
ARTIFICIAL INTELLIGENCE 79

RESEARCH NOTE

A Correction to the Algorithm in
Reiter's Theory of Diagnosis

Russell Greiner
Department of Computer Science, University of Toronto,
10 King's College Road, Toronto, Ontario,
Canada MSS 1A4

Barbara A. Smith and Ralph W. Wilkerson
Computer Science Department, University of Missouri at
Rolla, Rolla, MO 65401, USA

ABSTRACT

Reiter [3] has developed a general theory of diagnosis based on first principles. His algorithm
computes all diagnoses which explain the differences between the predicted and observed behavior of
a given system. Unfortunately, Reiter's description of the algorithm is incorrect in that some
diagnoses can be missed under certain conditions. This note presents a revised algorithm and a proof
of its correctness.

1. Introduction

Many researchers have developed systems for diagnosis which use a "first
principles approach" using a representation language generally based on
first-order logic. Both Reiter [3] and de Kleer and Williams [1] use the concept
of a conflict set as the basis of their methods. While Reiter's algorithm can
make use of conflict sets which are not minimal, de Kleer and Williams'
algorithm requires that minimal conflict sets be determined by the underlying
inference mechanism. 1 However, it is the application of a technique for

Many others, including [2], have discussed mechanisms for handling only minimal conflict sets.
This note reports on a slightly different process, one which can accommodate nonminimal conflict
sets as well.

Artificial Intelligence 41 (1989/90) 79-88
0004-3702/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

80 R. GREINER ET AL,

handling the nonminimal conflict sets that introduces a bug into Reiter 's
algorithm.

In Section 2 we present a brief review of the pert inent definitions and a
s ta tement of Rei ter ' s algorithm for computing minimal hitting sets. For the
sake of completeness, we reproduce these concepts and definitions from
Reiter 's paper essentially unchanged. In Section 3, we present an example
where Reiter 's algorithm fails to find all of the minimal hitting sets. Section 4
contains a revised algorithm and a proof of correctness for this algorithm.

2. Definitions

A hitting set for a collection of sets C is a set H C_ U sec. S such that
H n S ~ (} for each S C C. A hitting set for C is minimal if and only if no
proper subset of it is a hitting set for C.

A system to be diagnosed is defined by a set of COMPONENTS, a system
description SD, and a set of observations, OBS (the latter two are sets of
propositions). A diagnosis for (SD, COMPONENTS, OBS) is defined to be a
minimal set a C COMPONENTS such that

SD U OBS U {-~AB(c) t c E COMPONENTS - ,4} U {AB(c) I c ~ ~}

is consistent, where AB is a predicate indicating that a component is abnormal.
The method of computing diagnoses is based on the determination of minimal
hitting sets, since a diagnosis can be defined in terms of minimal hitting sets.

Reiter proposes a characterization of a diagnosis which uses the concept of a
conflict set. A conflict set for (SD, COMPONENTS, OBS) is a set {c~ ck} C_
COMPONENTS such that SD U OBS U {~AB(c~) ~AB(ck) } is inconsistent. A
conflict set for (SD, COMPONENTS, OBS) is minimal if and only if no proper
subset of it is a conflict set for (SD, COMPONENTS, OBS).

Two of the main results of Reiter 's work are (1) the following theorem which
relates diagnoses, conflict sets, and hitting sets and (2) a method for computing
minimal hitting sets.

Theorem 2.1 [3, Theorem 4,4]. A C COMPONENTS is a diagnosis for (SD, COM-
PONENTS, OBS) if and only if A is a minimal hitting set for the collection of
conflict sets for (SD, COMPONENTS, OBS).

The minimal hitting sets are computed by constructing a hitting set tree
(HS-tree). An HS-tree is defined as follows.

Definition. Let C be a collection of sets. An HS-tree for C, call it 7", is a
smallest edge-labeled and node-labeled tree with the following properties:

(1) The root is labeled by ~ / i f C is empty. Otherwise the root is labeled by
an arbitrary set of C.

CORRECTION TO REITER'S ALGORITHM 81

(2) For each node n of T, let H(n) be the set of edge labels on the path in T
from the root node to n. The label for n is any set X E C such that

D H(n) = {}, if such a set X exists. Otherwise, the label for n is X/. If n is
labeled by the set X, then for each ~r E X, n has a successor, n , joined to n by
an edge labeled by o-.

