it is rather
undesirable that the user is asked to specify the patient’s disorder when the system
has not been able to attain a diagnosis. Therefore, the variable disorder should not
be askable. On the other hand, symptom and gender are typical examples of askable
variables: these can usually not be derived using the production rules.

It will be evident that goal variables should never be askable.
The entire process of deriving values for a variable by applying the production rules, and

possibly asking the user for values for it, is called tracing the variable. In the sequel, we
abstract from the distinction between single- and multi-valued variables in the description
of the top-down inference algorithm, since the basic structure of the algorithm is the same
for both types of variable. The algorithm for tracing a variable pictured in the foregoing is
described by the following procedure:

procedure TraceValues(variable)
Infer(variable);
if not established(variable) and askable(variable) then

Ask(variable)
fi

end

The function call established(variable) is used to examine whether or not a value for the variable
variable has been obtained from the rule base by means of the procedure call Infer(variable);
askable(variable) is used to determine whether the variable concerned is askable.

For deriving values for a variable from the rule base, called inferring the variable, the
procedure Infer is invoked. In the procedure Infer, a subset {Ri1 , Ri2 , . . . , Rik} of the produc-
tion rules is selected; a rule Rj will be selected if the name of the given variable occurs in
one of the conclusions of the rule, in other words, if the given variable and the variable in

88 Chapter 3. Production Rules and Inference

the conclusion match. The thus selected rules are then applied. The procedure for selecting
production rules and subsequently applying them is shown below:

procedure Infer(variable)
Select(rule-base, variable, selected-rules);
foreach rule in selected-rules do

Apply(rule)
od

end

The actual selection of the relevant production rules from the rule base is described in the
following procedure:

procedure Select(rule-base, variable, selected-rules)
selected-rules ← ∅;
foreach rule in rule-base do

matched ← false;
foreach concl in consequent(rule) while not matched do

pattern ← variable(concl);
if Match(variable, pattern) then

selected-rules ← selected-rules ∪ {rule};
matched ← true

fi
od

od
end

The set of selected production rules is called the conflict set. In the foreach statement in the
Infer procedure this conflict set is traversed: the rules from this set are applied one by one by
means of a call to the procedure Apply, which will be described shortly. Note that this way
the rules are applied exhaustively, that is, all rules concluding on the variable which is being
traced, are applied.

Neither the order in which the production rules from the conflict set are applied, nor the
order in which the conditions and the conclusions of the rules are evaluated, is fixed as yet.
If the order in applying the selected rules has not been fixed, we speak of nondeterminism
of the first kind. The evaluation order of the conditions and the conclusions in a rule not
being fixed is called nondeterminism of the second kind. Nondeterminism of the first kind
is resolved by using a so-called conflict-resolution strategy, which imposes some order on the
rules from the conflict set. The simplest conflict-resolution strategy is, of course, just to apply
the production rules in the order in which they have been selected from the rule base (which
is then viewed as a sequence of production rules instead of as a set). More sophisticated
conflict-resolution strategies order the conflict set using some context-sensitive criterion. An
example of such a strategy is ordering the rules according to the number of conditions not
yet fulfilled; this way, solutions which are ‘close’ to the information already available to the
system generally prevail over more remote solutions. From the user’s point of view, a system
provided with a context-sensitive conflict-resolution strategy behaves much more intelligently,
since likely solutions are explored before unlikely ones. Nondeterminism of the second kind
is usually handled by evaluating the conditions and conclusions of a selected production rule

3.2. Inference in a production system 89

in the order of their appearance. However, more sophisticated techniques are also possible.
Sophisticated conflict-resolution strategies and evaluation ordering methods are seldom used
in intelligent systems using top-down inference, since the goal-directed nature of top-down
inference is itself an ‘intelligent’ control strategy, rendering additional ones less necessary.
As a consequence, most systems employing top-down inference use the simplest strategies in
solving the two types of nondeterminism, that is, they apply production rules, and evaluate
conditions and conclusions in the order of their specification. This particular strategy will be
called backward chaining.

The application of a selected production rule commences with the evaluation of its con-
ditions. If upon evaluation at least one of the conditions is found to be false, then the rule is
said to fail. If, on the other hand, all conditions evaluate to be true, then the rule is said to
succeed. The application of a production rule is described in the following procedure:

procedure Apply(rule)
EvalConditions(rule);
if not failed(rule) then

EvalConclusions(rule)
fi

end

The procedure Apply first evaluates the condition part of the rule by calling EvalConditions.
If this evaluation ends in success, then it evaluates the conclusions of the rule by means of
EvalConclusions.

Let us take a closer look at the procedure EvalConditions which checks whether all con-
ditions in the antecedent of the production rule yield the truth value true upon evaluation.
Beginning with the first condition, the procedure traces the variable occurring in the condition
by means of a recursive call to TraceValues. Subsequently, the test specified by means of the
predicate in the condition is executed. In the EvalConditions procedure presented below, we
have assumed, for simplicity’s sake, that the antecedent of a production rule only comprises
a conjunction of conditions.

procedure EvalConditions(rule)
foreach condition in antecedent(rule) do

var ← variable(condition);
TraceValues(var); indirect recursion
ExecPredicate(condition);
if condition failed then

return
fi

od
end

It should be noted that there are many ways to optimize the last procedure, several of which
will be discussed below. The ExecPredicate procedure executes the test denoted by the predi-
cate which has been specified in the condition under consideration. It compares the value the
mentioned variable has with the constant specified in its second argument (if any). This test
yields either the truth value true or false. We have already seen an example of the execution
of such a predicate in the preceding section.

90 Chapter 3. Production Rules and Inference

If all conditions of the production rule have been evaluated and have yielded the value
true, then the rule succeeds, and its conclusions are subsequently evaluated. The evaluation
of the conclusion part of a successful production rule merely comprises the execution of the
actions specified in its conclusions:

procedure EvalConclusions(rule)
foreach conclusion in consequent(rule) do

ExecAction(conclusion)
od

end

We have mentioned before that executing the action add results in the assignment of a con-
stant value to a single-valued variable, or in the addition of a constant value to the set of
values of a multi-valued variable. In Section 3.1.2, we also briefly discussed the action re-
move. Execution of this action results in deleting the specified constant value from the fact
concerning the variable. Execution of this action can therefore disrupt the monotonicity of
the reasoning process, thus rendering it difficult to reconstruct the inference steps which have
been carried out. Furthermore, it is quite conceivable that the action is executed on a variable
which has not been traced as yet, in which case the continuation of the inference is undefined.
Therefore, in many intelligent systems this action is not allowed, in particular not in those
systems employing backward chaining.

It may happen that a certain variable is specified in one of the conditions as well as in
one of the conclusions of a production rule. Such a rule is called a self-referencing production
rule. When applying a self-referencing rule during a top-down inference process as discussed
above, the rule may occasion infinite recursion. For the moment, we therefore do not allow
self-referencing rules in a rule base. In the following, we shall return to these rules once more
in discussing some optimizations of the inference algorithm.

The procedures discussed in the foregoing together constitute the entire top-down infer-
ence algorithm. The following example demonstrates the behaviour of a system employing
this form of inference.

EXAMPLE 3.14

Let D = {xm
a , y

m, zm
a , v

m
g , w

s
a} be the domain declaration of some knowledge base. As

can be seen, all variables except y and v are askable; v is the only goal variable. Suppose
that we initially have the following fact set:

F = {w = 5}

Now consider the following production rules:

R1 : if same(x, a) and same(x, b) then add(z, f) fi
R2 : if same(x, b) then add(z, g) fi
R3 : if same(x, d) and greaterthan(w, 0) then add(z, e) fi
R4 : if same(x, c) and lessthan(w, 30) then add(v, h) fi
R5 : if same(y, d) and lessthan(w, 10) then add(v, i) fi
R6 : if known(x) and notsame(z, e) then add(y, d) fi

3.2. Inference in a production system 91

The backward-chaining algorithm starts with the selection of the two production rules
R4 and R5, since the goal variable v appears in their respective conclusions. The
production rule R4 will be the first one to be applied. Since there are no production
rules concluding on the variable x occurring in the first condition of rule R4, the user
is asked to enter values for x. We suppose that the user answers by entering x = {c}.
Evaluation of the first condition therefore yields the truth value true. It follows that R4

succeeds, since the evaluation of the second condition, lessthan(w, 30), yields the value
true as well. The evaluation of the conclusion of the rule results in the addition of the
fact v = {h} to the fact set. Next, rule R5 is applied. The first condition of this rule
mentions the variable y. Since the variable y occurs in the conclusion of rule R6, this
rule is the next to be applied in order to obtain a value for y. The first condition of
R6 upon evaluation yields the truth value true. Evaluation of the second condition of
rule R6 ultimately results in a request to the user to supply values for the variable z,
since the production rules R1, R2 and R3 fail to infer values for it. When the user, for
instance, provides the answer z = {i, j}, rule R6 will succeed and the fact y = {d} will
be added to the fact set. We recall that rule R6 was invoked during to the evaluation of
the first condition of rule R5. From the new fact y = {d} we have that the first condition
of rule R5 yields the truth value true upon evaluation. Since the second condition is
fulfilled as well, the action specified in the conclusion of the rule is executed: the value
i is inserted into the fact concerning the variable v. We conclude that the following fact
set F ′ has been obtained:

F ′ = {x = {c}, y = {d}, z = {i, j}, v = {h, i}, w = 5}

So, the solution arrived at is {v = {h, i}}.

An analysis of the search space generated by top-down inference can be instructive when
developing optimizations of the algorithm. The search space of the top-down inference al-
gorithm discussed in the foregoing is largely determined by the initial set of goals and the
rule base, and has the form of a tree. We start the analysis by taking the backward-chaining
strategy as a starting-point, and shall introduce several refinements to that algorithm. By
means of the following example, we demonstrate how the search space is structured.

EXAMPLE 3.15

Let D = {xm
a , y

m, zs
g, u

m
a , v

m, wm
a } be the domain declaration of a production system.

Note that the single-valued variable z is the only goal variable. The fact set initially is
empty. Consider the following set of production rules:

R1 : if same(w, a) and same(x, b) then add(v, c) fi
R2 : if same(w, d) and same(v, c) then add(y, e) fi
R3 : if same(v, c) then add(z, k) fi
R4 : if same(x, j) and same(y, e) then add(z, h) fi
R5 : if same(u, f) and same(x, g) then add(z, i) fi

The inference engine starts with the construction of the conflict set: {R3, R4, R5}. The
rule R3 is the first to be applied. The variable v mentioned in the first condition of

92 Chapter 3. Production Rules and Inference

rule R3 occurs in the conclusion of rule R1. This is the only rule in the new conflict
set. So, rule R1 is the next rule to be evaluated. Suppose that rule R1 fails; as a
consequence, no value will be inferred for v. The reader can easily verify that given this
set of production rules the variables w, x, and u will be asked from the user. The search

Infer(z)

Infer(v) Ask(x) Infer(y) Ask(u) Ask(x)

Ask(w) Ask(x) Ask(w) Infer(v)

Ask(w) Ask(x)

Figure 3.3: A search space generated using backward chaining.

space generated from the set of goals and the rules using backward chaining, takes the
form of a tree, as shown in Figure 3.3. The label Infer indicates that the variable is
inferred from the rule base; Ask indicates that the variable is asked from the user. Now
note that the mere presence of a fact concerning a specific variable in the fact set, does
not guarantee that the variable has actually been traced by exhaustively applying the
production rules: the fact may have been entered into the fact set as a side-effect of the
application of a production rule having more than one conclusion when tracing another
variable. Therefore, the figure shows that the variable v has to be traced twice, even if
a fact concerning v already occurs in the fact set. Furthermore, it indicates that several
variables have to be asked from the user more than once.

In the preceding example, we showed that the process of tracing a specific variable may be
repeated unnecessarily: it will be evident that optimization is required here. We introduce
the notion of a ‘traced’ variable. A variable is marked as traced as soon as the process of
tracing the variable has been performed, independent of whether it has yielded a value for
the variable or not. We now modify the TraceValues procedure as follows:

procedure TraceValues(variable)
Infer(variable);
if not established(variable) and askable(variable) then

Ask(variable)
fi;
traced(variable) ← true

end

Recall that in the foregoing, this procedure was invoked from the EvalConditions procedure.
The last-mentioned procedure is now modified in such a way that the TraceValues procedure
is invoked for a given variable only if the variable has not yet been marked as traced. This
simple refinement has a dramatic effect on the structure of the search space, as is shown in

3.2. Inference in a production system 93

the following example.

EXAMPLE 3.16

Consider once again the production rules from the preceding example, and also the
search space for the set of goals and the rule base shown in Figure 3.3. If we exploit the
refinement discussed in the foregoing and mark a variable as traced as soon as it has
been traced exhaustively, then several inference steps and several questions to the user
will have become superfluous. The resulting search space is considerably smaller than
the one depicted in Figure 3.3, since now it suffices to represent each vertex only once.
The resulting search space therefore has the form of a graph; it is depicted in Figure
3.4. Note that it indicates the dependencies between the variables during the inference.

Infer(z)

Ask(x)

Infer(v)

Ask(w)

Infer(y)

Ask(u)

Figure 3.4: A search graph for backward chaining.

If a production rule contains two or more conclusions concerning different variables, then the
rule may be applied more than once by the top-down inference algorithm. However, if we
assume that production rules do not contain actions removing or modifying facts, then it
suffices to apply such a rule only once: applying such a rule a second time cannot result in
the addition of new facts to the fact set. To prevent a rule from being applied more than
once, each rule will be marked as been used as soon as the inference algorithm applies it.

procedure Infer(variable)
Select(rule-base, variable, selected-rules);
foreach rule in selected-rules with not used(rule) do

used(rule) ← true;
Apply(rule)

od
end

Moreover, marking a production rule before it is actually applied, has the further advantage
of preventing infinite recursion in case of self-referencing rules.

In the foregoing we have introduced two refinements of the basic backward-chaining (and
top-down) algorithm: the marking of a variable after its examination by the inference engine
as ‘traced’, and the marking of a production rule as ‘used’ upon its application. The last

94 Chapter 3. Production Rules and Inference

refinement we pay attention to is the so-called look-ahead facility. This facility yields under
certain circumstances a remarkable increase in efficiency, by pruning the search space in an
effective way. The general structure of the search space, however, is not changed. Let us first
study the following example illustrating the need for the look-ahead facility.

EXAMPLE 3.17

Consider the production rule:

if
same(x, a) and
same(y, b) and
notsame(z, c) and
lessthan(v, 40) and
greaterthan(w, 90)

then
add(u, 6)

fi

in which v and w are the only single-valued variables. Now, suppose that the fact
v = 80 is present in the fact set. This single fact provides us with enough information
to deduce that this rule will certainly fail due to its fourth condition. However, the
backward-chaining algorithm as introduced in the foregoing, will detect the failure only
when at least one (and possibly all three) of the variables x, y, and z from the first
three conditions has been traced.

The look-ahead facility now amounts to examining all conditions from a selected production
rule before it is actually applied. If a condition is encountered which already fails beforehand
using the information from the fact set, then the entire rule will fail; the inference engine
proceeds with the next rule. A possible algorithm for the look-ahead facility is shown below:

function LookAhead(rule)
foreach condition in antecedent(rule) do

var ← variable(condition);
if traced(var) then

ExecPredicate(condition);
if condition failed then
return(false)

fi
fi

od;
return(true)

end

Note that in the look-ahead facility only conditions specifying a traced variable are examined;
it just skips the other conditions. If look ahead returns with success, then the top-down
inference algorithm continues as usual. This function LookAhead is called from the procedure

3.2. Inference in a production system 95

Infer just before calling Apply. The procedure Apply then is invoked only if LookAhead has
succeeded.

In the following diagram, the most important procedure and function calls are shown,
indicating the level at which they are introduced in the top-down inference algorithm:

TraceValues
Infer

Select
LookAhead

ExecPredicate
Apply

EvalConditions
TraceValues
ExecPredicate

EvalConclusions
ExecAction

Ask

This diagram depicts once more the indirect recursive call to the procedure TraceValues from
EvalConditions.

Note that only relatively slight modifications of the discussed algorithm are needed to
extend it to an object-attribute-value representation. We only have to add a procedure for
tracing the goal attributes of an object, a notion similar to the notion of a goal variable:

procedure Activate(object)
foreach attr in attributes(object) do

if goal(attr) then
TraceValues(object, attr)

fi
od

end

The other procedures only need slight alteration by adding the object as an extra argument
to the procedures, and by taking for a variable an attribute of the given object.

3.2.2 Bottom-up inference and production rules

Broadly speaking, bottom-up inference with production rules differs from top-down inference
only by being controlled by the fact set instead of by goals and subgoals. As in top-down
inference, each time a set of relevant production rules is selected from a rule base; the re-
sulting set of applicable production rules in bottom-up inference again is called the conflict
set. Recall that in top-down inference, only production rules having a particular (sub)goal
variable in one of their conclusions were included in the conflict set. In bottom-up inference,
however, a production rule is entered into the conflict set if its conditions are fulfilled using
the information from the given fact set. In applying the rules from the conflict set, there
is also a difference between the two forms of inference. In top-down inference all produc-
tion rules from the conflict set are applied exhaustively. In bottom-up inference, however,
generally only one of them is applied. This difference arises from the action remove being

96 Chapter 3. Production Rules and Inference

applied frequently in production systems employing bottom-up inference, in contrast with
top-down inference systems. It will be evident that the evaluation of this action may have
as an effect that certain conditions, which were true before evaluation of that specific action
took place, do not longer hold after its evaluation. As a consequence, all rules in the conflict
set have to be reconsidered, since some may specify conditions which fail upon evaluation
using the altered fact set. Furthermore, the changes in the fact set may render other rules
being successful, which should then be added to the conflict set. Therefore, after applying
a single rule from a specific conflict set, a new conflict set is selected. In practice, however,
many of the rules previously present in the conflict set will appear again in the new conflict
set in the next inference cycle. The entire process is repeated again and again, until some
predefined termination criterion is met; a frequently employed criterion is the emptiness of
the set of applicable rules. The inference is started just by the presence of initial facts in the
fact set. The general approach of bottom-up inference in a production system is described in
the following procedure:

procedure Infer(rule-base, fact-set)
rules ← Select(rule-base, fact-set);
while rules 6= ∅ do

rule ← ResolveConflicts(rules);
Apply(rule);
rules ← Select(rule-base, fact-set)

od
end

The function Select is applied for selecting the applicable production rules from the rule base.
The function ResolveConflicts subsequently chooses from the resulting conflict set a single rule
for application: this function implements a conflict-resolution strategy, several of which will
be discussed below. The selected production rule is then applied by means of a call to the
procedure Apply. In bottom-up inference, the procedure Apply just evaluates the actions of
the conclusions specified in the consequent of the rule.

The selection of the relevant production rules from the rule base is described in the
following function Select. Again, for ease of exposition, we have assumed that the antecedent
of a production rule only comprises a conjunction of conditions:

function Select(rule-base, fact-set)
selected-rules ← ∅;
foreach rule in rule-base do

failed ← false;
foreach cond in antecedent(rule) while not failed do

EvalCondition(cond, fact-set, failed)
od;
if not failed then

selected-rules ← selected-rules ∪ {rule}
fi

od;
return(selected-rules)

end

3.2. Inference in a production system 97

The procedure EvalCondition evaluates a single condition of a production rule. It returns
failure if the variable mentioned in the condition does not occur in the fact set, or if the
specified predicate upon evaluation yields the truth value false; otherwise the procedure
returns success. Note that this evaluation differs from the evaluation described for top-down
inference, since here the evaluation of a condition does not lead to the generation of a new
subgoal.

The basic bottom-up inference algorithm is very simple. However, much more is still to
be said about incorporating control strategies into the basic bottom-up inference scheme.
The order in which the rule base is traversed nor the order in which the conditions and
conclusions of a selected rule are evaluated has been fixed in the procedure Select. As in
Section 3.2.1, we again call the non-fixed order in which production rules are selected and
applied, nondeterminism of the first kind, and the non-fixed order in which conditions and
conclusions are evaluated, nondeterminism of the second kind. Nondeterminism of the first
kind is again resolved by means of a conflict-resolution strategy. These strategies are much
more often applied in systems with bottom-up inference than in systems using top-down
inference. If rules, and conditions and conclusions of rules, are evaluated in the order in which
they have been specified we speak of forward chaining ; this is the simplest possible form of
conflict-resolution. So, in forward chaining the first successful production rule encountered
will be selected for application. Note that the choice of the order in which the conditions
of the rules from the rule base are evaluated in bottom-up inference has no effect on the
resulting behaviour of the system. Only the order in which the rules are applied, and the
order in which the conclusions of the rules are evaluated, are of importance.

Many conflict-resolution strategies have been developed for bottom-up inference; here we
only discuss three more of them in addition to the earlier mentioned forward chaining. The
main reason for augmenting the basic inference algorithm with a conflict-resolution strategy
which is more sophisticated than simple forward chaining, is to obtain a more context-sensitive
and problem-directed reasoning behaviour, that is, to better control the inference. Since
bottom-up inference lacks the ‘intelligent’ goal-directed nature of top-down inference, conflict-
resolution strategies evidently are much more important in bottom-up inference than in top-
down inference. Possible conflict resolution strategies differing from forward chaining are:

• conflict resolution by prioritization, which for selecting a rule for application uses pri-
orities of the production rules which have been indicated explicitly by the knowledge
engineer;

• conflict resolution by specificity, which causes the system to prefer more strongly stated
production rules over weaker ones;

• conflict resolution by recency, which uses the most recently derived facts in selecting
a production rule for application, thus causing the system to pursue a single line of
reasoning.

Conflict resolution by production rule prioritization has the same advantages as forward
chaining: it is easy to implement and use, while being effective in many applications. However,
an obvious disadvantage of this strategy is the burden it places on the knowledge engineer
who has to impose an ordering on the production rules from the rule base explicitly.

Conflict resolution by specificity is based on some measure of specificity for production
rules, such as for example the number of tests specified in the conditions of the rules. A

98 Chapter 3. Production Rules and Inference

production rule R1 is considered to be more specific than a production rule R2 if R1 contains
at least the same conditions as R2.

EXAMPLE 3.18

Consider the following two production rules:

R1 : if same(programming-language, symbol-manipulation)
then add(language,AI) fi

R2 : if same(programming-language, symbol-manipulation)
and same(syntax,parentheses)

then add(language,Lisp) fi

Production rule R2 is more specific than production rule R1, since it contains the
condition from R1 as well as some additional conditions. Furthermore, the conclusion of
R2 is more specific than the one from R1. It will be obvious that success of R2 will yield
a stronger result than success of rule R1. A specificity strategy will therefore choose R2

from the conflict set R1, R2 for application.

The use of a specificity strategy increases the extensibility of the rule base: a rule base can
easily be enlarged by adding new, more specific rules to it without our having to worry too
much about older rules, since more specific production rules prevail over the more general
ones. Note that most humans exhibit a similar behaviour. For example, when a person
encounters his friend in the street, he will not be inclined to think that this other person is a
mammal, but he will think instead that it is his friend John: he just applies the most specific
knowledge he has.

The last conflict-resolution strategy we pay attention to, the recency strategy, is undoubt-
edly the most complicated of the ones we have mentioned. This conflict-resolution strategy
requires that each fact in the fact set is supplemented with a so-called time tag, a unique
number indicating the ‘time’ the fact was derived. In the following definition, the notion of a
fact is redefined for the case of bottom-up inference using the recency strategy. We will only
deal with single-valued variables; the extension to multi-valued ones is straightforward.

Definition 3.4 A fact is an expression of the following form:

t : xs = c

where t ∈ IN is a time tag which uniquely identifies the fact; xs is a single-valued variable,
and c is a constant. A fact set has the following form:

{t1 : xs
1 = c1, . . . , tn : xs

m = cm}

Constants and variables may now occur more than once in the fact set. However, a time-tag
variable pair is unique. Each fact added to the fact set as a result of applying a production
rule, is assigned a new time tag t+ 1 where t is the last assigned one.

EXAMPLE 3.19

3.2. Inference in a production system 99

Consider the following fact set:

{1 : x = a, 2 : x = b, 3 : y = c, 4 : z = d}

The variable x occurs twice amongst these facts, with different time tags. This should
be interpreted as follows: at time 1 the variable x has taken the value a, and at time 2
it has obtained the value b. Therefore, x has two values, one at time 1 and another one
at time 2.

There are various ways in which time tags may be interpreted in the representation of facts.
Time tags for example may be taken to monitor progress in time of some parameter.

EXAMPLE 3.20

Consider the following fact set:

{1 : temp = 36.2, 2 : temp = 37, 3 : temp = 38}

Herein, time tags are used to indicate the change of the body temperature of some
person in time; each time tag for example indicates a day.

We recall that here we introduced time tags in order to enable conflict resolution by recency;
this is the main usage of time tags. After the applicable production rules have been selected
from the rule base, it is possible to order the conflict set using the time tags associated with
the individual facts from the fact set. With each rule in the conflict set a sequence of time tags
is associated, where each time tag originates from a fact matching with a condition of the spe-
cific rule. These time tags are then sorted in decreasing order. Each thus obtained sequence
of time tags is padded with as many as zero time tags as required to make all sequences of
equal length. This way, the production rules in the conflict set may be compared to each other.

EXAMPLE 3.21

Consider the following fact set:

{1 : x = a, 2 : x = b, 3 : y = c, 4 : z = d, 5 : w = e, 6 : z = f}

Now, suppose that the conflict set consists of the following three production rules:

R1: if same(z, f) then add(x, e) fi
R2: if same(x, b) and same(z, d) then add(y, f) fi
R3: if same(x, a) and same(y, c) and same(w, e) then add(x, d) fi

Rule R3 has the largest number of conditions, namely three. So, with each rule we
associate a sequence of time tags having length three:

R1: 6 0 0
R2: 4 2 0
R3: 5 3 1

100 Chapter 3. Production Rules and Inference

The production rules in the conflict set are now ordered according to the lexicographical order
of their associated sequences of time tags: in the ordering, a rule R1 precedes a rules R2 if
the sequence of time tags associated with R1, read from left to right, is larger than the one
associated with rule R2. The order relation between members of the conflict set is denoted
by the symbol ≥. The relation ≥ is a total ordering, and has therefore the following four
properties:

• Reflexivity: for each production rule R we have R ≥ R;

• Transitivity: for each three production rules R1, R2, and R3, satisfying R1 ≥ R2 and
R2 ≥ R3, we have that R1 ≥ R3;

• Anti-symmetry: for each pair of rules satisfying R1 ≥ R2 and R2 ≥ R1, we have that
R1 = R2;

• Totality: for each pair of production rules R1 and R2, we have either R1 ≥ R2 or
R2 ≥ R1.

EXAMPLE 3.22

Consider the following sequences of time tags, belonging to four production rules R1,
R2, R3 and R4, respectively:

R1: 6 0 0
R2: 4 3 2
R3: 5 3 1
R4: 6 1 0

For these rules we have that R4 ≥ R1 ≥ R3 ≥ R2.

This ordering of the rules from a conflict set enables us to give an algorithm for conflict
resolution based on recency; it is described in the following function ResolveConflicts:

function ResolveConflicts(rules)
if rules = ∅ then return(∅)
else

r ← Max-Time-tag-Subset(rules);
if r is singleton then return(r)
else

result ← ResolveConflicts(r)
fi;
if result = ∅ then return(first(r))
else

return(result)
fi

fi
end

3.2. Inference in a production system 101

The function Max-Time-tag-Subset called from ResolveConflicts selects from the conflict set
rules the rules with the highest time tag. If the resulting set r contains more than one element,
then, after the earlier examined time tags have been skipped, the function ResolveConflicts is
called recursively for this set r. Note that contrary to what has been described before, the
conflict set is not ordered entirely before it is examined: each time only a subset of the rules
relevant for conflict resolution is selected. The presented algorithm does not always yield a
single production rule, since it is possible to have two or more (different) production rules,
having the same sequence of time tags. In this case, on arbitrary grounds the first specified
production rule is returned as a result.

As has been discussed above, a variable specified in a condition of a production rule may
have more than one occurrence in the fact set, although with different time tags. As a con-
sequence, a condition may match with more than one fact. So, a production rule may be
applied more than once, using different facts.

EXAMPLE 3.23

Consider the following fact set:

F = {1 : x = a}

and the conflict set consisting of the following two production rules:

R1: if same(x, a) then add(y, b) fi
R2: if same(y, b) then add(y, b) fi

Then, the application of rule R1 in the first inference step results in the following
modified fact set:

F ′ = {1 : x = a, 2 : y = b}

Subsequent application of rule R2 yields the following fact set:

F ′′ = {1 : x = a, 2 : y = b, 3 : y = b}

Rule R2 can now be applied again. In this example, the inference will not terminate;
rule R2 will be applied forever.

In the preceding example, we have shown that a production rule may be applied more than
once, using different facts. It is therefore necessary to specify in the conflict set all possible
applications of a rule, instead of the rule itself. For this purpose, we introduce the notion of
a rule instance.

Definition 3.5 Let F be a fact set, and R a production rule. Let M ⊆ F be a subset of
facts, such that each element f ∈ M matches with a condition of R, and each condition of
the production rule R matches with an element from M . Then, the pair (R,M) is called a
rule instance.

102 Chapter 3. Production Rules and Inference

In other words, a rule instance consists of a production rule and the facts matching with its
conditions. It will be evident that although production rules may be applied several times,
it is undesirable that rule instances are applied more than once. Note that the conflict set
should now be taken as a set of rule instances. The basic algorithm for bottom-up inference
discussed in the foregoing has to be altered for dealing with such rule instances. Recall that
so far, we have treated four procedures which together constitute the bottom-up inference
algorithm:

• the procedure Infer, which described the global inference process;

• the function Select, which was used for the selection of applicable rules from the rule
base;

• the function ResolveConflicts, which specified the conflict-resolution method;

• the procedure Apply, which applied the once selected production rule.

First, we reconsider the procedure Infer. Here, we have to record the rule instances which
have been applied, to prevent rule instances from being applied more than once:

procedure Infer(fact-set, rule-base)
applied-instances ← ∅;
instances ← Select(rule-base, applied-instances, fact-set);
while instances 6= ∅ do

instance ← ResolveConflicts(instances);
Apply(instance);
applied-instances ← applied-instances ∪ {instance};
instances ← Select(rule-base, applied-instances, fact-set)

od
end

The function Select now has to generate rule instances from the production rules in the rule
base instead of the production rules themselves:

function Select(rule-base, applied, fact-set)
selected-instances ← ∅;
foreach rule in rule-base do

failed ← false;
rule-instances ← (rule, ∅);
foreach cond in antecedent(rule) while not failed do

ModifyInstances(cond, rule-instances, fact-set, failed)
od;
if not failed then

selected-instances ← selected-instances ∪
(rule-instances \ applied)

fi
od;
return(selected-instances)

end

3.2. Inference in a production system 103

Note that the second argument of Select now contains a set of rule instances. The procedure
ModifyInstances called from Select, evaluates a given condition cond using the fact set. Each
different matching fact gives rise to the creation of a new rule instance. Of course, if a condi-
tion fails then no rule instance will be created. Since the rule instances are built recursively,
evaluation of subsequent conditions of a production rule may lead to discarding rule instances
under construction from the set rule-instances:

procedure ModifyInstances(condition, rule-instances, fact-set, failed)
relevant-facts ← EvalCondition(condition, fact-set);
failed ← relevant-facts = ∅;
new-instances ← ∅;
if not failed then

foreach fact in relevant-facts do
foreach rule-inst in rule-instances do

new-instances ← new-instances ∪ Add(rule-inst, fact)
od

od
fi;
rule-instances ← new-instances

end

After the conflict set has been created, the next step in Infer is to select a single rule instance
from it by conflict resolution. This is achieved by means of the procedure ResolveConflicts
which already has been discussed. Finally, the procedure Apply is called to evaluate the
conclusions of the selected rule instance. Recall that evaluation of the action add adds a new
fact to the fact set, which is assigned a new time tag. Evaluation of the action remove deletes
a fact from the fact set; the fact to be deleted is selected either by explicitly referring to its
time tag, or simply by matching.

We conclude this section with an example.

EXAMPLE 3.24

Consider the following fact set F :

F = {1 : x = a, 2 : x = b, 3 : y = 4}

Furthermore, let us have the following set of production rules:

R1: if same(x, a) and same(x, b) then add(z, e) fi
R2: if same(z, e) and same(w, g) then add(z, f) fi
R3: if lessthan(y, 10) and same(x, a) or same(x, b) then add(w, g) fi

The given fact set F gives rise to the creation of the following rule instances, together
constituting the conflict set:

(R1, {1 : x = a, 2 : x = b})
(R3, {3 : y = 4, 1 : x = a})
(R3, {3 : y = 4, 2 : x = b})

104 Chapter 3. Production Rules and Inference

Note that two rule instances of R3 have been created. Using the recency conflict-
resolution strategy, the second instance of R3 is selected for evaluation, since the time
tag of its second matching fact is larger than the time tag of the second matching fact
of the first instance of R3. Evaluation of the instance (R3, {3 : y = 4, 2 : x = b}) causes
the fact 4 : w = g to be added to the fact set, resulting in:

F ′ = {1 : x = a, 2 : x = b, 3 : y = 4, 4 : w = g}

The inference is now repeated; the instance (R3, {3 : y = 4, 2 : x = b}) however is no
longer applicable.

The algorithm discussed in this section provides a more or less complete description of the
bottom-up inference method. However, an inference engine implementing this algorithm will
be quite inefficient, since at every inference step all instances are created all over again. A first
step towards improving the efficiency of the algorithm is to save the instances between two
consecutive inference steps. Such an algorithm already exists, it is called the rete algorithm,
and has been developed by C.L. Forgy as part of the system OPS5. We shall return to this
rete algorithm and OPS5 in Chapter 8.

3.3 Production rules as a representation formalism

In this chapter we have discussed several forms of knowledge representation and inference used
in production systems. Various attempts in the past in using production rules for building
intelligent systems have proven the production system approach to be a flexible one, and is
suitable for many problem areas. In fact, many of the intelligent systems mentioned in chapter
1 are examples of rule-based systems. In addition, several large intelligent systems have been
and still are being developed using the techniques discussed in this chapter. However, some
disadvantages and restrictions of the formalism have also been recognized:

• Descriptive knowledge cannot be represented in the formalism in a natural way. An
example of descriptive knowledge has been given in chapter 1 where we described the
cardiovascular system. We shall see in the following chapter that the frame formalism
is much more suitable for representing this type of knowledge.

• The different types of knowledge encountered in a problem area, such as problem-
dependent knowledge, problem-independent knowledge, and knowledge used for exerting
control on the inference process (often called meta-knowledge) have to be expressed
using one and the same formalism and therefore cannot be distinguished explicitly.

• The production rule formalism has a strong operational flavour. As a consequence,
some knowledge of the underlying execution model of the inference engine is required
for adequately representing a problem domain in a knowledge base. Compare this
situation with the one in logic, where no knowledge concerning inference is required for
specifying a correct knowledge base; familiarity with the declarative semantics of logic
suffices in this case.

• A more involved application generally leads to a large rule base, which is difficult to
develop and maintain. So, for developing large applications the necessity of partitioning

3.3. Production rules as a representation formalism 105

a large rule base into smaller modules arises. However, the production rule formalism
offers no direct means for explicitly indicating and exploiting such a modularization.

Some of these problems may be solved by combining production rules with some other formal-
ism, such as for example a frame formalism, or with other programming paradigms such as
object-oriented programming. Chapter 8 discusses several solutions that have been proposed
and incorporated in actual systems.

Exercises

(3.1) Consider the knowledge base containing the following domain declaration

D = {xs
a, y

s, zs
a, w

m
g }

and the following rule base:

{R1: if lessthan(z, 20) and notknown(y) then add(w, b) fi,
R2: if same(x, c) and known(y) then add(w, d) fi,
R3: if notsame(x, b) and greaterthan(z, 100) then add(y, f) fi}

The variables xs
a, y

s and zs
a are single-valued, and the variable wm

g is multi-valued. As
can be seen, wm

g is a goal variable, and the variables xs
a and zs

a are askable. Furthermore,
let the following fact set be given:

F = {x = c, z = 5}

(a) Determine the fact set F ′ which results from applying backward chaining on this
set of production rules. Which production rules will have succeeded, and which
ones have failed?

(b) Suppose that the following self-referencing production rule is added to the three
rules listed above:

R4: if notknown(y) then add(y,A) fi

Again we employ backward chaining, starting with the same initial fact set F as
given above. Which fact set F ′′ do we now obtain?

(3.2) Has the choice of the conflict-resolution strategy employed in top-down inference with
the look-ahead facility, any effect on the values inferred for a multi-valued goal vari-
able? Motivate your answer. Now answer the same question for an arbitrary (subgoal)
variable.

(3.3) Consider the following knowledge base, containing the domain declaration

D = {xs, ys, zs, us}

and the rule base:

{R1: if same(x,a) and known(y) then add(y, b) fi,
R2: if same(x, c) and lessthan(z, 15) then add(u, d) fi,
R3: if same(y, b) and lessthan(z, 5) then add(u, f) fi}

106 Chapter 3. Production Rules and Inference

Furthermore, consider the following fact set:

F = {1 : x = a, 2 : y = b, 3 : z = 10, 4 : x = c}

Bottom-up inference is employed to derive new facts from the given rule base and the
facts present in the fact set.

(a) Give all rule instances created by matching the initial fact set F and the rule base
given above. This set of instances is the conflict set.

(b) Order the conflict set obtained in (a), using conflict resolution by recency. Which
one of the rule instances will then be selected for application?

(c) Give the fact set which results after evaluation of the rule instance chosen in
(b). Will the inference eventually terminate? Motivate your answer by giving the
successive changes which take place in the fact set.

(3.4) Consider the following knowledge base, containing the domain declaration

D = {xs, ys, zs}

and the rule base:

{R1: if same(x, a) and equal(y, 10) then add(z, b) fi,
R2: if same(z, c) and lessthan(y, 20) then add(x, a) fi}

Furthermore, consider the following fact set:

F = {1 : x = A, 2 : z = C, 3 : y = 10, 4 : z = C}

Bottom-up inference is employed for inferring new facts from the given rule base and
the fact set.

(a) Which rule instances will be created in the first inference step, and which one of
these will be selected for application if we apply conflict resolution by recency?
Give the new fact set obtained after evaluation of the chosen rule instance. Will
the inference eventually terminate?

(b) Suppose that we add the following production rule to the ones shown above, before
consulting the knowledge base.

R3 : if same(z, b) then add(z, c) fi

We start with the same inititial fact set F as in (a). Give the fact set that eventually
results. Will the inference terminate? Explain your answer by comparing the
results with those of (a).

(3.5) Recall that two types of nondeterminism are distinguished in production systems due
to the need to specify: (1) the order in which applicable rules are selected from the
rule base, and (2) the order in which conditions and conclusions are evaluated. If we
take a particular conflict-resolution strategy in bottom-up inference, which choice(s) for
resolving nondeterminism do(es) influence the behaviour of the system?

Chapter 4

Frames and Inheritance

Representing knowledge in graph-like structures has a rich tradition in philosophy and psy-
chology. At the end of the nineteenth century, the philosopher Charles S. Peirce used a
graph-like notation for the representation of logical sentences. This approach to represent-
ing human knowledge has been further pursued since by many researchers, yielding explicit
psychological models of human memory and intellectual behaviour. In particular the area of
natural language processing has contributed much to the research on the representation of in-
formation in graph-like structures, there called semantic nets or associative nets; in fact, the
earliest use of graph-based representations in computers was for machine translation. In the
early 1960s, Ross Quillian for example used the semantic net formalism for representing mean-
ings of English words in terms of associative links to other words, yielding a dictionary-like
representation; he developed a program for finding relationships between words by traversing
the net. Through this work, Ross Quillian has given a major impetus to the research on
graph-based representations and their use in AI systems; he is generally credited with the
development of the semantic net in its original form.

For handling more complicated problem domains and for dealing with more sophisticated
forms of inference, the semantic net formalism as devised by Ross Quillian soon proved to
be too limited. Much of the later work on semantic nets therefore has been directed towards
more structured formalisms, again mostly for natural language processing. Semantic nets
have seldom been used for building expert systems. Nevertheless, we shall briefly discuss
some characteristics of the formalism, since the semantic net is often viewed as a precursor
of the frame formalism, which is much more frequently applied within expert systems.

The basic idea underlying the notion of frames has already been posed at the beginning
of this century by the psychologist Otto Selz. He considered human problem solving as
the process of filling in the gaps of partially completed descriptions. The present notion of
frames was introduced half-way the 1970s by Marvin Minsky for exerting semantic control in
a pattern-recognition application. Since its introduction, however, the frame formalism has
been employed in several other kinds of knowledge-based systems as well. The general idea
of a frame-based system is that all knowledge concerning individuals or classes of individuals
including their interrelationships, is stored in a complex entity of representation, called a
frame. Instead of the term frame, the terms unit, object, and concept are also often used in
literature. A set of frames representing the knowledge in a domain of interest, is organized
hierarchically in what is called a taxonomy. Such a taxonomy forms the basis of a method of
automated reasoning called inheritance. The frame formalism and its associated inheritance

107

108 Chapter 4. Frames and Inheritance

are the primary topics of this chapter. To prepare for a thorough treatment of these subjects,
we shall first discuss the semantic net formalism briefly in Section 4.1.

4.1 Semantic Nets

A semantic net is usually depicted as a labelled directed graph, consisting of vertices and
labelled arcs between vertices; such a graph is sometimes further restricted by requiring its
being acyclic. Several disciplines have influenced the original idea of a semantic net as it was
introduced in the 1960s: each discipline has brought its own interpretation of the vertices
and arcs, and each discipline has adapted the notion of the semantic net in certain ways to
arrive at a more structured formalism suitable for its own purposes. As a consequence, there
is hardly any consensus as to what a semantic net is, nor is there any consensus as to what
meaning should be ascribed to the basic elements of such a semantic net. Since the semantic
net formalism is seldom used in expert systems, we will introduce it in a simple form, just to
give the reader an idea about what graph-based representations are like.

4.1.1 Vertices and labelled arcs

We have mentioned before that a semantic net is usually depicted as a labelled, directed
graph. Each vertex in the graphical representation of a semantic net is taken to represent a
concept. The arcs of the graph represent binary relations between concepts. Let us give some
informal examples of how knowledge is represented in a semantic net.

EXAMPLE 4.1

Consider the following statement concerning the human body:

‘The heart is part of the cardiovascular system’

This statement comprises two concepts: the concept ‘heart’ and the concept ‘cardio-
vascular system’. These concepts are related in the sense that the first concept, the
‘heart’, forms an anatomical part of the second concept, the ‘cardiovascular system’.
This knowledge is represented by means of the graph shown in Figure 4.1. The con-
cepts are depicted by ellipses, labelled heart and cardiovascular system; the relation
between the concepts is represented by means of an arc labelled part-of.

heart cardiovascular
system

part-of

Figure 4.1: A graphical representation of a semantic net.

EXAMPLE 4.2

In the semantic net depicted in Figure 4.2, two different kinds of relation are used in
representing information concerning the cardiovascular system of the human body: the
‘part-of’ relation and the ‘is-a’ relation.

4.1. Semantic Nets 109

cardiovascular
system

artery

large
artery

aorta

heart

is-a

is-a

part-of part-of

Figure 4.2: Some information concerning the cardiovascular system in a semantic net.

In the preceding example we encountered the is-a relation. This is a quite common relation
between concepts. It reflects the two different senses in which a concept can be used; in this
book, the term concept is used to denote either an individual object or a class of objects. The
is-a relation may be used as follows:

• To express that a class of objects is a subclass of another class of objects, such as in the
statement

‘A large artery is an artery’.

This statement is depicted in a semantic net as follows:

large
artery

artery
is-a

In this case, the is-a part of the statement defines a set inclusion relation.

• To express that a specific object is a member of a certain class of objects, such as in
the statement

‘The aorta is a large artery’.

This statement is depicted as follows:

aorta large
artery

is-a

Here, the is-a part of the statement defines a membership relation between an element
and a set of elements.

In the early semantic net formalism, no explicit distinction was made between the different
uses of the is-a relation, called the is-a link in semantic net terminology: individual objects

110 Chapter 4. Frames and Inheritance

aorta left brachial
artery

large
artery

is-a is-a

artery

is-a

small
artery

is-a

Figure 4.3: Counting specific objects.

and classes of objects were handled identically. The following example illustrates that this
may lead to problems.

EXAMPLE 4.3

In Figure 4.3 some information concerning the arteries of the cardiovascular system is
represented. Now consider a knowledge-based system comprising the information as
shown. Suppose that we ask this system on how many specific arteries information is
available. If we assume that the system ‘knows’ that information on individual objects
is contained in the leaves of the net, the system will answer 3: the aorta, the left brachial
artery, and the small artery. The system is not able to distinguish between the small
artery representing a class of objects, and the individual objects aorta and left brachial
artery.

The preceding example gives us a valid reason for distinguishing between different types of
is-a link. From now on, we distinguish between the subset-of link and the member-of link.

Before proceeding, we define the notion of a semantic net more formally.

Definition 4.1 A semantic net S is a labelled graph S = (V (S), A(S), λ) where V (S) is the
set of vertices of S and A(S) ⊆ V (S) × V (S) is the set of arcs of S; λ is the labelling
function λ : A(S)→ L(S) associated with S where L(S) is the set of arc labels.

EXAMPLE 4.4

Consider the semantic net from Figure 4.1 once more. This net is defined by S =
(V (S), A(S), λ) where

V (S) = {heart, cardiovasculari-system}
A(S) = {(heart, cardiovascular -system)}
λ(heart, cardiovascular -system) = part-of

In the preceding, we have defined a semantic net as a mere syntactical object: it has no
meaning as yet. In order to assign a meaning to a semantic net, we have to define a proper

4.1. Semantic Nets 111

interpretation for it. Note the analogy with a logical formula being a syntactical object and
its interpretation (see the Sections 2.1 and 2.2).

We start by giving an example of a possible interpretation for the subset-of link. We
assign to the relation defined by the subset-of links the meaning of the usual set inclusion
relation ⊆. The relation ⊆ has the following properties:

• Reflexivity : for each X, we have X ⊆ X.

• Anti-symmetry : for each X,Y , if X ⊆ Y and Y ⊆ X, then X = Y .

• Transitivity : for each X,Y,Z, if X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Any binary relation having these properties is called a partial order. With each vertex
x ∈ V (S) taking part in a subset-of link — note that from this observation we have that
the vertex represents a class of objects — we associate a set of elements I(x) from a (seman-
tic) domain of discourse D, that is, I(x) ⊆ D. We now may interpret λ(x, y) = subset-of as
I(x) ⊆ I(y). From the reflexivity of the set inclusion relation we have that we may add to or
delete from a semantic net arcs of the form (x, x) for which λ(x, x) = subset-of :

x

subset-of

This is called a trivial cycle. From the transitivity of the set inclusion relation it furthermore
follows that if we have λ(x, y) = subset-of and λ(y, z) = subset-of in a specific net, then we
may add λ(x, z) = subset-of to the net without changing its meaning: the two nets

x y z
subset-of subset-of

and

x y z
subset-of subset-of

subset-of

therefore express the same information.
Similar to the interpretation of the subset-of link, vertices u ∈ V (S) taking part in the

left-hand side of a member-of link — from this we have that u represents an individual object
— have associated an element I(u) from the domain D, that is, I(u) ∈ D. The relation
defined by the member-of links now is assigned the meaning of the usual membership relation
∈; that is, we interpret λ(u, v) = member-of as I(u) ∈ I(v).

It will be evident that for a semantic net to have a neat semantics we have to define a
proper interpretation for each type of link used in the net. Especially if no restrictions have
been imposed on the types of links, this will be a cumbersome endeavour. It is no wonder
therefore that since the introduction of the semantic net idea, researchers have sought after
more restricted special-purpose net formalisms. Here, we do not pursue the subject of the
declarative semantics of a semantic net any further.

112 Chapter 4. Frames and Inheritance

aorta left brachial
artery

large
artery

member -of member -of

artery

subset-of

small
artery

subset-of

blood vessel

subset-of

oxygen-rich
blood

Figure 4.4: Inheritance.

4.1.2 Inheritance

The subset-of and member-of links of a semantic net may be exploited to derive new infor-
mation from it, that is, they may be used as the basis for an inference engine. We illustrate
the use of these links in reasoning with the help of an example.

EXAMPLE 4.5

Consider the semantic net shown in Figure 4.4. Among others, the following two state-
ments are represented in the net:

‘A large artery is an artery’
‘An artery is a blood vessel’

From these two statements we may derive the statement

‘A large artery is a blood vessel’

exploiting the transitivity of the relation defined by the subset-of links. Furthermore,
the statement

‘The aorta is an artery’

can be derived from the net using the semantics of both the member-of and subset-of
link.

Exploiting the semantics of the member-of and subset-of links in the manner discussed infor-
mally in the preceding example forms the basis of a reasoning mechanism called (property)
inheritance: a concept inherits the properties of the concepts ‘higher’ in the net through these
member-of and subset-of links. The general idea is demonstrated in the following example.

EXAMPLE 4.6

4.1. Semantic Nets 113

aorta left pulmon-
ary artery

large
artery

member -of member -of

artery

subset-of

muscular

oxygen-rich

oxygen-poor

wall

blood

blood

Figure 4.5: An exception to a general property.

Consider the semantic net shown in Figure 4.4 once more. Using property inheritance,
we may derive from it the following statement:

‘The aorta contains oxygen-rich blood’

The concept ‘aorta’ has inherited the property ‘contains oxygen-rich blood’ from the
concept ‘artery’ which is found higher in the net.

In Section 4.3 we shall discuss the principle of inheritance more formally.
The semantic net is a natural formalism for expressing knowledge in which the basic

concepts are organized in a hierarchical manner. Several problems, however, arise from the
rigidity of the principle of inheritance as introduced above. We give two examples to illustrate
some of these problems.

EXAMPLE 4.7

Consider Figure 4.5, again showing some information concerning the arteries. Among
other information, it has been specified that arteries in general have muscular walls
and transport oxygen-rich blood. An exception to the latter property of arteries is for
example the left pulmonary artery which is an artery containing oxygen-poor blood.

Using the member-of and subset-of links shown in the net the aorta inherits the prop-
erties of the arteries: the aorta has a muscular wall and transports oxygen-rich blood.
Using a similar argument, the left pulmonary artery inherits these two properties as well.
The left pulmonary artery, however, transports oxygen-poor blood! So, the property
that arteries transport oxygen-rich blood should not be inherited by the left pulmonary
artery. When employing the principle of inheritance discussed so far, the inheritance
of this property cannot be prevented. A possible solution to this problem is to store
the information that an artery contains oxygen-rich blood explicitly with each artery
for which this property holds. This is shown in Figure 4.6. A major drawback of this
solution is that the general property has been lost.

EXAMPLE 4.8

114 Chapter 4. Frames and Inheritance

aorta left pulmon-
ary artery

large
artery

member -of member -of

artery

subset-of

muscular
wall

oxygen-rich oxygen-poor
blood blood

Figure 4.6: Loss of a general property.

aorta left brachial
artery

large
artery

member -of member -of

11
percentage

blood volume

artery

subset-of

20
percentage

blood volume

small
artery

subset-of

7
percentage

blood volume

left ulnar
artery

subset-of

Figure 4.7: Inheritance of properties relevant to a class as a whole.

In the foregoing examples we have discussed properties which are relevant to individual
objects. In the semantic net shown in Figure 4.7 some information has been stored that
is relevant to a class of objects as a whole and not to the individuals belonging to it. For
example, in the net we have represented the information that the large arteries together
contain approximately 11% of all the blood the human body contains. This information
is only relevant to the class as a whole and not to a single large artery. So, this property
should not be inherited by the aorta and the left brachial artery. Furthermore, the
information that all arteries together contain 20% of the total blood volume should not
be inherited by the class of the small arteries: the latter class only contains 7% of the
total blood volume. Again, inheritance cannot be prevented.

It has been mentioned before that the semantic net formalism has undergone many changes
since its introduction. The resulting formalisms on the one hand are more restricted: only
a limited number of predefined link-types is allowed, each having a clear semantics. On
the other hand, many new features have been added to the formalism. In particular the
principle of inheritance has been revised in order to make inheritance of properties more
flexible. Furthermore, some facilities for representing procedural knowledge have been added
to the semantic net. Many of these extensions bear a close resemblance to features of frames.
Therefore, we shall not discuss these features in relation to semantic nets here, but only in
relation to the frame formalism in Section 4.2.

4.1. Semantic Nets 115

4.1.3 The extended semantic net

Before we turn our attention to knowledge representation in frames, we conclude this section
with a discussion of an interesting type of semantic net: the extended semantic net. The
extended semantic net was developed by A. Deliyanni and R.A. Kowalski as an alternative
representation formalism for the clausal form of logic with a restriction to binary predicate
symbols. It should be noted that the restriction to binary predicates is not an essential one:
any atom containing an n-placed predicate symbol can be replaced by a conjunction of atoms
involving binary predicates only. If n > 2, n + 1 new predicates are needed to represent the
original information; if n = 1, only a single new predicate is required.

EXAMPLE 4.9

Consider the three-placed predicate symbol Bloodpressure, which is supposed to have
the following intended meaning:

Bloodpressure(x, y, z) = ‘the mean blood pressure in x lies between
y mmHg and z mmHg’

The clause

Bloodpressure(artery, 40, 80) ←

for example, can be replaced by the following four clauses

Info(fact, bloodpressure)←
Subject(fact, artery)←
Lowerbound(fact, 40)←
Upperbound(fact, 80)←

in which only binary predicate symbols have been used to express the same information.
We have introduced the new constants fact and bloodpressure; the new binary predicate
symbols should be read as

Info(w, bloodpressure) = ‘w is information about blood pressure’
Subject(w, x) = ‘x is the subject of the information w’
Lowerbound(w, y) = ‘y is the lower bound of w’
Upperbound(w, z) = ‘z is the upper bound of w’

EXAMPLE 4.10

Consider the unary predicate symbol Artery with the following intended meaning:

Artery(x) = ‘x is an artery’

The clause

Artery(aorta)←

may be replaced by the clause

Isa(aorta, artery)←

116 Chapter 4. Frames and Inheritance

x artery
Isa

muscular

Wall

Figure 4.8: The extended semantic net for the clause Wall(x,muscular)← Isa(x, artery).

We have mentioned before that the extended semantic net provides an alternative syntax for
the clausal form of logic: the arguments to the predicate symbols occurring in a set of clauses
are taken as the vertices, and the binary predicate symbols themselves are taken as the labels
of the arcs of a directed graph. The direction of the arc expresses the order of the arguments
to the predicate symbol. The conclusions and conditions of a clause are represented by dif-
ferent types of arcs: conditions are denoted by pulled arcs and conclusions are indicated by
dashed arcs.

EXAMPLE 4.11

The extended semantic net shown in Figure 4.8 represents the clause

Wall(x,muscular)← Isa(x, artery)

A particular constant may occur in more than one clause. If we represent all occurrences of
a constant by means of a single vertex, then it is not always apparent in the representation
discussed above to which clauses a particular vertex belongs. This is why an extended seman-
tic net representing a set of clauses is divided into a number of subnets, each representing a
single clause.

EXAMPLE 4.12

The following set of clauses

{Wall(x,muscular)← Isa(x, artery), Isa(y, artery)← Isa(y, large-artery)}

has been represented in Figure 4.9. The net is partitioned into two subnets: for each
clause from the given clause set we have one corresponding subnet. Note that if a similar
situation arises concerning a variable, we can simply rename the variables to avoid the
problem.

A pleasant consequence of the syntactical correspondence between the clausal form of logic
and the extended semantic net is that the inference rules that are defined for the clausal form
of logic can be applied for manipulation of arcs and vertices in an extended semantic net.

4.2. Frames and single inheritance 117

Isa

IsaWall

Isa

artery
largeymuscular

arteryx

Figure 4.9: Partition of an extended semantic net into subnets.

4.2 Frames and single inheritance

In a frame-based system all knowledge relevant to a concept is stored in a complex entity
of representation called a frame. Frames provide a formalism for explicitly grouping all
knowledge concerning the properties of individual objects or classes of objects. Within a
frame, part of the properties is specified as reference information to other, more general
frames. This reference information is represented by means of is-a links which are quite
similar in concept to the is-a links in a semantic net. This way, the knowledge in a domain
of interest is organized hierarchically in what is called a frame hierarchy, frame taxonomy, or
taxonomy for short. A taxonomy often is depicted graphically as a directed, acyclic graph once
more bearing a close resemblance to a semantic net. However, in the graph representation of a
frame taxonomy only the is-a links are shown (as was true for the semantic net, trivial cycles
are not shown in the graph since they do not represent additional information); the knowledge
concerning an individual object or a class of objects itself is part of the internal structure of
the vertices of the graph. In contrast with the semantic net, in a frame representation different
components are distinguished, all having a special status allowing them to be treated explicitly
as such. For example, the is-a links in a frame taxonomy are represented and treated in a
way different from other components.

4.2.1 Tree-shaped frame taxonomies

As has been mentioned above, frames are organized in a taxonomy in which the vertices
represent frames and in which every arc denotes an is-a link between two frames. In the
frame formalism which will be used in this book, two types of frames are distinguished:

• class frames, or generic frames, which represent knowledge concerning classes of objects;

• instance frames, which represent knowledge concerning individual objects.

118 Chapter 4. Frames and Inheritance

aorta left brachial
artery

large
artery

instance-of instance-of

artery

superclass

small
artery

superclass

blood
vessel

vein

superclass superclass

Figure 4.10: A tree-shaped taxonomy.

Class frames have much in common with the record datatype as, for example, provided in the
Pascal programming language, and instances are similar to filled-in record variables.

Since there are two types of frames, we also distinguish two types of is-a links by means
of which a frame indicates its relative position in the frame taxonomy:

• an instance-of link, which is an is-a link between an instance frame and a class frame;

• a superclass link, which is an is-a link between two class frames defining a partial order
on the set of class frames in a frame taxonomy.

These is-a links are similar in meaning to the member-of and subset-of links, respectively,
distinguished for semantic nets in the previous section. Their formal meaning will be discussed
in the following.

In the present section, we consider frame taxonomies that can be represented as trees. Sec-
tion 4.3 discusses the more general graph-shaped taxonomies. An example of a tree-shaped
taxonomy is shown in Figure 4.10. In this figure, a frame is represented as an ellipse; the
internal structure of a frame is not shown. In a tree-shaped frame taxonomy capturing knowl-
edge concerning a given domain, the root of the tree represents the most general description
of the domain: the other frames represent descriptions of concepts that are more specific. The
descendants of a certain frame in the taxonomy therefore are often called specializations of
that frame. The ancestors of a frame in the taxonomy are called its generalizations. When we
restrict the discussion to classes of objects only, specializations are generally called subclasses
and generalizations are called superclasses. We shall use the terms superframe and subframes
for the parent and children of a given frame, respectively.

EXAMPLE 4.13

Consider the frame taxonomy shown in Figure 4.10 once more. The vertex representing
the frame with the name blood vessel is the father (and therefore ancestor) of the vertices
representing the frames artery and vein. So, the frame with the name blood vessel is
the generalization of the frames artery and vein; it equally is a generalization of the
frame with the name aorta. The frame with the name small artery is a specialization
of the artery frame.

4.2. Frames and single inheritance 119

A frame representing an individual object cannot be specialized any further. Therefore, in a
tree-shaped frame taxonomy an instance is always a leaf of the tree.

EXAMPLE 4.14

Consider Figure 4.10 once more. The frames with the names aorta and left brachial
artery cannot be specialized any further, since these frames represent individual objects
and therefore are instances. Except for the vertices representing these two frames, the
tree has another two leaves: the frames small artery and vein. These two frames are
generic: the descriptions given in these frames may be further specialized. Note that
although an instance is always a leaf of the tree, not every leaf is an instance.

We shall now turn our attention to the internal structure of a frame. We assume that each
frame in a taxonomy has a unique name. The information specific to the concept represented
by a frame is laid down in so-called attributes or slots. So, attributes offer a means for repre-
senting the properties of individual objects or classes of objects. In the following definition,
we shall present a syntax of a language for the representation of frames; from then on we
shall be able to be more precise in discussing frames and their formal meaning.

Definition 4.2 A frame is a statement having the following form:

〈frame〉 ::= 〈class〉 | 〈instance〉

〈class〉 ::= class 〈class-name〉 is
superclass 〈super-specification〉;
〈class-attributes〉

end

〈instance〉 ::= instance 〈instance-name〉 is
instance-of 〈super-specification〉;
〈instance-attributes〉

end

〈super-specification〉 ::= 〈class-name〉 | nil

〈class-attributes〉 ::= 〈declaration〉 {; 〈declaration〉}∗ | 〈empty〉

〈instance-attributes〉 ::= 〈attribute-value-pair〉 {; 〈attribute-value-pair〉}∗ | 〈empty〉

〈declaration〉 ::= 〈attribute-type-pair〉 | 〈attribute-value-pair〉

〈attribute-type-pair〉 ::= 〈attribute-name〉 : 〈type〉

〈attribute-value-pair〉 ::= 〈attribute-name〉 = 〈value〉

120 Chapter 4. Frames and Inheritance

〈type〉 ::= int | real | string | 〈set〉 | 〈class-name〉

〈value〉 ::= 〈elementary-constant〉 | 〈instance-name〉

〈empty〉 ::=

A 〈super-specification〉 equal to the special symbol nil is used to indicate that the frame con-
cerned is the root of the tree-shaped taxonomy. As a type, a 〈set〉 consists of elementary
constants and instance names, separated by comma’s and enclosed in curly brackets. An el-
ementary constant is either a real or integer constant, or a string of non-blank characters,
that is, an instance of one of the predefined (or standard) classes real, int, and string. The
〈instance-name〉 value of an attribute refers to a uniquely defined instance in the taxonomy.

For the moment we assume that an attribute-type or attribute-value pair for an attribute only
occurs once in a frame taxonomy. Later on we shall drop this restriction. In the preceding
definition, we have stated for ease of exposition that a class frame is the root of a tree-shaped
taxonomy if it has a super-specification equal to nil, where it actually is a subclass of the
most general class nil. This more accurate interpretation of the symbol nil, however, is only
important in frame taxonomies in which more than one most general class frame not equal to
nil occurs; if we did not consider nil as the most general class, then the graph representation
of such taxonomy would be a forest of trees instead of just a tree.

As can be seen in the preceding definition, the definition of an instance frame is com-
posed of the specification of the class to which the instance belongs followed by a collection of
attribute-value pairs. Together they give a description of an individual concept in the domain
of discourse. Let us give an example of such an instance.

EXAMPLE 4.15

We consider the left brachial artery which is one of the arteries in the human body. It
is known that the left brachial artery has an approximate diameter of 0.4 cm, that it is
localized in the upper arm, and that it contains oxygen-rich blood. All this information
is captured by the following instance frame:

instance left-brachial-artery is
instance-of artery;
diameter = 0.4;
location = arm;
blood = oxygen-rich

end

We have used the attributes diameter, location, and blood for the representation of the
mentioned properties of the individual concept ‘left brachial artery’. Note that all three
attributes have been assigned actual values. The values 0.4 and oxygen-rich are assumed
to be elementary constants. The value arm of the attribute location is an instance of
the class frame limb:

instance arm is
superclass limb;
position = superior

end

4.2. Frames and single inheritance 121

The value superior again is an elementary constant.

The information specified in the attribute parts of instance frames has to accord with the
following rules. All attributes occurring in the instances of a class frame must have been
declared in the attribute part of that class or in one of its generalizations; the values which
have been filled in for the attributes in the instance must be of the appropriate attribute type
as defined by the classes in the taxonomy. Note that these rules provide part of the meaning
of the instance-of link.

EXAMPLE 4.16

Consider the instance left-brachial-artery from the preceding example once more. The
class to which left-brachial-artery belongs is defined as follows:

class artery is
superclass blood-vessel;
location : {arm,head,leg,trunk}

end

This class frame provides a type declaration for the attribute location: it indicates that
the location attribute is only allowed to take a value from the set {arm,head,leg,trunk}.
Note that the value arm given for the location attribute in the left-brachial-artery in-
stance is indeed of the correct type. Not all attributes occurring in the instance have
been declared in the class frame artery; so, the diameter and blood attributes must have
been declared in some of the generalizations of the artery class. In the previous example
we have mentioned that the instance frame arm belongs to the class limb. This class
frame for example is defined as follows:

class limb is
superclass nil;
position : {inferior,superior}

end

From the superclass specification nil we have that this class is the root of a tree-shaped
taxonomy.

In the preceding example, the class frames we considered had attribute-type pairs only in their
declaration part. However, the syntax definition indicates that also attribute-value pairs are
allowed in the declaration part of a class frame. The following example illustrates this idea.

EXAMPLE 4.17

Consider the previous examples once more. Since most arteries contain oxygen-rich
blood, there is no purpose in repeating this information for all individual arteries sep-
arately. In this case, it appears to be convenient to fix the value oxygen-rich for the
attribute blood in advance in the class frame artery. We then obtain the following
alternative definition for the artery frame:

122 Chapter 4. Frames and Inheritance

class artery is
superclass blood-vessel;
location : {arm,head,leg,trunk};
blood = oxygen-rich

end

The instance frame left-brachial-artery may now be simplified to

instance left-brachial-artery is
instance-of artery;
diameter = 0.4;
location = arm

end

without affecting the intended meaning.

Although only informally, we have now fully described the meaning of the instance-of link.
We turn our attention to the superclass link. Recall that we have distinguished two different
types of attribute information in a frame taxonomy: information about attribute types and
information about attribute values. Accordingly, in assigning a meaning to the superclass link
we have to distinguish between these different types of attribute information. First of all, the
superclass link defines a partial order on the class frames in a taxonomy and may be applied
for reasoning about attribute values much in the same way we have seen for semantic nets.
Secondly, however, the superclass link may be viewed as defining a relation which restricts the
semantic contents of the frame taxonomy as we have shown in the preceding example. This
is essentially a higher-order relation. These two different ways of interpreting the superclass
link are best treated separately. We shall therefore first study the meaning of attribute values
in a tree-shaped taxonomy and show how it is possible to reason about such attribute values.
From now on, we shall, for ease of exposition, completely disregard the fact that classes may
contain type information until Section 4.2.4 in which we shall return to attribute types.

We have mentioned before that the semantic net formalism we have briefly discussed in
Section 4.1 may be viewed as a precursor of the frame formalism. We take a closer look at the
relationship between the two formalisms. This relationship can be examined more readily if
we depict a frame taxonomy in a graph as we have done with the semantic net. The following
example shows the general idea.

EXAMPLE 4.18

Figure 4.11 shows four frames in a tree-shaped taxonomy. The frames are represented
as boxes; the internal structure of each of the frames is depicted. The arcs in the graph
represent the instance-of and superclass links between the frames. Note that the frames
themselves already indicate their position in the taxonomy explicitly; the graphical
representation of the taxonomy therefore contains redundant information. From a graph
representing a frame taxonomy we can easily derive an equivalent semantic net. Figure
4.12 shows the semantic net equivalent to the taxonomy depicted in Figure 4.11. Note
that although the corresponding semantic net essentially comprises the same information
as the original frame taxonomy, the apparent modularity of the taxonomy has been lost.

4.2. Frames and single inheritance 123

end

diameter = 2.5

instance aorta is

end

wall = fibrous

class vein is

end

wall = muscular

superclass blood-vessel;

class artery is

end

contains = blood-fluid

form = tubular;

superclass nil;

class blood-vessel is

instance-of

superclasssuperclass

superclass blood-vessel;

instance-of artery;

Figure 4.11: A tree-shaped taxonomy showing the internal structure of the frames.

blood-vessel tubular

blood-fluid

artery veinmuscular fibrous

aorta 2.5

form

contains

superclass superclass

wall

instance-of

wall

diameter

Figure 4.12: The semantic net corresponding to the taxonomy shown in Figure 4.11.

124 Chapter 4. Frames and Inheritance

Based on the frame formalism defined above we shall discuss the meaning that can be asso-
ciated with the frame formalism. The discussion takes the following example for a starting
point.

EXAMPLE 4.19

Suppose that we want to represent in a frame the following information concerning the
vascular system: the aorta is an artery having a diameter of 2.5 cm. Using our frame
formalism, this information may be represented as follows:

instance aorta is
instance-of artery;
diameter = 2.5

end

The information that an artery is a blood vessel having a muscular wall is represented
in the following class frame:

class artery is
superclass blood-vessel;
wall = muscular

end

To conclude, the following class frame shows that a blood vessel is tubular in form and
contains blood:

class blood-vessel is
superclass nil;
form = tubular;
contains = blood-fluid

end

The last frame furthermore indicates that the blood-vessel frame is the root of the
taxonomy concerned.

The information that is specified in a frame taxonomy can also be expressed in first-order
predicate logic, roughly by complying with the following directions:

• take the names of the instances as constants;

• take the names of the class frames as unary predicate symbols;

• translate an instance-of link into a predicate symbol having a constant for an argument;

• translate a superclass link into a logical implication;

• take the attribute names as unary function symbols;

4.2. Frames and single inheritance 125

• translate an attribute-value pair into an equality between a function term and a con-
stant.

EXAMPLE 4.20

Assuming a suitable interpretation, the following formulas represent the same informa-
tion as the frames in the foregoing example do:

artery(aorta)
diameter(aorta) = 2.5

∀x(artery(x)→ blood-vessel(x))
∀x(artery(x)→ wall(x) = muscular)

∀x(blood-vessel(x)→ form(x) = tubular)
∀x(blood-vessel(x)→ contains(x) = blood-fluid)

The semantics of first-order predicate logic may now be exploited to define a semantics for
the frame formalism. Under the assumption that each attribute only occurs once in the
taxonomy, we may ascribe a meaning based on first-order predicate logic to the set of frames
of this taxonomy using the following general translation scheme:

class C is
superclass S; ∀x(C(x)→ S(x))
a1 = b1; ⇒ ∀x(C(x)→ a1(x) = b1)
...

...
an = bn ∀x(C(x)→ an(x) = bn)

end

instance I is
instance-of C; C(I)
a1 = b1; ⇒ a1(I) = b1
...

...
an = bn an(I) = bn

end

Under the mentioned assumption we have that there always exists an interpretation I of the
thus obtained logical formulas which is a model. In the next section we shall study the case
in which the restriction that an attribute-value pair for an attribute occurs only once in a
taxonomy has been dropped.

We conclude this section with a discussion of the inference method associated with the
frame formalism. We start by examining the derivations that can be made from the corre-
sponding logical formulas by means of a sound and complete collection of inference rules.

EXAMPLE 4.21

Consider the formulas given in the previous example once more. From the formulas

126 Chapter 4. Frames and Inheritance

artery(aorta)
∀x(artery(x)→ wall(x) = muscular)

we can derive the formula

wall(aorta) = muscular

using modus ponens. Similarly, from the set of formulas in the preceding example the
following formula can be derived:

blood-vessel(aorta)

When closely examining these derivations, we see that the information holding for ar-
teries in general is explicitly said to hold for the aorta in particular: since we know that
the aorta is an artery, the aorta inherits this information from the arteries. Similarly,
the aorta inherits the information specific to blood vessels.

In the foregoing example we have demonstrated the reasoning behaviour with logical formulas
representing the information stored in a given frame taxonomy. This reasoning behaviour is
modelled in an inference method for frames called single inheritance. In case of a tree-shaped
taxonomy, we speak of single inheritance to stress the fact that each frame has at most one
superframe. In contrast, the inference method associated with more general, graph-shaped
taxonomies is called multiple inheritance; we shall discuss multiple inheritance in Section
4.3. Informally speaking, in single inheritance all information that holds for a particular
frame is determined by traversing the taxonomy from the frame itself to the root of the
taxonomy, that is, the most general frame, and successively collecting the attributes with
their associated value that are found in the encountered frames. This may be viewed as
exploiting the transitivity property of the superclass relation. This procedure terminates as
soon as the information in the root of the taxonomy has been processed. The function shown
below describes the recursive inference procedure:

function Inherit(frame, attribute-value-pairs)

if frame = nil then
return(attribute-value-pairs)

end;
attribute-value-pairs← attribute-value-pairs ∪ AttributePart(frame);

return(Inherit(Superframe(frame), attribute-value-pairs))

end

The parameters frame and attribute-value-pairs take as values a frame name and a col-
lection of attribute-value pairs, respectively. If the parameter frame equals nil, then either
the taxonomy is empty or the root of the taxonomy has been reached: in both cases all
attribute-value pairs holding for the frame concerned have been collected in the second argu-
ment attribute-value-pairs. If the parameter frame differs from the value nil, then all
attribute-value pairs specified in the frame frame are extracted from it using the function
AttributePart and added to attribute-value-pairs. The information holding for the su-
perframe of the given frame frame is subsequently determined by means of a recursive call to

4.2. Frames and single inheritance 127

the Inherit function.

EXAMPLE 4.22

Consider Figure 4.11 again. In the instance frame with the name aorta the attribute-
value pair

diameter = 2.5

has been specified. Using the Inherit function described in the foregoing, the instance
inherits the attribute-value pair

wall = muscular

from its superframe artery. From the superframe blood-vessel of the frame artery, the
instance inherits the following two attribute-value pairs:

contains = blood-fluid
form = tubular

4.2.2 Exceptions

In the previous section we have introduced a semantics for the frame formalism based on
first-order predicate logic. To this end, we assumed that attributes occurred only once in a
frame taxonomy. This assumption, however, renders the frame formalism not flexible enough
for coping with all practical applications. In this section we therefore abandon this rather
restrictive assumption and investigate the problems that arise from doing so; we will assume,
however, that in a given frame an attribute can only take one value at a time. Allowing
attributes to occur more than once in a frame taxonomy increases the expressive power of
the formalism: it has become possible to state exceptions to information that holds in gen-
eral but for some special cases. The following example shows the way an exception may be
represented; it furthermore discusses the consequence of the introduction of exceptions into
the formalism with respect to its semantics.

EXAMPLE 4.23

We have said in the preceding section that most arteries contain oxygen-rich blood. The
following class frame captures this knowledge:

class artery is
superclass blood-vessel;
blood = oxygen-rich

end

However, it is known that the left and right pulmonary arteries are exceptions to this
property of arteries: the pulmonary arteries have almost all properties arteries have
but, opposed to arteries in general, they transport oxygen-poor blood. Restricting the
discussion to the left pulmonary artery only, this information has been specified in the
following instance frame:

128 Chapter 4. Frames and Inheritance

instance left-pulmonary-artery is
instance-of artery;
blood = oxygen-poor

end

We now have expressed that the value oxygen-poor of the attribute blood is an exception
to the value oxygen-rich of the attribute blood that has been specified in the superframe
artery of the instance: informally speaking, the ‘general’ value has been surpassed. Note
that the attribute blood is no longer unique in the taxonomy.

Applying the general translation scheme for converting these two frames into formulas
in first-order predicate logic, we obtain the following set of formulas:

artery(left-pulmonary-artery)
blood(left-pulmonary-artery) = oxygen-poor

∀x(artery(x)→ blood-vessel(x))
∀x(artery(x)→ blood(x) = oxygen-rich)

This set of logical formulas is inconsistent, since by means of modus ponens we can
derive the following logical consequences:

blood(left-pulmonary-artery) = oxygen-poor
blood(left-pulmonary-artery) = oxygen-rich

The inconsistency now follows from the equality axioms (these are assumed to be im-
plicitly present). We assume that the unique name assumption holds, that is, symbols
(function symbols, predicate symbols, and constants) with different names are assumed
to be different. Now observe that in any model for the logical formulas shown above the
constants oxygen-rich and oxygen-poor are equal. This, however, contradicts the unique
name assumption.

In the foregoing example we have demonstrated that in the frame formalism exceptions are
represented by locally surpassing attribute values. Furthermore, it has been shown that in
case we allow multiple occurrences of attributes the translation of the frame formalism into
first-order predicate logic may render an inconsistent set of formulas; it is not possible to
fully capture the notion of exceptions by standard first-order predicate logic. The meaning of
the frame formalism allowing for exceptions, however, can be described using a non-standard
logic, such as for example the non-monotonic logic developed by D. McDermott and J. Doyle,
or by the default logic developed by R. Reiter. We do not enter into these theories in detail;
we merely give a sketch of their respective general idea.

We first consider the non-monotonic logic of McDermott and Doyle. In non-monotonic
logic, first-order predicate logic is extended with a special modal operator M . The truth
of a formula M(f(x) = c) now means that the formula f(x) = c is possibly true; in other
words, it is not possible to derive from the given set of formulas, formulas f(x) = d with
d 6= c. In our example, the formula blood(left-pulmonary-artery) = oxygen-poor must be true
in all models for our set of logical formulas. It therefore is undesirable that the formula

4.2. Frames and single inheritance 129

blood(left-pulmonary-artery) = oxygen-rich can be derived, since this would lead to an incon-
sistency. Using the modal operator M we can block the derivation of the latter formula. The
new formulas representing the given information now are as follows:

artery(left-pulmonary-artery)
blood(left-pulmonary-artery) = oxygen-poor

∀x(artery(x)→ blood-vessel(x))
∀x(artery(x) ∧M(blood(x) = oxygen-rich)→ blood(x) = oxygen-rich)

Informally speaking, these formulas state that for a constant e the formula blood(e) =
oxygen-rich can only be derived if no other formula blood(e) = c with c 6= oxygen-rich can
be derived. So, the formula blood(left-pulmonary-artery) = oxygen-rich no longer is a logical
consequence of the above-given set of formulas.

The default logic developed by R. Reiter equally provides a way of handling exceptions but
from a different perspective than non-monotonic logic does. In default logic, special inference
rules, called defaults, are added to first-order predicate logic. The translation of the frame
formalism into default logic now yields a set of logical formulas and a set of defaults. In the
present case, we obtain the following set of logical formulas

artery(left-pulmonary-artery)
blood(left-pulmonary-artery) = oxygen-poor

∀x(artery(x)→ blood-vessel(x))

and the following default

artery(x) : blood(x) = oxygen-rich

blood(x) = oxygen-rich

A default consists of a prerequisite, in our case the formula artery(x), and a set of so-called
justifications, here the formula blood(x) = oxygen-rich; these are specified above the line. It
furthermore contains a consequent, here blood(x) = oxygen-rich, specified below the line. In
this example, the default expresses that given the satisfiability of the prerequisite artery(x) for
some x in the domain and given that there are no formulas which contradict the justification
blood(x) = oxygen-rich, then the consequent blood(x) = oxygen-rich may be derived. So,
in the present case blood(left-pulmonary-artery) = oxygen-rich cannot be derived. This is
precisely what we wanted to achieve.

We conclude this section by introducing an inheritance procedure that respects the in-
tuitive meaning of a frame formalism allowing for exceptions. It is obvious that the inheri-
tance procedure described in the previous section cannot be applied in case attributes occur
more than once in a taxonomy: this procedure might come up with conflicting information.
However, only a minor modification of the procedure suffices to let it cope with exceptions.
The general idea of the alteration of the inheritance procedure is as follows. Just before
an attribute-value pair is added to the set of collected attribute-value pairs, it is examined
whether the attribute name concerned already occurs in this set: in that case, the attribute
value has been surpassed by an exception somewhere lower in the taxonomy. An attribute-
value pair is only then added to the set of collected attribute values if the attribute name
is not present as yet in this set. The following function describes the altered inheritance
procedure more formally:

130 Chapter 4. Frames and Inheritance

function Inherit(frame, attribute-value-pairs)

if frame = nil then
return(attribute-value-pairs)

end;
pairs ← AttributePart(frame);

attribute-value-pairs← attribute-value-pairs ∪
NewAttributes(pairs, attribute-value-pairs);

return(Inherit(Superframe(frame), attribute-value-pairs))

end

The function NewAttributes is used to delete from pairs those attribute-value pairs of which
the attribute name already occurs in attribute-value-pairs.

The intuitive idea of this new inheritance function is that the value which holds for an
attribute is given in the frame itself or in the nearest frame higher in the taxonomy providing
a value for the attribute.

4.2.3 Inheritance and attribute facets

In our treatment of inheritance of attribute values in the preceding sections, we did not pay
any attention to the way in which these values were obtained. In many practical applications,
however, it may be important to know whether an attribute value for a given instance has
been obtained by inheritance or has been explicitly specified in some way: in the latter case,
the user is likely to have more confidence in the accurateness of the value than in the former
case where the value has only been stated for an entire class of instances. Furthermore, it
often is desirable to be able to compute attribute values based on the values of some other
attributes which have been obtained during a consultation. The frame formalism discussed in
the preceding sections is not able to cope with such situations. It is not surprizing therefore
that most frame formalisms that are employed in systems which are actually used in practical
applications, offer special language constructs, called facets, for the purpose of handling the
situations mentioned above. In this section, we shall discuss some of the facets that are most
frequently met in literature.

A facet may be viewed as a property associated with an attribute. The most common facet
is the value facet referring to the actual value of the attribute. The value stored in a value
facet of an attribute is assumed to have been established with absolute certainty. Since it is
often difficult to specify with certainty in advance the values attributes of instances of a class
will adopt, the initial values for class attributes are often specified in default facets. These
default values may be overridden as the consultation proceeds. Note that our algorithm for
single inheritance with exceptions already exhibited this behaviour; the difference, however,
is that when facets are used, an inherited default attribute value is still marked as being a
default value. In general, it depends on the characteristics of the problem area which part of
the attribute values will be specified in a default facet and which part is specified in a value
facet. The values specified in the default facets of attributes in a frame taxonomy together
offer a typical picture of the domain of discourse.

The third facet we discuss is the demon facet, or demon for short. A demon is a procedure
that will be invoked at a particular time during the manipulation of the frame in which it
has been specified. The condition under which a demon is activated depends upon the type
of the demon. An if-needed demon is activated the moment an attribute value is needed but

4.2. Frames and single inheritance 131

not yet known for the attribute it is attached to. An if-added demon is activated the moment
a value is entered into the value facet of the attribute concerned. An if-removed demon is
invoked the moment a value is removed from the value facet of the attribute it is attached to.
This way of integrating procedural and declarative knowledge is called procedural attachment.
The frame formalism gains enormously in expressive power by the incorporation of demons.
Using demons and attribute values, it for example is possible to represent local state changes
due to computation: the state of the computation at a certain moment during a consultation
is described by the values the attributes have at that moment.

So far, we have discussed inheritance as the only method for frame manipulation. It will
be evident, however, that inheritance alone does not render a full inference engine: inheri-
tance accounts for only a small portion of the inference engine of most frame-based systems.
In many systems, demons are used to influence the overall control exerted in manipulating
the frame taxonomy: an if-added demon for instance may be used to direct the control to a
particular frame as a side-effect. However, great care must be taken in applying such tech-
niques: when such side-effects are applied very often, the behaviour of the system will become
difficult to fathom. This, however, is not true for every use of demons. An if-needed demon
for instance can be an algorithm for asking the user for further information or for calculating
a value for example in handling time-dependent information.

EXAMPLE 4.24

Consider a real-time expert system for controlling some ongoing process that has the
possibility to read off several gauges indicating the status of this process. The activation
of an if-needed demon may result in reading off some of the gauges as soon as information
concerning the status of the process is required.

To conclude this informal introduction to demons, we observe that frames are often used as
a means of partitioning a given set of production rules: each frame then has command of a
certain partition of the set of rules. In a frame taxonomy supporting this idea, a demon is
used to initiate the consultation of such a partition. It is closely related to concept of methods
in object-oriented programming. Besides the three general facets discussed in the foregoing it
is of course possible to define several domain-dependent facets for a given application where
appropriate.

With reference to the foregoing discussion, the following definition states a simple, imple-
mentation-oriented formalism for frames allowing for facets to be attached to attributes; once
more we have refrained from type information.

Definition 4.3 A frame is an expression of the following form:

〈frame〉 ::= 〈class〉 | 〈instance〉

〈class〉 ::= class 〈class-name〉 is
superclass 〈super-specification〉;
〈attributes〉

end

〈instance〉 ::= instance 〈instance-name〉 is

132 Chapter 4. Frames and Inheritance

instance-of 〈super-specification〉;
〈attributes〉

end

〈super-specification〉 ::= 〈class-name〉 | nil

〈attributes〉 ::= 〈attribute-facet-pair〉 {; 〈attribute-facet-pair〉}∗ | 〈empty〉

〈attribute-facet-pair〉 ::= 〈attribute-name〉 = (〈facet〉 {, 〈facet〉}∗)

〈facet〉 ::= 〈facet-name〉〈value〉 | demon 〈demon-type〉〈demon-call〉

〈facet-name〉 ::= value | default

〈demon-type〉 ::= if-needed | if-added | if-removed

〈value〉 ::= 〈elementary-constant〉 | 〈instance-name〉

〈empty〉 ::=

Again, a class specification equal to the special symbol nil is used to indicate that the frame
concerned is the root of the tree-shaped taxonomy.

EXAMPLE 4.25

The frame shown below describes the class of arteries which is a subclass of the class of
blood-vessels:

class artery is
superclass blood-vessel;
wall = (value muscular);
blood = (default oxygen-rich);
blood-pressure = (default 20);
blood-flow = (default 4);
resistance = (demon if-needed R(blood-pressure, blood-flow))

end

The frame has five attributes. For the attribute with the name wall a value facet has
been specified, since we are absolutely certain that all arteries have a muscular wall. For
the three attributes with default facets things are different. We already know that not
all arteries contain oxygen-rich blood, hence the default facet for the blood attribute.
The attribute blood-pressure represents the difference in blood pressure between the
pressure at beginning and at the end of an artery. The value specified for this attribute
as well as the value for the blood-flow attribute are average values for middle-sized ar-
teries. Evidently, such knowledge is best represented in default facets. Finally, we have
one attribute, the resistance attribute, for which an if-needed demon has been specified
for calculating a value upon request. The demon call R(blood-pressure, blood-flow) rep-
resents the call to the procedure R for computing the resistance to the blood flow in

4.2. Frames and single inheritance 133

the given artery using the formula

resistance =
blood-pressure

blood-flow

The values of the attributes blood-pressure and blood-flow are passed to the procedure.

Since we now allow for various facets to be attached to attributes, it has become necessary
to incorporate information concerning the order in which such facets are considered in our
algorithm for single inheritance. Basically, there are two types of inheritance of attributes
with facets, only differing in the order in which the facets are dealt with:

• N-inheritance, and

• Z-inheritance.

These types of inheritance owe their respective names to the way the taxonomy is traversed.
The intuition underlying N -inheritance is that any value in a value facet appearing in

a frame or in one of its generalizations is closer to the real value than any value obtained
from a default facet or from invoking a demon. As usual, of all the values of an attribute
stored in value facets in the various frames in the frame taxonomy the most specific one will
be inherited by the frame of concern. The basic idea underlying the use of Z -inheritance is
that any specific attribute value, whether obtained from a value facet, from invoking a demon
or from a default facet, is more reliable than any more general attribute value no matter in
which facet it has been specified; however, within a given frame, values specified in a value
facet are preferred over those computed by a demon or provided by a default facet.

The procedures for N - and Z -inheritance can now be described informally as follows.
Applying N -inheritance, an attribute value is determined by first examining the value facet
of the frame concerned. If no value facet has been specified, then the value facet attached
to the corresponding attribute in the superframe of the frame is examined. This process is
repeated until in a frame higher in the taxonomy a value facet has been found or the root of
the taxonomy has been reached. If the process has not yielded an attribute value as yet, then
the control is returned to the frame of interest, and the process is repeated for the if-needed
demons. Finally, if this process has still not yielded an attribute value, the default facets will
be examined in a similar way. Figure 4.13 depicts the behaviour of N -inheritance graphically.
Applying Z -inheritance, an attribute value is determined by successively examining the value
facet, the if-needed demon and the default facet of the frame concerned before the frames
higher in the taxonomy are considered. Figure 4.14 shows the behaviour of Z -inheritance.

4.2.4 Subtyping in tree-shaped taxonomies

In Section 4.2.1 we have introduced a syntax for a frame formalism which allowed for dec-
larations of attribute types. Until now we have disregarded such type information. In the
present section, however, we shall pay attention to type information and discuss the proper-
ties of the relation defined by the superclass links now viewed as a relation between attribute
types. In discussing this relation in the context of type information, it is more common to
speak of the supertype relation, or reversely of the subtype relation; exploiting the subtype
relation is known as subtyping. In the present section, we study subtyping in tree-shaped

134 Chapter 4. Frames and Inheritance

value
facet

if-needed
demon

default
facet

frame

superframe

root of the
taxonomy

Figure 4.13: N -inheritance.

value
facet

if-needed
demon

default
facet

frame

superframe

root of the
taxonomy

Figure 4.14: Z -inheritance.

4.2. Frames and single inheritance 135

frame taxonomies in which attribute-type pairs for a particular attribute may occur more
than once.

It will be evident that it is desirable to have type information available in a fame taxonomy:
attribute types may be exploited for checking entered values on being of the proper type. This
way, an ‘unexpected’ attribute value can be detected as soon as it is entered into the attribute
concerned; in that case, the attribute value is considered to be erroneous.

EXAMPLE 4.26

Consider a frame taxonomy representing information concerning the human cardiovas-
cular system. We assume that the class frame with the name artery has an attribute
mean-blood-pressure that describes the mean blood pressure in mmHg in the arteries in
a normal, healthy human being. In the arteries the mean blood pressure ranges from
30 mmHg to 100 mmHg. This information may be stored as type information for the
mean-blood-pressure attribute. When in a patient for a specific artery, say the ulnar
artery, a mean blood pressure of 10 mmHg is found, then this is an unexpected value
and probably some action has to be taken upon this event. The specification of an
attribute type can be further specialized, that is, narrowed down, as the frame it is
specified in is further specialized. Suppose for example that the artery class has three
specializations: the large-artery, the small-artery, and the arteriole class. In the class
representing the large arteries, the information for the mean-blood-pressure attribute is
further specialized to the range 90 – 100 mmHg, in the small-artery class to the range
60–90 mmHg and in the arteriole class to 30–60 mmHg.

We give a more formal example in which we have specified some type information in the
manner prescribed by the frame formalism.

EXAMPLE 4.27

Consider again the class of blood vessels. The following class representation shows some
attribute types for this class of objects:

class blood-vessel is
superclass nil;
blood : {oxygen-rich, oxygen-poor};
wall : {muscular,fibrous,mixed}

end

The class of arteries is a subclass of the class of blood-vessels. It is represented in the
following class frame:

class artery is
superclass blood-vessel ;
wall : {muscular,mixed};
wall-thickness : real

end

Every attribute type specified in the class frame with the name blood-vessel now is taken
to apply to the class artery as well, as long as it has not been further specialized in the

136 Chapter 4. Frames and Inheritance

artery class itself. Note that both classes contain a type declaration for the attribute
with the name wall. The type declaration included in the blood-vessel class is more
general than the one in the artery class.

From these two examples, we may conclude that subtyping involves the relationship between
attributes occurring in the classes as well as the relationship between the types of those
attributes. Before going into more detail, we first introduce some new notions that will
be used in formalizing subtyping in a tree-shaped frame taxonomy. We shall see that it is
convenient to have some representation of the set of attribute names that are of concern to a
specific class. Since an attribute type may itself be a class, it does not suffice to simply enlist
the attribute names actually occurring in a class. Therefore, we associated with a class a set
of so-called attribute sequences.

Definition 4.4 Let A be the set of all attribute names occurring in a frame taxonomy. An
attribute sequence a is a string of the form a1 : · · · : an, where ai ∈ A, i = 1, . . . , n, n ≥ 0,
that is, an attribute sequence is composed of elements from A separated by semicolons. The
attribute sequence comprising no elements at all, that is, for which n = 0, is called the empty
attribute sequence and is denoted by ǫ. From now on, we shall use A∗ to denote the (infinite)
set of all attribute sequences constructed from A.

Note that we have not imposed any restriction on for example the order in which attribute
names are allowed to occur in an attribute sequence. With every class frame in a frame
taxonomy we now associate a subset of the set of attribute sequences.

Definition 4.5 Let A∗ be a set of attribute sequences associated with a frame taxonomy as
defined above. Let y be a class frame in the taxonomy. With y we associate the set D(y) ⊆ A∗,
called the domain for y, defined by:

(1) ǫ ∈ D(y);

(2) For every attribute name a specified in y, we have that a ∈ D(y);

(3) For every attribute with the name a of type w specified in y, D(y) contains the attribute
sequences a : b for all elements b ∈ D(w);

(4) The set D(z) of attribute sequences associated with the superframe z of y is a subset of
D(y).

We give an example.

EXAMPLE 4.28

Consider the following class frame with the name blood-vessel :

class blood-vessel is
superclass nil;
volume : cubic-measure

end

4.2. Frames and single inheritance 137

This frame specifies an attribute volume providing information concerning the blood
volume for the specializations of the class. The type cubic-measure of this attribute is
a class frame itself. This class is defined as follows:

class cubic-measure is
superclass nil;
size : real;
unit : {mm3, cm3, dm3,m3}

end

The set of attribute names in the taxonomy consisting of these two frames is equal to
A = {volume, size, unit}. The set of attribute sequences associated with the class frame
blood-vessel is the set D(blood-vessel) = {ǫ, volume, volume : size, volume : unit}; the
domain for the cubic-measure class is the set D(cubic-measure) = {ǫ, size, unit}.

In the following definition we introduce the notion of a type function for computing the types
of the attribute sequences associated with a given frame.

Definition 4.6 Let A∗ be the set of attribute sequences in a frame taxonomy. Let K be
the set of class names in that frame taxonomy (including the standard classes and the most
general class nil). For each class yi ∈ K, let D(yi) ⊆ A∗ be the set of attribute sequences
associated with yi as in the preceding definition. Now, for each yi ∈ K, we define a type
function τi : A∗ → K as follows:

(1) For the empty attribute sequence ǫ, we have that τi(ǫ) = yi;

(2) For each attribute sequence a = a1 : · · · : an ∈ D(yi), n ≥ 1, we have that τi(a) = t
where t is the type of the attribute with the name an.

(3) For each a ∈ A∗\D(yi), we have τi(a) = nil.

EXAMPLE 4.29

Consider the frame taxonomy consisting of the two class frames from the previous
example. The set K of classes in this taxonomy equals

K = {nil, blood-vessel, cubic-measure, real, {mm3, cm3, dm3,m3}}

Let D(blood-vessel) be the set of attribute sequences associated with the blood-vessel
class as in the previous example. For this class, the type function τ1 : A∗ → K is
defined by

τ1(ǫ) = blood-vessel
τ1(volume) = cubic-measure
τ1(volume : size) = real

τ1(volume : unit) = {mm3, cm3, dm3,m3}
τ1(a) = nil for all a ∈ A∗\D(blood-vessel)

Let D(cubic-measure) be the domain for the class frame cubic-measure. For this class,
the type function τ2 : A∗ → K is defined as follows:

138 Chapter 4. Frames and Inheritance

τ2(ǫ) = cubic-measure
τ2(size) = real
τ2(iunit) = i{mm3, cm3, dm3,m3}
τ2(a) = nil for all a ∈ A∗\D(cubic-measure)

We now are ready to consider a type semantics for the superclass links in a taxonomy. We
introduce the notion of a subtype.

Definition 4.7 Let y1 and y2 be two class frames in a tree-shaped frame taxonomy. Let
A∗ be the set of attribute sequences in the taxonomy. Furthermore, let D(yi) be the set of
attribute sequences associated with the class frame yi, i = 1, 2. Now, let τi be the type function
associated with yi. We say that y1 is a subtype of y2, denoted by is y1 ≤ y2, if the following
two properties hold:

(1) D(y2) ⊆ D(y1);

(2) For each attribute sequence a ∈ A∗, we have that τ1(a) ≤ τ2(a).

We say that a taxonomy is correctly typed if the superclass links in the taxonomy satisfy the
properties of the relation ≤ from the previous definition. Note that we now have that the
meaning of the subtype relation can be described in terms of set inclusion ⊆: we associate
with each type t a subset I(t) of elements from a domain of discourse U , such that if for two
types t1 and t2 we have that t1 ≤ t2, then we have that the property I(t1) ⊆ I(t2) holds.

EXAMPLE 4.30

Consider the second example from this section once more. We have that the artery
class is a superframe of the blood-vessel class. The set of attribute sequences associated
with the class blood-vessel is equal to the set

D(blood-vessel) = {ǫ, blood,wall}

the domain for the artery class is equal to

D(artery) = {ǫ, blood,wall,wall-thickness}

So, the first condition in the preceding definition is satisfied since we have that
D(blood-vessel) ⊆ D(artery). The type function τ1 : A∗ → K associated with the
class artery is defined by:

τ1(ǫ) = artery
τ1(blood) = {oxygen-rich, oxygen-poor}
τ1(wall) = {muscular,mixed}
τ1(a) = nil for all a ∈ A∗\D(artery)

The type function τ2 : A∗ → K associated with the class blood-vessel is defined by:

τ2(ǫ) = blood-vessel
τ2(blood) = {oxygen-rich, oxygen-poor}
τ2(wall) = {muscular,fibrous,mixed}
τ2(a) = nil for each a ∈ A∗\D(blood-vessel)

4.3. Frames and multiple inheritance 139

The reader can easily verify that τ1(a) ≤ τ2(a) for each a ∈ A∗. We conclude that the
frame taxonomy is correctly typed.

4.3 Frames and multiple inheritance

So far, we have only dealt with tree-shaped frame taxonomies and single inheritance. In this
section, we introduce more general frame taxonomies. The frame formalism that has been
defined in Section 4.2.1 is extended by admitting in class frames more than one class name in
the superclass link field; this way, it is possible for a class to have more than one superclass.
The graphical representation of such a taxonomy then takes the form of a general directed
graph instead of a tree. In the following, we shall restrict the discussion to acyclic directed
graphs, because trivial cycles obtained from the reflexivity property of the subclass relation,
which are the only cycles that can be constructed when the superclass relation is viewed
as a partial order, will not be explicitly indicated. The inheritance algorithm associated
with graph-shaped frame taxonomies is known as multiple inheritance. In discussing multiple
inheritance, we assume that more than one value for an attribute may have been specified in
a frame taxonomy, that is, we allow for exceptions; however, we shall restrict the discussion to
value facets of attributes only. Note that the theory developed in this section should hold for
tree-shaped frame taxonomies and general graph-shaped taxonomies alike, since the former
is just a special case of the latter.

4.3.1 Multiple inheritance of attribute values

Multiple inheritance differs from single inheritance mainly in the way it handles attributes
occurring more than once in a taxonomy with different values. As in Section 4.2.2, we shall call
such attribute values exceptions. Recall that when exceptions have been specified, conflicting
information may be derived due to the inheritance of mutually exclusive values. In Section
4.2.2, however, we have seen that the problem of handling exceptions is easily solved in the case
of single inheritance in a tree-shaped taxonomy: inheritance is taken as a process for finding
a value for an attribute that starts with a given vertex in the tree, which moves along the
branches of the tree towards the root and stops as soon as a value for the attribute of concern
has been obtained. This algorithm always finds at most one attribute value. Unfortunately,
the problem is much more complicated in the case of multiple inheritance in a general graph-
shaped taxonomy. The algorithm for multiple inheritance in graph-shaped taxonomies in
which exceptions occur has to incorporate a method for explicitly deciding which value of
an attribute is to be preferred; we speak of multiple inheritance with exceptions. The main
part of this section will be devoted to the development of such an algorithm for multiple
inheritance with exceptions.

To start with, some new notions and notational conventions are introduced, including
a more compact notation for the representation of frame information which has a stronger
mathematical flavour than the implementation-oriented syntax introduced in the preceding
section. From now on, K = {y1, y2, . . . , yn}, n ≥ 0, will denote a fixed set of class frames,
and I = {x1, x2, . . . , xm}, m ≥ 0, will denote a fixed set of instance frames; the sets I and K
are disjoint. The set of frames F is equal to I ∪K.

In a frame taxonomy, the superclass links are viewed as members of a relation between
class frames. In the following definition we indicate that this relation may be viewed as a

140 Chapter 4. Frames and Inheritance

partial order.

Definition 4.8 Let K denote the fixed set of class frames. The subclass relation ≤ is a
binary relation on K, that is ≤ ⊆ K × K, that defines a partial order on the set K. For a
pair (x, y) ∈ ≤, denoted by x ≤ y, it is said that x is a subclass of y.

Recall that, since the subclass relation ≤ defines a partial order on the set of class frames K,
it satisfies the properties mentioned in Section 4.1.1.

The instance-of links are viewed as members of a relation between the set of instance
frames I and the set of class frame K. We assume that an instance belongs to exactly one
class. The instance-of links therefore are best formalized by means of a function.

Definition 4.9 Let I denote the fixed set of instance frames and K the fixed set of classes.
The instance-of function ≪: I → K is a mapping from I to K. In the sequel, we shall denote
≪(x) = y by x≪ y; we say that x is an instance of y.

The subclass relation and the instance-of function introduced in the two preceding definitions
only describe reference information. The following definition introduces another relation
meant to arrive at a full language for the specification of frame information.

Definition 4.10 Let F be the set of frames such that F = I ∪ K, where I is the set of
instance frames in F , and K the set of class frames in F . Let A be a fixed set of attribute
names and let C be a fixed set of constants. Then, a triple (x, a, c) ∈ F ×A× C, denoted by
x[a = c], is called an attribute-value specification. An attribute-value relation Θ is a ternary
relation on F , A and C, that is, Θ ⊆ F ×A× C.

In the previous definition we have explicitly specified a set of constants C. Note, however,
that this set of constants may be identified with the set of instances I, as we have done in the
preceding sections. An attribute-value specification x[a = c] expresses that in the frame x
the attribute a has the constant value c. The notions introduced in the foregoing definitions
are now used to formally define a frame taxonomy.

Definition 4.11 Let I be the set of instances and K the set of classes. Furthermore, let A
be the set of attribute names and C the set of constants. I, K, A and C are disjoint. Now,
let N be the quadruple N = (I,K,A,C). Furthermore, let the relations ≤ and Θ, and the
function ≪ be defined as above. Then, a taxonomy T is a quadruple T = (N,Θ,≪,≤).

We give an example of the frame formalism we have just defined and its relation with the
frame formalism introduced in Section 4.2.1.

EXAMPLE 4.31

Consider the information specified in the following three classes represented in the frame
formalism from Section 4.2.1:

class blood-vessel is
superclass nil;
contains = blood-fluid

end

4.3. Frames and multiple inheritance 141

class artery is
superclass blood-vessel;
blood = oxygen-rich;
wall = muscular

end

class vein is
superclass blood-vessel;
wall = fibrous

end

instance aorta is
instance-of artery;
diameter = 2.5

end

In the specified taxonomy, we have that I = {aorta} is the set of instance frames and
that K = {artery, vein, blood-vessel} is the set of classes. Furthermore, we have that A =
{contains, blood,wall, diameter}, and C = {blood-fluid, oxygen-rich,muscular,fibrous, 2.5}.
We have the following set of attribute-value specifications:

Θ = {blood-vessel[contains = blood-fluid],
artery[blood = oxygen-rich],
artery[wall = muscular],
vein[wall = fibrous],
aorta[diameter = 2.5]}

The function ≪ and the relation ≤ are defined by

aorta≪ artery
artery ≤ blood-vessel
vein ≤ blood-vessel

Now, T = (N,Θ,≪,≤) is the taxonomy shown above, this time represented using our
new formalism.

Just as before, a taxonomy T = (N,Θ,≪,≤) can be represented graphically by means of an
acyclic directed graph in which the vertices represent the frames in I and K, and the arcs
represent the relation ≤ and the function≪. A vertex is assumed to have an internal structure
representing the collection of attribute-value specifications associated with the frame by the
relation Θ. In the graphical representation, an attribute-value specification is depicted next
to the vertex it belongs to; only the attribute and constant of an attribute-value specification
are shown. We indicate the relation ≤ by means of a pulled arrow; and the function ≪ will
be depicted by means of a dashed arrow. In the graphical representation of a taxonomy, arcs
expressing the reflexivity and transitivity of the subclass relation will be left out in most cases.
The omission of the arcs representing reflexivity, has no effect on the inheritance of attribute
values, and is therefore permitted. However, leaving out arcs representing the transitivity

142 Chapter 4. Frames and Inheritance

property of the subclass relation, is one of the causes of problems concerning the inheritance
of mutually exclusive attribute value, since this may alter the meaning of a taxonomy. Most
of the remainder of this section is therefore devoted to an investigation of the consequences
of this decision. Figure 4.15 shows the taxonomy from the previous example.

The relation ≤ defined above is now taken as the basis for reasoning with frames. We
shall define so-called inheritance chains for the representation of the reasoning process that
takes place in a frame taxonomy. These chains will constitute our principal device for dealing
with exceptions in multiple inheritance. In the following two definitions the syntactic form of
such inheritance chains and a procedure for their construction is presented. We shall first be
concerned with inheritance of attribute values for classes only; later on we turn to inheritance
of attribute values for instances.

Definition 4.12 Let T = (N,Θ,≪,≤) be a taxonomy having the usual meaning, where N =
(I,K,A,C). An inheritance chain in T is an expression having one of the following forms:

y1 ≤ . . . ≤ yn

y1 ≤ . . . ≤ yn[a = c]

where yi ∈ K, i = 1, . . . , n, n ≥ 1, are class frames, and yn[a = c] ∈ Θ is an attribute-value
specification.

Note that attribute-value specifications are allowed only in isolation, or at the end of an
inheritance chain. Furthermore, we observe that inheritance chains of the form y1 ≤ . . . ≤ yn

are just another way of characterizing the subclass relation, obtained from its satisfying the
properties of reflexivity and transitivity. Although we allow inheritance chains in which the
reflexivity of the subclass relation ≤ is exploited, we shall not show such chains in our examples
since they do not contribute to the notions we want to illustrate.

The set of all possible inheritance chains in a given frame taxonomy is constructed as
described in the next definition.

Definition 4.13 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). The set ΩT

of inheritance chains in T is defined as follows:

• For each y ∈ K, we have y ∈ ΩT .

• For each y[a = c] ∈ Θ where y ∈ K, we have y[a = c] ∈ ΩT .

blood-vessel [contains = blood-fluid]

vein artery
[blood = oxygen-rich]

[wall = muscular]

aorta [diameter = 2.5]

[wall = fibrous]

Figure 4.15: A taxonomy consisting of three classes and one instance.

4.3. Frames and multiple inheritance 143

• For each pair (y1, y2) ∈ ≤ we have y1 ≤ y2 ∈ ΩT .

• For each y1 ≤ . . . ≤ yk ∈ ΩT and yk ≤ . . . ≤ yn ∈ ΩT , 1 ≤ k ≤ n, n ≥ 1, where yi ∈ K,
i = 1, . . . , n, we have that y1 ≤ . . . ≤ yn ∈ ΩT .

• For each y1 ≤ . . . ≤ yn ∈ ΩT and yn[a = c] ∈ ΩT , where yi ∈ K, i = 1, . . . , n, n ≥ 1, we
have that y1 ≤ . . . ≤ yn[a = c] ∈ ΩT .

EXAMPLE 4.32

Consider the taxonomy T = (N,Θ,≪,≤) in which

I = {aorta}
K ={large-artery, artery, blood-vessel}
Θ ={aorta[diameter = 2.5], artery[wall = muscular], large-artery[mean-pressure = 100],

blood-vessel[contains = blood-fluid]}

The function ≪ is defined by aorta ≪ large-artery, and the relation ≤ is defined by
large-artery ≤ artery and artery ≤ blood-vessel. Recall that inheritance chains in which
the reflexivity of the subclass relation ≤ is used, will not be shown; to give an impression
of how such chains look like we show one of them:

artery ≤ artery ≤ artery

Now, the set of inheritance chains ΩT consists of the following elements:

artery
large-artery
blood-vessel
artery[wall = muscular]
large-artery[mean-pressure = 100]
blood-vessel[contains = blood-fluid]
large-artery ≤ artery
large-artery ≤ artery[wall = muscular]
large-artery ≤ artery ≤ blood-vessel
large-artery ≤ artery ≤ blood-vessel[contains = blood-fluid]
artery ≤ blood-vessel
artery ≤ blood-vessel[contains = blood-fluid]

Inheritance chains are viewed as descriptions of which attribute-value specifications may pos-
sibly be inherited by the frames in the taxonomy. We shall see shortly that in multiple inher-
itance with exceptions certain combinations of attribute-value specifications when actually
inherited represent contradictory information. Under suitable conditions, however, certain
inheritance chains may be cancelled from the set of all inheritance chains in the taxonomy,
thus preventing the occurrence of a contradiction. Before discussing this idea in further detail,
we introduce the notion of the conclusion of an inheritance chain which is an explicit means
for establishing which attribute-value specification may be inherited from the chain.

144 Chapter 4. Frames and Inheritance

Definition 4.14 Let T = (N,Θ,≪<,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . The conclusion c(ω) of an inheritance chain ω ∈ ΩT is
defined as follows:

• For each ω ≡ y1 ≤ . . . ≤ yn[a = c], we have that c(ω) = y1[a = c].

• For all other ω, we have that c(ω) is not defined.

The conclusion set C(ΩT) of ΩT is defined as the set of conclusions of all elements from ΩT ,
that is, C(ΩT) = {c(ω) | ω ∈ ΩT }.

When the attribute-value specification z[a = c] is obtained as the conclusion of an inheritance
chain, we say that the value c of the attribute a has been inherited by z.

EXAMPLE 4.33

Consider again the set ΩT of inheritance chains from the preceding example. The
conclusion set C(ΩT) of ΩT then consists of the following attribute-value specifications:

large-artery[mean-pressure = 100]
large-artery[wall = muscular]
large-artery[contains = blood-fluid]
artery[wall = muscular]
artery[contains = blood-fluid]
blood-vessel[contains = blood-fluid]

The conclusion set C(ΩT) of a given set of inheritance chains ΩT may contain attribute-value
specifications which only differ in their specified constant. We have already encountered the
notion of exception and its related problems in Section 4.2.2. In the following example, we
restate the problem in terms of inheritance chains.

EXAMPLE 4.34

In the foregoing, it has frequently been pointed out that the left and right pulmonary
arteries have much in common with arteries except that they contain oxygen-poor in-
stead of oxygen-rich blood. Now, consider the set Ω of inheritance chains containing,
among other ones, the following two chains:

pulmonary-artery[blood = oxygen-poor]
pulmonary-artery ≤ artery[blood = oxygen-rich]

The conclusion set constructed from Ω contains at least the following two attribute-value
specifications:

pulmonary-artery[blood = oxygen-poor]
pulmonary-artery[blood = oxygen-rich]

Clearly, if a sensible meaning is to be associated with the frame formalism, only one of
these conclusions should be satisfied.

4.3. Frames and multiple inheritance 145

We call a conclusion set C(ΩT) inconsistent if it contains contradictory information such as in
the previous example. In the following definition the notions of consistency and inconsistency
of a conclusion set are defined more formally.

Definition 4.15 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . Furthermore, let C(ΩT) be the conclusion set of ΩT .
The conclusion set C(ΩT) is called inconsistent if it contains attribute-value specifications
y[a = c1] and y[a = c2], c1, c2 ∈ C, such that c1 6= c2. Otherwise, the conclusion set C(ΩT) is
said to be consistent.

Inconsistency of the conclusion set of a taxonomy indicates that inheritance in the taxonomy
is not defined uniquely: only if the conclusion set is consistent, the instances of the tax-
onomy inherit unambiguous information from the classes they belong to. We now consider
inheritance of attribute values for instances in more detail. Informally speaking, the attribute-
value specifications that hold for an instance of a specific class frame are the attribute-value
specifications explicitly specified in the instance itself supplemented with the attribute-value
specifications holding for the class it belongs to that do not contradict the attribute-value
specifications from the instance. This is defined more formally below.

Definition 4.16 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be the
set of inheritance chains in T and let C(ΩT) be the conclusion set of ΩT . For each instance
frame x ∈ I, the set eC(x) is defined by eC(x) = {x[a = c] | x[a = c] ∈ Θ} ∪ {x[a = c] | x ≪
y, y ∈ K, y[a = c] ∈ C(ΩT) and for all c 6= d, x[a = d] 6∈ Θ} if C(ΩT) is consistent; eC(x) is
undefined otherwise. The extension of ΩT , denoted by EC(ΩT), is defined by

EC(ΩT) =
⋃

x∈I

eC(x)

if C(ΩT) is consistent; EC(ΩT) is undefined otherwise.

EXAMPLE 4.35

Consider the taxonomy T from the first example of this section once more. Let ΩT

be the set of inheritance chains in T and let C(ΩT) be the conclusion set of ΩT . The
extension of ΩT is equal to the following set of attribute-value specifications:

EC(ΩT) = {aorta[contains = blood-fluid],
aorta[mean-pressure = 100],
aorta[wall = muscular],
aorta[diameter = 2.5]}

A taxonomy that is inconsistent in the sense of its having an inconsistent conclusion set can
sometimes be ‘made’ consistent by cancelling some of the inheritance chains from the set of
inheritance chains in the taxonomy by using knowledge concerning the hierarchical ordering of
the frames. As a consequence, certain conclusions are cancelled from the conclusion set of the

146 Chapter 4. Frames and Inheritance

taxonomy as well, thereby preventing the occurrence of some contradictory attribute values.
Note that this way non-monotonic reasoning is introduced within the frame formalism.

For cancelling inheritance chains, we shall exploit the notion of an intermediary, which is
introduced in the following definition.

Definition 4.17 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . A class y ∈ K is called an intermediary to an inheritance
chain y1 ≤ . . . ≤ yn ∈ ΩT , yi ∈ K, i = 1, . . . , n, n ≥ 1, if one of the following conditions is
satisfied:

• We have y = yi for some i, 1 ≤ i ≤ n.

• There exists a chain y1 ≤ . . . ≤ yp ≤ z1 ≤ . . . ≤ zm ≤ yq ∈ ΩT , for some p, q,
1 ≤ p ≤ q ≤ n, where zj 6= yi, i = 1, . . . , n, zj ∈ K, j = 1, . . . ,m, m ≥ 1, such that
y = zk, for some k, 1 ≤ k ≤ m.

EXAMPLE 4.36

Consider the taxonomy T = (N,Θ,≪,≤), where I = ∅, K = {blood-vessel, artery,
oxygen-poor-artery, pulmonary-artery}, Θ is empty, and the relation ≤ is defined by

pulmonary-artery ≤ oxygen-poor-artery
pulmonary-artery ≤ artery
artery ≤ blood-vessel
oxygen-poor-artery ≤ artery

The graphical representation of the taxonomy is shown in Figure 4.16. The set of
inheritance chains in T contains, among other ones, the following two chains:

pulmonary-artery ≤ artery ≤ blood-vessel
pulmonary-artery ≤ oxygen-poor-artery ≤ artery

It will be evident that the class oxygen-poor-artery is an intermediary to both chains.

Figure 4.16 introduced in the foregoing example is useful for gaining some intuitive feeling
concerning the notion of an intermediary.

We shall see that intermediaries may be applied for solving part of the problem of multiple
inheritance with exceptions. We take a closer look at the figure. It seems as if the arc between
the vertices pulmonary-artery and artery, an arc resulting from the transitivity property of
the subclass relation, is redundant, since all attribute-value specification from the classes
artery and blood-vessel can be inherited for pulmonary-artery via the vertex oxygen-poor-
artery. Therefore, the removal of this arc from the taxonomy should not have any influence
on the result of multiple inheritance. Whether or not this is true is, of course, dependent on
our formalization of multiple inheritance. Therefore, let us investigate whether the notion of
conclusion set defined in the foregoing renders a suitable means for dealing with exceptions.
We do so by means of an example.

EXAMPLE 4.37

4.3. Frames and multiple inheritance 147

pulmonary-
artery

oxygen-poor-
artery

artery

blood-vessel

Figure 4.16: A taxonomy with an intermediary.

Consider Figure 4.16 once more. Figure 4.17 shows the taxonomy from Figure 4.16 after
removal of the seemingly redundant arc. Now, suppose that the following attribute-value
specifications are given:

oxygen-poor-artery[blood = oxygen-poor]
artery[blood = oxygen-rich]

Furthermore, suppose that no attribute-value specifications have been given for pulmonary-
artery. In the taxonomy shown in Figure 4.17, the frame pulmonary-artery inherits only
the value oxygen-poor for the attribute blood; note that this is a consequence of the way
exceptions are handled in tree-shaped taxonomies. However, in Figure 4.16 the frame
pulmonary-artery inherits both values oxygen-poor and oxygen-rich for the attribute
blood, leading to an inconsistent conclusion set. The conclusion set of the taxonomy in
Figure 4.16 therefore differs from the one obtained for the taxonomy shown in Figure
4.17, using the algorithm for single inheritance with exceptions discussed in Section
4.2.2s in the last case.

It turns out that a conclusion set only reveals the presence of exceptions in a taxonomy.
We shall see that the notion of an intermediary is more useful in dealing with exceptions in
multiple inheritance. In Figure 4.16 we have that the class oxygen-poor-artery lies in between
the classes pulmonary-artery and artery, and is an intermediary to the inheritance chains in
which the class pulmonary-artery and either or both the classes artery and oxygen-poor-artery
occur. As we have suggested before, by means of intermediaries some of the inheritance chains
may be cancelled rendering a different set of conclusions of the taxonomy. Such cancellation
of inheritance chains is called preclusion and is defined more formally below.

Definition 4.18 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . A chain y1 ≤ . . . ≤ yn[a = c1] ∈ ΩT , where n ≥ 1, is said
to preclude a chain y1 ≤ . . . ≤ ym[a = c2] ∈ ΩT , where m ≥ 1, m 6= n, and c1, c2 ∈ C with
c1 6= c2, if yn is an intermediary to y1 ≤ . . . ≤ ym.

EXAMPLE 4.38

148 Chapter 4. Frames and Inheritance

pulmonary-
artery

oxygen-poor-
artery

artery

blood-vessel

Figure 4.17: The taxonomy after removal of the redundant arc.

Consider the set ΩT of inheritance chains consisting of the following elements:

ω1: pulmonary-artery ≤ oxygen-poor-artery
ω2: pulmonary-artery ≤ artery
ω3: pulmonary-artery ≤ oxygen-poor-artery ≤ artery
ω4: pulmonary-artery ≤ oxygen-poor-artery[blood = oxygen-poor]
ω5: pulmonary-artery ≤ artery[blood = oxygen-rich]
ω6: pulmonary-artery ≤ oxygen-poor-artery ≤ artery[blood = oxygen-rich]

The reader can easily verify that the inheritance chain ω4 precludes both chains ω5 and
ω6 since oxygen-poor-artery is an intermediary to the chains ω2 and ω3.

The notion of preclusion is used for introducing a new type of conclusion set of a set of
inheritance chains.

Definition 4.19 Let T = (N,Θ,≪,≤) be a taxonomy. Let ΩT be the set of inheritance
chains in T . An inheritance chain ω ∈ ΩT is said to be inheritable if there exists no other
inheritance chain ω′ ∈ ΩT which precludes ω. The set of conclusions of all inheritable chains
ω ∈ ΩT is called the inheritable conclusion set of ΩT and is denoted by H(ΩT).

From now on we take the notions of consistency and inconsistency defined for a conclusion
set to apply to inheritable conclusion sets as well. We give some (more abstract) examples.

EXAMPLE 4.39

Consider the taxonomy T = (N,Θ,≪,≤) where I = {x} is the set of instances and
K = {y1, y2, y3} is the set of classes; furthermore, Θ is defined by

Θ = {x[a1 = c1], y1[a2 = c2], y2[a3 = c3], y3[a3 = c4]}

4.3. Frames and multiple inheritance 149

x

y1

y2

y3

[a1 = c1]

[a2 = c2]

[a3 = c4]

[a3 = c3]

Figure 4.18: A taxonomy having a consistent inheritable conclusion set.

Herein a1, a2, and a3 are distinct attribute names and c1, c2, c3, and c4 are different
constants. In addition, the relation ≤ is defined by y1 ≤ y2, y1 ≤ y3 and y2 ≤ y3; the
function ≪ is defined by x≪ y1. This taxonomy is depicted in Figure 4.18. The set of
inheritance chains ΩT consists of the following elements:

1. y1

2. y2

3. y3

4. y1[a2 = c2]

5. y2[a3 = c3]

6. y3[a3 = c4]

7. y1 ≤ y2

8. y1 ≤ y3

9. y2 ≤ y3

10. y1 ≤ y2 ≤ y3

11. y1 ≤ y2[a3 = c3]

12. y1 ≤ y3[a3 = c4]

13. y2 ≤ y3[a3 = c4]

14. y1 ≤ y2 ≤ y3[a3 = c4]

The conclusion set of ΩT is equal to C(ΩT) = {y1[a2 = c2], y1[a3 = c3], y1[a3 =
c4], y2[a3 = c3], y2[a3 = c4], y3[a3 = c4]}. Note that C(ΩT) is inconsistent.

Consider the set ΩT once more. We investigate which attribute-value specifications are
in the inheritable conclusion set. As stated in the previous definition, an inheritance
chain ω ∈ ΩT is inheritable if it is not precluded by any other chain from ΩT . Since
only a chain ending in an attribute-value specification can be precluded by another
chain also ending in an attribute-value specification, examination of chains of such a
form will suffice. So, we consider the following inheritance chains:

150 Chapter 4. Frames and Inheritance

y1

y2 y3

y4

[a = c1] [a = c2]

Figure 4.19: A taxonomy having an inconsistent inheritable conclusion set.

4. y1[a2 = c2]

5. y2[a3 = c3]

6. y3[a3 = c4]

11. y1 ≤ y2[a3 = c3]

12. y1 ≤ y3[a3 = c4]

13. y2 ≤ y3[a3 = c4]

14. y1 ≤ y2 ≤ y3[a3 = c4]

Chain 12 is precluded by chain 11 because y2 is an intermediary to y1 ≤ y3. Furthermore,
inheritance chain 13 is precluded by 5. The reader may verify that chain 14 is precluded
by 11 as well. The inheritable conclusion set H(ΩT) of ΩT is therefore equal to H(ΩT) =
{y1[a2 = c2], y1[a3 = c3], y2[a3 = c3], y3[a3 = c4]}. We conclude that the inheritable
conclusion set is consistent.

In the next example, it will be shown that even if we apply preclusion it is still possible to
obtain an inheritable conclusion set specifying contradictory information.

EXAMPLE 4.40

Consider the taxonomy T = (N,Θ,≪,≤) where the set I is empty, andK = {y1, y2, y3, y4}.
The attribute-value relation Θ is defined by Θ = {y2[a = c1], y3[a = c2]} where a is an
attribute, and c1 and c2 are distinct constants. Furthermore, the relation ≤ is defined
by the following elements:

y1 ≤ y2

y1 ≤ y3

y2 ≤ y4

y3 ≤ y4

This taxonomy is depicted graphically in Figure 4.19. The inheritable conclusion set of
the set of inheritance chains in this taxonomy is equal to H(ΩT) = {y1[a = c1], y1[a =
c2], y2[a = c1], y3[a = c2]}. Note that H(ΩT) is inconsistent.

4.3. Frames and multiple inheritance 151

From the foregoing example we have that the application of multiple inheritance using preclu-
sion may still lead to the derivation of contradictory information. From now on, such a
taxonomy will be called inconsistent.

Definition 4.20 Let T = (N,Θ,≪,≤) be a taxonomy, and let ΩT be the set of inheritance
chains in T . Furthermore, let H(ΩT) be the inheritable conclusion set obtained from ΩT .
The taxonomy T is said to be consistent if H(ΩT) is consistent; otherwise T is said to be
inconsistent.

We conclude this section by introducing the refined notion of an inheritable extension of a
set of inheritance chains.

Definition 4.21 Let T = (N,Θ,≪,≤) be a taxonomy. Let ΩT be the set of inheritance
chains in T and let H(ΩT) be the inheritable conclusion set of ΩT . For each instance frame
x ∈ I, the set eH(x) is defined by eH(x) = {x[a = c] | x[a = c] ∈ Θ} ∪ {x[a = c] | x ≪
y, y ∈ K, y[a = c] ∈ H(ΩT) and for all c 6= d, x[a = d] 6∈ Θ} if H(ΩT) is consistent; eH(x) is
undefined otherwise. The inheritable extension of ΩT , denoted by EH(ΩT), is defined by

EH(ΩT) =
⋃

x∈I

eH(x)

if H(ΩT) is consistent; EH(ΩT) is undefined otherwise.

EXAMPLE 4.41

Consider the taxonomy T from the second last example once more. The inheritable
extension of ΩT equals EH(ΩT) = {x[a1 = c1], x[a2 = c2], x[a3 = c3]}.

4.3.2 Subtyping in graph-shaped taxonomies

In Section 4.2.4 we have discussed the subject of subtyping in tree-shaped frame taxonomies.
In the present section, we extend the theory developed in that section to graph-shaped tax-
onomies. Recall that the subtype relation ≤ defines a partial order on a set of types. Before
we treat subtyping in graph-shaped taxonomies in more detail, we review some properties of
partially ordered sets.

Definition 4.22 Let S = {t1, t2, . . . , tn}, n ≥ 1, be a set on which we have a partial order
≤. An upper bound to a subset X ⊆ S is an element v ∈ S such that for each x ∈ X we
have that x ≤ v; the least upper bound to X is an upper bound u for which we have that u
≤ v for each upper bound v to X. Similarly, a lower bound to a subset X ⊆ S is an element
m ∈ S such that for each x ∈ X we have that m ≤ x; the greatest lower bound to X is a
lower bound l for which we have that m ≤ l for each lower bound m to X.

There may be more than one lower or upper bound to a subset of a partially ordered set, or
even none at all. However, if lower and upper bounds do exist, then the least upper bound
and the greatest lower bound are unique.

EXAMPLE 4.42

152 Chapter 4. Frames and Inheritance

Consider the following set S = {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2, 3}, {2, 3, 4}} having
elements which again are sets; on S we have the partial order induced by the set inclusion
relation between its elements. We consider the subset X = {{1, 2, 3}, {1, 2, 3, 4}} of S.
It will be evident that we have the following lower bounds to X: {1}, {1, 2}, {1, 2, 3}
and {2, 3}, since these sets are subsets of all elements of X. The greatest lower bound
is equal to {1, 2, 3}: every other lower bound is a subset of this lower bound. In this
example, we only have one upper bound, namely the set 1,2,3,4: each element of X is
a subset of this upper bound. Note that this upper bound therefore at the same time
is the least upper bound to X.

In Section 4.2.4 we have seen that type information in a correctly typed tree-shaped taxonomy
may be considered to be a set of types which is ordered partially by the subtype relation
≤. For correctly typed graph-shaped taxonomies an even stronger property holds: in such
taxonomies, the type information constitutes a so-called type lattice.

Definition 4.23 A type lattice S is a set of types with a partial order ≤ such that for every
two types t1, t2 ∈ S there exist in S a least upper bound and a greatest lower bound. The
greatest lower bound of t1 and t2 is denoted by t1 ∧ t2 and is usually called the meet of t1 and
t2. Furthermore, the least upper bound of t1 and t2 is denoted by t1 ∨ t2 and is usually called
the join of t1 and t2. The universal lower bound of S, denoted by ⊤, is an element of S such
that for each type t ∈ S we have that t ≤ ⊤. The universal lower bound of S, denoted by ⊥,
is an element of S such that for each type t ∈ S we have that ⊥ ≤ t.

We shall see that for assigning a suitable meaning to type information, the types in a graph-
shaped taxonomy should constitute a type lattice. First, we give an example of a type lattice.

EXAMPLE 4.43

Consider the graphical representation of a type lattice shown in Figure 4.20. This type
lattice contains the type vessel having the type blood-vessel as a specialization. The
blood-vessel type itself is considered to be subdivided into the types vein and artery. The
type lattice furthermore specifies a kind of blood vessel, called AV-anastomosis, being
a subtype of both the vein and artery type. Furthermore, the type lattice contains
the type blood which describes the characteristics of blood. Two kinds of blood are
distinguished: oxygen-rich blood and oxygen-poor blood having different characteristics
(think for example of the range of the typical oxygen pressure in oxygen-rich and oxygen-
poor blood, and of the colour of the blood which is typically darker in oxygen-poor than
in oxygen-rich blood). The type mixed-blood describes blood having characteristics
lying in between those of oxygen-poor and oxygen-rich blood. Now, note that from
the type lattice we have vein ∨ artery = blood-vessel, in other words, the type blood-
vessel is the meet of the types vein and artery. Note that the type vessel is an upper
bound for the vein and artery types, but not the least one. Furthermore, the join
of the types vein and artery is equal to the type AV-anastomosis, that is, we have
vein ∧ artery = AV-anastomosis.

Now recall from Section 4.2.4 that in a correctly typed tree-shaped taxonomy, the relation
defined by the superclass links in the taxonomy coincides with the partial order ≤ on the set of

4.3. Frames and multiple inheritance 153

⊤

vessel fluid

blood
vessel

vein artery

AV-anastomosis

blood

oxygen-rich
blood

oxygen-poor
blood

mixed-blood

⊥

Figure 4.20: A type lattice.

types specified by it. Similarly, we have that we may view a graph-shaped taxonomy as a type
lattice (including the predefined classes), and vice versa. Furthermore, recall the definitions
of the notions of attribute sequence, domain, and type function, presented in Section 4.2.4.
Informally speaking, we now take these notions to apply to graph-shaped taxonomies.

In Section 4.2.4 we interpreted types as sets. Here, we do so likewise: consider two
types t1 and t2. We associated with these types the set I(t1) and I(t2), respectively, where
I(ti) ⊆ U , i = 1, 2, for some domain of discourse U . As we have mentioned before, in a
graph-shaped frame taxonomy having the form of a lattice there exists a meet and a join
for every pair of types. The set associated with the meet t1 ∧ t2 now has to satisfy the
property I(t1 ∧ t2) = I(t1) ∩ I(t2); the set associated with the join t1 ∨ t2 has to satisfy
I(t1 ∨ t2) = I(t1) ∪ I(t2). We conclude this section with an example giving a sketch of sub-
typing in a graph-shaped taxonomy.

EXAMPLE 4.44

Consider the type lattice from Figure 4.20 once more; we look upon it as a taxonomy.
Suppose that the class frames blood-vessel, vein, artery and AV-anastomosis all con-
tain an attribute-type specification concerning an attribute named contains, in which
the specified type is one of the classes blood, oxygen-rich-blood, oxygen-poor-blood, and
mixed-blood :

claiss blood-vessel is

154 Chapter 4. Frames and Inheritance

superclass vessel ;
contains : blood

end

class vein is
superclass blood-vessel ;
contains : oxygen-poor-blood

end

class artery is
superclass blood-vessel ;
contains : oxygen-rich-blood

end

class AV-anastomosis is
superclass {artery,vein};
contains : mixed-blood

end

Furthermore, the classes blood, oxygen-rich-blood, oxygen-poor-blood and mixed-blood
specify a single attribute named colour :

class blood is
superclass nil;
colour : {blue, dark-red, red, bright-red}

end

class oxygen-rich-blood is
superclass blood ;
colour : {dark-red, red, bright-red}

end

class oxygen-poor-blood is
superclass blood ;
colour : {blue, dark-red, red}

end

class mixed-blood is
superclass {oxygen-rich-blood,oxygen-poor-blood};
colour : {dark-red, red}

end

In the present example, the set of attributes A in the frame taxonomy is equal to A =
{contains, colour}. Let A∗ be the set of attribute sequences. We now have eight domains
to consider; they are denoted by D1 up to D8 for the classes in the order shown above.
The domains for the first four classes are all equal to {ǫ, contains, contains : colour}. The
domains D5 to D8 for the classes starting with the class blood are equal to {ǫ, colour}.
The reader can easily verify that the properties required for these domains for subtyping
hold. For simplicity’s sake we now only consider the type functions associated with the
first four classes. The type functions associated with the classes blood-vessel, vein,

4.4. Frames as a representation formalism 155

artery, AV-anastomosis are denoted by τ1 up to τ4, respectively. Recall from Section
4.2.4 that we have to verify that for all a ∈ A∗ we have:

τ2(a) ≤ τ1(a)
τ3(a) ≤ τ1(a)
τ4(a) ≤ τ2(a)
τ4(a) ≤ τ3(a)

We only discuss some of these properties in detail. We start by noting that the type
for the attribute contains in the class blood-vessel equals the join of the types oxygen-
rich-blood and oxygen-rich-blood given for the classes artery and vein, respectively.
Furthermore, the meet of the types oxygen-poor-blood and oxygen-rich-blood for the
attribute contains in the classes vein and artery respectively is equal to mixed-blood. It
will be evident that we have the following properties:

τ3(contains) ≤ τ1(contains)
τ2(contains) ≤ τ1(contains)
τ4(contains) ≤ τ3(contains)
τ4(contains) ≤ τ2(contains)

Furthermore, note that we not only have that blood-vessel = vein∨ artery, but in addi-
tion that τ1(contains) = τ2(contains) ∨ τ3(contains), since blood = oxygen-poor-blood ∨
oxygen-rich-blood that is: the subtyping of classes is extended from the classes to the at-
tributes of the classes. Similarly, we have that τ4(contains) = τ2(contains)∧τ3(contains).
Furthermore, we have that

τ4(contains : colour) ≤ τ3(contains : colour
τ4(contains : colour) ≤ τ2(contains : colour)
τ4(contains : colour) = τ2(contains : colour) ∧ τ3(contains : colour)

Checking the remaining properties is rather straightforward and is left to the reader.
We conclude that the shown taxonomy is correctly typed.

4.4 Frames as a representation formalism

Frames (and semantic nets) provide a knowledge-representation formalism in which hierarchi-
cally structured knowledge can be specified in a natural way. Especially for the representation
of knowledge of a descriptive nature, such as the knowledge concerning the cardiovascular sys-
tem used in the examples in this chapter, the frame formalism appears to be highly suitable.
The advantage of frames when compared to for example Horn clauses or production rules lies
in the ease with which distinct types of knowledge can be distinguished and handled as such,
and in the fact that an explicit hierarchical organization of knowledge is obtained.

In this chapter the only means of knowledge manipulation discussed was the method
of inheritance. We stress once more that this knowledge-manipulation scheme in itself is
not sufficient as an inference engine for all applications: is often turns out to be necessary to
develop a more elaborate inference engine for the manipulation of frames in which inheritance
only is part of a set of knowledge-manipulation methods. In chapter 7 we shall discuss some
examples of such inference engines. For many non-trivial applications it will be necessary to

156 Chapter 4. Frames and Inheritance

use a enriched frame formalism, for example by procedural components. We have suggested
before that an often employed hybrid knowledge-representation scheme is that of frames
containing demons for invoking small sets of production rules. Instead of integrating frames
with production rules, one could also think of a more declarative extension to the frame
formalism for example by Horn clauses in combination with SLD resolution. This way a
hybrid system is obtained that still has a clear declarative semantics. Most present-day frame-
based systems are more alike programming languages than alike languages for knowledge-
representation. A major disadvantage of many of these systems is the loss of a neat declarative
semantics. Furthermore, working with these systems often requires a lot from the knowledge
engineer such as a store of programming tricks.

Exercises

(4.1) Use the semantic net formalism to represent information concerning a problem domain
you are familiar with. Try to define a neat semantics for the types of links you have
used. What information can you derive from the net by property inheritance?

(4.2) Write a program that implements property inheritance in semantic nets. The program
should be able to find for a specific object all properties that can be derived for it.

(4.3) Consider the following three frames:

class computer-program is
superclass nil

end

class expert-system is
superclass computer-program;
synonym = knowledge-system;

contains = expert-knowledge
end

instance MYCIN is
instance-of expert-system;
implementer = Shortliffe

end

(a) Translate the knowledge specified in the three frames shown above into standard
first-order logic with equality.

(b) Suppose that the following frame

instance Internist-I is
instance-of expert-system;
contains = medical-knowledge;

implementer = Pople
end

is added to the three frames given above. Discuss the problem that arises if we
translate this frame together with the three frames shown above into standard
first-order predicate logic with equality. Give a possible solution to the problem.

4.4. Frames as a representation formalism 157

(4.4) Consider the following two frames:

class automobile is
superclass nil;
wheels = 4;
seats = 4

end

instance Rolls-Royce is
instance-of automobile;

max -velocity = enough
end

Translate the knowledge specified in these two frames into a semantic net representation.

(4.5) Consider the algorithm for single inheritance with exceptions in a tree-shaped taxonomy
discussed in Section 4.2.2 once more. Extend this algorithm in a straightforward manner
to render it applicable to graph-shaped taxonomies. Show by means of an example that
your algorithm may produce results that are incorrect from a semantic point of view.

(4.6) Develop an algorithm for N -inheritance and implement your algorithm in a program-
ming language (for example Prolog, Lisp or Haskell).

(4.7) Consider the following frame taxonomy T = (N,Θ,≪,≤) where N = (I,K,A,C) We
have that K = {x, y, z} is the set of classes, I = {w} is the set of instances and
Θ = {x[a = 1], y[b = 2], z[b = 4]} is the set of attribute-value specifications. The
relation ≤ and the function ≪ are defined by:

x ≤ y
z ≤ x
z ≤ y
w ≪ z

First, determine the set ΩT of inheritance chains in T . Subsequently, compute the
conclusion set and inheritable conclusion set of ΩT . Is the taxonomy T consistent? If
so, what is the inheritable extension of ΩT ?

(4.8) Consider the following taxonomy T = (N,Θ,≪,≤) where N = (I,K,A,C). We have
that K = {u, x, y, z} is the set of classes, I = {w} is the set of instances and Θ = {u[a =
1], x[b = 2], y[c = 10], z[c = 20]}. The relation ≤ and the function ≪ are defined as
follows:

x ≤ y
y ≤ z
u ≤ x
u ≤ y
w ≪ u

Answer the same questions as in Exercise 4.7.

158 Chapter 4. Frames and Inheritance

Chapter 5

Reasoning with Uncertainty

In the early 1960s, researchers in applied logic assumed that theorem provers were powerful
and general enough to solve practical, real-life problems. In particular, the introduction of the
resolution principle by Allan Robinson led to this conviction. By and by however it became
apparent that the appropriateness of mathematical logic for solving practical problems was
highly overrated. One of the complications with real-life situations is that the facts and
experience necessary for solving the problems often are typified by a degree of uncertainty;
moreover, often the available information is imprecise and insufficient for solving the problems.
Yet human experts are able to form judgements and take decisions from uncertain, incomplete
and contradictory information. To be useful in an environment in which only such imprecise
knowledge is available, a knowledge-based system has to capture and exploit not only the
highly specialized expert knowledge, but the uncertainties that go with the represented pieces
of information as well. This observation has led to the introduction of models for handling
uncertain information in knowledge-based systems. Research into the representation and
manipulation of uncertainty has grown into a major research area called inexact reasoning or
plausible reasoning.

Probability theory is one of the oldest mathematical theories concerning uncertainty, so
it is no wonder that in the early 1970s this formal theory was chosen as the first point of
departure for the development of models for handling uncertain information in rule-based
systems. It was soon discovered that this theory could not be applied in such a context in a
straightforward manner; in Section 5.2 we shall discuss some of the problems encountered in
a straightforward application of probability theory. Research then centred for a short period
of time around the development of modifications of probability theory that should overcome
the problems encountered and that could be applied efficiently in a rule-based environment.
Several models were proposed, but neither of these presented a mathematically well-founded
solution to these problems. This observation explains why we use the phrase quasi-probabilistic
models to denote all models developed in the 1970s for rule-based systems. In this chapter,
two quasi-probabilistic models will be discussed in some detail:

• the subjective Bayesian method, which was developed for application in the knowledge-
based system PROSPECTOR;

• the certainty factor model which was designed by Edward Shortliffe and Bruce Buchanan
for the purpose of dealing with uncertain information in MYCIN.

The treatment of these models will not only comprise a discussion of their basic notions but

159

160 Chapter 5. Reasoning with Uncertainty

will also include an outline of their application in a rule-based system. In preparation for this,
Section 5.1 shows which components should be present in a model for handling uncertainty
in such a knowledge-based system.

The incorrectness of the quasi-probabilistic models from a mathematical point of view and
an analysis of the problems the researchers were confronted with, led to a world-wide discus-
sion concerning the appropriateness of probability theory for handling uncertain information
in a knowledge-based context. This discussion has on the one hand yielded other points of
departure, that is, other (more or less) mathematical foundations for models for handling
uncertainty, and on the other hand new, less naive applications of probability theory. In
Section 5.5 we shall present an introduction to the Dempster-Shafer theory, a theory which
has largely been inspired by probability theory and may be considered to be an extension
of it. We conclude this chapter with a discussion of two so-called network models which
have resulted from a more recent probabilistic trend in plausible reasoning in which graphical
representations of problem domains are employed.

5.1 Production rules, inference and uncertainty

In Chapter 3 we have seen that in a rule-based system the specialized domain knowledge an
expert has, is modelled in production rules having the following form:

if e then h fi

The left-hand side e of such a rule is a combination of atomic conditions which are interrelated
by means of the operators and and or. In the sequel such a combination of conditions will
be called a (piece of) evidence. The right-hand side h of a production rule in general is
a conjunction of conclusions. In this chapter we assume production rules to have just one
conclusion. Notice that this restriction is not an essential one from a logical point of view.
Henceforth, an atomic conclusion will be called a hypothesis. Furthermore, we will abstract
from actions and predicates, and from variables and values, or objects, attributes, and values:
conditions and conclusions will be taken to be indivisible primitives. A production rule now
has the following meaning: if evidence e has been observed, then the hypothesis h is confirmed
as being true.

In this Section we depart from top-down inference as the method for applying production
rules, and from backward chaining as described in chapter 3, more in specific. The application
of production rules as it takes place in top-down inference, may be represented graphically in
a so-called inference network. We introduce the notion of an inference network by means of
an example.

EXAMPLE 5.1

Consider the following production rules:

R1: if a and (b or c) then h fi
R2: if d and f then b fi
R3: if f or g then h fi
R4: if a then d fi

In the following, the goal for consulting a specific rule base will be called the goal
hypothesis. We suppose that h is the goal hypothesis for consulting the set of production

5.1. Production rules, inference and uncertainty 161

rules shown above. The first production rules that are selected for evaluation, are the
rules R1 and R3. Of these, rule R1 is evaluated first. The piece of evidence a mentioned
in the left-hand side of the rule now becomes the current goal hypothesis. Since none of
the production rules concludes on a, the user is requested to supply further information
on a. We assume that the user confirms a being true. Subsequently, b becomes the new
goal hypothesis. Since rule R2 concludes on the hypothesis b, this rule is now selected
for evaluation. The first piece of evidence mentioned in rule R2 is d; the truth of d will
be derived from rule R4. The success of rule R4 is depicted as follows:

a d

In the evaluation of rule R2 it remains to be examined whether or not the piece of
evidence f has been observed. We assume that upon a request for further information,
the user confirms the truth of f . So, rule R2 succeeds; the success of rule R2 is shown
in the following figure:

d

f

b

Success of rule R3 is depicted as follows:

f

g

h

The three figures shown above are the basic building blocks for constructing an inference
network from a given set of production rules and a given goal hypothesis. The inference
network resulting from a consultation of the four production rules of this example with
h as the goal hypothesis is shown in Figure 5.1.

Up to now a production rule if e then h fi has been interpreted as stating: if evidence e
has been observed, then the hypothesis h is confirmed as being true. In practice, however,
a hypothesis seldom is confirmed to absolute certainty by the observation of a certain piece
of evidence. Therefore, the notion of a production rule is extended by allowing for a mea-
sure of uncertainty : with the hypothesis h of the production rule if e then h fi a measure of
uncertainty is associated indicating the degree to which h is confirmed by the observation of e.

EXAMPLE 5.2

162 Chapter 5. Reasoning with Uncertainty

d

f

g

b

c

a

h

Figure 5.1: An inference network.

The measure of uncertainty x being associated with the hypothesis h in the rule if e1 and
e2 then h fi is denoted as follows:

if e1 and e2 then hx fi

In an inference network an associated measure of uncertainty is shown next to the arrow
in the graphical representation of the rule. So, success of the production rule shown
above is represented in an inference network as follows:

e1

e2

h
x

A model for handling uncertain information therefore provides an expert with a means for
representing the uncertainties that go with the pieces of information he has specified; so, the
model provides a means for knowledge representation.

The purpose of employing a model for dealing with uncertain information is to associate
a measure of uncertainty with each conclusion the system arrives at. Such a measure of
uncertainty is dependent upon the measures of uncertainty associated with the conclusions
of the production rules used in deriving the final conclusion, and the measures of uncertainty
the user has specified with the information he has supplied to the system. For this purpose,
a model for handling uncertainty provides a means for reasoning with uncertainty, that is, it
provides an inference method. Such an inference method consists of several components:

• Because of the way production rules of the form if e then hy fi are applied during a
top-down inference process, the truth of the evidence e (that is, whether or not e has

5.1. Production rules, inference and uncertainty 163

actually been observed) can not always be established with absolute certainty: e may
itself have been confirmed to some degree by the application of other production rules.
In this case, e acts as an intermediate hypothesis that in turn is used as evidence for
the confirmation of another hypothesis. The inference network shown below depicts the
situation where the hypothesis e has been confirmed to the degree x on account of some
prior evidence e′:

e′ e h
x y

Note that the left half of this figure shows a compressed inference network whereas the
right half represents a single production rule. We recall that the measure of uncertainty
y associated with the hypothesis h in the rule if e then hy fi indicates the degree to
which h is confirmed by the actual observation, that is, the absolute truth of e. It will
be evident that in the situation shown above, we cannot simply associate the measure of
uncertainty y with the hypothesis h. The actual measure of uncertainty to be associated
with h depends upon y as well as on x, the measure of uncertainty associated with the
evidence e used in confirming h: the uncertainty of e has to be propagated to h. A
model for handling uncertainty provides a function for computing the actual measure of
uncertainty to be associated with h on account of all prior evidence. In the sequel, such
a function will be called the combination function for (propagating) uncertain evidence;
the function will be denoted by fprop. The inference network shown above can now be
compressed to:

e′ h
fprop(x, y)

where e′ denotes all prior evidence (now including e).

• The evidence e in a production rule if e then hz fi in general is a combination of
atomic conditions which are interrelated by means of the operators and and or. For
instance, the production rule may have the form if e1 and e2 then hz fi as depicted
in the inference network below. Each of the constituent pieces of evidence of e may
have been derived with an associated measure of uncertainty. The inference network,
for example, shows that e1 and e2 are confirmed to the degrees x and y, respectively,
on account of the prior evidence e′:

e1

e2

e′

e′

x

y

h
z

To be able to apply the combination function for propagating uncertain evidence, a
measure of uncertainty for e has to be computed from the measures of uncertainty that
have been associated separately with the constituent pieces of evidence of e. For this
purpose, a model for handling uncertainty provides two functions which will be called

164 Chapter 5. Reasoning with Uncertainty

the combination functions for composite hypotheses; they will be denoted by fand and
for. The inference network shown above is now compressed to:

e′ e1 and e2
fand(x, y)

• The occurrence of different production rules if ei then h fi (that is, rules with different
left-hand sides ei) concluding on the same hypothesis h in the rule base, indicates
that the hypothesis h may be confirmed and/or disconfirmed along different lines of
reasoning. The following inference network, for example, shows the two production
rules if e1 then hx2

fi and if e2 then hy2
fi concluding on the hypothesis h, the first

of which uses the prior evidence e′1 in (dis)confirming h and the second of which uses
the prior evidence e′2:

e1

e2

h

x2

y2

e′1

e′2

x1

y1

The combination function for propagating uncertain evidence is applied to compute two
partial measures of uncertainty x and y for h such that:

e′1

e′2

h

x

y

The total or net measure of uncertainty to be associated with h depends upon the
partial measures of uncertainty that have been computed for h from the two different
lines of reasoning. A model for handling uncertain information therefore provides a
function for computing the net measure of uncertainty for h in the inference network
shown above. Such a function will be called the combination function for co-concluding
production rules; it will be denoted by fco:

e′ = e′1 co e′2 h
fco(x, y)

To summarize, we have introduced four combination functions:

• the function for propagating uncertain evidence: fprop;

• the functions for composite hypotheses: fand and for;

• the function for co-concluding production rules: fco.

5.2. Probability theory 165

It will be evident that a model for handling uncertainty in a rule-based system has to provide
fill-ins for these combination functions.

5.2 Probability theory

Probability theory is one of the earliest methods for associating with a statement a measure
of uncertainty concerning its truth. In this section several notions from probability theory
are introduced briefly, before we discuss the problems one encounters in applying this theory
in a rule-based system in a straightforward manner.

5.2.1 The probability function

The notions that play a central role in probability theory have been developed for the descrip-
tion of experiments. In empirical research a more or less standard procedure is to repeatedly
perform a certain experiment under essentially the same conditions. Each performance yields
an outcome which cannot be predicted with certainty in advance. For many types of experi-
ments, however, one is able to describe the set of all possible outcomes. The nonempty set of
all possible outcomes of such an experiment is called its sample space; it is generally denoted
by Ω. In the sequel, we shall only be concerned with experiments having a countable sample
space.

EXAMPLE 5.3

Consider the experiment of throwing a die. The outcome of the experiment is the
number of spots up the die. The sample space of this experiment therefore consists of
six elements: Ω = {1, 2, 3, 4, 5, 6}

A subset e of the sample space Ω of a certain experiment is called an event. If upon perfor-
mance of the experiment the outcome is in e, then it is said that the event e has occurred. In
case the event e has not occurred, we use the notation ē, called the complement of e. Note
that we have ē = Ω \ e. The event that occurs if and only if both events e1 and e2 occur,
is called the intersection of e1 and e2, and will be denoted by e1 ∩ e2. The intersection of n
events ei will be denoted by

n
⋂

i=1

ei

The event occurring if at least one of e1 and e2 occurs is called the union of e1 and e2, and
will be denoted by e1 ∪ e2. The union of n events ei will be denoted by

n
⋃

i=1

ei

EXAMPLE 5.4

Consider the experiment of throwing a die and its associated sample space Ω once more.
The subset e1 = {2, 4, 6} of Ω represents the event that an even number of spots has
come up the die. The subset e2 = ē1 = Ω \ e1 = {1, 3, 5} represents the event that an

166 Chapter 5. Reasoning with Uncertainty

odd number of spots has come up. The events e1 and e2 cannot occur simultaneously: if
event e1 occurs, that is, if an even number of spots has come up, then it is not possible
that in the same throw an odd number of spots has come up. So, the event e1∩e2 cannot
occur. Note that the event e1 ∪ e2 occurs in every performance of the experiment. The
subset e3 = {3, 6} represents the event that the number of spots that has come up is a
multiple of three. Note that the events e1 and e3 have occurred simultaneously in case
six spots are shown up the die: in that case the event e1 ∩ e3 has occurred.

Definition 5.1 The events e1, . . . , en ⊆ Ω, n ≥ 1, are called mutually exclusive or disjoint
events if ei ∩ ej = ∅, i 6= j, 1 ≤ i, j ≤ n.

We assume that an experiment yields an outcome independent of the outcomes of prior per-
formances of the experiment. Now suppose that a particular experiment has been performed
N times. If throughout these N performances an event e has occurred n times, the ratio n

N
is

called the relative frequency of the occurrence of event e in N performances of the experiment.
As N increases, the relative frequency of the occurrence of the event e tends to stabilize about
a certain value; this value is called the probability that the outcome of the experiment is in e,
or the probability of event e, for short.

In general, the notions of a probability and a probability function are defined axiomatically.

Definition 5.2 Let Ω be the sample space of an experiment. If a number P (e) is associated
with each subset e ⊆ Ω, such that

(1) P (e) ≥ 0,

(2) P (Ω) = 1, and

(3) P (
⋃n

i=1 ei) =
∑n

i=1 P (ei), if ei, i = 1, . . . , n, n ≥ 1, are mutually exclusive events,

then P is called a probability function on the sample space Ω. For each subset e ⊆ Ω, the
number P (e) is called the probability that event e will occur.

Note that a probability function P on a sample space Ω is a function P : 2Ω → [0, 1].

EXAMPLE 5.5

Consider the experiment of throwing a die once more, and its associated sample space
Ω = {1, 2, 3, 4, 5, 6}. The function P such that P ({1}) = P ({2}) = · · · = P ({6}) = 1

6
is a probability function on Ω. Since the sets {2}, {4}, and {6} are disjoint, we have
according to the third axiom of the preceding definition that P ({2, 4, 6}) = 1

2 : the
probability of an even number of spots coming up the die, equals 1

2 .

THEOREM 2 Let Ω be the sample space of an experiment and P a probability function on
Ω. Then, for each event e ⊆ Ω, we have

P (ē) = 1− P (e)

Proof: We have Ω = e∪ ē. Furthermore, e∩ ē = ∅ holds since e and ē are mutually exclusive
events. From the axioms 2 and 3 of the preceding definition we have that P (Ω) = P (e∪ ē) =
P (e) + P (ē) = 1. ♦

5.2. Probability theory 167

5.2.2 Conditional probabilities and Bayes’ Theorem

We consider the case in which probability theory is applied in a medical diagnostic system.
One would like to know for example the probability of the event that a specific patient has a
certain disease. For many diseases, the prior probability of the disease occurring in a certain
population is known. In the case of a specific patient, however, information concerning the
patient’s symptoms, medical history, etc. is available that might be useful in determining the
probability of the presence of the disease in this specific patient.

So, in some cases we are interested only in those outcomes which are in a given nonempty
subset e of the entire sample space which represents the pieces of evidence concerning the
final outcome that are known in advance. Let h be the event we are interested in, that is,
the hypothesis. Given that the evidence e has been observed, we now are interested in the
degree to which this information influences P (h), the prior probability of the hypothesis h.
The probability of h given e is defined in the following definition.

Definition 5.3 Let Ω be the sample space of a certain experiment and let P be a probability
function on Ω. For each h, e ⊆ Ω with P (e) > 0, the conditional probability of h given e,
denoted by P (h | e), is defined as

P (h | e) =
P (h ∩ e)

P (e)

A conditional probability P (h | e) often is called a posterior probability.
The conditional probabilities given a fixed event e ⊆ Ω with P (e) > 0, again define a

probability function on Ω since the three axioms of a probability function are satisfied:

• P (h | e) =
P (h ∩ e)

P (e)
≥ 0, since P (h ∩ e) ≥ 0 and P (e) > 0;

• P (Ω | e) =
P (Ω ∩ e)

P (e)
=
P (e)

P (e)
= 1;

• P (

n
⋃

i=1

hi | e) =
P ((
⋃n

i=1 hi) ∩ e)

P (e)
=
P (
⋃n

i=1(hi ∩ e))

P (e)
=

∑n
i=1 P (hi ∩ e)

P (e)
=

n
∑

i=1

P (hi ∩ e)

P (e)
=

n
∑

i=1

P (hi | e), for mutually exclusive events hi, i = 1, . . . , n, n ≥ 1.

This probability function is called the conditional probability function given e.
In real-life practice, the probabilities P (h | e) cannot always be found in the literature or

obtained from statistical analysis. The conditional probabilities P (e | h), however, often are
easier to come by: in medical textbooks for example, a disease is described in terms of the
signs likely to be found in a typical patient suffering from the disease. The following theorem
now provides us with a method for computing the conditional probability P (h | e) from the
probabilities P (e), P (h), and P (e | h); the theorem may therefore be used to reverse the
‘direction’ of probabilities.

THEOREM 3 (Bayes’ theorem) Let P be a probability function on a sample space Ω. For
each h, e ⊆ Ω such that P (e) > 0 and P (h) > 0, we have:

P (h | e) =
P (e | h) · P (h)

P (e)

168 Chapter 5. Reasoning with Uncertainty

Proof: The conditional probability of h given e is defined as

P (h | e) =
P (h ∩ e)

P (e)

Furthermore, we have

P (e | h) =
P (e ∩ h)

P (h)

So,

P (e | h) · P (h) = P (h | e) · P (e) = P (h ∩ e)

The property stated in the theorem now follows from these observations. ♦

EXAMPLE 5.6

Consider the problem domain of medical diagnosis. Let h denote the hypothesis that
a patient is suffering from liver cirrhosis; furthermore, let e denote the evidence that
the patient has jaundice. In this case, the prior probability of liver cirrhosis, that
is, P (liver-cirrhosis), is known: it is the relative frequency of the disease in a par-
ticular population. If the prior probability of the occurrence of jaundice in the same
population, that is, P (jaundice), is likewise available and if the probability that a pa-
tient suffering from liver cirrhosis has jaundice, that is, the conditional probability
P (jaundice | liver-cirrhosis), is known, then we can compute the probability that a
patient showing signs of jaundice suffers from liver cirrhosis, that is, using Bayes’ theo-
rem we can compute the conditional probability P (liver-cirrhosis | jaundice). It will be
evident that the last-mentioned probability is of importance in medical diagnosis.

To conclude, we define the notions of independence and conditional independence. Intuitively
speaking, it seems natural to call an event h independent of an event e if P (h | e) = P (h):
the prior probability of event h is not influenced by the knowledge that event e has occurred.
However, this intuitive definition of the notion of independency is not symmetrical in h and
e; furthermore, the notion is defined this way only in case P (e) > 0. By using the definition
of conditional probability and by considering the case for n events, we come to the following
definition.

Definition 5.4 The events e1, . . . , en ⊆ Ω are (mutually) independent if

P (ei1 ∩ · · · ∩ eik) = P (ei1) · · ·P (eik)

for each subset {i1, . . . , ik} ⊆ {1, . . . , n}, 1 ≤ k ≤ n, n ≥ 1. The events e1, . . . , en are
conditionally independent given an event h ⊆ Ω if

P (ei1 ∩ · · · ∩ eik | h) = P (ei1 | h) · · ·P (eik | h)

for each subset {i1, . . . , ik} ⊆ {1, . . . , n}.

Note that if the events h and e are independent and if P (e) > 0, we have that the earlier
mentioned, intuitively more appealing notion of independency

P (h | e) =
P (h ∩ e)

P (e)
=
P (h) · P (e)

P (e)
= P (h)

is satisfied.

5.2. Probability theory 169

5.2.3 Application in rule-based systems

We have mentioned before in our introduction that probability theory was chosen as the first
point of departure in the pioneering work on automated reasoning under uncertainty. During
the 1960s several research efforts on probabilistic reasoning were undertaken. The systems
constructed in this period of time were primarily for (medical) diagnosis. Although these
systems did not exhibit any intelligent reasoning behaviour, they may now be viewed as the
precursors of the diagnostic systems developed in the 1970s.

Let us take a closer look at the task of diagnosis. Let H = {h1, . . . , hn} be a set of n
possible hypotheses, and let E = {e1, . . . , em} be a set of pieces of evidence which may be
observed. For ease of exposition, we assume that each of the hypotheses is either true or false
for a given case; equally, we assume that each of the pieces of evidence is either true (that is,
it is actually observed in the given case) or false. The diagnostic task now is to find a set of
hypotheses h ⊆ H, called the (differential) diagnosis, which most likely accounts for the set
of observed evidence e ⊆ E. If we have observed a set of pieces of evidence e ⊆ E, then we
can simply compute the conditional probabilities P (h | e) for each subset h ⊆ H and select
the set h′ ⊆ H with the highest probability. We have mentioned before that since for real-
life applications, the conditional probabilities P (e | h) often are easier to come by than the
conditional probabilities P (h | e), generally Bayes’ theorem is used for computing P (h | e).
It will be evident that the task of diagnosis in this form is computationally complex: since
a diagnosis may comprise more than one hypothesis out of n possible ones, the number of
diagnoses to be investigated, that is, the number of probabilities to be computed, equals 2n.
A simplifying assumption generally made in the systems for probabilistic reasoning developed
in the 1960s, is that the hypotheses in H are mutually exclusive and collectively exhaustive.
With this assumption, we only have to consider the n singleton hypotheses hi ∈ H as separate
possible diagnoses. Bayes’ theorem can easily be reformulated to deal with this case.

THEOREM 4 (Bayes’ theorem) Let P be a probability function on a sample space Ω. Let
hi ⊆ Ω, i = 1, . . . , n, n ≥ 1, be mutually exclusive hypotheses with P (hi) > 0, such that
⋃n

i=1 hi = Ω (that is, they are collectively exhaustive). Furthermore, let e ⊆ Ω such that
P (e) > 0. Then, the following property holds:

P (hi | e) =
P (e | hi) · P (hi)

∑n
j=1 P (e | hj) · P (hj)

Proof: Since h1, . . . , hn are mutually exclusive and collectively exhaustive, we have that P (e)
can be written as

P (e) = P ((

n
⋃

i=1

hi) ∩ e) = P (

n
⋃

i=1

(hi ∩ e)) =

n
∑

i=1

P (hi ∩ e) =

n
∑

i=1

P (e | hi) · P (hi)

Substitution of this result in the before-mentioned form of Bayes’ theorem yields the property
stated in the theorem. ♦

For a successful application of Bayes’ theorem in the form mentioned in the previous theorem,
several conditional and prior probabilities are required. For example, conditional probabilities
P (e | hi) for every combination of pieces of evidence e ⊆ E, have to be available; note
that in general, these conditional probabilities P (e | hi) cannot be computed from their
‘component’ conditional probabilities P (ej | hi), ej ∈ e. It will be evident that exponentially

170 Chapter 5. Reasoning with Uncertainty

many probabilities have to be known beforehand. Since it is hardly likely that for practical
applications all these probabilities can be obtained from for example statistical analysis, a
second simplifying assumption was generally made in the systems developed in the 1960s:
it was assumed that the pieces of evidence ej ∈ E are conditionally independent given any
hypothesis hi ∈ H. Under this assumption Bayes’ theorem reduces to the following form.

THEOREM 5 (Bayes’ theorem) Let P be a probability function on a sample space Ω. Let
hi ⊆ Ω, i = 1, . . . , n, n ≥ 1, be mutually exclusive and collectively exhaustive hypotheses as
in the previous theorem. Furthermore, let ej1 , . . . , ejk

⊆ Ω, 1 ≤ k ≤ m, m ≥ 1, be pieces
of evidence such that they are conditionally independent given any hypothesis hi. Then, the
following property holds:

P (hi | ej1 ∩ · · · ∩ ejk
) =

P (ej1 | hi) · · ·P (ejk
| hi) · P (hi)

∑n
i=1 P (ej1 | hi) · · ·P (ejk

| hi) · P (hi)

Proof: The theorem follows immediately from the preceding theorem and the definition of
conditional independence. ♦

It will be evident that with the two assumptions mentioned above only m · n conditional
probabilities and n− 1 prior probabilities suffice for a successful use of Bayes’ theorem.

The pioneering systems for probabilistic reasoning constructed in the 1960s which basically
employed the last-mentioned form of Bayes’ theorem, were rather small-scaled: they were
devised for clear-cut problem domains with only a small number of hypotheses and restricted
evidence. For these small systems, all probabilities necessary for applying Bayes’ theorem
were acquired from a statistical analysis of the data of several hundred sample cases. Now
recall that in deriving the last-mentioned form of Bayes’ theorem several assumptions were
made:

• the hypotheses h1, . . . , hn, n ≥ 1, are mutually exclusive;

• the hypotheses h1, . . . , hn furthermore are collectively exhaustive, that is,
n
⋃

i=1

hi = Ω;

• the pieces of evidence e1, . . . , em, m ≥ 1, are conditionally independent given any hy-
pothesis hi, 1 ≤ i ≤ n.

These conditions, which have to be satisfied for a correct use of Bayes’ theorem, generally
are not met in practice. But, in spite of these (over-)simplifying assumptions underlying
the systems from the 1960s, they performed considerably well. Nevertheless, interest in this
approach to reasoning with uncertainty faded in the early 1970s. One of the reasons for this
decline in interest is that the method informally sketched in the foregoing is feasible only
for highly restricted problem domains: for larger domains or domains in which the above-
mentioned simplifying assumptions are seriously violated, the method inevitably will become
demanding, either computationally or from the point of view of obtaining the necessary
probabilities: often a large number of conditional and prior probabilities is needed, thus
requiring enormous amounts of experimental data.

At this stage, the first diagnostic rule-based systems began to emerge from the early artifi-
cial intelligence research efforts. As a consequence of their ability to concentrate only on those
hypotheses which are suggested by the evidence, these systems in principle were capable of

5.2. Probability theory 171

dealing with larger and complexer problem domains than the early probabilistic systems were.
At least, they were so from a computational point of view: the problem that a large number
of probabilities was required still remained. In many practical applications, the experimental
data necessary for computing all probabilities required simply were not available. In devising
a probabilistic reasoning component to be incorporated in a rule-based system, the artificial
intelligence researchers therefore had to depart from subjective probabilities which had been
assessed by human experts in the field. Human experts, however, often are uncertain and
uncomfortable about the probabilities they are providing. The difficulty of assessing proba-
bilities is well-known as a result of research on human decision making and judgement under
uncertainty. We do not discuss this issue any further; we merely depart from the observation
that domain experts generally are unable to fully and correctly specify a probability function
on the problem domain. In a rule-based context, an expert now typically is asked to associate
probabilities only with the production rules he has provided.

Recall that the production rule formalism is defined in terms of expressions more or less
resembling logical formulas, whereas the notion of a probability function has been related to
sets. Therefore, we have to have a mapping that transforms logical propositions into sets and
that preserves probability, for then we have that the probability of an event is equivalent to
the probability of the truth of the proposition asserting the occurrence of the event. A more
or less standard translation of sets into logical formulas is the following: if Ω is a sample space,
then we define for each event e ⊆ Ω a predicate e′ such that e′(x) = true if and only if x ∈ e.
The intersection of two events then corresponds with the conjunction of two corresponding
propositions; the union of two events translates into the disjunction of the corresponding
propositions.

With each production rule if e then h fi an expert now associates a conditional probabil-
ity P (h | e) indicating the influence of the observation of evidence e on the prior probability
P (h) of the hypothesis h:

e h
P (h | e)

The last-mentioned form of Bayes’ theorem now provides us with a method for computing the
probability of a certain hypothesis when several pieces of evidence have been observed. Bayes’
theorem therefore can be taken as the combination function for co-concluding production rules
when probability theory is viewed as a method for handling uncertainty as discussed in Section
5.1. Consider the following inference network:

e1

em

hi

P (hi | e1)

P (hi | em)

...

Using Bayes’ theorem we can compute the combined influence of the pieces of evidence
e1, . . . , em on the prior probability of the hypothesis hi such that:

⋂m
j=1 ej hi

P (hi|
⋂m

j=1 ej)

172 Chapter 5. Reasoning with Uncertainty

(Note that some prior probabilities have to be known to the system as well).
In a rule-based system, the production rules are used for pruning the search space of possi-

ble diagnoses; in this pruning process, heuristic as well as probabilistic criteria are employed.
It is, therefore, necessary to compute the probabilities of all intermediate results derived using
the production rules. However, these probabilities generally cannot be computed from the
probabilities associated with the rules only: probability theory does not provide an explicit
combination function for propagating uncertain evidence nor does it provide combination
functions for composite hypotheses in terms of the available probabilities. We have suggested
before that the quasi-probabilistic models do offer explicit combination functions. From the
previous observation it will be evident that these functions cannot accord with the axioms of
probability theory. Therefore, they can only be viewed as approximation functions rendering
the models to some extent insensitive to the lack of a fully specified probability function and
erroneous probability assessments.

5.3 The subjective Bayesian method

In the preceding section we have highlighted some of the problems one encounters when ap-
plying probability theory in a rule-based system. R.O. Duda, P.E. Hart, and N.J. Nilsson
have recognized these problems and have developed a new method for handling uncertainty in
PROSPECTOR, a knowledge-based system for assisting non-expert field geologists in explor-
ing sites. Part of the knowledge incorporated in PROSPECTOR is represented in production
rules. The model of Duda, Hart, and Nilsson is based on probability theory but provides
solutions to the problems mentioned in the previous section.

5.3.1 The likelihood ratios

As has been mentioned before, the subjective Bayesian method is a modification of probability
theory. However, the model uses the notion of ‘odds’ instead of the equivalent notion of
probability.

Definition 5.5 Let P be a probability function on a sample space Ω. Furthermore, let h ⊆ Ω
such that P (h) < 1. The prior odds of the event h, denoted by O(h), is defined as follows:

O(h) =
P (h)

1− P (h)

Note that conversely

P (h) =
O(h)

1 +O(h)

In probability theory the notion of conditional or posterior probability is used. The subjective
Bayesian method uses the equivalent notion of posterior odds.

Definition 5.6 Let P be a probability function on a sample space Ω. Let h, e ⊆ Ω such that
P (e) > 0 and P (h | e) < 1. The posterior odds of a hypothesis h, given evidence e, denoted
by O(h | e), is defined as follows:

O(h | e) =
P (h | e)

1− P (h | e)

5.3. The subjective Bayesian method 173

We introduce another two notions: the positive and the negative likelihood ratios.

Definition 5.7 Let P be a probability function on a sample space Ω. Furthermore, let h, e ⊆
Ω such that 0 < P (h) < 1 and P (e | h̄) > 0. The (positive) likelihood ratio λ, given h and
e, is defined by

λ =
P (e | h)

P (e | h̄)

The likelihood ratio λ often is called the level of sufficiency ; it represents the degree to which
the observation of evidence e influences the prior probability of hypothesis h. A likelihood
ratio λ > 1 indicates that the observation of e tends to confirm the hypothesis h; a likelihood
ratio λ < 1 indicates that the hypothesis h̄ is confirmed to some degree by the observation
of e, or in other words that the observation of e tends to disconfirm h. If λ = 1, then the
observation of e does not influence the prior confidence in h.

Definition 5.8 Let P be a probability function on a sample space Ω. Let h, e ⊆ Ω be such
that 0 < P (h) < 1 and P (e | h̄) < 1. The (negative) likelihood ratio λ̄, given h and e, is
defined by

λ̄ =
1− P (e | h)

1− P (e | h̄)

The negative likelihood ratio λ̄ often is called the level of necessity. A comparison of the
likelihood ratios λ and λ̄ shows that from λ > 1 it follows that λ̄ < 1, and vice versa;
furthermore we have λ = 1 if and only if λ̄ = 1.

When applying the subjective Bayesian method in a production system, a positive like-
lihood ratio λ and a negative likelihood ratio λ̄ have to be associated with each production
rule if e then h fi:

e h
λ, λ̄

Furthermore, the prior probabilities P (h) as well as P (e) have to be known to the system.
Note that this information is not sufficient for uniquely defining a probability function on the
sample space: the expert has provided probabilities for only a few events occurring in the
specified production rules.

In the following section, in some cases the conditional probabilities P (h | e) and P (h | ē)
will be preferred to λ and λ̄: we then assume that with each production rule these conditional
probabilities are associated. We note that the probabilities P (h | e) and P (h | ē) can be
computed uniquely from λ, λ̄, P (h) and P (e). The reader may for example verify that the
following property holds:

P (e | h) = λ ·
1− λ̄

λ− λ̄

Bayes’ theorem can subsequently be applied to compute the probability P (h | e).

174 Chapter 5. Reasoning with Uncertainty

5.3.2 The combination functions

Recall that a model for dealing with uncertainty provides means for representing and rea-
soning with uncertainty. The purpose of applying such a model is to compute a measure of
uncertainty for each goal hypothesis. If a probability function on the domain were known,
then the probabilities of these goal hypotheses could simply be calculated from the probability
function. However, as we have argued before, such a probability function is virtually never
available in practical applications. The required probabilities therefore are approximated
from the ones that actually are known to the system.

In a rule-based system using top-down inference, several intermediate hypotheses are con-
firmed or disconfirmed to some degree. We have seen before that these uncertain hypotheses
may in turn be used as pieces of evidence in other production rules. In Section 5.1 a com-
bination function for propagating such uncertain evidence has been introduced: the function
fprop. Recall that probability theory does not provide an explicit filling-in for this function
fprop in terms of the probabilities that are known to the system. The subjective Bayesian
method, however, does provide such a combination function.

Suppose that the intermediate hypothesis e is used as evidence in confirming hypothesis h
by applying the production rule if e then h fi. We suppose that the intermediate hypothesis
e has been confirmed by the observation of some prior evidence e′, and that for e the posterior
probability P (e | e′) has been computed.

e′ e h
P (e | e′) P (h | e), P (h | ē)

After application of the rule, we are interested in the probability P (h | e′) such that

e′ h
P (h | e′)

Note that in general the probability P (h | e′) will not have been assessed by the expert and
cannot be computed from the probability function P since P has not been fully specified.
Therefore, it has to be approximated. In general, we have

P (h | e′) = P (h ∩ e | e′) + P (h ∩ ē | e′)

=
P (h ∩ e ∩ e′)

P (e′)
·
P (e ∩ e′)

P (e ∩ e′)
+
P (h ∩ ē ∩ e′)

P (e′)
·
P (ē ∩ e′)

P (ē ∩ e′)

=
P (h ∩ e ∩ e′)

P (e ∩ e′)
·
P (e ∩ e′)

P (e′)
+
P (h ∩ ē ∩ e′)

P (ē ∩ e′)
·
P (ē ∩ e′)

P (e′)

= P (h | e ∩ e′)P (e | e′) + P (h | ē ∩ e′)P (ē | e′)

We assume that if we know e to be absolutely true (or false), then the observations e′ relevant
to e do not provide any further information on the hypothesis h. This assumption can be
taken into account into the formula given above as follows:

P (h | e′) = P (h | e)P (e | e′) + P (h | ē)P (ē | e′)

= (P (h | e)− P (h | ē)) · P (e | e′) + P (h | ē)

We have that P (h | e′) is a linear interpolation function in P (e | e′) (since the function has
the form f(x) = ax+ b). In Figure 5.2 such an interpolation function for the situation of the

5.3. The subjective Bayesian method 175

0
1P (e)

P (h|ē)

P (h)

1

P (h|e)

P (e|e′)

P (h|e′)

Figure 5.2: P (h | e′) as a linear interpolation function in P (e | e′).

production rule if e then h fi shown above, is depicted. This interpolation function has two
extreme values: for P (e | e′) = 0 we have the extreme value P (h | e′) = P (h | ē), and for
P (e | e′) = 1 we have the extreme value P (h | e′) = P (h | e). For any P (e | e′) between 0 and
1 the corresponding value for P (h | e′) can be read from the figure. For instance, if evidence
e′ has been observed confirming e, that is, if P (e | e′) > P (e), we find that the probability of
h increases from applying the production rule if e then h fi: P (h | e′) > P (h). Notice that
this effect is exactly what is meant by the rule. In the special case where P (e | e′) = P (e),
we have

P (h | e′) = P (h | e)P (e) + P (h | ē)P (ē) = P (h)

In principle, this interpolation function offers an explicit computation rule for propagating
uncertain evidence. Duda, Hart, and Nilsson however have observed that when an expert is
asked to assess for each rule if e then h fi the four probabilities P (h), P (e), P (h | e), and
P (h | ē), the specified values are likely to be inconsistent, in the sense that there is not an
underlying actual probability function. More in specific, the relation between P (h) and P (e)
as shown in Figure 5.2 will be violated. We show to which problems such an inconsistency may
lead. Consider Figure 5.3. The assessed probabilities P (h), P (e), P (h | e) and P (h | ē) shown
in the figure are inconsistent; the consistent value for P (e | e′) corresponding with P (h) is
indicated as Pc(e). Now suppose that evidence e′ has been observed confirming e to a degree
P (e | e′) such that P (e) < P (e | e′) < Pc(e). From Figure 5.3 we have that P (h | e′) < P (h).
The production rule if e then h fi however was meant to express that confirmation of e
leads to confirmation of h: due to the inconsistency the reverse has been achieved! A natural
solution to this problem would be to reassess P (e) by choosing P (e) = Pc(e) (or, in case the
assessment of P (h) is less certain than the assessment of P (e), to reassess P (h) by choosing a
consistent value for P (h)). The hypotheses h and e however may occur in several places in a
given set of production rules and each reassessment affects all these occurrences. Reassessing
prior probabilities therefore is not a feasible solution to the problem we have discussed.

176 Chapter 5. Reasoning with Uncertainty

Pc(e)P (e)

P (h|ē)

P (h)

1

P (h|e)

P (e|e′)

P (h|e′)

0
1

Figure 5.3: Inconsistent prior probabilities P (h) and P (e).

Duda, Hart, and Nilsson have developed several methods for employing inconsistently
specified probabilities, one of which has been implemented as the function for propagating
uncertain evidence in PROSPECTOR. The basic idea of the method that has been chosen for
implementation is shown in Figure 5.4. The original interpolation function is splitted in two
separate interpolation functions on the intervals [0, P (e)] and (P (e), 1], respectively, so as to
enforce the property P (h | e′) = P (h) if P (e | e′) = P (e). Note that the closer the function
value for P (e) is to the value for P (e) from the original interpolation function, the better the
initial assessments of P (e) and P (h) are. The resulting interpolation function is defined as
follows:

P (h | e′) =

{

P (h | ē) + P (h)−P (h|ē)
P (e) · P (e | e′) if 0 ≤ P (e | e′) ≤ P (e)

P (h) + P (h|e)−P (h)
1−P (e) · (P (e | e′)− P (e)) if P (e) < P (e | e′) ≤ 1

Recall that the conditional probabilities P (h | e) and P (h | ē) used in this function are
obtained from the likelihood ratios λ en λ̄ provided by the expert.

We have mentioned before that with each production rule if e then h fi the two likelihood
ratios λ and λ̄ have been associated: λ stands for the influence of the observation of evidence e
on the prior probability of the hypothesis h, and λ̄ indicates the degree to which observation of
ē changes the probability of h. The ratios λ and λ̄ can be viewed as the bounds of an interval in
which lies a value indicating the degree to which evidence e, which has been (dis)confirmed to
some degree by some prior evidence e′, really influences the prior probability of h. This value
is called the effective likelihood ratio, and will be denoted by λ′. The ratio λ′ is computed
from the value P (h | e′) according to the following definition.

Definition 5.9 Let P be a probability function on a sample space Ω, and let O be the corre-
sponding odds as defined in the foregoing. Furthermore, let h, e′ ⊆ Ω. The effective likelihood
ratio λ′, given h and e′, is defined as follows:

λ′ =
O(h | e′)

O(h)

5.3. The subjective Bayesian method 177

P (h|ē)

P (h)

1

P (h|e)

P (e|e′)

P (h|e′)

0
1P (e)

Figure 5.4: A consistent interpolation function.

The effective likelihood ratio λ′ lies between λ and λ̄. λ′ will be closer to λ if e has been
confirmed to some degree by the observation of the evidence e′; conversely, λ′ will be closer
to λ̄ if e has been disconfirmed to some degree by the prior evidence e′.

Until now we have only considered production rules if e then h fi in which e is an atomic
piece of evidence. In the foregoing we have seen that the condition part of a production
rule may be a combination of atomic pieces of evidence which are interrelated by means of
the logical operators and and or. In the inference network shown below, for example, the
evidence e1 or e2 is depicted; the constituting pieces of evidence have been obtained from
prior observations e′:

e′

e′

e1

e2

P (e1|e
′)

P (e2|e
′)

•

To be able to propagate the uncertainty of the composite evidence e1 or e2, we have to know
the probability P (e1 or e2 | e

′) such that:

e′ e1 or e2
P (e1 or e2|e

′)

Note that the exact probability cannot be computed from the probabilities P (e1 | e
′) and

P (e2 | e
′) of the separate components. Again, we have to approximate the required probability

using a combination function.
Let evidence e be composed of a number of atomic pieces of evidence ei, i = 1, . . . , n, n ≥ 2,

which are interrelated by means of and and or. In PROSPECTOR, the probability P (e | e′)

178 Chapter 5. Reasoning with Uncertainty

of e given the prior observations e′ is approximated from the separate probabilities P (ei | e
′) of

the constituting pieces of evidence ei in e by recursively applying the following two functions:

P (e1 and e2 | e
′) = min{P (e1 | e

′), P (e2 | e
′)}

P (e1 or e2 | e
′) = max{P (e1 | e

′), P (e2 | e
′)}

These functions therefore fulfill the role of the combination functions for composite hypothe-
ses, that is, of fand and for, respectively. Note that the order in which the constituting pieces
of evidence have been specified does not influence the resulting probability of a composite
hypothesis.

The combination function which still remains to be discussed is the function for co-
concluding production rules if ei then h fi, that is, we still have to discuss the function
fco. If the pieces of evidence ei specified in a number of co-concluding production rules have
been obtained from prior observations e′i, respectively, then the uncertainty of these pieces
of evidence ei given e′i can be propagated to h in the manner described above. For two
co-concluding production rules, the resulting inference network is the following:

e′1

e′2

h

λ′1

λ′2

Recall that in probability theory Bayes’ theorem may be used as the combination function fco.
In the subjective Bayesian method, Bayes’ theorem is used as well, however, in a somewhat
different form in terms of the odds.

THEOREM 6 Let P be a probability function on a sample space Ω, and let O be the cor-
responding odds as defined above. Let h, e ⊆ Ω. Furthermore, let the likelihood ratio λ be
defined as above. Then, the following property holds:

O(h | e) = λ ·O(h)

Proof: From Bayes’ theorem we have

P (h | e) =
P (e | h)P (h)

P (e)

For the complement of h we have, again from Bayes’ theorem,

P (h̄ | e) =
P (e | h̄)P (h̄)

P (e)

Dividing the first equation by the second one results in the following equation:

P (h | e)

P (h̄ | e)
=
P (e | h)P (h)

P (e | h̄)P (h̄)

from which we have

P (h | e)

1− P (h | e)
=
P (e | h)

P (e | h̄)
·

P (h)

1− P (h)

From this observation it follows that O(h | e) = λ ·O(h). ♦

5.4. The certainty factor model 179

This alternative form of Bayes’ theorem is called odds-likelihood form of the theorem.
The theorem stated above concerns the situation where evidence e has been obtained with

absolute certainty. In case we have that e has definitely not occurred, that is, in case ē has
been observed with absolute certainty, we obtain a similar formula.

THEOREM 7 Let P be a probability function on a sample space Ω, and let O be the cor-
responding odds as defined in the foregoing. Let h, e ⊆ Ω. Furthermore, let the negative
likelihood ratio λ̄ be defined as above. Then, the following property holds:

O(h | ē) = λ̄ ·O(h)

The above theorems apply to the case of a single production rule. In the situation where
several production rules if ei then h fi conclude on the same hypothesis h, the results from
these production rules have to be combined into a single measure of uncertainty for h. Again,
we first consider the case where all ei’s have been obtained with absolute certainty. It should
be evident that by assuming that the ei’s are conditionally independent given h we have that
the following property holds:

O

(

h |
n
⋂

i=1

ei

)

=

n
∏

i=1

λiO(h)

where λi = P (ei|h)
P (ei|h̄)

. Similarly, for the case where all ēi’s have been obtained with absolute

certainty, we have:

O

(

h |
n
⋂

i=1

ēi

)

=

n
∏

i=1

λ̄iO(h)

We have argued before that in general the ei’s (or ēi’s respectively) will not have been obtained
with absolute certainty, but with a probability P (ei | e

′
i) given some prior observations e′i.

From the probabilities P (ei | e
′
i) the posterior odds O(h | e′i) are obtained from applying

the combination function for propagating uncertain evidence. From these posterior odds we
then compute the effective likelihood ratios λ′i. Again under the assumption that the e′i’s are
conditionally independent given h we obtain:

O

(

h |
n
⋂

i=1

e′i

)

=
n
∏

i=1

λ′iO(h)

Since multiplication is commutative and associative, we have that the order in which the
co-concluding production rules are applied, will be irrelevant for the resulting uncertainty for
h. This finishes our discussion of the subjective Bayesian method.

5.4 The certainty factor model

The certainty factor model has been developed by E.H. Shortliffe and B.G. Buchanan for the
purpose of introducing the notion of uncertainty in the MYCIN system. The development
of the model was motivated, just as the subjective Bayesian method was, by the problems
encountered in applying probability theory in production systems in a straightforward man-
ner. We have suggested before that the model is unfounded from a theoretical point of view.

180 Chapter 5. Reasoning with Uncertainty

Nevertheless, the model has since its introduction enjoyed widespread use in rule-based sys-
tems built after MYCIN: the model has been used, and is still being used, in a large number
of rule-based systems. Even though it is not well-founded, in practice it seems to behave
‘satisfactorily’. The relative success of the model can be accounted for by its computational
simplicity.

5.4.1 The measures of belief and disbelief

In Section 5.1 it has been argued that when modeling knowledge in production rules of the
form if e then hx fi, a measure of uncertainty x is associated with the hypothesis h expressing
the degree to which the observation of evidence e influences the confidence in h. In developing
the certainty factor model Shortliffe and Buchanan have chosen two basic measures of uncer-
tainty: the measure of belief expressing the degree to which an observed piece of evidence
increases the belief in a certain hypothesis, and the measure of disbelief expressing the degree
to which an observed piece of evidence decreases the belief in a hypothesis. Although both
measures are probability based, they model a notion of uncertainty conceptually different
from probabilities. According to Shortliffe and Buchanan the need for new notions of uncer-
tainty arose from their observation that an expert often was unwilling to accept the logical
implications of his probabilistic statements, such as: if P (h | e) = x, then P (h̄ | e) = 1 − x.
They state that in the mentioned case an expert would claim that ‘evidence e in favour of
hypothesis h should not be construed as evidence against the hypothesis as well’. The reason
that the logical implication concerning P (h̄ | e) may seem counterintuitive is explained by J.
Pearl as follows. The phrase ‘evidence e in favour of hypothesis h′ is interpreted as stating
an increase in the probability of the hypothesis from P (h) to P (h | e), with P (h | e) > P (h):
P (h | e) is viewed relative to P (h). On the other hand, in the argument of Shortliffe and
Buchanan P (h̄ | e) seems to be taken as an absolute probability irrespective of the prior P (h̄).
This somehow conveys the false idea that P (h̄) increases by some positive factor. However
if for example P (h̄) = 0.9 and P (h̄ | e) = 0.5, then no expert will construe this considerable
decrease in the probability of h̄ as supporting the negation of h!

Anyhow, Shortliffe and Buchanan concluded from their observation that the number at-
tached by an expert to a production rule is not a probability, but a measure of belief or
disbelief in the hypothesis concerned.

Definition 5.10 Let P be a probability function defined on a sample space Ω, and let h, e ⊆ Ω
such that P (e) > 0. The measure of (increased) belief MB is a function MB : 2Ω×2Ω → [0, 1],
such that

MB(h, e) =

1 if P (h) = 1

max

{

0,
P (h | e)− P (h)

1− P (h)

}

otherwise

The measure of (increased) disbelief MD is a function MD : 2Ω × 2Ω → [0, 1], such that

MD(h, e) =

1 if P (h) = 0

max

{

0,
P (h)− P (h | e)

P (h)

}

otherwise

5.4. The certainty factor model 181

The measure of belief can be accounted for intuitively as follows. Let us depict the prior
probability of the hypothesis h, that is, P (h), on a scale from 0 to 1:

P (h | e)

P (h) 10

The maximum amount of belief that can still be added to the prior belief in h, equals 1−P (h).
If a piece of evidence e is observed confirming h, that is, such that P (h | e) > P (h), then this
observation results in adding the amount of belief P (h | e) − P (h) to the prior belief in h.
The belief in h therefore has been increased to the degree

P (h | e)− P (h)

1− P (h)

The measure of disbelief can be accounted for similarly.
From the previous definition, it can readily be seen that for a given hypothesis h and

a given piece of evidence e only one of the functions MB and MD attains a function value
greater than zero. If MB(h, e) > 0, we have either P (h | e) − P (h) > 0 or P (h) = 1. If
P (h | e) − P (h) > 0 then we have P (h) − P (h | e) < 0 and consequently MD(h, e) = 0. In
case P (h) = 1, we have that P (h | e) = 1, hence P (h) − P (h | e) = 0 and MD(h, e) = 0.
Similarly, it can be shown that MB(h, e) = 0 if MD(h, e) > 0. This corresponds explicitly
with the idea that a particular piece of evidence may not be used both for as well as against
a hypothesis. For evidence e neither confirming nor disconfirming the hypothesis h, that is,
evidence e for which P (h | e) = P (h) holds, we have MB(h, e) = MD(h, e) = 0.

We now associate a measure of belief MB(h, e) and a measure of disbelief MD(h, e) with
a hypothesis h in a production rule if e then h fi, as follows:

e h
MB(h, e), MD(h, e)

In this rule, the numbers MB(h, e) and MD(h, e) have the following meaning: an MB(h, e) > 0
(and hence MD(h, e) = 0) means that the observation of evidence e increases the confidence in
h. MB(h, e) = 1 means that the hypothesis h has been fully confirmed by e. An MD(h, e) >
0 (and hence MB(h, e) = 0) indicates that the observation of e tends to disconfirm the
hypothesis h. Note that the measures of belief and disbelief MB and MD generally are
specified by the domain expert only for a selection of the arguments in their domain. If a
probability function on the domain were known, then the other function values of MB and
MD could be computed using the respective definitions of these functions. However, we
have argued before that such a probability function is virtually never known in practical
applications. Similar to the subjective Bayesian method, the certainty factor model therefore
offers a number of combination functions for approximating the function values of MB and
MD that were not specified beforehand by the expert.

5.4.2 The combination functions

As we have seen before, when applying production rules various intermediate results are
derived with a certain measure of uncertainty, which in turn are used as evidence in other

182 Chapter 5. Reasoning with Uncertainty

production rules. The combination function which will be considered first, is the one for
propagating such uncertainty in evidence. Suppose that an intermediate result e has been
obtained from earlier evidence e′ with a measure of belief MB(e, e′) and a measure of disbelief
MD(e, e′). This e is subsequently used as evidence in the production rule if e then h fi:

e′ e h
MB(e, e′), MD(e, e′) MB(h, e),MD(h, e)

Note once more that the left half of the figure shows a compressed network whereas the right
half represents a single production rules. After applying the rule, we are interested in the
measure of belief MB(h, e′) and the measure of disbelief MD(h, e′) such that:

e′ h
MB(h, e′),MD(h, e′)

The following combination functions prescribe that the measure of belief of e given e′ will be
used as a scaling factor for the measures of belief and disbelief associated with the production
rule:

MB(h, e′) = MB(h, e) ·MB(e, e′)
MD(h, e′) = MD(h, e) ·MB(e, e′)

Herein, MB(h, e) is the measure of belief to be assigned to the hypothesis h if the piece of
evidence e has been fully confirmed; it is the measure of belief associated with h in the pro-
duction rule if e then h fi. The meaning of MD(h, e) is analogous. Note that the production
rule does not contribute to the belief nor to the disbelief in h if e has been disconfirmed to
some extent by evidence e′, in other words if the condition e has failed. The certainty factor
model in this respect differs conceptually from the subjective Bayesian method.

The condition part of a production rule generally consists of a number of constituent
pieces of evidence which are interrelated by means of the operators and and or. For exam-
ple, the following inference network represents the composite evidence e1 and e2 where the
constituent pieces of evidence e1 and e2 have been derived from some prior evidence e′:

e′

e′

e1

e2

MB(e1, e
′),MD(e1, e

′)

MB(e2, e
′),MD(e2, e

′)

The certainty factor model comprises a number of combination functions for computing the
measure of belief and the measure of disbelief for certain combinations of pieces of evidence.
These combination functions are equivalent to the corresponding functions in the subjective
Bayesian method:

MB(e1 and e2, e
′) = min{MB(e1, e

′),MB(e2, e
′)}

MB(e1 or e2, e
′) = max{MB(e1, e

′),MB(e2, e
′)}

MD(e1 and e2, e
′) = max{MD(e1, e

′),MD(e2, e
′)}

MD(e1 or e2, e
′) = min{MD(e1, e

′),MD(e2, e
′)}

5.4. The certainty factor model 183

The combination functions given above are commutative and associative in the first argument;
so, the order in which two constituent pieces of evidence in the condition part of a production
rule have been specified, has no influence on the resulting measures of belief and disbelief.

Until now, a production rule has been considered in isolation from the other production
rules in a rule base. It is however possible that more than one production rule if ei then h fi
concludes on the same hypothesis h. Each of these different rules results in a separate measure
of belief and disbelief for the same hypothesis h. We suppose that the pieces of evidence ei
specified in the co-concluding production rules have been derived from prior evidence e′i.
The uncertainty of the pieces of evidence ei may be propagated to h in the manner described
earlier in this section. For two co-concluding production rules the inference network looks as
follows:

e′1

e′2

h

MB(h, e′1),MD(h, e′1)

MB(h, e′2),MD(h, e′2)

These partial measures of belief and disbelief each contribute to the total belief and disbelief
in h. The combination functions for co-concluding production rules combine these partial
measures of belief and disbelief in order to obtain the total belief and disbelief in h:

MB(h, e′1 co e′2) =

{

0 if MD(h, e′1 co e′2) = 1
MB(h, e′1) + MB(h, e′2)(1 −MB(h, e′1)) otherwise

MD(h, e′1 co e′2) =

{

0 if MB(h, e′1 co e′2) = 1
MD(h, e′1) + MD(h, e′2)(1−MD(h, e′1)) otherwise

These combination functions are commutative and associative in the second argument, so the
order in which the production rules are applied has no effect on the final result.

It should be remarked that the formulas given by Shortliffe and Buchanan as shown above
suggest a number of properties of the measures of belief and disbelief which do not hold in
general. For instance, it is possible that the measure of belief in h as well as the measure
of disbelief in h given prior evidence e′ are greater than zero after applying the combination
functions for co-concluding production rules, which is contradictory to the original definitions
of the functions MB and MD. Only in a small number of special cases under rigorous condi-
tions concerning the interrelationships between the pieces of evidence and the hypotheses, do
the properties suggested in the formulas hold. In general, however, the combination functions
are not correct with respect to the probabilistic foundation of the model.

5.4.3 The certainty factor function

In the original formulation of the certainty factor model, computation took place in terms
of the measures of belief and disbelief; the uncertainties were propagated through the infer-
ence network obtained from top-down inference on a set of production rules by using the
combination functions discussed above. Soon, however, the need arose to express the finally
derived measures of belief and disbelief for a certain hypothesis in a single number. For this
purpose, Shortliffe and Buchanan have introduced a new measure derived from the two basic
ones mentioned: the certainty factor function.

184 Chapter 5. Reasoning with Uncertainty

Definition 5.11 Let Ω be a sample space, and let h, e ⊆ Ω. Let MB and MD be defined as
in Section 5.4.1. The certainty factor function CF is a function CF : 2Ω× 2Ω → [−1, 1], such
that:

CF(h, e) =
MB(h, e) −MD(h, e)

1−min{MB(h, e),MD(h, e)}

The ‘scaling factor’ 1 − min{MB(h, e),MD(h, e)} has been incorporated into the model for
pragmatic reasons. This scaling factor has no influence on the certainty factor when consider-
ing only one piece of evidence, since then we have 1−min{MB(h, e),MD(h, e)} = 1. However,
when we consider more than one piece of evidence or more than one hypothesis, this is not
always the case as has been mentioned before.

Note that for given h and e, a certainty factor is a number between −1 and +1; this is
contrary to the measures of belief and disbelief, each lying in the closed interval [0, 1]. It can
easily be seen from the definition given above that a negative certainty factor indicates that
the hypothesis is disconfirmed by the evidence and that a positive certainty factor indicates
that the hypothesis is confirmed by the evidence. A certainty factor equal to zero indicates
that the evidence does not influence the belief in the hypothesis.

In present implementations of the certainty factor model, the measures of belief and
disbelief are no longer used in the computation: only the certainty factor is applied instead of
the two measures of belief and disbelief MB(h, e) and MD(h, e). With each production rule
if e then h fi now is associated a certainty factor CF(h, e):

e h
CF(h, e)

For manipulating these certainty factors, Shortliffe and Buchanan have defined new combina-
tion functions expressed in terms of certainty factors only. A small calculation effort suffices
to prove that these combination functions can be derived from the corresponding ones for the
measures of belief and disbelief.

The combination function for propagating uncertain evidence is the following:

CF(h, e′) = CF(h, e) ·max{0,CF(e, e′)}

Here, CF(h, e) is the certainty factor associated with the hypothesis h by the production rule
if e then h fi if the evidence e has been observed with absolute certainty; CF(e, e′) indicates
the actual confidence in e based on some prior evidence e′.

The function for combining two certainty factors CF(e1, e
′) and CF(e2, e

′) of two consti-
tuting pieces of evidence e1 and e2 to obtain a certainty factor for the conjunction e1 and e2
of these pieces of evidence is the following:

CF(e1 and e2, e
′) = min{CF(e1, e

′),CF(e2, e
′)}

For the disjunction of these pieces of evidence, we have the following formula:

CF(e1 or e2, e
′) = max{CF(e1, e

′),CF(e2, e
′)}

Finally, the combination function for combining two certainty factors CF(h, e′1) and CF(h, e′2)
which have been derived from two co-concluding production rules if ei then h fi, i = 1, 2, is

5.4. The certainty factor model 185

as follows:

CF(h, e′1 co e′2) =

CF(h, e′1) + CF(h, e′2)(1 − CF(h, e′1)) if CF(h, e′i > 0, i = 1, 2

CF(h, e′1) + CF(h, e′2)

1−min{|CF(h, e′1)|, |CF(h, e′2)|}
if − 1 ≤ CF(h, e′1) · CF(h, e′2) ≤ 0

CF(h, e′1) + CF(h, e′2)(1 + CF(h, e′1)) if CF(h, e′i) < 0, i = 1, 2

The following example demonstrates how these combination functions for certainty factors
can be applied.

EXAMPLE 5.7

Consider the following five production rules:

R1 : if a and (b or c) then h0.80 fi
R2 : if d and f then b0.60 fi
R3 : if f or g then h0.40 fi
R4 : if a then d0.75 fi
R5 : if i then g0.30 fi

The expert has associated with the conclusion h of ruleR1 the certainty factor CF(h, a and
(b or c)) = 0.80, with the conclusion b of rule R2 the certainty factor CF(b, d and f) =
0.60, and so on. We suppose that h is the goal hypothesis. When applying backward
chaining, the user will be asked to provide further information on a, c, f and i. We
assume that using his prior knowledge e′, the user associates the following certainty
factors with his answers:

CF (a, e′) = 1.00
CF (c, e′) = 0.50
CF (f, e′) = 0.70
CF (i, e′) = −0.40

Using backward chaining, R1 will be the first rule selected for application. Note that this
rule will eventually yield a partial certainty factor for h. It will be evident that we cannot
simply associate the certainty factor 0.80 with h after application of R1: this number
only indicates the certainty of h in case of absolute certainty of a and (b or c). Recall
that for computing the actual certainty of h from this rule, we first have to compute the
actual certainty of a and (b or c) and then propagate it to h using the combination
function for uncertain evidence. However, the actual certainty of a and (b or c) is not
known: we have to compute it from the separate certainty factors for a, b, and c using
the combination functions for composite hypotheses. The actual certainty factors of a
and c are known: the user has specified the certainty factors 1.00 and 0.50 for these
pieces of evidence. For b, however, we still have to compute a certainty factor. We select
the production rule R2 for doing so. The combination function for uncertain evidence
now prescribes that we have to multiply the certainty factor 0.60 for b mentioned in the
rule by the actual certainty factor of the evidence d and f . Again, we have to obtain

186 Chapter 5. Reasoning with Uncertainty

separate certainty factors for d and f . The user has associated the certainty factor 0.70
with f ; by applying rule R4 we find for d the certainty factor 1.00 · 0.75 = 0.75. Using
the combination function for composite hypotheses we arrive at the following certainty
factor for d and f (we use e′1 to denote all evidence used in this particular reasoning
chain):

CF(d and f, e′1) = min{CF(d, e′1),CF(f, e′1)} = 0.70

Subsequently, the combination function for uncertain evidence is applied to compute
the actual certainty factor for b:

CF(b, e′1) = CF(b, d and f) ·max{0,CF(d and f, e′1)} =
= 0.60 · 0.70 = 0.42

Recall that we had to compute certainty factors for a, b, and c separately in order to be
able to compute a certainty factor for the composite evidence a and (b or c). All the
required certainty factors are now available. We apply the combination function for a
disjunction of hypotheses to compute:

CF(b or c, e′1) = max{CF(b, e′1),CF(c, e′1)} = 0.50

And, subsequently, the combination function for a conjunction of hypotheses to com-
pute:

CF(a and (b or c), e′1) = min{CF(a, e′1),CF(b or c, e′1)} = 0.50

From the production rule R1 we therefore obtain the following (partial) certainty factor
for h:

CF(h, e′1) = CF(h, a and (b or c)) ·max{0,CF(a and (b or c), e′1)} =
= 0.80 · 0.50 = 0.40

Similarly, from the other production rule concluding on h, that is, rule R3, the following
certainty factor is obtained:

CF(h, e′2) = CF(h, f or g) ·max{0,CF(f or g, e′2)} =
= 0.40 · 0.70 = 0.28

In the course of this computation a certainty factor equal to zero is associated with
g due to CF(i, e′) = −0.40. The net certainty factor for h is computed from the two
partial ones by applying the combination function for co-concluding production rules:

CF(h, e′1 co e′2) = CF(h, e′1) + CF(h, e′2) · (1− CF(h, e′1)) =
= 0.40 + 0.28 · 0.60 = 0.568

Note that this net certainty factor is greater than each of the certainty factors for h
separately.

5.5. The Dempster-Shafer theory 187

5.5 The Dempster-Shafer theory

In the 1960s, A. Dempster laid the foundations for a new mathematical theory of uncertainty;
in the seventies, this theory was extended by G. Shafer to what at present is known as the
Dempster-Shafer theory. This theory may be viewed as a generalization of probability theory.
Contrary to the subjective Bayesian method and the certainty factor model, Dempster-Shafer
theory has not especially been developed for reasoning with uncertainty in knowledge-based
systems. Only at the beginning of the eighties, it became apparent that the theory might
be suitable for such a purpose. However, the theory cannot be applied in a knowledge-
based system without modification. For application in a rule-based system, for example,
several combination functions are lacking. Moreover, the theory in its original form has an
exponential computational complexity. For rendering it useful in the context of knowledge-
based systems, therefore, several modifications of the theory have been proposed. In Sections
5.5.1 and 5.5.2 the main principles of the theory are discussed. Section 5.5.3 briefly touches
upon a possible adaptation of the theory for application in a production system.

5.5.1 The probability assignment

We have mentioned above that the Dempster-Shafer theory may be viewed as a generalization
of probability theory. The development of the theory has been motivated by the observation
that probability theory is not able to distinguish between uncertainty and ignorance due to
incompleteness of information. Recall that in probability theory, probabilities have to be
associated with individual atomic hypotheses. Only if these probabilities are known, are we
able to compute other probabilities of interest. In the Dempster-Shafer theory, however, it
is possible to associate measures of uncertainty with sets of hypotheses, then interpreted as
disjunctions, instead of with the individual hypotheses only, and nevertheless be able to make
statements concerning the uncertainty of other sets of hypotheses. Note that this way, the
theory is able to distinguish between uncertainty and ignorance.

EXAMPLE 5.8

Consider a house officers’ practice where a patient consults his physician for chest pain,
radiating to the arms and neck; the pain does not disappear in rest. In this simplified
example we assume that there are only four possible disorders to be considered as a
diagnosis: the patient is either suffering from a heart attack, a pericarditis, pulmonary
embolism, or an aortic dissection. Heart attack and pericarditis are disorders of the
heart; pulmonary embolism and aortic dissection are disorders of the blood vessels.
Now suppose that we have certain clues indicating that the patient has a disorder of
the heart; the strength of our belief is expressed in the number 0.4. In the Dempster-
Shafer theory this number is assigned to the set heart-attack, pericarditis, viewed as the
composite hypothesis heart-attack or pericarditis; there is no number associated with
the individual hypotheses, since more specific information indicating that one of these
two hypotheses is the cause of the complaints, is not available. Note that in probability
theory the number 0.4 would have to be distributed over the individual hypotheses
(without more information, each of the two hypotheses would be assigned the number
0.2). In that case, the false impression of more information than actually present would
be given.

188 Chapter 5. Reasoning with Uncertainty

The strategy followed in the Dempster-Shafer theory for dealing with uncertainty roughly
amounts to the following: starting with an initial set of hypotheses, due to pieces of evidence
each time a measure of uncertainty is associated with certain subsets of the original set of
hypotheses, until measures of uncertainty may be associated with all possible subsets on
account of the combined evidence. The initial set of all hypotheses in the problem domain
is called the frame of discernment. In such a frame of discernment the individual hypotheses
are assumed to be disjoint. The impact of a piece of evidence on the confidence or belief in
certain subsets of a given frame of discernment is described by means of a function which is
defined below.

Definition 5.12 Let Θ be a frame of discernment. If with each subset x ⊆ Θ a number m(x)
is associated such that:

(1) m(x) ≥ 0,

(2) m(∅) = 0, and

(3)
∑

x⊆Θm(x) = 1

then m is called a basic probability assignment on Θ. For each subset x ⊆ Θ, the number
m(x) is called the basic probability number of x.

We define another two notions.

Definition 5.13 Let Θ be a frame of discernment and let m be a basic probability assignment
on Θ. A set x ⊆ Θ is called a focal element in m if m(x) > 0. The core of m, denoted by
κ(m), is the set of all focal elements in m.

Note the similarity between a basic probability assignment and a probability function. A
probability function associates with each element in Θ a number from the interval [0,1] such
that the sum of these numbers equals 1; a basic probability assignment associates with each
element in 2Θ a number in the interval [0,1] such that once more the sum of the numbers
equals 1.

EXAMPLE 5.9

Consider the preceding medical example once more. In this example, the frame of dis-
cernment is the set Θ = {heart-attack, pericarditis, pulmonary-embolism, aortic-dissection}.
Note that each basic probability assignment on Θ assigns basic probability numbers to
24 = 16 sets (including the empty set). If for a specific patient there is no evidence
pointing at a certain diagnosis in particular, then the basic probability number 1 is
assigned to the entire frame of discernment:

m0(x) =

{

1 if x = Θ
0 otherwise

Note that each proper subset of the frame of discernment gets assigned the number 0.
The core of m0 is equal to Θ. Now suppose that some evidence has become available
that points to the composite hypothesis heart-attack or pericarditis with some certainty.
Then, the subset {heart-attack, pericarditis} will be assigned a basic probability number,

5.5. The Dempster-Shafer theory 189

for example 0.4. Due to lack of further information, the remaining certainty 0.6 is
assigned to the entire frame of discernment:

m1(x) =

0.6 if x = Θ
0.4 if x = {heart-attack, pericarditis}
0 otherwise

The set {heart-attack, pericarditis} is an element of the core of m1. Now suppose that
we furthermore have obtained some evidence against the hypothesis that our patient
is suffering from pericarditis. This information can be considered as support for the
hypothesis that the patient is not suffering from pericarditis. This latter hypothesis is
equivalent to the composite hypothesis heart-attack or pulmonary-embolism or aortic-
dissection. In consequence of this evidence, we therefore assign a basic probability
number, for example 0.7, to the set heart-attack, pulmonary-embolism, aortic-dissection:

m2(x) =

0.3 if = Θ
0.7 if x = {heart-attack, pulmonary-embolism, aortic-dissection}
0 otherwise

A probability number m(x) expresses the confidence or belief assigned to precisely the set
x: it does not express any belief in subsets of x. It will be evident, however, that the total
confidence in x is not only dependent upon the confidence in x itself, but also upon the
confidence assigned to subsets of x. For a given basic probability assignment, we define a new
function describing the cumulative belief in a set of hypotheses.

Definition 5.14 Let Θ be a frame of discernment, and let m be a basic probability assignment
on Θ. Then, the belief function (or credibility function) corresponding to m is the function
Bel : 2Θ → [0, 1] defined by

Bel(x) =
∑

y⊆x

m(y)

for each x ⊆ Θ.

Several properties of this belief function can easily be proven:

• Bel(Θ) = 1 since
∑

y⊆Θm(y) = 1.

• For each x ⊆ Θ containing exactly one element, we have that Bel(x) = m(x).

• For each x ⊆ Θ, we have Bel(x) + Bel(x̄) ≤ 1, since

Bel(Θ) = Bel(x ∪ x̄) = Bel(x) + Bel(x̄) +
∑

x ∩ y 6= ∅

x̄ ∩ y 6= ∅

m(y) = 1

We furthermore have the inequality Bel(x) + Bel(y) 6= Bel(x ∪ y) for each x, y ∈ Θ.

190 Chapter 5. Reasoning with Uncertainty

We define some special belief functions. In the preceding example, we have demonstrated how
complete ignorance may be expressed. Recall that a basic probability assignment describing
lack of evidence had the following form:

m(x) =

{

1 if x = Θ
0 otherwise

The belief function corresponding to such an assignment has been given a special name.

Definition 5.15 Let Θ be a frame of discernment and let m be a basic probability assignment
such that κ(m) = {Θ}. The belief function corresponding to m is called a vacuous belief
function.

The following definition concerns belief functions corresponding to basic probability assign-
ments of the form

m(x) =

1− c1 if x = Θ
c1 if x = A
0 otherwise

where A ⊆ Θ, and 0 ≤ c1 ≤ 1 is a constant.

Definition 5.16 Let Θ be a frame of discernment and let m be a basic probability assignment
such that κ(m) = {A,Θ} for a certain A ⊂ Θ. The belief function corresponding to m is called
a simple support function.

A belief function provides for each set x only a lower bound to the ‘actual’ belief in x: it is
also possible that belief has been assigned to a set y such that x ⊆ y. Therefore, in addition
to the belief function the Dempster-Shafer theory defines another function corresponding to
a basic probability assignment.

Definition 5.17 Let Θ be a frame of discernment and let m be a basic probability assignment
on Θ. Then, the plausibility function corresponding to m is the function Pl : 2Θ → [0, 1]
defined by

Pl(x) =
∑

x∩y 6=∅

m(y)

for each x ⊆ Θ.

A function value Pl(x) indicates the total confidence not assigned to x̄. So, Pl(x) provides
an upper bound to the ‘real’ confidence in x. It can easily be shown that for a given basic
probability assignment m, the property

Pl(x) = 1− Bel(x̄)

for each x ⊆ Θ, holds for the the belief function Bel and the plausibility function Pl corre-
sponding to m. The difference Pl(x)−Bel(x) indicates the confidence in the sets y for which
x ⊆ y and therefore expresses the uncertainty with respect to x.

5.5. The Dempster-Shafer theory 191

Definition 5.18 Let Θ be a frame of discernment and let m be a basic probability assignment
on Θ. Let Bel be the belief function corresponding to m, and let Pl be the plausibility function
corresponding to m. For each x ⊆ Θ, the closed interval [Bel(x),Pl(x)] is called the belief
interval of x.

EXAMPLE 5.10

Let Θ be a frame of discernment, and let x ⊆ Θ. Now, consider a basic probability
assignment m on Θ and its corresponding functions Bel and Pl.

• If [Bel(x),Pl(x)] = [0, 1], then no information concerning x is available.

• If [Bel(x),Pl(x)] = [1, 1], then x has been completely confirmed by m.

• If [Bel(x),Pl(x)] = [0.3, 1], then there is some evidence in favour of the hypothesis
x.

• If [Bel(x),Pl(x)] = [0.15, 0.75], then we have evidence in favour as well as against
x.

If we have Pl(x) − Bel(x) = 0 for each x ⊆ Θ, then we are back at conventional probability
theory. In such a case, the belief function is called a Bayesian belief function. This notion is
defined more formally in the following definition.

Definition 5.19 Let Θ be a frame of discernment and let m be a basic probability assignment
such that the core of m only consists of singleton sets. The belief function corresponding to
m is called a Bayesian belief function.

5.5.2 Dempster’s rule of combination

The Dempster-Shafer theory provides a function for computing from two pieces of evidence
and their associated basic probability assignment a new basic probability assignment describ-
ing the combined influence of these pieces of evidence. This function is known as Dempster’s
rule of combination. The remainder of this section is devoted to an example of the use of this
function. First, however, it is defined formally in the following definition.

Definition 5.20 (Dempster’s rule of combination) Let Θ be a frame of discernment, and let
m1 and m2 be basic probability assignments on Θ. Then, m1 ⊕m2 is a function m1 ⊕m2 :
2Θ → [0, 1] such that

(1) m1 ⊕m2(∅) = 0, and

(2) for all x 6= ∅:

m1 ⊕m2(x) =

∑

y∩z=xm1(y) ·m2(z)
∑

y∩z 6=∅
m1(y) ·m2(z)

Bel1 ⊕ Bel2 is the function Bel1 ⊕ Bel2 : 2Θ → [0, 1] defined by

Bel1 ⊕ Bel2(x) =
∑

y⊆x

m1 ⊕m2(y)

192 Chapter 5. Reasoning with Uncertainty

The usage of Dempster’s rule of combination will now be illustrated by means of an example.

EXAMPLE 5.11

Consider once more the frame of discernment Θ = {heart-attack, pericarditis,
pulmonary-embolism, aortic-dissection}. Furthermore, consider the basic probability
assignment m1 obtained from the evidence that a given patient suffers from a heart
attack or a pericarditis, and the basic probability assignment m2 obtained from the
evidence that the patient does not suffer from pericarditis. These functions are shown
below:

m1(x) =

0.6 if x = Θ
0.4 if x = {heart-attack, pericarditis}
0 otherwise

m2(x) =

0.3 if x = Θ
0.7 if x = {heart-attack, pulmonary-embolism, aortic-dissection}
0 otherwise

From applying Dempster’s rule of combination, we obtain a new basic probability as-
signment m1 ⊕m2, describing the combined effect of m1 and m2. The basic principle
of this rule is demonstrated in Figure 5.5; such a figure is called an intersection tableau.
In front of each row of the intersection tableau is specified a subset of the frame of
discernment and the basic probability number assigned to it by the basic probability
assignment m1; the figure shows only those subsets having a basic probability number
not equal to zero. Above the columns of the intersection tableau again all subsets of Θ
are specified, but this time with their basic probability numbers according to m2. The
crossing of a row and a column now contains the intersection of the sets associated with
the row and column concerned, and specifies the product of the two basic probability
numbers associated with these sets. So, at the crossing of the row corresponding to the
set {heart-attack, pericarditis} having the basic probability number 0.4, and the column
corresponding to the set {heart-attack, pulmonary-embolism, aortic-dissection} with the
basic probability number 0.7, we find the set {heart-attack} with the number 0.28.

Now observe that the set {heart-attack} is also present at other places in the tableau
since there are various possibilities for choosing two sets x, y ⊆ Θ such that x ∩ y =
{heart-attack}. Dempster’s rule of combination now sums all basic probability numbers
assigned to the set {heart-attack}. The result of this computation (possibly after nor-
malization to 1; we shall return to this shortly) is the basic probability number assigned
by m1 ⊕m2 to that specific set. The intersection tableau in Figure 5.5 shows all sets
having a probability number not equal to zero. So, we have obtained the following
probability assignment:

m1 ⊕m2(x) =

0.18 if x = Θ
0.28 if x = {heart-attack}
0.12 if x = {heart-attack, pericarditis}
0.42 if x = {heart-attack, pulmonary-embolism, aortic-dissection}
0 otherwise

5.5. The Dempster-Shafer theory 193

m2 {heart-attack, Θ
· · · pulmonary-embolism, · · · (0.3)

m1 aortic-dissection}
(0.7)

· · ·

{heart-attack, {heart-attack} {heart-attack,
pericarditis} (0.28) pericarditis}

(0.4) (0.12)

· · ·

Θ {heart-attack, Θ
(0.6) pulmonary-embolism, (0.18)

aortic-dissection}
(0.42)

Figure 5.5: Intersection tableau for m1 and m2.

m3 {pulmonary-embolism} Θ
· · · (0.5) · · · (0.5)

m1

· · ·

{heart-attack, ∅ {heart-attack,
pericarditis} (0.2) pericarditis}

(0.4) (0.2)

· · ·

Θ {pulmonary-embolism} Θ
(0.6) (0.3) (0.3)

Figure 5.6: An erroneous intersection tableau for m1 en m3.

194 Chapter 5. Reasoning with Uncertainty

However, in computing the combination of the two basic probability assignments, as
demonstrated above, we may encounter a problem.

Consider m1 once more and the basic probability assignment m3 defined by

m3(x) =

0.5 if x = Θ
0.5 if x = {pulmonary-embolism}
0 otherwise

Figure 5.6 now shows an intersection tableau which has been constructed using the
same procedure as before. However, in this erroneous intersection tableau a basic
probability assignment greater than zero has been assigned to the empty set: we have
that m1⊕m3(∅) = 0.2. So, the function m1⊕m3 is not a basic probability assignment,
since it does not satisfy the axiom m1 ⊕m3(∅) = 0. Dempster’s rule of combination
now simply sets m1 ⊕m3(∅) = 0. As a consequence, the second axiom is violated: we
now have that

∑

x⊆Θ

m1 ⊕m3(x)

is less than instead of equal to 1. To remedy this problem, Dempster’s rule of combina-
tion divides the remaining numbers by the scaling factor

∑

x∩y 6=∅

m1(x) ·m3(y)

in this example the factor 0.8. The correct intersection tableau form1 andm3 is depicted
in Figure 5.7.

5.5.3 Application in rule-based systems

In the preceding subsections, we have paid some attention to the principle notions of the
Dempster-Shafer theory. These principles have been dealt with separate from an application
in a knowledge-based system since the theory in its original form is not directly applicable as
a model for plausible reasoning in this context. However, in the early eighties, research was
initiated to further elaborate the model to render it suitable for application in a knowledge-
based system. We have mentioned before that the basic problems preventing the use of
the model in rule-based systems are its computational complexity and the lack of several
combination functions. In this book, we shall not discuss the complexity problem. With
respect to the second problem, various ad-hoc solutions have been proposed none of which
is really satisfactory. One of these ad-hoc solutions will be briefly discussed just to illustrate
the problems one encounters in providing for the missing combination functions. The simple
approach sketched here has been developed by M. Ishizuka for the knowledge-based system
SPERIL.

We consider a production rule if e1 then h fi. The Dempster-Shafer theory does not
prescribe explicitly which information should be associated with the hypothesis h of this pro-
duction rule. It is rather straightforward, however, to associate a basic probability assignment
with the rule. If the rule if e1 then h fi is meant to express that the hypothesis h is confirmed

5.5. The Dempster-Shafer theory 195

m3 {pulmonary-embolism} Θ
· · · (0.5) · · · (0.5)

m1

· · ·

{heart-attack, ∅ {heart-attack,
pericarditis} (0) pericarditis}

(0.4) (0.25)

· · ·

Θ {pulmonary-embolism} Θ
(0.6) (0.375) (0.375)

Figure 5.7: The correct intersection tableau for m1 and m3.

with certainty c1 if the evidence e1 has been observed with absolute certainty, then a basic
probability assignment me1

such that

me1
(x) =

1− c1 if x = Θ
c1 if x = h
0 otherwise

is associated with the hypothesis of the rule. Note that the corresponding belief function
Bele1

is a simple support function. So, we have

e1 h
me1

Recall from Section 5.1 that plausible reasoning in a rule-based system requires the presence
of a number of combination functions: a combination function for propagating uncertain
evidence, a combination function for co-concluding production rules, and two combination
functions for composite hypotheses. In the Dempster-Shafer theory in its original form, only
the combination function for co-concluding production rules is available; we shall see that
Dempster’s rule of combination may be viewed as such. Consider again the production rule
if e1 then h fi given above and its associated functions me1

en Bele1
. Furthermore, suppose

that we have a second rule if e2 then h fi also concerning the hypothesis h, with the following
associated basic probability assignment:

me2
(x) =

1− c2 if x = Θ
c2 if x = h
0 otherwise

196 Chapter 5. Reasoning with Uncertainty

This situation is shown in the following inference network:

e1

e2

h

me1

me2

If we assume that e1 and e2 have been observed with complete certainty, then the basic
probability assignment that will be associated with h based on e1 and e2 is equal to me1

⊕me2
.

The other three combination functions unfortunately are lacking in the Dempster-Shafer
theory.

M. Ishizuka has augmented the Dempster-Shafer theory by providing combination func-
tions for use in his system SPERIL. We first consider the combination function for propagating
uncertain evidence. Suppose that we are given a production rule if e then h fi with which
a basic probability assignment me has been associated. We have seen in Section 5.1, that
the evidence e is not always established with complete certainty since e itself may have been
derived from applying other production rules. For example, e may have been confirmed with
a measure of uncertainty Bele′(e) on account of some prior evidence e′:

e′ e h
Bele′(e) me

In this situation we are interested in Bele′(h), the actual measure of uncertainty of h after
application of the production rule shown above. This Bele′(h) may be obtained from me′(h)
which is computed as follows:

me′(h) = me(h) · Bele′(e)

Note that this provides us with a combination function for uncertain evidence. The following
functions are employed in SPERIL as combination functions for composite hypotheses:

Bele′(e1 and e2) = min{Bele′(e1),Bele′(e2)}

Bele′(e1 or e2) = max{Bele′(e1),Bele′(e2)}

The approach to applying Dempster-Shafer theory in a rule-based setting as sketched in this
section is simple, but hardly satisfying. We have mentioned before that in the recent literature,
several other approaches have been proposed, none of which is really satisfactory. We chose
to discuss Ishizuka’s method merely because of its simplicity and its obvious similarity to the
quasi-probabilistic models treated earlier in this chapter.

5.6 Bayesian networks

In the mid-1980s a new trend in probabilistic reasoning with uncertainty in knowledge-based
systems became discernable taking a graphical representation of knowledge as a point of de-
parture. We use the phrase network models to denote this type of model In the preceding sec-
tions, we have concentrated primarily on models for plausible reasoning that were developed
especially for knowledge-based systems using production rules for knowledge representation.

5.6. Bayesian networks 197

In contrast, the network models depart from another knowledge-representation formalism:
the so-called Bayesian network. Common synonyms for the formalism are: belief network,
probabilistic network, Bayesian belief network, and causal probabilistic network. Informally
speaking, a Bayesian network is a graphical representation of a problem domain consisting
of the statistical variables discerned in the domain and their probabilistic interrelationships.
The relationships between the statistical variables are quantified by means of ‘local’ proba-
bilities together defining a total probability function on the variables. This section presents
a brief introduction to network models. In Section 5.6.1 we shall discuss the way knowledge
is represented in a Bayesian network. The Sections 5.6.3 and 5.6.4 discuss two approaches to
reasoning with such a network.

5.6.1 Knowledge representation in a Bayesian network

We have mentioned before that Bayesian networks provide a formalism for representing a
problem domain. A Bayesian network comprises two parts: a qualitative representation of
the problem domain and an associated quantitative representation. The qualitative part takes
the form of an acyclic directed graph G = (V (G), A(G)) where V (G) = {V1, . . . , Vn}, n ≥ 1,
is a finite set of vertices and A(G) is a finite set of arcs (Vi, Vj), Vi, Vj ∈ V (G). Each vertex
Vi in V (G) represents a statistical variable which in general can take one of a set of values.
In the sequel, however, we shall assume for simplicity’s sake that the statistical variables can
take only one of the truth values true and false. We take an arc (Vi, Vj) ∈ A(G) to represent a
direct ‘influential’ or ‘causal’ relationship between the variables Vi and Vj : the arc (Vi, Vj) is
interpreted as stating that ‘Vi directly influences Vj’. Absence of an arc between two vertices
means that the corresponding variables do not influence each other directly. In general, such
a directed graph has to be configured by a domain expert from human judgment; hence the
phrase belief network. We give an example of such a qualitative representation of a problem
domain.

EXAMPLE 5.12

Consider the following qualitative medical information:

Shortness-of-breath (V7) may be due to tuberculosis (V2), lung cancer (V4)
or bronchitis (V5), or more than one of them. A recent visit to Asia (V1)
increases the chances of tuberculosis, while smoking (V3) is known to be a
risk factor for both lung cancer and bronchitis. The results of a single chest
X-ray (V8) do not discriminate between lung cancer and tuberculosis (V6), as
neither does the presence or absence of shortness-of-breath.

In this information, we may discern several statistical variables; with each variable
we have associated a name Vi. The information has been represented in the acyclic
directed graph G shown in Figure 5.8. Each vertex in G represents one of the statistical
variables, and the arcs in G represent the causal relationships between the variables.
The arc between the vertices V3 and V4 for example represents the information that
smoking may cause lung cancer. Note that although the graph only depicts direct
causal relationships, we can read indirect influences from it. For example, the graph
shows that V3 influences V7 indirectly through V4, V5 and V6: smoking may cause lung
cancer and bronchitis, and these may in turn cause shortness-of-breath. However, as

198 Chapter 5. Reasoning with Uncertainty

V1

V2

V6

V4

V3

V5

V8 V7

Figure 5.8: The acyclic directed graph of a Bayesian network.

soon as V4, V5 and V6 are known, V3 itself does not provide any further information
concerning V7.

The qualitative representation of the problem domain now is interpreted as the representa-
tion of all probabilistic dependency and independency relationships between the statistical
variables discerned. With the graph, a domain expert associates a numerical assessment of
the ‘strengths’ of the represented relationships in terms of a probability function P on the
sample space defined by the statistical variables. Before discussing this in further detail, we
introduce the notions of predecessor and successor.

Definition 5.21 Let G = (V (G), A(G)) be a directed graph. Vertex Vj ∈ V (G) is called a
successor of vertex Vi ∈ V (G) if there is an arc (Vi, Vj) ∈ A(G); alternatively, vertex Vi is
called a predecessor of vertex Vj. A vertex Vk is a neighbour of Vi if Vk is either a successor
or a predecessor of Vi.

Now, for each vertex in the graphical part of a Bayesian network, a set of (conditional)
probabilities describing the influence of the values of the predecessors of the vertex on the
values of the vertex itself, is specified. We shall illustrate the idea with the help of our example
shortly.

We introduce some new notions and notational conventions. From now on, the variable
Vi taking the truth value true will be denoted by vi; the probability that the variable Vi has
the value true will then be denoted by P (vi). We use ¬vi to denote that Vi = false; the
probability that Vi = false then is denoted by P (¬vi). Now, let V (G) = {V1, . . . , Vn}, n ≥ 1,
again be the set of all statistical variables discerned in the problem domain. We consider a
subset V ⊆ V (G) with m ≥ 1 elements. A conjunction of length m in which for each Vi ∈ V
either vi or ¬vi occurs, is called a configuration of V . The conjunction v1 ∧ ¬v2 ∧ v3 is an
example of a configuration of the set V = {V1, V2, V3}. The conjunction of length m in which
each Vi ∈ V is named only, that is, specified without its value, is called the configuration
template of V . For example, the configuration template of V = {V1, V2, V3} is V1 ∧ V2 ∧ V3.
Note that we can obtain the configuration v1 ∧ ¬v2 ∧ v3 from the template V1 ∧ V2 ∧ V3 by
filling in v1, ¬v2, and v3 for the variables V1, V2, and V3, respectively. In fact, every possible

5.6. Bayesian networks 199

configuration of a set V can be obtained from its template by filling in proper values for the
variables occurring in the template.

We return to the quantitative part of a Bayesian network. With each variable, that is,
with each vertex Vi ∈ V (G) in the qualitative part of the belief network, a domain expert
associates conditional probabilities P (vi | c) for all configurations c of the set of predecessors
of Vi in the graph. Note that for a vertex with m incoming arcs, 2m probabilities have to
be assessed; for a vertex Vi with zero predecessors, only one probability has to be specified,
namely the prior probability P (vi).

EXAMPLE 5.13

Consider the medical information from the previous example and its graphical repre-
sentation in Figure 5.8 once more. For example, with the vertex V3 the domain expert
associates the prior probability that a patient smokes. For the vertex V4 two conditional
probabilities have to be specified: the probability that a patient has lung cancer given
the information that he smokes, that is, the probability P (v4 | v3), and the probability
that a non-smoker gets lung cancer, that is, the probability P (v4 | ¬v3). Corresponding
with the graph, a domain expert therefore has to assess the following eighteen proba-
bilities:

P (v1)
P (v2 | v1) and P (v2 | ¬v1)
P (v3)
P (v4 | v3) and P (v4 | ¬v3)
P (v5 | v3) and P (v5 | ¬v3)
P (v6 | v2 ∧ v4), P (v6 | v2 ∧ ¬v4), P (v6 | ¬v2 ∧ v4), and P (v6 | ¬v2 ∧ ¬v4)
P (v7 | v5 ∧ v6), P (v7 | v5 ∧ ¬v6), P (v7 | ¬v5 ∧ v6), and P (v7 | ¬v5 ∧ ¬v6)
P (v8 | v6) and P (v8 | ¬v6)

Note that from these probabilities we can uniquely compute the ‘complementary’ prob-
abilities; for example, we have that P (¬v7 | v5 ∧ v6) = 1− P (v7 | v5 ∧ v6).

We observe that a probability function P on a sample space defined by n statistical variables
V1, . . . , Vn, n ≥ 1, is completely described by the probabilities P (c) for all configurations c
of V (G) = {V1, . . . , Vn}. The reader can easily verify that from these probabilities any other
probability may be computed using the axioms mentioned in Section 5.2.1. In the sequel,
therefore, we will frequently use the template P (V1 ∧ · · · ∧ Vn) to denote a probability func-
tion: note that from this template we can obtain the probabilities P (c) for all configurations
c of V (G), from which we can compute any probability of interest. Since there are 2n dif-
ferent configurations c of V (G), in theory 2n probabilities P (c) are necessary for defining a
probability function. In a belief network, however, often far less probabilities suffice for doing
so: an important property is that under the assumption that the graphical part of a Bayesian
network represents all independency relationships between the statistical variables discerned,
the probabilities associated with the graph provide enough information to define a unique
probability function on the domain of concern. To be more precise, we have

P (V1 ∧ · · · ∧ Vn) =
n
∏

i=1

P (Vi | Cρ(Vi))

200 Chapter 5. Reasoning with Uncertainty

where Cρ(Vi) is the configuration template of the set ρ(Vi) of predecessors of Vi. Note that
the probability of any configuration of V (G) can be obtained by filling in proper values
for the statistical variables V1 up to Vn inclusive and then computing the resulting product
on the right-hand side from the initially assessed probabilities. We look again at our example.

EXAMPLE 5.14

Consider the previous examples once more. We have that

P (V1 ∧ · · · ∧ V8) = P (V8 | V6) · P (V7 | V5 ∧ V6) · P (V6 | V2 ∧ V4) · ·P (V5 | V3) · · ·

P (V4 | V3) · P (V3) · P (V2 | V1) · P (V1)

Note that in this example only eighteen probabilities suffice for specifying a probability
function on our problem domain.

In a Bayesian network, the quantitative representation of the problem domain only comprises
probabilities that involve a vertex and its predecessors in the qualitative part of the network.
Note that the representation of uncertainty in such local factors closely resembles the approach
followed in the quasi-probabilistic models in which uncertainty is represented in factors that
are local to the production rules constituting the qualitative representation of the domain.

5.6.2 Evidence propagation in a Bayesian network

In the preceding section we have introduced the notion of a Bayesian network as a means
for representing a problem domain. Such a Bayesian network may be used for reasoning
with uncertainty, for example for interpreting pieces of evidence that become available dur-
ing a consultation. For making probabilistic statements concerning the statistical variables
discerned in the problem domain, we have to associate with a Bayesian network two methods:

• A method for computing probabilities of interest from the Bayesian network.

• A method for processing evidence, that is, a method for entering evidence into the
network and subsequently computing the conditional probability function given this
evidence. This process is generally called evidence propagation.

In the relevant literature, the emphasis lies on methods for evidence propagation; in this
chapter we do so likewise.

Now recall that the probabilities associated with the graphical part of a Bayesian network
uniquely define a probability function on the sample space defined by the statistical variables
discerned in the problem domain. The impact of a value of a specific variable becoming known
on each of the other variables, that is, the conditional probability function given the evidence,
can therefore be computed from these initially assessed local probabilities. The resulting
conditional probability function is often called the updated probability function. Calculation
of a conditional probability from the initially given probabilities in a straightforward manner
will generally not be restricted to computations which are local in terms of the graphical part
of the Bayesian network. Furthermore, the computational complexity of such an approach
is exponential in the number of variables: the method will become prohibitive for larger
networks. In the literature, therefore, several less naive schemes for updating a probability

5.6. Bayesian networks 201

function as evidence becomes available have been proposed. Although all methods build on the
same notion of a Bayesian network, they differ considerably in concept and in computational
complexity. All schemes proposed for evidence propagation however have two important
characteristics in common:

• For propagating evidence, the graphical part of a Bayesian network is exploited more
or less directly as a computational architecture.

• After a piece of evidence has been processed, again a Bayesian network results. Note
that this property renders the notion of a Bayesian network invariant under evidence
propagation and therefore allows for recursive application of the method for processing
evidence.

In the following two sections, we shall discuss different methods for evidence propagation.
In Section 5.6.3, we shall discuss the method presented by J.H. Kim and J. Pearl. In this
method, computing the updated probability function after a piece of evidence has become
available essentially entails each statistical variable (that is, each vertex in the graphical part
of the Bayesian network) updating the probability function locally from messages it receives
from its neighbours in the graph, that is, from its predecessors as well as its successors, and
then in turn sending new, updated messages to them. S.L. Lauritzen and D.J. Spiegelhalter
have presented another, elegant method for evidence propagation. They have observed that
calculating the updated probability function after a piece of evidence has become available will
generally entail going against the initially assessed ‘directed’ conditional probabilities. They
concluded that the directed graphical representation of a Bayesian network is not suitable
as an architecture for propagating evidence directly. This observation, amongst other ones,
motivated an initial transformation of the Bayesian network into an undirected graphical and
probabilistic representation of the problem domain. We shall see in Section 5.6.4 where this
method will be discussed in some detail, that this new representation allows for an efficient
method for evidence propagation in which the computations to be performed are local to
small sets of variables.

5.6.3 The reasoning method of Kim and Pearl

One of the earliest methods for reasoning with a Bayesian network was proposed by J.H.
Kim and J. Pearl. Their method is defined for a restricted type of Bayesian network only.
It therefore is not as general as the method of Lauritzen and Spiegelhalter which will be
discussed in the following section.

The method of Kim and Pearl is applicable to Bayesian networks in which the graphical
part is a so-called causal polytree. A causal polytree is an acyclic directed graph in which
between any two vertices at most one path exists. Figure 5.9 shows such a causal polytree;
note that the graph shown in figure 5.8 is not a causal polytree since there exist two different
paths from the vertex V3 to the vertex V7. For evidence propagation in their restricted type
of Bayesian network, Kim and Pearl exploit the mentioned topological property of a causal
polytree. Observe that from this property we have that by deleting an arbitrary arc from a
causal polytree, it falls apart into two separate components. In a causal polytree G, there-
fore, we can identify for a vertex Vi with m neighbours, m subgraphs of G each containing
a neighbour of Vi such that after removal of Vi from G there does not exist a path from one
such subgraph to another one. The subgraphs corresponding with the predecessors of the

202 Chapter 5. Reasoning with Uncertainty

Figure 5.9: A causal polytree.

vertex will be called the upper graphs of Vi; the subgraphs corresponding with the successors
of Vi will be called the lower graphs of Vi. The following example illustrates the idea. From
now on, we shall restrict the discussion to this example; the reader may verify, however, that
it can easily be extended to apply to more general causal polytrees.

EXAMPLE 5.15

Figure 5.10 shows a part of a causal polytree G. The vertex V0 has the four neighbours
V1, V2, V3, and V4. V0 has two predecessors and therefore two upper graphs, which are
denoted by G1 and G2, respectively; V0 has also two lower graphs, denoted by G3 and
G4. Note that there do not exist any paths between these subgraphs G1, G2, G3, and
G4 other than through V0.

So far, we have only looked at the graphical part of a Bayesian network. Recall that associ-
ated with the causal polytree we have a quantitative representation of the problem domain
concerned: for each vertex, a set of local probabilities has been specified.

Let us suppose that evidence has become available that one of the statistical variables in
the problem domain has adopted a specific value. This piece of evidence has to be entered into
the Bayesian network in some way, and subsequently its effect on all other variables has to be
computed to arrive at the updated probability function. The method for propagating evidence
associated with this type of Bayesian network will be discussed shortly. First, however, we
consider how probabilities of interest may be computed from the network. In doing so, we use
an object-oriented style of discussion and view the causal polytree of the Bayesian network as
a computational architecture. The vertices of the polytree are viewed as autonomous objects
which hold some private data and are able to perform some computations. Recall that with
each vertex is associated a set of local probabilities; these probabilities constitute the private
data the object holds. The arcs of the causal polytree are taken as communication channels:
the vertices are only able to communicate with their direct neighbours.

Now suppose that we are interested in the probabilities of the values of the variable V0

after some evidence has been processed. It will be evident that, in terms of the graphical
part of the Bayesian network, these probabilities cannot be computed from the private data
the vertex holds; they are dependent upon the information from its upper and lower graphs

5.6. Bayesian networks 203

V2 G2

V4 G4

V0

V1G1

V3G3

Figure 5.10: A part of a causal polytree.

as well. We shall see, however, that the neighbours of V0 are able to provide V0 with all
information necessary for computing the probabilities of its values locally.

We introduce one more notational convention. After several pieces of evidence have been
entered into the network and processed, some of the statistical variables have been instantiated
with a value and some have not. Now, consider the configuration template CV (G) = V1 ∧
· · · ∧ Vn of the vertex set V (G) = {V1, . . . , Vn}, n ≥ 1, in such a situation: we have that in
the template some variables have been filled in. We shall use the notation c̃V (G) to denote
the instantiated part of the template. If, for example, we have the configuration template
C = V1 ∧ V2 ∧ V3 and we know that the variable V2 has adopted the value true and that the
variable V3 has the value false, and we do not know as yet the value of V1, then c̃ = v2 ∧¬v3.

We return to our example.

EXAMPLE 5.16

Consider the causal polytree from Figure 5.10 once more. We are interested in the prob-
abilities of the values of the variable V0. It can easily be proven, using Bayes’ theorem
and the independency relationships shown in the polytree, that these probabilities may
be computed according to the following formula:

P (V0 | c̃V (G)) = α · P (c̃V (G3) | V0) · P (c̃V (G4) | V0)

·
[

P (V0 | v1 ∧ v2) · P (v1 | c̃V (G1)) · P (v2 | c̃V (G2))

+P (V0 | ¬v1 ∧ v2) · P (¬v1 | c̃V (G1)) · P (v2 | c̃V (G2))

204 Chapter 5. Reasoning with Uncertainty

+P (V0 | v1 ∧ ¬v2) · P (v1 | c̃V (G1)) · P (¬v2 | c̃V (G2)) +

P (V0 | ¬v1 ∧ ¬v2) · P (¬v1 | c̃V (G1)) · P (¬v2 | c̃V (G2)))
]

where α is normalization factor chosen so as to guarantee P (v0 | c̃V (G)) = 1− P (¬v0 |
c̃V (G)). We take a closer look at this formula. Note that the probabilities P (v0 | v1∧v2),
P (v0 | ¬v1 ∧ v2), P (v0 | v1 ∧ ¬v2), and P (v0 | ¬v1 ∧ ¬v2) necessary for computing the
updated probabilities of the values of V0 have been associated with V0 initially: V0 holds
these probabilities as private data. So, if V0 were to obtain the probabilities P (c̃V (Gi) |
v0) and P (c̃V (Gi) | ¬v0) from its successors Vi, and the probabilities Pr(vj | c̃V (Gj))
and Pr(¬vj | c̃V (Gj)) from each of its predecessors Vj, then V0 would be able to locally
compute the probabilities of its values.

In the previous example we have seen that the vertex V0 has to receive some specific probabil-
ities from its successors and predecessors before it is able to compute locally the probabilities
of its own values. The vertex V0 has to receive from each of its successors a so-called diagnostic
evidence parameter : the diagnostic evidence parameter that the successor Vi sends to V0 is a
function λVi

defined by λVi
(v0) = P (c̃V (Gi) | v0) and λVi

(¬v0) = P (c̃V (Gi) | ¬v0). The vertex
V0 furthermore has to receive from each of its predecessors a causal evidence parameter : the
causal evidence parameter that the predecessor Vj sends to V0 is a function πV0

defined by
πV0

(vj) = P (vj | c̃V (Gj)) and πV0
(¬vj) = P (¬vj | c̃V (Gj)). These evidence parameters may

be viewed as being associated with the arcs of the causal polytree; Figure 5.11 shows the
parameters associated with the causal polytree from Figure 5.10. Note that the π and λ
parameters may be viewed as messages sent between objects.

Until now we have not addressed the question how a vertex computes the evidence param-
eters to be sent to its neighbours. We therefore turn our attention to evidence propagation.
Suppose that evidence becomes available that a certain variable Vi ∈ V (G) has adopted a
certain value, say true. Informally speaking, the following happens. This evidence forces that
variable Vi to update his private data: it will be evident that the updated probabilities for
the values of Vi are P (vi) = 1 and P (¬vi) = 0, respectively. From its local knowledge about
the updated probability function, Vi then computes the proper π and λ parameters to be sent
to its neighbours. Vi’s neighbours subsequently are forced to update their local knowledge
about the probability function and to send new parameters to their neighbours in turn. This
way evidence, once entered, is spread through the Bayesian network.

EXAMPLE 5.17

Consider the causal polytree from Example 5.11 once more. The vertex V0 computes
the following causal evidence parameter to be sent to its successor V3:

πV3
(V0) = α · λV4

(V0) · [P (V0 | v1 ∧ v2) · πV0
(v1) · πV0

(v2)

+P (V0 | ¬v1 ∧ v2) · πV0
(¬v1) · πV0

(v2)

+P (V0 | v1 ∧ ¬v2) · πV0
(v1) · πV0

(¬v2)

+P (V0 | ¬v1 ∧ ¬v2) · πV0
(¬v1) · πV0

(¬v2)]

where α again is a normalization factor. In computing this causal evidence parameter,
V0 uses its private data and the information it obtains from its neighbours V1, V2, and

5.6. Bayesian networks 205

V1G1
πV0

(V1)

V3G3

λV3
(V0)

V2 G2
πV0

(V2)

V4 G4

λV4
(V0)

V0
πV3

(V0) πV4
(V0)

λV0
(V1) λV0

(V2)

Figure 5.11: The π and λ parameters associated with the causal polytree.

V4. Note that, if due to some new evidence for example the information λV4
(V0) has

changed, then this change is propagated from V4 through V0 to V3.

The vertex V0 furthermore computes the following diagnostic evidence parameter to be
sent to its predecessor V1:

λV0
(V1) = α · λV3

(v0) · λV4
(v0) · [P (v0 | V1 ∧ v2) · πV0

(v2)

+ P (v0 | V1 ∧ ¬v2) · πV0
(¬v2)]

+α · λV3
(¬v0) · λV4

(¬v0) · [P (¬v0 | V1 ∧ v2) · πV0
(v2)

+ P (¬v0 | V1 ∧ ¬v2) · πV0
(¬v2)]

where α once more is a normalization factor.

We add to this example that the vertices Vi having no predecessors send a causal evidence
parameter defined by πVj

(Vi) = P (Vi) to their successors Vj; furthermore, the vertices Vi

having no successors initially send a diagnostic evidence parameter defined by λVi
(Vj) = 1 to

their successors Vj.
We now have discussed the way a piece of evidence, once entered, is propagated through the

causal polytree. We observe that any change in the joint probability distribution in response
to a new piece of evidence spreads through the polytree in a single pass. This statement can
readily be verified by observing that any change in the causal evidence parameter π associated
with a specific arc of the causal polytree does not affect the diagnostic evidence parameter

206 Chapter 5. Reasoning with Uncertainty

λ on the same arc (and vice versa), since in computing the diagnostic evidence parameter
λVk

(V0) associated with the arc (V0, Vk) the causal evidence parameter πVk
(V0) associated

with the same arc is not used. So, in a causal polytree a perturbation is absorbed without
reflection at the ‘boundary’ vertices, that is, vertices with either one outgoing or one incoming
arc.

It remains to be discussed how a piece of evidence may be entered into the network. This
is done rather elegantly: if evidence has become available that the variable Vi has the value
true (or false, alternatively), then a dummy successor W of Vi is temporarily added to the
polytree sending a diagnostic parameter λW (Vi) to Vi such that λW (vi) = 1 and λW (¬v)i = 0
(or vice versa if the value false has been observed).

5.6.4 The reasoning method of Lauritzen and Spiegelhalter

In the previous section we have seen that propagating a piece of evidence concerning a specific
statistical variable to the other variables in the graphical part of a Bayesian network will gen-
erally involve going against the directions of the arcs. This observation, amongst other ones,
motivated S.L. Lauritzen and D.J. Spiegelhalter to transform an initially assessed Bayesian
network into an equivalent undirected graphical and probabilistic representation of the prob-
lem domain. Their scheme for evidence propagation is defined on this new representation.
The scheme has been inspired to a large extent by the existing statistical theory of graphical
models (probabilistic models that can be represented by an undirected graph). In this theory,
the class of so-called decomposable graphs has proven to be an important subclass of graphs.
Before we define the notion of a decomposable graph, we introduce several other notions.

Definition 5.22 Let G = (V (G), E(G)) be an undirected graph where E(G) is a finite set of
unordered pairs (Vi, Vj), Vi, Vj ∈ V (G), called edges. A cycle is a path of length at least one
from V0 to V0, V0 ∈ V (G). A cycle is elementary if all its vertices are distinct. A chord of
an elementary cycle V0, V1, . . . , Vk = V0 is an edge (Vi, Vj), i 6= (j ± mod(k + 1).

We now are ready to define the notion of a decomposable graph.

Definition 5.23 An undirected graph is decomposable if all elementary cycles of length k >=
4 have a chord.

It can be shown that a probability function on such a graph may be expressed in terms of
local probability functions, called marginal probability functions, on small sets of variables.
We shall see that a representation of the problem domain in a decomposable graph and an
associated representation of the probability function then allows for an efficient scheme for
evidence propagation, in which the computations to be performed are local to these small
sets of variables.

In order to be able to fully exploit the theory of graphical models, Lauritzen and Spiegel-
halter propose a transformation of the initially assessed Bayesian network in which the graph-
ical representation of the Bayesian network is transformed into a decomposable graph, and
in which from the probabilistic part of the network a new representation of the probability
function in terms of the resulting decomposable graph is obtained. The resulting represen-
tation of the problem domain is a new type of Bayesian network, which will henceforth be
called a decomposable Bayesian network. We shall only describe the transformation of the
initially assessed Bayesian network into such a decomposable Bayesian network informally.

5.6. Bayesian networks 207

The transformation of the original acyclic directed graph G into a decomposable graph
involves three steps:

(1) Add arcs to G in such a way that no vertex in V (G) has non-adjacent predecessors.

(2) Subsequently, drop the directions of the arcs.

(3) Finally, cut each elementary cycle of length four or more short by adding a chord.

It will be evident that the resulting graph is decomposable. Note that the result obtained is
not unique.

EXAMPLE 5.18

Consider the Bayesian network from the example of Section 5.6.1 once more. The
transformation of the graphical part of this Bayesian network into a decomposable graph
is demonstrated in Figure 5.12. We consider the transformation steps in further detail.
First of all, we have to add new arcs to the graph such that no vertex has non-adjacent
predecessors. Now observe that in figure 5.8 the vertex V6 has two predecessors: the
vertices V2 and V4. Since there does not exist an arc between V2 and V4, we have that
the predecessors of V6 are nonadjacent. We therefore add an arc between V2 and V4.
Note that we also have to add an arc between the vertices V5 and V6. Since we will
drop all directions in the second transformation step, the directions of the added arcs
are irrelevant. From subsequently dropping the directions of the arcs, we obtain an
undirected graph. The resulting graph, however, is still not decomposable, since it has
an elementary cycle of length 4 without any shortcut: V3, V4, V6, V5, V3. We cut this
cycle short by adding an edge between the vertices V4 and V5. Note that addition of an
edge between V3 and V6 would have yielded a decomposable graph as well.

We now have obtained an undirected graphical representation of the problem domain. With
this undirected graph, an ‘undirected’ representation of the probability function is associated.
We confine ourselves to a discussion of this new representation, without describing how it is
actually obtained from the initially assessed probabilities. It should however be evident that
the new representation can be obtained from the original one, since the initial probabilities
define a unique probability function.

We shall see that the probability function can be expressed in terms of marginal probability
functions on the cliques of the decomposable graph. We define the notion of a clique.

Definition 5.24 Let G = (V (G), E(G)) be an undirected graph. A clique of G is a subgraph
H = (V (H), E(H)) of G such that for any two distinct vertices Vi, Vj ∈ V (H) we have that
(Vi, Vj) ∈ E(H). H is called a maximal clique of G if there does not exist a clique H ′ of G
differing from H such that H is a subgraph of H ′.

In the sequel, we shall take the word clique to mean a maximal clique.

EXAMPLE 5.19

Consider the decomposable graph from Figure 5.12 once more. The reader can easily
verify that this graph contains six cliques.

208 Chapter 5. Reasoning with Uncertainty

V1

V2

V6

V4

V3

V5

V8 V7

(a) Add arcs such that no vertex has
non-adjacent predecessors

V1

V2

V6

V4

V3

V5

V8 V7

(b) Drop the directions of the arcs

V1

V2

V6

V4

V3

V5

V8 V7

(c) Cut elementary cycles short

Figure 5.12: Construction of the decomposable graph.

5.6. Bayesian networks 209

V11

V22

V64

V4

3

V3 6

V5 5

V88 V7 7

Figure 5.13: An ordering of the vertices obtained from maximum cardinality search.

To arrive at the new representation of the probability function, we obtain an ordering of the
vertices and of the cliques of the decomposable graph. Its vertices are ordered as follows:

(1) Assign an arbitrary vertex the number 1.

(2) Subsequently, number the remaining vertices in increasing order such that the next
number is assigned to the vertex having the largest set of previously numbered neigh-
bours.

We say that the ordering has been obtained from maximum cardinality search. After the
vertices of the decomposable graph have been ordered, the cliques of the graph are numbered
in the order of their highest numbered vertex.

EXAMPLE 5.20

Consider the decomposable graph G = (V (G), E(G)) as shown in Figure 5.12 once
more. The vertices of G are ordered using maximum cardinality search. An example
of such an ordering is shown in Figure 5.13. The six cliques of the graph subsequently
are numbered in the order of their highest numbered vertex. Let Cli be the clique
assigned number i, i = 1, . . . , 6. Then, we have obtained the following ordering (for ease
of exposition we identify a clique with its vertex set):

Cl1 = {V1, V2}

Cl2 = {V2, V4, V6}

Cl3 = {V4, V5, V6}

Cl4 = {V3, V4, V5}

Cl5 = {V5, V6, V7}

Cl6 = {V6, V8}

210 Chapter 5. Reasoning with Uncertainty

We consider the ordering Cl1, . . . ,Clm, m ≥ 1, of the cliques of a decomposable graph G
in further detail. Let V (Cli) denote the vertex set of clique Cli, i = 1, ...,m. The ordering
now has the following important property: for all i ≥ 2 there is a j < i such that V (Cli) ∩
(V (Cl1)∪ · · · ∪V (Cli−1)) ⊂ V (Clj). In other words, the vertices a clique has in common with
the lower numbered cliques are all contained in one such clique. This property is known as the
running intersection property. This property now enables us to write the probability function
on the decomposable graph as the product of the marginal probability functions on its cliques,
divided by a product of the marginal probability functions on the clique intersections:

P (CV (G)) =
m
∏

i=1

P (CV (Cli))

P (CSi
)

where Si is the set of vertices Cli has in common with the lower numbered cliques.

EXAMPLE 5.21

Consider the decomposable graph G shown in Figure 5.13 once more. The probability
function on G may be expressed as

P (V1 ∧ · · · ∧ V8) = P (V1 ∧ V2) ·
P (V2 ∧ V4 ∧ V6)

P (V2)
·
P (V4 ∧ V5 ∧ V6)

P (V4 ∧ V6)

·
P (V3 ∧ V4 ∧ V5)

P (V4 ∧ V5)
·
P (V5 ∧ V6 ∧ V7)

P (V5 ∧ V6)
·
P (V6 ∧ V8)

P (V6)

The initially assessed Bayesian network has now been transformed into a decomposable
Bayesian network. The scheme for evidence propagation proposed by Spiegelhalter and Lau-
ritzen operates on this decomposable Bayesian network. We emphasize that for a specific
problem domain the transformation has to be performed only once: each consultation of the
system proceeds from the obtained decomposable Bayesian network.

Recall that for making probabilistic statements concerning the statistical variables dis-
cerned in a problem domain we have to associate with a decomposable Bayesian network a
method for computing probabilities of interest from it and a method for propagating evidence
through it. As far as computing probabilities from a decomposable Bayesian network is con-
cerned, it will be evident that any probability which involves only variables occurring in one
and the same clique can simply be computed locally from the marginal probability function
on that clique.

The method for evidence propagation is less straightforward. Suppose that evidence
becomes available that the statistical variable V has adopted a certain value, say v. For
ease of exposition, we assume that the variable V occurs in one clique of the decomposable
graph only. Informally speaking, propagation of this evidence amounts to the following. The
vertices and the cliques of the decomposable graph are ordered anew, this time starting with
the instantiated vertex. The ordering of the cliques then is taken as the order in which the
evidence is propagated through the cliques. For each subsequent clique, the updated marginal
probability function is computed locally using the computation scheme shown below; we use

5.6. Bayesian networks 211

V18

V27

V62

V4

5

V3 6

V5 4

V81 V7 3

Figure 5.14: An ordering of the vertices starting with V8.

P to denote the initially given probability function and P ∗ to denote the new probability
function after updating. For the first clique in the ordering we simply compute:

P ∗(CV (Cl1)) = P (CV (Cl1) | v)

For the remaining cliques, we compute the updated marginal probability function using:

P ∗(CV (Cli)) = P (CV (Cli) | v)

= P (CV (Cli)\Si
| CSi

∧ v) · P (CSi
| v)

= P (CV (Cli)\Si
| CSi

) · P ∗(CSi
)

= P (CV (Cli)) ·
P ∗(CSi

)

P (CSi
)

where Si once more is the set of vertices Cli has in common with the lower numbered cliques.
So, an updated marginal probability function is obtained by multiplying the ‘old’ marginal
probability function with the quotient of the ‘new’ and the ‘old’ marginal probability function
on the appropriate clique-intersection.

We look once more at our example.

EXAMPLE 5.22

Consider the decomposable graph from Figure 5.12 and its associated probability func-
tion once more. Suppose that we obtain the evidence that the variable V8 has the value
true. Using maximum cardinality search, we renumber the vertices of the graph starting
with the vertex V8. Figure 5.14 shows an example of such an ordering. From this new
ordering of the vertices we obtain an ordering of the six cliques of the graph (once more,
we identify a clique with its vertex set):

Cl1 = {V6, V8}

Cl2 = {V5, V6, V7}

Cl3 = {V4, V5, V6}

Cl4 = {V3, V4, V5}

212 Chapter 5. Reasoning with Uncertainty

Cl5 = {V2, V4, V6}

Cl6 = {V1, V2}

The impact of the evidence on the first clique is

P ∗(V6) = P (V6 | v8)

For the second clique we find:

P ∗(V5 ∧ V6 ∧ V7) = P (V5 ∧ V6 ∧ V7) ·
P ∗(V6)

P (V6)

For the remaining cliques we obtain similar results.

After the marginal probability functions have been updated locally, the instantiated vertex
is removed from the graph, and the updated marginal probability functions are taken as the
marginal probability functions on the cliques of the remaining graph. The process may now
simply be repeated for a new piece of evidence.

Exercises

(5.1) The subjective Bayesian method uses a linear interpolation function as a combination
function for propagating uncertain evidence. Recall that this interpolation function
consists of two distinct linear functions, each defined on half of the domain of the com-
bination function. Instead of the function employed in PROSPECTOR as discussed in
Section 5.3.2, we could use for example the function shown in the figure below.

P (h | ē)

P (h)

1

P (h | e)

P (e | e′)

P (h | e′)

0
1P (e)

Describe the effect of applying the production rule if e then h fi on the prior probability
of h in case this function is used as the combination function for uncertain evidence.

5.6. Bayesian networks 213

(5.2) Prove by means of counterexamples that the combination functions for composite evi-
dence in the subjective Bayesian method are not correct when viewed from the perspec-
tive of probability theory.

(5.3) Write a PROLOG or LISP program implementing the subjective Bayesian method.
You can depart from the program for top-down inference discussed in Chapter 3 (of
Principles of Intelligent Systems).

(5.4) A particular rule-based system employs the certainty factor model for modelling the
uncertainty that goes with the problem domain of concern. Let the following three
production rules be given (only the names of the attributes in the conditions and con-
clusions are shown):

if b or c then f0.3 fi
if f and g then a0.8 fi
if d or e then a0.2 fi

Furthermore, suppose that the attributes b, c, d, e, and g have been established with
the certainty factors 0.2, 0.5, 0.3, 0.6, and 0.7, respectively. The attribute a is the goal
attribute of top-down inference. Give the inference network resulting from top-down
inference with these facts and production rules. Compute the certainty factor which
results for the attribute a.

(5.5) Consider the following frame of discernment: Θ = {a, b, c}. Let the basic probability as-
signment m be defined bym({a}) = 0.3, m({a, b}) = 0.4, m({a, b, c}) = 0.2, m({a, c}) =
0.1; the remaining basic probability numbers all equal 0. Compute Bel({a, c}).

(5.6) Let Θ be a frame of discernment. Prove that for each x ⊆ Θ we have that Pl(x) ≥ Bel(x).

(5.7) Let Θ = {a, b, c, d} be a frame of discernment. Give an example of a basic probability
assignment on Θ that defines a probability function on Θ at the same time.

(5.8) Consider the frame of discernment Θ = {a, b, c} and the following two basic probability
assignments m1 and en m2:

m1(x) =

0.3 if x = Θ
0.6 if x = {a, c}
0.1 if x = {b, c}
0 otherwise

m2(x) =

0.8 if x = Θ
0.2 if x = {b}
0 otherwise

Construct the intersection tableau for the function m1 ⊕m2 using Dempster’s rule of
combination.

214 Chapter 5. Reasoning with Uncertainty

9. Consider the frame of discernment Θ = {a, b, c} and the following basic probability
assignments m1 and m2:

m1(x) =

0.3 if x = Θ
0.6 if x = {a, c}
0.1 if x = {a, b}
0 otherwise

m2(x) =

0.8 if x = Θ
0.2 if x = {a}
0 otherwise

Why is it not necessary in this case to normalize? Compute the value of Bel1⊕Bel2({a}).

(5.10) Consider the following medical information:

Metastatic cancer is a possible cause of a brain tumor, and is also an explana-
tion for increased total serum calcium. In turn, either of these could explain
a patient falling into a coma. Severe headache is also possibly associated with
a brain tumour.

Suppose that we use a Bayesian network to represent this information. Give the graph-
ical part of the Bayesian network. Which probabilities have been associated with the
graph?

(5.11) Consider the causal polytree from Figure 5.9 and an associated set of probabilities.
Suppose that we apply the method of J.H. Kim and J. Pearl for evidence propagation.
Try to find out how evidence spreads through the network if entered in one of the
vertices.

(5.12) Consider the Bayesian network obtained in Exercise 10 once more. We transform this
Bayesian network into a decomposable Bayesian network as described in Section 5.6.4.

(a) Give the resulting decomposable graph. Which cliques do you discern?

(b) Give the new representation of the originally given probability function.

(c) What happens if we obtain the evidence that a specific patient is suffering from
severe headaches?

Chapter 6

Model-based Reasoning

Diagnosis is commonly viewed as the interpretation of case-specific findings in the context
of knowledge from a problem domain to obtain an indication of the presence and absence of
defects or faults, and also of the nature of the problem. Computer-aided diagnosis was among
the first applications investigated when digital computers became available more than four
decades ago. It still remains an important research area, in which several new developments
have taken place in the last decade. Diagnosis is the subject of this Chapter, where in
particular we focus on model-based approaches.

It is customary to distinguish between diagnostic systems based on symbolic, or quali-
tative, reasoning technology, and those based on probability theory and statistics, although
some systems offer a mixture of the two approaches. In this paper, we focus on systems based
on symbolic reasoning technology.

Until recently, however, no theoretical framework was available to formally describe and
compare the various underlying principles. At a conceptual level, it was evident that the
knowledge bases of some of the systems captured models of structure and behaviour in a
domain. Such systems have been called model-based or ‘first principles’ systems. The knowl-
edge bases of other systems, however, did not embody an explicit model of structure and
behaviour, but rather consisted of encoded human expertise in solving particular problems
in the underlying domain. Currently, the term empirical associations is often employed to
denote such knowledge. The classical example of such a system is MYCIN.

The model-based approach to diagnosis has been successfully applied to fault finding in
electronic circuits; in particular Johan de Kleer has done a considerable amount of work in
this area. The study of simple electronic circuits has yielded much insight into the nature
of the diagnostic process. More importantly, one of the first formal theories of diagnosis
emerged from this research: the theory of consistency-based diagnosis as proposed by Ray
Reiter. Consistency-based diagnosis offers a logic-based framework to formally describe di-
agnosis of abnormal behaviour in a device or system, using a model of normal structure and
functional behaviour. Basically, consistency-based diagnosis amounts to finding faulty device
components that account for a discrepancy between predicted normal device behaviour and
observed (abnormal) behaviour. The predicted behaviour is inferred from a formal model of
normal structure and behaviour of the device.

Where consistency-based diagnosis traditionally employs a model of normal behaviour,
abduction has been the principal model-based technique for describing and analysing diagnosis
using a model of abnormal behaviour in terms of cause-effect relationships. Early work on

215

216 Chapter 6. Model-based Reasoning

abduction has been done by Harry Pople and David Poole. In abductive diagnosis, diagnostic
problem solving consists of establishing a diagnosis using cause-effect relationships with a set
of observed findings (effects) as the starting point. In abduction, a system reasons from effects
to causes, instead of from causes to effects. Because the reasoning from causes to effects can
be accomplished using logical deduction, in a sense abductive reasoning is carried out in a
direction reverse to that of deduction.

Logical deduction, however, also has its place in the picture, because it has been used
to formalise reasoning with the logical analogues of empirical associations. In the context of
diagnosis, reasoning with empirical associations is often referred to as heuristic classification.

Although much work has now been done to formalise diagnosis, it has been difficult to
capture the concept of diagnosis in a precise, formal and also general way, leaving room
for various types of diagnosis. Both consistency-based diagnosis and abductive diagnosis
have been looked upon as core concepts for formal frameworks of diagnosis, but, as we shall
see, other formalisations are also possible. A formal framework of diagnosis offers means to
formally describe and analyse various notions of diagnosis. The frameworks described in the
literature are either logic-based or based on set theory.

The formalisation of diagnosis is the subject reviewed in this chapter. The structure of
this chapter is as follows. First, the nature of the diagnostic process is sketched. Next, the
various core approaches to diagnosis described in the literature are reviewed. Finally, the
various approaches to diagnosis are compared to each other, and a number of frameworks
that offer means for the general description of diagnosis are discussed.

6.1 Diagnostic problem solving

Discovering what is wrong in a particular situation is one of the central activities in real life;
this process is usually called diagnosis or diagnostic problem solving. The process may be
viewed as the selective gathering and interpretation of information as evidence for or against
the presence or absence of one or more defects in a system. This informal definition reveals
that the following aspects are of central importance to diagnostic problem solving. Firstly,
the gathering of information, and secondly, the interpretation of the gathered information
for determining what is wrong, for example with a patient or a device. In medicine, defects
are disorders of a patient; in technical domains, defects are faults of a device. In medicine,
the information-gathering process is usually carried out in a systematic, structured fashion,
because there are an enormous number of diagnostic tests available to the clinician, that
cannot all be carried out. Furthermore, some diagnostic tests cause discomfort to the patient,
or carry even some risk of causing disease or death. By restricting the selection of diagnostic
tests in early diagnosis to those that do no harm or cause little discomfort to the patient, as
is common practice in medical diagnosis, diagnostic tests are performed only when necessary.
In technical fields, it is sometimes impossible to gather certain information because of time
constraints, costs involved, or physical impossibility. Although the information-gathering
process is a characteristic feature of diagnosis, the interpretation of information as evidence
for or against a diagnostic solution is a more fundamental aspect of diagnostic problem solving.

The information-gathering process together with related aspects, such as the process of
generating, and accepting or rejecting diagnostic hypotheses are sometimes referred to as
the dynamic aspects of diagnostic problem solving. They yield specific problem-solving be-
haviour. Establishing an actual diagnostic solution requires knowledge of what constitutes a

6.1. Diagnostic problem solving 217

observed

findings

hypothesis

formation

hypothesis

hypothesis

testing

diagnosis

domain

knowledge

accept

reject/

adjust

Figure 6.1: Diagnostic problem solving and the empirical cycle.

diagnosis of a particular problem; the various aspects involved are sometimes referred to as
the static aspects of diagnostic problem solving. This chapter focuses on these static aspects
of diagnostic problem solving.

In general, diagnostic problem solving, like many other forms of problem solving, may be
described using the scientific notion of the empirical cycle, which describes the framework
underlying empirical research. It states that empirical research encompasses: (1) formulating
a hypothesis, (2) testing that hypothesis, and (3) rejecting the hypothesis when it fails to
pass the tests, or accepting the hypothesis when it successfully passes the tests.1 The process
may start again with (1), in which case the formulation of a new hypothesis possibly involves
adjusting a hypothesis previously rejected. In Figure 6.1, this view of diagnostic problem
solving as an instance of the empirical cycle is depicted. Testing involves the application of
procedures for the verification and falsification of a hypothesis using observed findings and
domain knowledge. In general, a hypothesis may be a complex structure or mechanism.
In diagnostic problem solving, however, a hypothesis is usually taken to be a collection of
‘defects’, where each defect is assumed to be either present or absent. This simplification may
not always be justified, for example because the defects may be interrelated to each other
in some particular way, which could be part of the hypothesis. For example, a hypothesis
may be whether or not a process A is causally related to a process B. Nevertheless, this
simplification is invariably made in diagnostic systems, and seems acceptable in the light of
developed applications. A diagnosis may be conceived as an accepted hypothesis concerning
a particular defect or collection of defects; the results of diagnostic tests correspond to the
observed findings.

The literature on diagnosis more or less follows the terminology and structure of the empir-
ical cycle. For example, views diagnostic problem solving as three fundamental subproblems:

1Popperians may read instead: ‘not rejecting the hypothesis so long as it has not been falsified by a test’.

218 Chapter 6. Model-based Reasoning

(1) Hypothesis generation (or hypothesis formation);

(2) Hypothesis testing;

(3) Hypothesis discrimination.

The subproblem of hypothesis discrimination concerns selecting from the hypotheses accepted
on the basis of a measure of plausibility. This process may entail collecting additional observed
findings.

The basic framework of diagnostic problem solving as the empirical cycle can be refined
in several ways. For example, there may be an ordering on the set of hypotheses, such as an
ordering from generic to specific, or an ordering by the value of a real-valued utility function
associated with the hypotheses. A class of defects may be taken as a generic hypothesis, and
a specific defect may be viewed as a specific hypothesis. Such orderings are especially useful
in guiding the problem-solving process, information gathering included. For example, the
process may be decomposed into several stages working from generic towards more specific
hypotheses, or from hypotheses with high associated utility to those with low associated
utility. It is well-known that guiding the problem-solving process, using information collected
at earlier stages, may be quite effective in reducing the number of tests to be performed. It
may also result in a step-wise reduction in the number of defects to be considered, due to the
rejection of specific hypotheses motivated by the earlier rejection of more generic hypotheses.
This approach to handling hypotheses and observable findings is an example of a so-called
(diagnostic) problem-solving strategy. Problem-solving strategies are beyond the scope of this
book, because they belong to the dynamics of diagnosis.

6.2 Conceptual basis of diagnosis

Although the description of diagnostic problem solving given in Section 6.1 carries much of
the flavour of the process of diagnosis, it is still an imprecise description and, in fact, several
formal theories have been proposed to capture the concept of diagnosis more precisely. In
doing so, however, researchers became aware that there are actually various conceptual models
of diagnosis, determined by the kind of knowledge involved. As mentioned above, diagnosis
concerns the interpretation of observed findings in the context of knowledge from a problem
domain. A good starting point for describing diagnosis at a conceptual level are the various
types of knowledge that play a role in diagnostic applications.

The knowledge embodied in a diagnostic system may be based on one or more of the
following descriptions:

(1) A description of the normal structure and functional behaviour of a system.

(2) A description of abnormal functional behaviour of a system; abnormal structure is
usually not taken into account.

(3) An enumeration of defects and collections of observable findings for every possible defect
concerned, without the availability of explicit knowledge concerning the (abnormal)
functional behaviour of the system.

(4) An enumeration of findings for the normal situation.

6.2. Conceptual basis of diagnosis 219

These types of knowledge may coexist in real-life diagnostic systems, but it is customary to
emphasise their distinction in conceptual and formal theories of diagnosis. Similar classifi-
cations of types of knowledge appear in the literature on diagnosis, although often no clear
distinction is made between the conceptual, formal and implementation aspects of diagnostic
systems. For example, some researchers distinguish diagnostic rule-based systems, by which
they mean diagnostic systems based on knowledge of the third type mentioned above, from
diagnostic systems incorporating knowledge of structure and behaviour, i.e. knowledge of the
first and second type mentioned above. However, rule-based systems with a sufficiently ex-
pressive production-rule formalism can be used to implement any diagnostic system, including
those based on knowledge of structure and behaviour.

An observed finding that has been gathered in diagnosing a problem is often said to be
either a ‘normal finding’, i.e. a finding that matches the normal situation, or an ‘abnormal
finding’, i.e. a finding that does not match the normal situation. Based on the four types of
knowledge mentioned above, and the two sorts of findings, three different conceptual models
of diagnosis are usually distinguished; they will be called:

• Deviation-from-Normal-Structure-and-Behaviour diagnosis, abbreviated to DNSB diag-
nosis,

• Matching-Abnormal-Behaviour diagnosis, abbreviated to MAB diagnosis, and

• Abnormality-Classification diagnosis, abbreviated to AC diagnosis.

Below, we shall discuss the relationship between these three conceptual models of diagnosis
and the four types of knowledge mentioned above. A formal theory of diagnosis has been
proposed for each of these conceptual models of diagnosis. In the remainder of this section,
each of the three conceptual models of diagnosis will be discussed, and the corresponding
formal theory of diagnosis is mentioned. The formal theories of diagnosis are discussed in
depth in Section 6.3.

DNSB diagnosis. For diagnosis based on knowledge concerning normal structure and be-
haviour, little or no explicit knowledge is available about the relationships between defects of
the system, on the one hand, and findings to be observed when certain defects are present,
on the other hand. Hence, DNSB diagnosis typically employs knowledge of the first and
fourth types mentioned above. From a practical point of view, the primary motivation for
investigating this approach to diagnosis is that in many domains little knowledge concern-
ing abnormality is available, which is certainly true for new human-developed artifacts. For
example, for a new device that has just been released from the factory, experience with re-
spect to the faults that may occur when the device is in operation is lacking. Thus, the
only conceivable way in which initially such faults can be handled is by looking at the normal
structure and functional behaviour of the device. Yet, even if knowledge concerning abnormal
behaviour is available, exhaustive description may be sometimes too cumbersome compared
with a model of normal behaviour.

For the purpose of diagnosis, the actual behaviour of a physical device, called observed
behaviour, is compared with the results of a model of normal structure and behaviour of
the device, which may be taken as predicted behaviour. Both types of behaviour can be
characterised by findings. If there is a discrepancy between the observed and the predicted
behaviour, diagnostic problem solving amounts to isolating the components in the device
that are not properly functioning, using a model of the normal structure and behaviour of

220 Chapter 6. Model-based Reasoning

real

world

observed

findings

observation

model of

normal

behaviour

predicted

findings

prediction

discrepancy

Figure 6.2: Deviation-from-normal-structure-and-behaviour (DNSB) diagnosis.

real

world

observed

findings

observation

model of

abnormal

behaviour

predicted

findings

prediction

match

Figure 6.3: Matching-abnormal-behaviour (MAB) diagnosis.

the device. In doing so, it is assumed that the model of normal structure and behaviour
is sufficiently accurate and correct. Figure 6.2 depicts DNSB diagnosis in a schematic way.
DNSB diagnosis is frequently erroneously called model-based diagnosis in the literature, as if
it were the only instance of model-based diagnosis. It is also called consistency-based dagnosis,
but in this book this term is reserved for the corresponding formal theory of diagnosis. DNSB
diagnosis has been developed in the context of troubleshooting in electronic circuits. A
well-known program that supports DNSB diagnosis, and includes various strategies to do so
efficiently, is the General Diagnostic Engine (GDE) as proposed by Johan de Kleer.

Above, we have reviewed the conceptual basis of diagnosis based on a model of normal
structure and behaviour, which we have called DNSB diagnosis. The formal counterpart
of DNSB diagnosis, called consistency-based diagnosis, originates from work by Ray Reiter;
consistency-based diagnosis will be discussed in detail below. As far as known to the author,
DNSB diagnosis-like approaches have been used in medical applications on a limited scale;
there is more work in which DNSB diagnosis has been applied to solve technical problems.

MAB diagnosis. For diagnosis based on knowledge of abnormal behaviour, diagnostic prob-
lem solving amounts to simulating the abnormal behaviour using an explicit model of that
behaviour. Hence, in MAB diagnosis the use of knowledge of abnormal behaviour (the second
type mentioned above) is emphasised. By assuming the presence of certain defects, some
observable abnormal findings can be predicted. It can be investigated which of these assumed
defects account for the observed findings by matching the predicted abnormal findings with
those observed. In Figure 6.3, MAB diagnosis is depicted schematically. In most applications
of MAB diagnosis, the domain knowledge that is used for diagnosis consists of causal rela-
tionships. Two, strongly related, formal counterparts of MAB diagnosis have been proposed
in the literature. The first formal theory, referred to as the set-covering theory of diagnosis,
is based on set theory: causal knowledge is expressed as mathematical relations, used for
diagnosis. This theory originates from work by James Reggia and others. The second theory
is based on logic.

6.2. Conceptual basis of diagnosis 221

real

world

observed

findings

observation

empirical

associations
evidence

association

classify

Figure 6.4: Abnormality-classification (AC) diagnosis.

Based on the type of reasoning employed to formalise MAB diagnosis, i.e. reasoning from
effects to causes instead of from causes to effects, this theory of diagnosis is also referred to
as abductive diagnosis. Theorist, developed by David Poole, and CHECK, developed by Luca
Console, are two systems supporting MAB diagnosis.

AC diagnosis. Where DNSB and MAB diagnosis employ a model of normal or abnormal
structure and behaviour for the purpose of diagnosis, the third conceptual model of diagnosis
uses neither. The knowledge employed in this conceptual model of diagnosis consists of the
enumeration of more or less typical evidence that can be observed, i.e. observable findings,
when a particular defect or defect category is present (the third type of knowledge mentioned
above). For example, sneezing is a finding that may be typically observed in a disorder like
common cold. This form of knowledge has been referred to as empirical associations above
(the phrase ‘compiled knowledge’ is also employed). Diagnostic problem solving amounts
to establishing which of the elements in a finite set of defects have associated findings that
account for as many of the findings observed as possible, as is shown in Figure 6.4. The
enumeration of findings for the normal situation (knowledge of the fourth type mentioned
above) is sometimes also used in AC diagnosis, together with knowledge of the third type;
then, observed findings are classified in terms of present and absent defects. The main goal of
AC diagnosis, however, remains the classification of observed findings in terms of abnormality.
AC diagnosis is often referred to in the literature as heuristic classification, although this term
is broader, since it also includes a reasoning strategy. The MYCIN system is the classical
system in which this conceptual approach to diagnosis has been adopted. AC diagnosis can
be characterised in terms of logical deduction in a straightforward way. We shall refer to this
formalisation of AC diagnosis as hypothetico-deductive diagnosis.

A comparison of the three conceptual models of diagnosis is given in Table 6.1. Obviously,
the various models of diagnosis discussed above can also be combined. To solve real-life

DNSB MAB AC

Type of knowledge normal structure and causal model of empirical
behaviour abnormality associations

Formalisation consistency-based abductive and hypothetico-
diagnosis set-covering deductive

diagnosis diagnosis
Examples of systems GDE Theorist/CHECK EMYCIN

Table 6.1: Comparison of typical conceptual models of diagnosis.

222 Chapter 6. Model-based Reasoning

diagnostic problems in a domain, it is likely that a mixture of conceptual models of diagnosis
as distinguished above will be required. Since the resulting systems use various types of
knowledge, e.g. both knowledge of structure and behaviour, and empirical associations, the
result is known as diagnosis with multiple models as suggested by Peter Struss.

Although in the literature it is emphasised that the conceptual models of diagnosis dis-
cussed embody different forms of diagnosis, they have much in common. For example, the
type of knowledge used in DNSB diagnosis can be viewed as an implicit, or intensional, version
of the type of knowledge used in AC diagnosis (if restricted to normality classification), which
is an explicit or extensional type of knowledge; the associations between normal observable
findings and the absence of defects are hidden in the specified normal behaviour in DNSB
diagnosis. DNSB and MAB diagnostic problem solving are based on some kind of simulation
of behaviour; such simulation of behaviour is absent in AC diagnosis.

6.3 Formal theories of diagnosis

There have been several attempts to formalise the various conceptual models of diagnosis
discussed above; most, but not all, of these formalisations are based on logic. The most
important formal theories of diagnosis will be reviewed below.

6.3.1 Consistency-based diagnosis

The formal theory of diagnosis originally proposed by Ray Reiter was motivated by the desire
to provide a formal underpinning of diagnostic problem solving using knowledge of the normal
structure and behaviour of technical devices, i.e. DNSB diagnosis. The theory of diagnosis
may be viewed as the logical foundation of earlier work in DNSB diagnosis by Johan de Kleer
et al, Brown and colleagues, Randy Davis, and Michael Genesereth. The logical formalisation
uses results from earlier work by Ray Reiter, and John McCarthy on nonmonotonic reasoning.
We shall sometimes refer to this theory of diagnosis as Reiter’s formal theory of diagnosis.

Reiter’s theory of diagnosis was later extended by De Kleer et al; in this section, both
formalisations will be introduced in a single, logical framework. Where appropriate, the
differences between Reiter’s original proposal and the extensions proposed in De Kleer will be
indicated. This formal theory of diagnosis is often referred to as the consistency-based theory
of diagnosis, or consistency-based diagnosis for short.

The logical specification of knowledge concerning structure and behaviour in Reiter’s
theory is a triple S = (SD,COMPS, O), called a system, where

• SD denotes a finite set of formulae in first-order predicate logic, specifying normal
structure and behaviour, called the system description;

• COMPS denotes a finite set of constants (nullary function symbols) in first-order logic,
denoting the components of the system;

• O denotes a finite set of formulae in first-order predicate logic, denoting observations,
i.e. observed findings.

It is, in principle, possible to specify normal as well as abnormal (faulty) behaviour within
a system description SD, but originally SD was designed to comprise a logical specification
of normal behaviour of the modelled system only, thus yielding the intended formalisation of

6.3. Formal theories of diagnosis 223

DNSB diagnosis. The essential part of a formal model of normal structure and behaviour of
a system consists of logical axioms of the form

¬Abnormal(c)→ onorm (6.1)

where c ∈ COMPS, and onorm denotes a finding that may be observed if the component c is
normal, i.e. is nondefective. The observable finding onorm need not be unique. Axioms of the
above form are provided for each component c ∈ COMPS. These axioms will be referred to
as normality axioms. It is assumed that the finding onorm may be observed in reality when
component c of the device, that has been modelled in logic, is operating normally. Such an
observed finding is called a normality observation. The subscript norm is used to emphasise
that a particular finding represents a normal result; in Section 6.3.2 and further, the subscript
ab is used to indicate an abnormal finding. These subscripts are only used for clarity and
have no additional meaning; they will often be omitted. The predicate symbol ‘Abnormal ’
is sometimes referred to as the fault mode (also behavioural mode) of the component. The
literal ‘Abnormal (c)’ denotes the component c to be defective if satisfied. Other predicate
names, such as ‘OK’, ‘Correct ’, are also employed in the literature, with similar intended
meaning and use as the negation of an ‘Abnormal ’ literal.

Diagnostic problem solving is formalised as a method for finding the source of inconsistency
in the logical description of the (normal) functioning of a system when supplied with observed
findings, where some of the observed findings are the result of a system defect in reality.
Hence, inconsistency formalises the notion of discrepancy in DNSB diagnosis as indicated
in Figure 6.2. If it is assumed that the atom Abnormal(c) is false, i.e. the component c is
functioning normally, inconsistency will arise given the observed finding ¬onorm with logical
implication (6.1). This result is interpreted in Reiter’s theory as an indication that the
defect may be localised in component c. This gives rise to the hypothesis that component
c is defective, i.e. Abnormal(c) is true, and the inconsistency is resolved if the assumption
that Abnormal (c) is false was its only source. This effect of relaxing logical constraints is
sometimes referred to as constraint suspension.

Adopting the definition from De Kleer a diagnosis in the theory of consistency-based
diagnosis can be defined as follows.

Definition 6.1 (consistency-based diagnosis) Let S = (SD,COMPS, O) be a system. Let

HP = {Abnormal (c) | c ∈ COMPS}

be the set of all positive ‘Abnormal’ literals, and

HN = {¬Abnormal (c) | c ∈ COMPS}

be the set of all negative ‘Abnormal’ literals. Furthermore, let H ⊆ HP ∪HN be a set, called
a hypothesis, such that

H = {Abnormal (c) | c ∈ D} ∪ {¬Abnormal(c) | COMPS\D}

for some D ⊆ COMPS. Then, the hypothesis H is a (consistency-based) diagnosis of S if
the following condition, called the consistency condition, holds:

SD ∪H ∪O 2 ⊥ (6.2)

i.e. SD ∪H ∪O is consistent.

224 Chapter 6. Model-based Reasoning

fa

ex 1

ad1

ad2

ex 2

or 1

i1

i2

i3

o1

o2

Figure 6.5: Full adder.

Here, 2 stands for the negation of the logical entailment relation, and ⊥ represents ‘falsum’.
The consistency condition (6.2) captures DNSB diagnosis in terms of consistency-based diag-
nosis under the assumption that the axioms in SD provide a completely accurate and correct
representation of a physical system. A diagnosis is just a hypothesis that is accepted. In the
formalisation by De Kleer et al, each literal Abnormal(c) ∈ H is interpreted as being defec-
tive; a literal ¬Abnormal(c) ∈ H indicates component c to be nondefective. In the original
theory by Reiter the set D above is taken as a diagnosis, with the extra requirement that
D is minimal with respect to set inclusion. Then, each component c in a diagnosis D for
which Abnormal(c) is true is interpreted as being defective. According to expression (6.2),
taking D = COMPS leads to the trivial diagnosis that all components are defective (or the
defective components are among the set of all components). Reiter, therefore, incorporated
in the original theory the requirement that the set D must be a minimal set with respect
to set inclusion, fulfilling the consistency condition. However, later it was recognised that
minimality according to set inclusion is merely a measure of plausibility, which may not be
appropriate when knowledge of abnormal behaviour is also included in the system description
SD, and the minimality criterion was left out of the basic definition of De Kleer and others.
Moreover, other measures of plausibility in the context of abduction may also apply. The
application of the formal theory by Reiter is illustrated by a classical example.

EXAMPLE 6.1

Consider the logical circuit depicted in Figure 6.5, which represents a full adder, i.e. a
circuit that can be used for the addition of two bits with carry-in and carry-out bits.
The components X1 and X2 represent exclusive-or gates, A1 and A2 represent and

gates, and R1 represents an or gate.

The system description consists of the following axioms:

∀x(ANDG(x) ∧ ¬Abnormal(x) → out(x) = and(in1 (x), in2 (x)))

∀x(XORG(x) ∧ ¬Abnormal(x) → out(x) = xor (in1 (x), in2 (x)))

∀x(ORG(x) ∧ ¬Abnormal(x) → out(x) = or(in1 (x), in2 (x)))

6.3. Formal theories of diagnosis 225

which describe the (normal) behaviour of each individual component (gate), and

out(X1) = in2 (A2)

out(X1) = in1 (X2)

out(A2) = in1 (R1)

in1 (A2) = in2 (X2)

in1 (X1) = in1 (A1)

in2 (X1) = in2 (A1)

out(A1) = in2 (R1)

which gives information about the connections between the components, i.e. information
about the normal structure, including some electrical relationships. Finally, the various
gates are defined:

ANDG(A1)
ANDG(A2)
XORG(X1)
XORG(X2)
ORG(R1)

Appropriate axioms for a Boolean algebra are also assumed to be available.

Now, let us assume that

O = {in1 (X1) = 1, in2 (X1) = 0, in1 (A2) = 1, out(X2) = 0, out(R1) = 0}

Note that out(R1) = 1 is predicted using the model of normal structure and behaviour
in Figure 6.5, which is in contrast with the observed output out(R1) = 0. Assuming
that H = {¬Abnormal (c) | c ∈ COMPS}, it follows that

SD ∪H ∪O

is inconsistent. This confirms that some of the output signals observed differ from
those expected under the assumption that the circuit is functioning normally. Using
Formula (6.2), a possible diagnosis is, for instance,

H ′ = {Abnormal (X1),¬Abnormal(X2),¬Abnormal(A1),
¬Abnormal(A2),¬Abnormal (R1)}

since

SD ∪H ′ ∪O

is consistent. In terms of Reiter’s original definition, the corresponding diagnosis would
be D′ = {X1}. Note that, given the diagnosis H ′, no output is predicted for the circuit;
the assumption Abnormal (X1) completely blocks transforming input into output by the
modelled circuit, because

SD ∪H ′ ∪O\{out(X2) = 0} 2 out(X2) = 0

226 Chapter 6. Model-based Reasoning

In a sense, this is too much, because there was no discrepancy between the predicted and
observed output of gate X2. Nevertheless, the hypothesis H ′ is a diagnosis according
to Definition 6.1.

It is interesting to look at consistency-based diagnosis in a more intuitive way. What the
theory actually expresses is that if components that may be defective are removed from a
system or device, and the resulting newly predicted behaviour, or no behaviour at all, does
not contradict the observed behaviour, then a diagnosis has been established. This is a rather
crude approach to diagnosis. Imagine that we have a formal model of an electrical device,
including its electric plug, then simulating the removal of the plug from its socket, thus
recovering consistency, will provide us with a diagnosis for a defective system. According to
the theory, the plug will be identified as the culprit, which, of course, is absurd if the device
was in operation prior to the removal of the plug, although incorrectly. Kurt Konolige refers
to diagnoses produced by consistency-based diagnosis as excuses, to reflect that it may not
be possible to explain such diagnoses in terms of cause-effect relationships.

In addition to a definition of consistency-based diagnosis De Kleer introduces the concepts
of partial diagnosis and kernel diagnosis. A partial diagnosis is an abbreviated representation
for a set of diagnoses that have certain ‘Abnormal ’ and ‘¬Abnormal ’ literals in common. For
example, in addition to H ′ in Example 1,

H ′′ = {Abnormal (X1),Abnormal (X2),¬Abnormal (A1),
¬Abnormal(A2),¬Abnormal (R1)}

is also a diagnosis. The two diagnoses H ′ and H ′′ can be abbreviated as the partial diagnosis

P = {Abnormal (X1),¬Abnormal (A1),¬Abnormal (A2),¬Abnormal (R1)}

which explicitly indicates that the actual status of component X2 is irrelevant, adopting for
the other components the status mentioned in the partial diagnosis P . Note that a partial
diagnosis is not a real diagnosis according to Definition 6.1, because not all components are
assigned unique ‘Abnormal ’ modes. A kernel diagnosis is simply a partial diagnosis that is
minimal with respect to set inclusion.

Above, it was assumed that a system description SD is expressed using standard logic,
using standard, monotonic logical entailment to define the notion of consistency-based di-
agnosis, but this is not essential. We may as well use some nonmonotonic logic. However,
even when restricted to standard, monotonic logic, the notion of consistency-based diagnosis
is nonmonotonic: observing additional findings may result in cancelling prior diagnoses.

EXAMPLE 6.2

Reconsider the system description SD from Example 1. Assume that

O = {in1 (X1) = 1, in2 (X1) = 0, in1 (A2) = 1, out(X2) = 0}

Then, the diagnosis is equal to

H ′′ = {¬Abnormal(X1),¬Abnormal (X2),¬Abnormal (A1),
¬Abnormal(A2),¬Abnormal (R1)}

6.3. Formal theories of diagnosis 227

or, in Reiter’s original notation: D′′ = ∅ (there are no faults). Observing out(R1) = 0
yields, among others, the diagnosis mentioned in Example 1 (D′ = {X1} in Reiter’s
notation), but H ′′ (D′′ = ∅) is not longer a diagnosis.

Reiter has also given an analysis of consistency-based diagnosis in terms of default logic. A
system description SD and a set of observed findings O are supplemented with default rules
of the form

: ¬Abnormal(c)

¬Abnormal (c)

for each component c, yielding a default theory. A default rule as above expresses that
¬Abnormal(c) may be assumed for component c, if assuming ¬Abnormal(c) does not give
rise to inconsistency. Hence, in computing an extension of the resulting default theory, these
default rules will only be applied under the condition that they do not violate consistency,
which is precisely the effect of the consistency condition (6.2). This mapping of a system S to
default logic offers an object-level characterisation of the meta-level description of consistency-
based diagnosis given in Definition 6.1.

In Section 6.4, the application of Reiter’s theory to the logical formalisation of MAB
diagnosis will be discussed. The techniques proposed by Reiter are not the only possible ways
to formalise DNSB and MAB diagnosis; David Poole has proposed other logical techniques for
the same purpose in terms of his Theorist framework of hypothetical reasoning. This work,
however, bears great resemblance to the work by Reiter with respect to DNSB diagnosis, and
to the work by Console and Torasso with respect to MAB diagnosis, which will be discussed
in the following section. The Theorist framework is discussed in Section 6.4.

6.3.2 Abductive diagnosis

The formalisation of MAB diagnosis has been extensively studied by Luca Console and Pietro
Torasso. In their theory, the abnormal behaviour of a system is specified in terms of abnormal
states and resulting abnormal findings. Normal findings may also be included, but these
are less useful for diagnosis, since an abnormal state is often causally related to a large
number of normal findings. Diagnostic problem solving is formally described as the problem
of accounting for a given set of observed findings, referred to in the theory as manifestations, by
the simulation of abnormal behaviour. The simulation process is accomplished by deduction
with logical axioms, describing abnormal behaviour, and assumed (abnormal) states.

The logical axioms are Horn clauses of the following form and meaning

State1 ∧ · · · ∧ Staten → f (6.3)

State1 ∧ · · · ∧ Staten → State (6.4)

State1 ∧ · · · ∧ Staten → d (6.5)

where State and State i, i = 1, . . . , n, are positive literals representing part of the internal
state of a modelled system, d is a defect (or disorder), and f is an observable finding. In a
number of articles, extension to general Horn clauses (Horn clauses with negation as failure)
is proposed. For simplicity’s sake, we shall adopt the Horn-clause restriction in this section.
It is assumed that the set of Horn clauses is hierarchical, i.e. no cyclic dependencies among
atoms in clauses are allowed (which contrasts with the situation in logic programming, where

228 Chapter 6. Model-based Reasoning

cyclic dependencies are almost the rule). In the original abductive theory of diagnosis by
Console and Torasso a finding appearing in the conclusion of a logical implication represents
an abnormal finding. In later papers, owever, normal findings are also allowed. Recall that,
when necessary for clarity, abnormal findings are denoted by fab ; similarly, normal findings
are denoted by fnorm .

A state literal is employed for the simulation of the occurrence of (abnormal) behaviour
using the logical specification. It corresponds to a parameter with a value. For example, if
the parameter pressure(blood) can take values decreased, normal and increased, then

pressure(blood) = increased

corresponds to a state. The intuitive meaning of formulae of the form (6.3) is: ‘presence
of State1, . . . ,Staten causes the (abnormal) finding f ’, i.e. if State1, . . . ,Staten hold in the
system, (abnormal) finding f must be observed. Formulae of the form (6.4) express that a
collection of states is causally related to another state, i.e. if the states State1, . . . ,Staten

occur then State occurs as well. Axioms that conform to the two axiom schemata above are
sometimes referred to as abnormality axioms. Note that the notion of causality is expressed
in the theory using logical implication. Logical implication is employed to express a causal
relationship between states and observable findings, and between states and states. Axioms
of the form (6.5) can be viewed as classification axioms because they classify a collection of
states as a particular defect. The idea originates from the CASNET system. If sufficient state
literals are assumed or derived to satisfy the antecedent of an axiom of the form, a defect d
can be derived. In the theory by Console and Torasso, a defect is actually defined in terms
of a collection of states. This can be expressed by using a bi-implication (↔) instead of an
implication, as in axiom schema. However, when adopting this formalisation for diagnosis,
the implications from right to left (←) are not involved. Classification axioms are not an
essential ingredient of the theory of diagnosis by Console and Torasso; they are merely used
to attach diagnostic labels to collections of states. Note that in the classification axioms,
logical implication is used to express a classification instead of a causal relationship, as in the
abnormality axioms. Due to the manifold uses of logical implication, the theory provides no
clear logical meaning for the various relationships, including causality, underlying the theory
of diagnosis. To express the theory in terms of defects and findings only, thus enabling us
to analyse the essentials of the theory, states are identified with defects. Thus, axioms of
the form (6.4) and (6.5) are collapsed into one axiom schema; the classification axioms are
given no further consideration. In the following, it shall be assumed that axioms are of the
following two forms:

d1 ∧ · · · ∧ dn → f (6.6)

d1 ∧ · · · ∧ dn → d (6.7)

where d, di, i = 1, . . . , n, represent defects. We shall try to convey the essentials of the theory,
using the uniform terminology and notation adopted in this book, thus deviating in some
respects from the original papers.

Console and Torasso also provide a mechanism in their logical formalisation to weaken
the causality relation. To this end, literals α are introduced into the premises of the axioms
of the form (6.6) and (6.7), which can be used to block the deduction of an observable finding
f or defect d if the defects di, i = 1, . . . , n, hold true, by assuming the literal α to be false.

6.3. Formal theories of diagnosis 229

The weakened axioms have the following form:

d1 ∧ · · · ∧ dn ∧ αf → f (6.8)

d1 ∧ · · · ∧ dn ∧ αd → d (6.9)

The literals α are called incompleteness-assumption literals, abbreviated to assumption liter-
als. Axioms of the form (6.6) – (6.9) are now taken as the (abnormality) axioms.

In the following, let Σ = (∆,Φ,R) stand for a causal specification in the theory of diagnosis
by Console and Torasso, where:

• ∆ denotes a set of possible defect and assumption literals;

• Φ denotes a set of possible (positive and negative) observable finding literals;

• R (‘Causal Model’) stands for a set of logical (abnormality) axioms of the form (6.6) –
(6.9).

Subsets of the set ∆ will be called hypotheses. A causal specification can then be employed
for the prediction of observable findings in the sense of Figure 6.3.

Definition 6.2 (prediction) Let Σ = (∆,Φ,R) be a causal specification. Then, a hypothesis
H ⊆ ∆ is called a prediction for a set of observable findings E ⊆ Φ if

(1) R ∪H � E, and

(2) R ∪H is consistent.

Hence, the notion of prediction formalises the arrow in the lower half of Figure 6.3; the
resulting set of findings E corresponds to the predicted (observable) findings in the same
figure.

An abductive diagnostic problem P is now defined as a pair P = (Σ, E), where E ⊆ Φ
is called a set of observed findings. A set of observed findings corresponds to the box in the
upper half of Figure 6.3.

Formally, a solution to an abductive diagnostic problem P can be defined as follows.

Definition 6.3 (solution) Let P = (Σ, E) be an abductive diagnostic problem, where Σ =
(∆,Φ,R) is a causal specification with R a set of abnormality axioms of the form (6.6) –
(6.9), and E ⊆ Φ a set of observed findings. A hypothesis H ⊆ ∆ is called a solution to P if:

(1) ∀f ∈ E : R ∪H � f (covering condition);

(2) ∀f ∈ Ec : R∪H 2 ¬f (consistency condition)

where Ec is defined by:

Ec = {¬f ∈ Φ | f ∈ Φ, f 6∈ E, f is a positive literal}

In the work by Console and Torasso, the set R∪H is called a ‘world’ if H is a prediction; the
set R∪H is called a ‘final world’ if H is a solution to an abductive diagnostic problem. Note
that the sets E and Ec are disjoint, and that if f ∈ E then ¬f 6∈ Ec. The set Ec stands for
findings assumed to be false, because they have not been observed (and are therefore assumed
to be absent). But any finding may also be unknown. Thus, rather than providing a single

230 Chapter 6. Model-based Reasoning

definition, Console and Torasso provide in their articles several alternatives for this set Ec.
The definition provided in Definition 6.3 above is just one of the alternatives.

Condition (1) is called the covering condition, because it requires that each observed
finding is accounted for by a solution H. Note that any solution to a diagnostic problem
P = (Σ, E) is a prediction for E according to Definition 6.2. Condition (2) is called the
consistency condition, because it can be restated as follows

R ∪H ∪ Ec
2 ⊥

A set of defects in a prediction H is also called a set of perturbations; the term abducibles is
also employed for literals that may be assumed as part of diagnostic problem solving.

In the original formulation of the theory only those defects (states) are admitted to H
which do not appear in the conclusions of implications; such defects are called initial defects
(initial states in the original theory). The covering condition defined above ensures that suf-
ficient defects and assumption literals are assumed to account for all given observed findings.
The consistency condition helps to ensure that not too many defect and assumption literals
are assumed. Although it is only necessary to include an assumption literal α in a solution
for implications d ∧ αf → f and d ∧ αd′ → d′ if the defect d is deducible from the assumed
(initial) defects and assumption literals, Definition 6.3 does not always prevent their inclusion
in a solution.

An entire solution H may be taken as a diagnosis, but in one of his papers, Luca Console
considers a diagnosis to consist of the defect literals in a solution H only.

Definition 6.4 (abductive diagnosis) Let P = (Σ, E) be an abductive diagnostic problem,
where Σ = (∆,Φ,R) is a causal specification. Let H be a solution to P. Then, the set of all
defects D ⊆ H is called an (abductive) diagnosis of P.

Recall that a diagnosis is obtained by applying the classification axioms; a distinction is
therefore made between a solution H for which the covering and consistency conditions are
satisfied, i.e. the set of defect and assumption literals contained in a ‘final world’ – this world
is called a causal explanation – and the set of defects resulting from an explanation, which is
called a diagnosis (originally, a solution). However, from a formal point of view, the distinc-
tion is not essential.

EXAMPLE 6.3

Consider the causal specification Σ = (∆,Φ,R), with

∆ = {fever , influenza , sport , α1, α2}

and

Φ = {chills , thirst ,myalgia ,¬chills ,¬thirst ,¬myalgia}

‘Myalgia’ means painful muscles. The following set of logical formulae R, represent-
ing medical knowledge concerning influenza and sport, both ‘disorders’ with frequent
occurrence, is given:

6.3. Formal theories of diagnosis 231

feverinfluenza chills

thirst

myalgia
sport

α1

α2

Figure 6.6: A knowledge base with causal relations.

fever ∧ α1 → chills
influenza→ fever
fever→ thirst
influenza ∧ α2 → myalgia
sport → myalgia

For example, influenza ∧ α2 → myalgia means that influenza may cause myalgia;
influenza → fever means that influenza always causes fever. For illustrative purposes,
a causal knowledge base as given above is often depicted as a labelled, directed graph
G, which is called a causal net, as shown in Figure 6.6. Suppose that the abductive
diagnostic problem P = (Σ, E) must be solved, where the set of observed findings
E = {thirst ,myalgia}. Then, Ec = {¬chills}. There are several solutions to this
abductive diagnostic problem (for which the consistency and covering conditions are
fulfilled):

H1 = {influenza, α2}
H2 = {influenza, sport}
H3 = {fever, sport}
H4 = {fever, influenza, α2}
H5 = {influenza, α2, sport}
H6 = {fever, influenza, sport}
H7 = {fever, influenza, α2, sport}

The following diagnoses correspond to these solutions:

D1 = {influenza}
D2 = {influenza, sport}
D3 = {fever, sport}
D4 = {fever, influenza}
D5 = {fever, influenza , sport}

For example, the diagnosis D4 = {fever , influenza} means that the patient has influenza
with associated fever. Restricting to initial defects would yield the solutions H1, H2

and H5 and the diagnoses D1 and D2. Finally, note that, for example, the hypothesis
H = {α1, α2, fever , influenza} is incompatible with the consistency condition.

232 Chapter 6. Model-based Reasoning

Because in this theory of diagnosis, the observable findings are logically entailed by the
assumption of the presence of certain states, and the reasoning goes in a sense in a direction
reverse to that of the logical implication, i.e. from the consequent to the premise, the theory
is often referred to as the abductive theory of diagnosis, or abductive diagnosis for short.

Several researchers have noted a close correspondence between abduction and the pred-
icate completion of a logical theory, as originally proposed by K. Clark in connection with
negation as finite failure in logic programming. Consider the following example.

EXAMPLE 6.4

Suppose that sport and influenza are two ‘disorders’; this may be expressed in predicate
logic as follows:

Disorder (sport)
Disorder (influenza)

The following logical implication is equivalent to the conjunction of the two literals
above:

∀x((x = sport ∨ x = influenza)→ Disorder(x))

assuming the presence of the logical axioms for equality, and also assuming that con-
stants with different names are not equal. Suppose that sport and influenza are the only
possible disorders. This can be expressed by adding the following logical implication:

∀x(Disorder(x)→ (x = sport ∨ x = influenza)) (6.10)

to the implication above. For example, adding Disorder(asthma) to logical implication
(6.10) yields an inconsistency, because asthma is neither equal to sport nor equal to
influenza: the conclusion

asthma = sport ∨ asthma = influenza

cannot be satisfied. Now, suppose that the literal Disorder(asthma) is removed, but
that ‘asthma’ remains a valid constant symbol. Then, ¬Disorder(asthma) is a logical
consequence of formula (6.10); this formula ‘completes’ the logical theory by stating that
disorders not explicitly mentioned are assumed to be false. Formula (6.10) is called a
completion formula.

The characterisation of abduction as deduction in a completed logical theory is natural,
because computation of the predicate completion of a logical theory amounts to adding the
only-if parts of the formulae to the theory, i.e. it ‘reverses the arrow’ which is exactly what
happens when abduction is applied to derive conclusions. After all, abductive reasoning
is reasoning in a direction reverse to logical implication. In an intuitive sense, predicate
completion expresses that the only possible causes (defects) for observed findings are those
appearing in the abnormality axioms; assumption literals are taken as implicit causes. Where
the characterisation of abduction by means of the covering and consistency conditions may

6.3. Formal theories of diagnosis 233

be viewed as a meta-level description of abductive diagnosis, the predicate completion can be
taken as the object-level characterisation, i.e. in terms of the original axioms in R. However,
in contrast to the predicate completion in logic programming, predicate completion should
only pertain to literals appearing as a consequence of the logical axioms in R, i.e. finding
literals and defect literals that can be derived from other defects and assumption literals.
This set of defects and observable findings is called the set of non-abducible literals, denoted
by A; the set ∆\A is then called the set of abducible literals.

Let us denote the axiom set R by

R = {ϕ1,1 → a1, . . . , ϕ1,n1
→ a1,

...
ϕm,1 → am, . . . , ϕm,nm → am}

where A = {ai | 1 ≤ i ≤ m} is the set of non-abducible (finding or defect) literals and
each ϕi,j denotes a conjunction of defect literals, possibly including an assumption literal.
The predicate completion of R with respect to the non-abducible literals A, denoted by
COMP[R;A] is defined as follows:

COMP[R;A] = R∪ {a1 → ϕ1,1∨ · · · ∨ ϕ1,n1
,

...
am → ϕm,1∨ · · · ∨ ϕm,nm}

The predicate completion of R makes explicit the fact that the only causes of non-abducible
literals (findings and possibly also defects) are the defects and assumption literals given as a
disjunct in the consequent. For example,

fab → d1 ∨ · · · ∨ dn

indicates that only the defects from the set {d1, . . . , dn} can be used to explain the observed
finding fab .

Predicate completion of abnormality axioms with respect to a set of non-abducible literals
can now be used to characterise diagnosis. Let ψ and ψ′ be two logical formulae. It is said that
ψ is more specific than ψ′ iff ψ � ψ′. Using the predicate completion of a set of abnormality
axioms R, we now have the following definition.

Definition 6.5 (solution formula) Let P = (Σ, E) be an abductive diagnostic problem and
let COMP[R;A] be the predicate completion of R with respect to A, the set of non-abducible
literals in P. A solution formula S for P is defined as the most specific formula consisting
only of abducible literals, such that

COMP[R;A] ∪ E ∪Ec � S

where Ec is defined as in Definition 6.3.

Hence, abductive diagnosis is transformed to hypothetico-deductive diagnosis (cf. Section 6.3.4).
A solution formula is obtained by applying the set of equivalences in COMP[R;A] to a set
of observed findings E, augmented with those findings not observed, Ec, yielding a logical
formula that includes all possible solutions according Definition 6.3, given the equivalences

234 Chapter 6. Model-based Reasoning

in COMP[R;A]. The following theorem reveals an important relationship between the meta-
level characterisation of abductive diagnosis, as presented in Definition 6.3, and the object-
level characterisation of diagnosis in Definition 6.5.2

THEOREM 8 Let P = (Σ, E) be an abductive diagnostic problem, where Σ = (∆,Φ,R) is
a causal specification. Let Ec be defined as in Definition 6.3, and let S be a solution formula
for P. Let H ⊆ ∆ be a set of abducible literals, and let I be an interpretation of P, such that
for each abducible literal a ∈ ∆: �I a iff a ∈ H. Then, H is a solution to P iff �I S.

Proof: (⇒): The set of defect and assumption literals H is a solution to P, hence, for
each f ∈ E: R ∪ H � f , and for each f ′ ∈ Ec: R ∪ H 2 ¬f ′. The solution formula S
is the result of rewriting observed findings in E and non-observed findings in Ec using the
equivalences in COMP[R;A] to a formula merely consisting of abducibles. Assume that S is
in conjunctive normal form. Conjuncts in S are equivalent to observed findings f ∈ E, that
are logically entailed by R∪H, or to non-observed findings ¬f ∈ Ec that are consistent with
R ∪ H. Hence, an interpretation I for which �I H, that falsifies each abducible in ∆\H,
satisfying every f ∈ E and each ¬f ∈ Ec that has been rewritten, must satisfy this collection
of conjuncts, i.e. S.
(⇐): If S is in conjunctive normal form, S must be the result of rewriting observed findings f ∈
E and non-observed findings in Ec to (negative or positive) abducibles, using the equivalences
in COMP[R;A]. Since an interpretation I that satisfies H and S must also satisfy each finding
f ∈ E and those ¬f ∈ Ec that have been rewritten to S, it follows that I can be chosen such
that �I E

c, i.e. H must be a solution to P. ♦

This theorem reveals an important property of the abductive theory of diagnosis. Sometimes,
a solution to an abductive diagnostic problem is capable of satisfying a solution formula in
the technical, logical sense.

EXAMPLE 6.5

Reconsider the set of logical axioms given in Example 3. The predicate completion of
R is equal to

COMP[R; {chills , thirst ,myalgia , fever}]

= R ∪ {chills→ fever ∧ α1,
fever→ influenza,
thirst → fever ,
myalgia → (influenza ∧ α2) ∨ sport}

= {chills ↔ fever ∧ α1,
fever ↔ influenza,
thirst ↔ fever,
myalgia ↔ (influenza ∧ α2) ∨ sport}

Note that

2Contrary to our treatment, a solution H of an abductive problem P is sometimes defined by SLD resolution

with the negation as finite failure rule, i.e. SLDNF resolution, such that R∪H ⊢SLDNF E∪E
c, i.e. the covering

and consistency conditions are merged.

6.3. Formal theories of diagnosis 235

COMP[R; {chills , thirst ,myalgia , fever}] ∪ E ∪ Ec �

(influenza ∧ α2) ∨ (influenza ∧ sport)

given that E = {thirst ,myalgia} and Ec = {¬chills}. Although

COMP[R; {chills , thirst ,myalgia , fever}] ∪ E ∪ Ec � ¬(fever ∧ α1)

the formula ¬(fever∧α1), which is a logical consequence of ¬chills and chills ↔ (fever∧
α1), is not part of the solution formula S ≡ (influenza∧α2)∨(influenza∧sport), because
the literal fever is non-abducible. It holds, in accordance with Theorem 8, that

�I Hi ⇒ �I (influenza ∧ α2) ∨ (influenza ∧ sport)

for i = 1, 2, 5, where Hi is a solution given in Example 3 consisting only of abducible
literals, for suitable interpretations I. Here, it even holds that Hi � S, because S does
not contain any negative defects or assumption literals entailed by non-observed findings
in Ec.

Although the theory by Console and Torasso is restricted to reasoning with causal domain
knowledge, other types of knowledge, referred to as contextual information by Console and
Torasso, is also dealt with in the theory. Contextual information is incorporated to render
the causal relation conditional on certain findings, e.g. in

d ∧ f → f ′

the finding literal f acts as a condition with regard to the causal relation between the defect d
and the finding f ′. For example, in a medical setting, many causal relations are age-specific;
hence, the observed (normal) finding ‘age ◦ v’, where ◦ denotes an ordering predicate and v
an integer, could be employed to express such conditional causality.

Above we have defined abductive diagnosis using propositional logic. The definition in
terms of predicate logic reveals some additional subtleties, yielding various alternative defini-
tion for the set of findings not observed and assumed to be absent, Ec. Findings f are denoted
in predicate logic using a predicate symbol p, indicating a particular group of findings or a
test. For example, in ‘Sign(fever)’, the predicate symbol ‘Sign’ denotes a group of patient
findings; in ‘Serum copper (patient , high)’, the predicate symbol ‘Serum copper ’ indicates the
result of a diagnostic test. The consequences of using predicate logic to define abductive
diagnosis will be briefly introduced by means of the following example.

EXAMPLE 6.6

Consider the following (partial) set of abnormality axioms R, expressed in first-order
predicate logic as follows:

Disorder(influenza) → Symptom(cough)

Disorder(influenza) → Sign(fever)

Disorder(pulmonary embolism) → Blood chemistry(O2-level , low)

236 Chapter 6. Model-based Reasoning

where the (ground) literals Symptom(cough), Sign(fever) and Blood chemistry(O2-level , low)
stand for observable findings, and the ‘Disorder ’ literals represent defects. The finding
literals f , representing abnormal observable findings, are taken from the following set
of positive finding literals:

ΦP = {Symptom(cough),Symptom(headache),
Sign(fever),Sign(hypertension),
Blood chemistry(O2-level , low),Blood chemistry(Sodium, low)}

and the set of negative finding literals is equal to

ΦN = {¬Symptom(cough),¬Symptom(headache),
¬Sign(fever),¬Sign(hypertension),
¬Blood chemistry(O2-level , low),¬Blood chemistry(Sodium, low)}

with Φ = ΦP ∪ ΦN . Now, let E = {Sign(fever),Blood chemistry(O2-level , low)} be a
set of observed findings. Usually, it is assumed that E ⊆ ΦP , because only positive
findings can be accounted for by Horn clauses in R. The set Ec ⊆ Φ, representing the
findings not observed, is constructed in accordance with Definition 6.3. In the present
case, the set Ec is equal to

Ec = {¬Symptom(cough),¬Symptom(headache),
¬Sign(hypertension),
¬Blood chemistry(Sodium, low)}

Thus, test results denoted by the predicate symbol ‘Symptom’ are assumed to be absent.
Note that when applying this version of the consistency definition, obtained by the
definition of Ec, the defect Disorder(influenza) cannot be part of any diagnosis, because
this would clash with the consistency condition. Although, on first thought, the set

{Disorder(pulmonary embolism)}

may seem to represent a diagnosis, it turns out that there exists no diagnosis at al. The
reason is that

R∪ {Disorder(pulmonary embolism)} 2 Sign(fever)

i.e., the covering condition fails to hold.

In a second, alternative version of the theory, the consistency condition is reformulated,
by adopting another definition for the set Ec, as follows. The set Ec ⊆ ΦN is defined
by:

Ec = {¬π(t) ∈ ΦN | π(s) ∈ E, t 6= s}

where π stands for a predicate symbol, and t and s are constants. The consistency
condition remains the same, but its effects on the computation of a diagnosis differs,
because of the altered definition of Ec. For the example diagnostic problem, the set Ec

is equal to

Ec = {¬Sign(hypertension),¬Blood chemistry(Sodium, low)}

6.3. Formal theories of diagnosis 237

Note that the literals ¬Symptom(cough) and ¬Symptom(headache) are missing from this
set, because none of the literals in the set of observed findings E has ‘Symptom’ as predi-
cate symbol. Thus, the test results with respect to test ‘Symptom’ are assumed to be un-
known. A diagnosis in this case isH = {Disorder (influenza),Disorder (pulmonary embolism)},
because

R∪H � {Sign(fever),Blood chemistry(O2-level , low)}

(in fact, the literal Symptom(cough) is also entailed), and Ec is consistent with R and
H. Note that H = {Disorder(influenza),Disorder (pulmonary embolism)} yields an
inconsistency if taken as a hypothesis using the first version of the consistency condition.

The intuitive basis of the two versions of the consistency condition in abductive diagnosis,
yielded by different logical interpretations of findings not observed, can be clarified in terms
of diagnostic problem solving as follows.3 In the first version of the consistency condition, it is
assumed that all findings associated with a defect, present in the real world, will be observed.
If a finding is not included among the findings in the set of observed findings, it is assumed
to be absent; absent findings are denoted by negative literals. The basic assumption is that
all findings of defects that are absent will not be observed, i.e. are absent (if unique for the
defect), hence, it can safely be assumed that all findings not observed are negative. Although
this may not be justified in diagnostic problem solving – it could be more natural to take
the findings as unknown – the assumption of the negative literals has the technical advantage
of blocking the inclusion of defects that are not present in the real world according to the
theory, because some observable finding associated with the defect is not included in the set
of observed findings. This is precisely the effect required. Now, if, as in the example above,
only part of the unique findings of a defect occurs among the set of observed findings, there
must be something wrong, either with the abnormality axioms R, or with the set of observed
findings. It seems therefore justified that no diagnosis is established in this case. However,
this result is only valid if one accepts as a basic assumption that every possible cause (defect)
of a finding is included in the set of abnormality axioms R, which also constituted the basis of
the predicate completion discussed above (at the risk of ambiguity with respect to database
theory, one might call this the closed world assumption of abduction).

The second version of the consistency condition in abductive diagnosis is similar to the
first version, except that it is assumed that if no information concerning a specific diagnostic
test is available,– recall that every test corresponds to a different predicate symbol – it is
assumed to be unknown. Now, if some defect d is included in a solution H and

R ∪ {d} � f

where f 6∈ E, this means that the model predicts that if the test is actually carried out, the
finding f will be observed. If it is not observed, or turns out to be false, i.e. ¬f , some action
needs to be undertaken, but no specific ideas concerning this situation appear in the papers of
Console and Torasso. However, if the test has been carried out, i.e. there exists some finding
f ′ with the same predicate symbol as f , and f 6∈ E, then again no diagnosis exists, because
¬f ∈ Ec would hold.

3We remark that this interpretation is the author’s own, no such interpretation appears in the papers by

Console and Torasso.

238 Chapter 6. Model-based Reasoning

The abductive theory of diagnosis discussed above may be viewed as a formalisation of
particular parts of the diagnostic system shell CHECK. This system can be used to build
hybrid diagnostic systems for domains in which causal, hierarchical and heuristic knowledge
coexist. As far as known to the author, CHECK has been used as an experimental platform
on which various prototype systems have been developed, including diagnosis of automobile
engine failure and diagnosis of liver disease.

6.3.3 Set-covering theory of diagnosis

Instead of choosing logic as the language for MAB diagnosis, as discussed above, others have
adopted set theory as their formal language. This approach to the formalisation of diagnosis
is referred to as the set-covering theory of diagnosis, or parsimonious covering theory. The
treatment of the set-covering theory of diagnosis in the literature deals only with the modelling
of restricted forms of abnormal behaviour of a system.

The specification of the knowledge involved in diagnostic problem solving consists of the
enumeration of all findings that may be present (and observed) given the presence of each
individual defect distinguished in the domain; the association between each defect and its
associated set of observable findings is interpreted as an uncertain causal relation between
the defect and each of the findings in the set of observable findings. Instead of the terms
‘defect’ and ‘finding’ the terms ‘disorder’ and ‘manifestation’ are employed in descriptions of
the set-covering theory of diagnosis. In the following, we have chosen to uniformly employ
the terms ‘defect’ and ‘finding’ instead. The basic idea of the theory with respect to diagnosis
is that each finding in the set of observed findings in a given diagnostic situation must be
causally related to at least one present defect; the collected set of present defects thus obtained
can be taken as a diagnosis. As with the theory of diagnosis by Console and Torasso, this
reasoning method is usually viewed as being abductive in nature, because the reasoning goes
from findings to defects, using causal knowledge from defects to findings.

More formally, the triple N = (∆,Φ, C) is called a causal net in the set-covering theory
of diagnosis, where

• ∆ is a set of possible defects,

• Φ is a set of elements called observable findings, and

• C is a binary relation

C ⊆ ∆× Φ

called the causation relation.

A diagnostic problem in the set-covering theory of diagnosis is then defined as a pair D =
(N , E), where E ⊆ Φ is a set of observed findings. It is assumed that all defects d ∈ ∆
are potentially present in a diagnostic problem, and all findings f ∈ Φ will be observed
when present. In addition, all defects d ∈ ∆ have a causally related observable findings
f ∈ Φ, and vice versa, i.e. ∀d ∈ ∆ ∃f ∈ Φ : (d, f) ∈ C, and ∀f ∈ Φ ∃d ∈ ∆ : (d, f) ∈ C.
No explicit distinction is made in the theory between positive (present), negative (absent)
and unknown defects, and positive (present), negative (absent) and unknown findings. The
causation relation is often depicted by means of a labelled, directed acyclic graph, which, as
N , is called a causal net.

6.3. Formal theories of diagnosis 239

Let ℘(X) denote the power set of the set X. It is convenient to write the binary causation
relation C as two functions. Since in the next section, such functions are intensively employed,
we adopt a notation that slightly generalises the notation originally proposed.4 The first
function

e : ℘(∆)→ ℘(Φ)

called the effects function, is defined as follows; for each D ⊆ ∆:

e(D) =
⋃

d∈D

e({d}) (6.11)

where

e({d}) = {f | (d, f) ∈ C}

and the second function

c : ℘(Φ)→ ℘(∆)

called the causes function, is defined as follows; for each E ⊆ Φ:

c(E) =
⋃

f∈E

c({f})

where

c({f}) = {d | (d, f) ∈ C}

Hence, knowledge concerning combinations of findings and defects is taken as being composed
of knowledge concerning individual defects or findings, which is not acceptable in general. This
is a strong assumption, because it assumes that no interaction occurs between defects.

A causal net can now be redefined, in terms of the effects function e above, as a triple
N = (∆,Φ, e).

Given a set of observed findings, diagnostic problem solving amounts to determining sets
of defects – technically the term cover is employed – that account for all observed findings.
Formally, a diagnosis is defined as follows.

Definition 6.6 (set-covering diagnosis) Let D = (N , E) be a diagnostic problem, where N =
(∆,Φ, e) is a causal net and E denotes a set of observed findings. Then, a (set-covering)
diagnosis of D is a set of defects D ⊆ ∆, such that:

e(D) ⊇ E (6.12)

In the set-covering theory of diagnosis the technical term ‘cover’ is employed instead of ‘diag-
nosis’; ‘diagnosis’ will be the name adopted in this book. Due to the similarity of condition
(6.12) with the covering condition in the abductive theory of diagnosis, this condition is
called the covering condition in the set-covering theory of diagnosis. Actually, set-covering
diagnosis can be mapped to abductive diagnosis in a straightforward way, thus revealing that

4In the original definition of set-covering diagnosis, function e for singleton sets is called effects, and is

defined for elements only. They also define an associated function Effects, which is defined on sets of defects,

in terms of the effects function. This function is identical to our function e. Hence, the effects function is

superfluous. Similarly, the functions corresponding to the function c are called causes and Causes.

240 Chapter 6. Model-based Reasoning

set-covering diagnosis is more restrictive than abductive diagnosis. Just by mapping each
function value

e({d}) = {f1, . . . , fn}

to a collection of logical implications, taken as abnormality axioms R of a causal specification
Σ = (∆,Φ,R), of the following form:

d ∧ αf1
→ f1

d ∧ αf2
→ f2

...

d ∧ αfn
→ fn

abductive diagnosis for such restricted causal specifications and set-covering diagnosis coin-
cide.

Since it is assumed that e(∆) = Φ is satisfied, i.e. any finding f ∈ Φ is a possible causal
effect of at least one defect d ∈ ∆, there exists a diagnosis for any set of observed findings E,
because

e(∆) ⊇ E

always holds (explanation existence theorem).
A set of defects D is said to be an explanation of a diagnostic problem D = (N , E), with

E a set of observed findings, if D is a diagnosis of E and D satisfies some additional criteria.
Various criteria, in particular so-called criteria of parsimony, are in use. The basic idea is
that among the various diagnoses of a set of observable findings, those that satisfy certain
criteria of parsimony are more likely than others. Let D = (N , E) be a diagnostic problem,
then some of the criteria are:

• Minimal cardinality : a diagnosis D of E is an explanation of D iff it contains the
minimum number of elements among all diagnoses of E;

• Irredundancy : a diagnosis D of E is an explanation of D iff no proper subset of D is a
diagnosis of E;

• Relevance: a diagnosis D of E is an explanation of D iff D ⊆ c(E);

• Most probable diagnosis: a diagnosis D of E is an explanation of D iff P (D|E) ≥
P (D′|E) for any diagnosis D′ of E.

In addition, some researchers define the concept of minimal-cost diagnosis. A diagnosis D of
a set of observed findings E is called a minimal-cost explanation of D iff

∑

d∈D

cost(d) ≤
∑

d∈D′

cost(d)

for each diagnosis D′ of E, where cost is a function associating real values with defects d ∈ ∆.
The cost of a diagnosis may be anything, varying from financial costs to some subjective feeling
of importance expressed by numbers. However, Eugene Charniak choose as a semantics of cost
function information for the negative logarithm of probabilities. Under this interpretation, a
minimal-cost diagnosis is identical to a most probable diagnosis.

6.3. Formal theories of diagnosis 241

Although not every diagnosis is an explanation, any diagnosis may be seen as a solution to
a diagnostic problem, where diagnoses which represent explanations conform to more strict
conditions than diagnoses that do not. The term ‘explanation’ refers to the fact that a
diagnosis in the set-covering theory of diagnosis can be stated, and thus be explained, in
terms of cause-effect relationships. A better choice, in our opinion, would have been the
adoption of the term ‘explanation’ for what is now called ‘cover’ in the theory, and to refer
to what are now called ‘explanations’ by the name of ‘parsimonious explanations’. To avoid
confusion, the term ‘explanation’ will not be used in the sequel. Instead, we shall speak of a
‘minimal-cardinality diagnosis’, an ‘irredundant diagnosis’, a ‘minimal-cost diagnosis’ and so
on.

For minimal cardinality, a diagnosis which consists of the smallest number of defects
among all diagnoses is considered the most plausible diagnosis. Minimal cardinality is a
suitable parsimony criterion in domains in which large combinations of defects are unlikely
to occur. For example, in medicine, it is generally more likely that a patient has a single
disorder than more than one disorder. Irredundancy expresses that it is not possible to leave
out a defect from an explanation without losing the capability of explaining the complete set
of observed findings, i.e.

e(D) 6⊇ E

for each D ⊂ D′, where D′ is an irredundant diagnosis. The relevance criterion states that
every defect in an explanation has at least one observable finding in common with the set
of observed findings. This seems an obvious criterion, but note that the notion of uncertain
causal relation employed in the set-covering theory of diagnosis does not preclude situations
in which a defect is present, although none of its causally related observable findings have
been observed. These three definitions of the notion of explanation are based on general set-
theoretical considerations. In contrast, the most probable diagnosis embodies some knowledge
of the domain, in particular with respect to the strengths of the causal relationships. We shall
not deal with such probabilistic extensions of the set-covering theory of diagnosis any further.

EXAMPLE 6.7

Consider the causal net N = (∆,Φ, C), where the effects function e is defined by the
causation relation C, i.e.

e(D) =
⋃

d∈D

e({d})

where

e({d}) =

{cough, fever , sneezing} if d = influenza
{cough, sneezing} if d = common cold
{fever , dyspnoea} if d = pneumonia

It states, for example, that a patient with influenza will be coughing, sneezing and have
a fever; a patient with a common cold will show the same findings, except fever, and
a patient with pneumonia will have a fever and dyspnoea (shortness of breath). The

242 Chapter 6. Model-based Reasoning

influenza

common cold

pneumonia

cough

dyspnoea

fever

sneezing

Figure 6.7: Causal net.

associated graph representation GC of C is shown in Figure 6.7. It holds, among others,
that

e({influenza, common cold}) = {cough, fever , sneezing}

Based on the causal net C, the following causes function c is obtained:

c(E) =
⋃

o∈E

c({o})

with

c({f}) =

{influenza , common cold} if f = cough
{influenza , pneumonia} if f = fever
{influenza , common cold} if f = sneezing
{pneumonia} if f = dyspnoea

Suppose D = (N , E) is a diagnostic problem, with E = {cough, fever} a set of observed
findings, then a diagnosis of D is

D1 = {influenza}

but

D2 = {influenza, common cold}
D3 = {common cold , pneumonia}

and D4 = {influenza, common cold , pneumonia} are also diagnoses for E. All of these
diagnoses are relevant diagnoses, because

c({cough, fever}) ⊇ Di

where i = 1, . . . , 4. Irredundant diagnoses of E are D1 and D3. There is only one
minimal cardinality diagnosis, viz. D1 = {influenza}. Now suppose that E = {cough},

6.3. Formal theories of diagnosis 243

then for example D = {influenza, pneumonia} would not have been a relevant diagnosis,
because

c({cough}) = {influenza , common cold} 6⊇ D

Other, more domain-specific, definitions of the notion of explanation have only been developed
recently. Such domain-specific knowledge can be effective in reducing the size of the set of
diagnoses generated by a diagnostic system. For example, Tuhrim et al. demonstrated that
the use of knowledge concerning the three-dimensional structure of the brain by means of a
binary adjacency relation in a neurological diagnostic expert system, based on the set-covering
theory of diagnosis, could increase the diagnostic accuracy of the system considerably.

Peng and Regia have also shown that the causation relation C can be extended for the
representation of multi-layered causal nets, in which defects are causally connected to each
other, finally leading to observable findings. By computation of the reflexive, transitive closure
of the causation relation, C⋆, the basic techniques discussed above immediately apply. The
reflexive closure makes it possible to enter defects as observed findings, which are interpreted
as already established defects, yielding a slight extension to the theory treated above.

6.3.4 Hypothetico-deductive diagnosis

The third approach to diagnosis mentioned in Section 6.2, AC (Abnormality Classification)
diagnosis, originates from work by Ted Shortliffe, Bruce Buchanan, William Clancey and Ed-
ward Feigenbaum in the MYCIN project. The knowledge incorporated in that expert system,
and in similar systems for AC diagnosis, is based on the body of experience accumulated in
handling a large number of cases, such as the patients a physician sees in medical practice.
The knowledge is extracted from textbooks or human experts. We have called this type of
knowledge empirical associations, i.e. the knowledge consists of associations between typical
observable findings and defects; knowledge about the underlying mechanisms (if available) is
not represented.

In most practical systems,, the formal counterparts of empirical associations are organised
according to some underlying model distinguished in the collection of empirical associations.
A typical example is a distinction between families of disorders and specific disorders, i.e. a
taxonomy of disorders, that can be exploited in problem solving. Hence, expert systems based
on empirical associations are model-based like the other systems discussed above, because
they are also based on a model of the problem domain, although the nature of the model is
different. It is possible to characterise AC diagnosis in a more formal way. We shall refer to
this formal counterpart of AC diagnosis as hypothetico-deductive diagnosis.

A hypothetico-deductive diagnostic problem consists of a set of logical axioms, called an
empirical model EM, of the form

c1 ∧ · · · ∧ cn → q (6.13)

where ci and q represent either negative or positive defects and findings, represented in logic
as negative or positive literals, and if every ci is a finding, then q should be a defect. Logical
implication in the formalisation of empirical associations (6.13) may be viewed as a classi-
fication relation. A set of observed findings is represented as a set of ground literals, where
each literal is of the finding type. For example, a typical logical axiom might be

f1 ∧ · · · ∧ fm → d

244 Chapter 6. Model-based Reasoning

which expresses that a set of observable findings E = {f1, . . . , fm} represents necessary and
sufficient evidence for establishing the presence of the defect d as part of a diagnosis. One
difference between the theories of hypothetico-deductive diagnosis and abductive diagnosis is
that, in hypothetico-deductive diagnosis, observed findings and defects need not be causally
related to each other. Some of the findings may be interpreted as abnormal; other findings,
such as, for example, age of a patient in a medical application, may not. The function of
normal findings in empirical associations is similar to that of conditional causality introduced
in Section 6.3.2, viz. to condition a particular piece of knowledge on a specific piece of evidence.

Now, let B = (∆,Φ,EM) denote an associational specification, where:

• ∆ denotes a set of (positive and negative) possible defects,

• Φ denotes a set of (positive and negative) observable findings, and

• EM denotes the logical representation of a set of empirical associations of the form
(6.13).

A hypothetical-deductive diagnostic problem is then defined as a pairH = (B, E), where E ⊆ Φ
denotes a set of observed findings. A diagnosis based on empirical associations can be defined
as follows.

Definition 6.7 (hypothetico-deductive diagnosis) Let H = (B, E) be a hypothetico-deductive
diagnostic problem, where B = (∆,Φ,EM) is an associational specification, and E is a set of
observed findings. Let Θ ⊆ ∆ be a set of defects, called a hypothesis. Then, D ⊆ Θ is called
a (hypothetico-deductive) diagnosis of H if

D = {d ∈ Θ | EM ∪ E � d}

Note that, in contrast with the theories discussed above, a single hypothesis is initially given
in hypothetico-deductive diagnosis; it stands for the defects that are initially given to be
of interest. In the theory of hypothetico-deductive diagnosis, defects are logically entailed
by the observed findings (usually implemented by a deductive calculus, hence the adjective
hypothetico-deductive).

In contrast with the other theories of diagnosis, there are a large number of nonexperimen-
tal applications available that may be viewed as hypothetico-deductive diagnostic systems.

The technical characteristics of the various formal theories of diagnosis, discussed in the
previous sections, are summarised in Table 6.2.

6.4 Frameworks of diagnosis

Having described the various formal theories of diagnosis, the question arises in what sense
these theories are related to each other, and whether it is possible to develop generalisations
based on these theories. Actually, several originators of theories of diagnosis have investigated
the expressiveness of their theory for modelling other conceptual models of diagnosis than
those for which the theory was originally designed. In this section, we summarise and comment
on results found in the literature, and discuss various general frameworks of diagnosis.

6.4. Frameworks of diagnosis 245

Knowledge base Knowledge base
Originator specification interpretation Diagnosis

Reiter functional relations deduction consistency
Console & Torasso causality abduction covering

deduction consistency
Reggia et al. causality abduction set covering
Bylander et al. diagnostic relation none set covering
Shortliffe et al. empirical deduction classification

associations

Table 6.2: Comparison of formal theories of diagnosis.

6.4.1 Expressiveness of theories of diagnosis

Reiter has shown that the framework of consistency-based diagnosis provides enough de-
scriptive power to capture the set-covering theory of diagnosis. In Reiter’s formalisation,
the normality axioms in the original theory of consistency-based diagnosis are changed into
abnormality axioms, simply by replacing ‘components’ by ‘defects’. These axioms have the
following form

¬Abnormal(d)→ ¬Present(d) (6.14)

for each defect d, stating that under normal conditions defect d is not present, and

fab → Present(d1) ∨ · · · ∨ Present(dn) (6.15)

for each observable abnormal finding fab and related defect di, i = 1, . . . , n. Formulae of the
form (6.14) express hypotheses, namely that a particular defect may be absent (¬Present(d))
if it does not give rise to an inconsistency. As we have discussed in Section 6.3.2, formulae of
the form (6.15) may be seen as the predicate completion of finding literals in formulae of the
form

Present(d)→ fab

i.e. if R denotes the set of formulae of the last form, with defect literals Present(d1), . . . ,
Present(dn) in the premise, then the predicate completion COMP[R; fab] with regard to the
finding fab is equal to

COMP[R; fab] = R∪ {fab → Present(d1) ∨ · · · ∨ Present(dn)}

This states that the only causes of the finding fab to be present (and observed) are the
defects d1, . . . , dn. As discussed above, this same kind of knowledge is expressed, although
implicitly, in the abductive theory of diagnosis; it is also expressed in the set-covering theory
of diagnosis, but the differences between the reasoning methods employed (consistency-based
reasoning, logical abduction, and set covering) dictate a different representation (syntax) in
all three formal theories. Informally, in the consistency-based diagnosis formalisation of MAB
diagnosis, diagnostic problem solving is carried out as follows. Given an observed finding fab
associated with a defect di, i = 1, . . . , n, a disjunction

Present(d1) ∨ · · · ∨ Present(dn)

246 Chapter 6. Model-based Reasoning

is deduced, which is reduced by cancelling out atoms using axiom (6.14), assuming certain
defects not to be present, i.e. Abnormal(d) is false, yielding a (subset minimal) diagnosis. The
effect of axiom (6.14) corresponds to producing irredundant diagnoses in the set-covering the-
ory of diagnosis, in the sense that a minimal diagnosis with respect to set inclusion is produced.
Reiter shows that there exists a (subset minimal) diagnosis according to the consistency-based
reformulation of the set-covering theory of diagnosis iff there exists an equivalent irredundant
diagnosis in the set-covering theory (although at the time Reiter’s result was published, the
notion of irredundant diagnosis had not yet appeared in the literature).

Console and Torasso have studied the use of the consistency condition in abductive diag-
nosis for modelling DNSB diagnosis, i.e. diagnosis using a specification of a model of normal
structure and behaviour in a way resembling the work of Reiter. By taking the empty set
for the set of observed findings that must be covered, the covering condition in abductive
diagnosis becomes

R ∪H � E′

where E′ = ∅; a diagnosis is the result of satisfaction of the consistency condition only,
because the covering condition is always satisfied in this case. Thus, consistency-based di-
agnosis in the sense of Reiter is obtained. However, the meaning of the logical axioms is
entirely different from the meaning originally attached to the logical axioms, because they
now represent normal behaviour of a device; d represents some normal state of a component
of the device and a finding f in the conclusion of a Horn clause d → f represents a finding
that may be observed when the component is in its normal state, i.e. f represents a normality
finding fnorm . By varying between E′ = ∅ and E′ = E, for example by taking for E′ the
set of all abnormal findings fab occurring in E, DNSB and MAB diagnosis can be integrated
within the same abductive framework. The resulting abductive framework is referred to as
‘the spectrum of logical definitions of diagnosis’.

We may conclude by saying that generalisation of the formal theories of diagnosis discussed
above has shown that there is no such thing as a unique formalisation of a conceptual model
of diagnosis. Although the formal theories can be applied to formalise conceptual models
of diagnosis other than those for which they were originally designed, the results often lack
conceptual clarity.

6.4.2 Generalisation towards frameworks of diagnosis

The principal difficulty of developing a theory of diagnosis lies, undoubtedly, in the design of
a mapping of some intuitively appealing conceptual model of diagnosis to a formal language,
such as logic or set theory. We know beforehand that both logic and set theory are sufficiently
expressive; so, this is not where the problem lies. The selection of an appropriate logic, or
an appropriate fragment of set theory, however, is much more difficult. The insights gained
from the formal theories discussed in Section 6.3 have facilitated researchers in coming up
with more general frameworks of diagnosis.

David Poole and colleagues have developed a theory and an implementation of a form of
hypothetical reasoning, called Theorist. Theorist may be used as a framework of diagnosis, but
it is not restricted in any way to diagnostic problem solving. Moreover, there are no inherent
relationships between Theorist and any of the conceptual models of diagnosis. The present
implementation of the Theorist framework, however, is more or less tailored to abductive
diagnosis.

6.4. Frameworks of diagnosis 247

default a1.

default a2.

default fever.

default influenza.

default sport.

fact chills <- fever and a1.

fact fever <- influenza.

fact thirst <- fever.

fact myalgia <- influenza and a2.

fact myalgia <- sport.

constraint not chills. % Ec

Figure 6.8: Specification of an abductive diagnostic problem in Theorist.

In Theorist, a diagnostic problem must be specified in terms of a set of facts, denoted by
FACTS, a set of hypotheses, denoted by HYP, and a set of constraints, denoted by C. The set
of facts FACTS and constraints C are collections of arbitrary closed formulae in first-order
logic; hypotheses act as a kind of defaults that might become instantiated, and assumed to
hold true, in the reasoning process. A set FACTS ∪ H is called an explanation of a closed
formula g, where H is a set of ground instances of hypothesis elements in HYP, iff:

(1) FACTS ∪H � g, and

(2) FACTS ∪H ∪ C 2 ⊥.

On first sight, the framework looks a lot like the framework of abductive diagnosis discussed
in Section 6.3.2, but it is much more general, mainly due to the unrestricted nature of its
elements. In terms of the abductive theory of diagnosis, we would have called H a solu-
tion, if the abnormality axioms R were taken as FACTS, the set of findings not observed Ec

as constraints C, and the set of observed findings E as g. Obviously, because there is no
fixed diagnostic interpretation in Theorist, the framework can be used as a basis for various
other notions of diagnosis, such as consistency-based diagnosis (just take g ≡ ⊤). A similar
framework of diagnosis has been proposed by Kurt Konolige; in this theory, called the default
causal net theory, the partitioning of a logical theory into various meaningful elements is a
bit different from that of Theorist. However, there are too many similarities with Theorist to
justify an extensive description in this overview.

EXAMPLE 6.8

Figure 6.8 presents a specification of the abductive diagnostic problem from Example 3
in terms of the Theorist implementation, where Ec denotes the set of findings assumed
to be absent, Ec, taken as constraints in Theorist. The following query:

explain thirst and myalgia.

yields the following results:

248 Chapter 6. Model-based Reasoning

Cushing’s
disease

pulmonary
infection

moon face

fever

and

dyspnoea

iron-deficiency
anaemia

low
serum iron

Figure 6.9: Nonmonotonic interaction between disorders.

Answer is thirst and myalgia

Theory is [a2,influenza,fever]

Answer is thirst and myalgia

Theory is [sport,fever]

Answer is thirst and myalgia

Theory is [a2,influenza]

Answer is thirst and myalgia

Theory is [sport,influenza]

Theories are solutions in the abductive theory of diagnosis. Only a subset of the so-
lutions mentioned in Example 3 are computed, because in Theorist it is assumed that
every observed finding need be explained only once by a diagnosis.

Although logic offers powerful tools for designing and studying notions of diagnosis, formal-
ising diagnosis in logical terms may be cumbersome. In particular, when it is necessary to
resort to non-standard logics, there is a lurking danger that the original subject of research
(diagnosis) is taken over by the study of logic. Instead of taking logic as a language to de-
velop a framework of diagnosis, we might also adopt set theory as our language of choice and
generalise the set-covering theory of diagnosis. This approach, which is more straightforward
than logical analysis, has been investigated by Peter Lucas. The approach is introduced by
the following example.

EXAMPLE 6.9

Consider a medical diagnostic problem, where a patient may have Cushing’s disease –
a disease caused by a brain tumour producing hyperfunctioning of the adrenal glands –
pulmonary infection and iron-deficiency anaemia. We shall not enumerate all symptoms
and signs causally associated with these medical problems; it suffices to note that moon

6.4. Frameworks of diagnosis 249

face is a sign associated with Cushing’s disease, fever and dyspnoea (shortness of breath)
are associated with pulmonary infection, and low levels of serum iron are characteristic
for iron-deficiency anaemia. However, in a patient in whom Cushing’s disease and
pulmonary infection coexist there usually is no fever. This indicates that there exists
an interaction between the two disorders, Cushing’s disease and pulmonary infection,
that is nonmonotonic, i.e. the co-occurrence of the two disorders produces fewer findings
than the union of their associated observable findings. Figure 6.9 depicts this simple
problem. Note that we can neither represent this knowledge by a causal specification
(refraining from non-standard logic) as used in abductive diagnosis, nor in terms of an
effects function as used in the set-covering theory of diagnosis.

Interactions among defects (disorders) can be expressed by means of a mapping of sets of
defects to sets of observable findings. Such a mapping will be called an evidence function.
More formally, let Σ = (∆,Φ, e) be a diagnostic specification, where, again, ∆ denotes a set
of possible defects (disorders), and Φ denotes a set of observable findings. Positive defects
d (findings f) and negative defects ¬d (findings ¬f) denote present defects (findings) and
absent defects (findings), respectively. If a defect d or a finding f is not included in a set, it is
assumed to be unknown. Let a set XP denote a set of positive elements, and let XN denote a
set of negative elements, such that XP and XN are disjoint. It is assumed that ∆ = ∆P ∪∆N

and Φ = ΦP ∪ ΦN . Now, an evidence function e is a mapping

e : ℘(∆)→ ℘(Φ) ∪ {⊥}

such that:

(1) for each f ∈ Φ there exists a set D ⊆ ∆ with f ∈ e(D) or ¬f ∈ e(D) (and possibly
both);

(2) if d,¬d ∈ D then e(D) = ⊥;

(3) if e(D) 6= ⊥ and D′ ⊆ D then e(D′) 6= ⊥.

If e(D) 6= ⊥, it is said that e(D) is the set of observable findings for D; otherwise, it is said
that D is inconsistent. Inconsistency here means that a particular combination of defects
is not allowed. According to the definition above, we may have that both f ∈ e(D) and
¬f ∈ e(D), which simply means that these findings may alternatively, e.g. at different times,
occur given the combined occurrence of the defects in the set D.

For the medical knowledge depicted in Figure 6.9, it holds, among others, that:

e({Cushing’s disease}) = {moon face}

e({pulmonary infection}) = {fever , dyspnoea}

e({Cushing’s disease , pulmonary infection}) = {moon face, dyspnoea}

The property

e({Cushing’s disease , pulmonary infection}) 6⊇ e({Cushing’s disease}) ∪
e({pulmonary infection})

250 Chapter 6. Model-based Reasoning

formally expresses that the interaction between Cushing’s disease and pulmonary infection is
nonmonotonic.

Various semantic properties of a domain for which a diagnostic system must be built can
be expressed precisely as interactions in terms of evidence functions. An example of a local
interaction reflected in an evidence function is causality ; it is formalised as e(D′) ⊆ e(D),
with the following meaning: ‘the set of defects D causes the set of defects D′’.5 This is the
same sort of knowledge as used in abductive diagnosis (cf. Section 6.3.2). We may also have
that defects exhibit no interactions at all, which is a global property, expressed as follows:

e(D) =
⋃

d∈D

e({d})

for each consistent set D ⊆ ∆. Observe that this evidence function corresponds to the effects
function (6.11) in the set-covering theory of diagnosis. Other semantic properties (with respect
to observable findings) can be defined in this fashion quite easily.

To employ an evidence function for the purpose of diagnosis, it must be interpreted with
respect to the actually observed findings. The interpretation of an evidence function and the
observed findings that is adopted, can be viewed as a notion of diagnosis applied to solve the
diagnostic problem at hand.

More formally, let P = (Σ, E) be a diagnostic problem, where Σ = (∆,Φ, e) and E ⊆ Φ
is a set of observed findings. Let RΣ denote a notion of diagnosis R applied to Σ, then a
mapping

RΣ,e|H : ℘(Φ)→ ℘(∆) ∪ {u}

will either provide a diagnostic solution for a diagnostic problem P, or indicate that no
solution exists, denoted by u (undefined). Here, H denotes a hypothesis, which is taken to be
a set of defects (H ⊆ ∆), and e|H , called the restricted evidence function of e, is a restriction
of e with respect to the power set ℘(H):

e|H : ℘(H)→ ℘(Φ) ∪ {⊥}

where for each D ⊆ H: e|H(D) = e(D). A restricted evidence function e|H can be thought
of as the relevant part of a knowledge base with respect to a hypothesis H. An R-diagnostic
solution, or R-diagnosis for short, with respect to a hypothesis H ⊆ ∆, is now defined as the
set

RΣ,e|H (E), where RΣ,e|H (E) ⊆ H if a solution exists.

The general idea is illustrated in Figure 6.10. To illustrate the flexibility of the framework,
consider again the notion of weak causality as defined in the abductive theory of diagnosis,
which is obtained by the addition of assumption literals α to individual abnormality axioms
of a causal model R.

EXAMPLE 6.10

5We do not claim that this property formalises causality; it only expresses the notion of causality in terms

of diagnosis.

6.4. Frameworks of diagnosis 251

hypothesis
H

knowledge base
e

notion
of diagnosis

RΣ

diagnosis
RΣ,e|H (O)

observed
findings
O

Figure 6.10: Schema of notion of diagnosis, diagnostic problem and solution.

Consider the abductive problem P = (Σ, E), with causal specification Σ = (∆,Φ,R),
where R is equal to:

fever ∧ α1 → thirst

fever ∧ α2 → sweating

pneumonia ∧ α3 → fever

pulmonary embolism ∧ α4 → dyspnoea

and where fever , pneumonia, and pulmonary embolism are defects (disorders). The
resulting evidence function e is defined by the following restriction ẽ of the evidence
function e:

ẽ(D) =

{thirst , sweating} if D = {fever}
{thirst , sweating} if D = {pneumonia}
{dyspnoea} if D = {pulmonary embolism}
⊥ if D = {¬fever , pneumonia}
∅ if D is a singleton set different from those above

yielding a diagnostic specification Σ = (∆,Φ, e), where the function e is obtained from
ẽ by taking the union of non-specified, consistent function values. For example,

e({pneumonia , pulmonary embolism}) = {thirst , sweating , dyspnoea}

Given the definition of a diagnostic problem P, it is possible to solve it using various notions of
diagnosis. For example, the notion of diagnosis that corresponds to abductive diagnosis with
weakly causal relations as introduced above, is called the notion of weak-causality diagnosis,
denoted by WC. It is defined as follows:

WCΣ,e|H (E) =

{

H if e|H(H) ⊇ E
u otherwise

252 Chapter 6. Model-based Reasoning

This notion of diagnosis is precisely the same as set-covering diagnosis, except that it is de-
fined for general evidence functions, and not only for those evidence functions that are free
of interaction.

EXAMPLE 6.11

Reconsider the previous example. Let the set of observed findings be equal to E =
{thirst , sweating}, then the set H = {fever , α1, α2} is an abductive solution to P =
(Σ, E), because the covering and consistency conditions are satisfied; the associated
diagnosis is D = {fever}. In terms of the set-theoretical framework, we have

WCΣ,e|{fever}
(E) = {fever}

Hence, the results of the (set-theoretical) notion of weak-causality diagnosis and the
(logical) notion of abductive diagnosis with a weakly causal modelR do indeed coincide.

Other notions of diagnosis, such as consistency-based diagnosis or a notion of diagnosis based
on strongly causal knowledge, can be defined in a straightforward way. For example, where
the notion of strong causality diagnosis is obtained in the theory of abductive diagnosis by
doing away with incompleteness assumption literals, the same notion is obtained in the set-
theoretical framework by replacing the ⊇ relation in the definition of the function WC by
equality =. The resulting notion of diagnosis expresses that all predicted observable findings
must be observed, and vice versa.

It is also straightforward to define notions of diagnosis in terms of the set-theoretical
framework that offer some approximating or refinement form of diagnosis. For example, the
following notion of diagnosis, called most general subset diagnosis,

GSΣ,e|H (E) =

⋃

H′ ⊆ H

e|H(H′) ⊆ E

H ′ if H is consistent, and
∃H ′ ⊆ H : e|H(H ′) ⊆ E

u otherwise

is more flexible than strong-causality diagnosis. Intuitively, a most general subset diagnosis
is the smallest set of defects that includes all accepted subhypotheses of a given hypothesis,
where an accepted subhypothesis concerns observable findings that all have been observed.

EXAMPLE 6.12

Reconsider Example 10. Let E = {thirst , sweating , dyspnoea} be the set of observed
findings. Then, we have that

WCΣ,e|{fever ,pneumonia}
(E) = u

i.e. the observed findings in E cannot be accounted for using weak-causality diagnosis.
However, it holds that

GSΣ,e|{fever ,pneumonia}
(E) = {fever , pneumonia}

This expresses that at least part of the observed findings in E can be accounted for by
the hypothesis {fever , pneumonia}.

6.4. Frameworks of diagnosis 253

Hypothetico-deductive diagnosis can be described using the set-theoretical framework as a
specific form of most general subset diagnosis. Assuming for simplicity’s sake that the asso-
ciated evidence function exhibits no interaction, most general subset diagnosis expresses that
a defect is accepted as part of a diagnosis if all its associated typical observable findings have
been observed. With some slight extensions, it is also possible to model the effect of grouping
various findings with respect to a defect, which is usually expressed in rule-based systems by
defining more than one rule with the same conclusion.

Exercises

(6.1) Answer the following general questions concerning model-based reasoning:

a. Give a description of a problem for which DNSB diagnosis is the only applicable
form of diagnosis. Explain your answer.

b. Why is the logical implication → often used in abductive diagnosis for the formal-
isation of the notion of causality? Which properties of logical implication closely
fit the intuitive meaning of the notion of causality and which properties of logical
implication are intuitively incompatible?

(6.2) The following questions concern the theory of abductive diagnosis:

a. Consider the causal specification Σ = (∆,Φ,R), where

– ∆ = {d1, d2, d3, α1, α2} denotes a set of defects (d1, d2, d3) and assumption
literals (α1, α2);

– Φ = {f1, f2, f3} denotes a set of observable findings;

– R = {d1 ∧ α1 → d2,
d1 → f1,
d2 ∧ α2 → f2,
d2 ∧ d3 → f3}

denotes a model of abnormal behaviour.

Now, let P = (Σ, E) be a diagnostic problem, where E = {f1, f3} is a set of
observed findings.

Determine all abductive solutions and diagnoses for P. Next, determine the solu-
tion formula following from the computation of the predicate completion of R and
the set of observed findings E. Assume in this case that all elements in ∆, with
the exception of d2, are abducible. Finally, discuss the logical relationship between
the solution formula and the abductive solutions for P.

b. Suppose that DPF and DPF′ are diagnostic problem formulations in the spectrum
of logical definitions of diagnosis with the same diagnostic problem P, such that
DPF ⊏ DPF′. This means that DPF ‘precedes’ DPF′. Now, prove that the set
of diagnoses for DPF′ is a subset of the set of diagnoses for DPF when applying
abductive diagnosis.

(6.3) Abductive diagnosis exercises:

254 Chapter 6. Model-based Reasoning

a. Consider the abductive network A = 〈D,M,C〉 where

– D = {d1, d2, d3, d4} denotes a set of disorders;

– M = {m1,m2,m3,m4} denotes a set of manifestations;

– C = {(d1,m1),
(d1,m2),
(d2,m2),
(d2,m4),
(d3,m2),
(d3,m3),
(d4,m3),
(d4,m4)}

denotes a causation relation.

Now, let P = 〈D,M,C,M+〉 be a diagnostic problem, where M+ = {m1,m3} is a
set of observed manifestations.

Determine all diagnoses given the irredundancy parsimony criterion for P using
the covering algorithm of Peng and Reggia. Clearly indicate the various different
steps taken by the algorithm.

b. Let A = 〈D,M,C〉 be an abductive network and let P = 〈D,M,C,M+〉 be a
diagnostic problem. Give an abductive network A′ = 〈D′,M ′, C ′〉 with a min-
imal number of disorders and manifestations such that Sol(P, irredundancy) =
Sol(P ′, irredundancy) where P ′ = 〈D′,M ′, C ′,M+〉.

(6.4) Consistency-based diagnosis and GDE:

a. Consider the diagnostic problem DP = (SYS,OBS) in the theory of consistency-
based diagnosis (according to Reiter), where

– SYS = (SD,COMPS) denotes a system specification, with

∗ SD = {∀x((ANDG(x) ∧ ¬AB(x))→ (and(in(1, x), in(2, x)) = out(x))),
∀x((ORG(x) ∧ ¬AB(x))→ (or(in(1, x), in(2, x)) = out(x))),
in(2, O1) = in(2, O2),
in(2, A2) = in(2, A1),
out(O1) = in(1, A1),
out(O1) = in(1, A2),
out(A2) = in(1, O2),
ORG(O1),ORG(O2),ANDG(A1),ANDG(A2)};

∗ COMPS = {A1, A2, O1, O2};

– OBS = {in(1, O1) = 1, in(2, O1) = 0, in(2, A2) = 1, out(A1) = 0, out(O2) = 0}
denotes a set of observations.

Determine the set of all conflict sets for DP; indicate for each conflict set whether
or not it is minimal. Use the computed conflict sets to compute the set of diagnoses
for DP by means of the HS-DAG algorithm.

b. For the original hitting-set algorithm of Reiter, various different optimisations have
been proposed with the aim of reducing the number of nodes of the generated
hitting-set tree. Have one or more of these optimisations been realised in the
algorithms of the General Diagnostic Engine (GDE) ? If so, in which parts of

6.4. Frameworks of diagnosis 255

GDE have the optimisations been realised; if not, in which parts of GDE may the
optimisations be incorporated ?