Reiter identifies two properties of an HS-tree for a collection of sets C. First,
for any node n labeled by X/, H(n) is a hitting set for C. Second, every minimal
hitting set for C is H(n) for some node n which is labeled by X/. Reiter states
these properties without proof.

For the diagnostic problem, the sets in the collection which are used as node
labels are conflict sets for (SD, COMPONENTS, OBS). These sets are not explicitly
known and are calculated as needed by an underlying theorem prover. In the
algorithm for the construction of an HS-tree, the set to be used as the label of a
node is determined by an access to the collection C. However, in diagnosis, the
set to be used as a label of a node is determined by a call to an underlying
theorem prover. As Reiter points out, the computation of a conflict set by the
theorem prover must be treated as computationally expensive.

In order to (1) keep the HS-tree as small as possible, (2) calculate only
minimal hitting sets, and (3) minimize the number of calls to the underlying
theorem prover, Reiter provides an algorithm for generating a pruned HS-tree.
The method is:

(1) Generate the pruned HS-tree breadth-first, generating all nodes at any
fixed level in the tree before descending to generate the nodes at the next level.

(2) Reusing node labels: If node n has already been labeled by a set S E C,
and if n ' is a (new) node such that H(n') D S = {}, then label n ' by S. Such a
node n ' requires no access to the theorem prover. (In our diagrams, we
underline the label of a node to indicate that this label is determined by reusing
an existing label.)

(3) Tree pruning:
(i) If node n is labeled by X/and node n' is such that H(n) C_ H(n'),

then close the node n'. A label is not computed for n ' nor are any
successor nodes generated. (In our diagrams, × indicates a closed
node.)

(ii) If node n has been generated and node n ' is such that H(n')=
H(n), then close node n'.

(iii) If nodes n and n ' have been labeled by sets S and S' of C,
respectively, and if S' is a proper subset of S, then for each
c~ ~ S - S' mark as redundant the edge from node n labeled by c~.
A redundant edge, together with the subtree beneath it, may be
removed from the HS-tree while preserving the property that the
resulting pruned HS-tree will yield all minimal hitting sets for C.

82 R. GREINER ET AL.

(In our cllagrams, a redundant edge in a pruned HS-tree is indi-
cated by cutting it with ") (" .)

3. Problems with the Algorithm

It should be clear that pruning by removing redundant edges (pruning rule
(3iii)) is applicable only when there is at least one set in the collection which is
a strict superset of some other set in the collection. Recall that for the problem
of diagnosis, the minimal hitting sets (of the conflict sets) are the diagnoses. As
already pointed out, an advantage of Reiter's method is that the conflict sets
determined by the underlying theorem prover need not be minimal. However,
this type of pruning can result in an incomplete diagnostician, as it is possible
to lose minimal hitting sets, and therefore, diagnoses.

Consider the collection of sets: {{a,b}, {b,c}, {a ,c}, {b ,d} , {b}}.
Without pruning by removing redundant edges, the HS-tree shown in Fig. l
would be generated. Identifying node labels have been added. Note that nodes
n 5, n 7, and n 9 have been closed by the subset rule (pruning rule (3i)) since n~ is
labeled ~/, H(n3) C_ H(ns) , H(n3) C H(nT) , and H(n3) C_ H(r/9). The set label-
ing node ns, {a}, is a proper subset of the set, {a, b}, labeling nodes n~,, n , ,
and n 4. If the redundant branches from no, namely the branch labeled " a " , is
pruned, the remaining tree contains only the nodes n o, n 2, n 5, and n~. The
minimal hitting set {a, b} is no longer represented in the tree.

no: {a b}

nl: { b c} n2: { a c}

n3: ,/ n4: { b d } n5: × n6: ~/

nT: x { b }

rig: x

Fig. 1. HS-tree illustrating the problem with pruning.

CORRECTION TO REITER'S ALGORITHM 83

no: {a b}

n,: {b} n2: {a}

Fig. 2. HS-tree illustrating the need for node relabeling.

The problem arises from the interaction of the pruning rule which removes
redundant edges (rule (3iii)) and the closing rules (rules (3i) and (3ii)). A
closing rule will close the node n when it finds another node n' which will lead
to the same minimal hitting set(s). This, of course, assumes that the node n'
will remain in the HS-tree. The pruning rule, however, may remove the node
n', meaning that the path to any potential hitting sets will be totally lost--lost
from the node n path when node n was closed and lost from the node n' path
when node n ' was pruned.

Before presenting the solution to this problem, we first clarify one other
point in Reiter 's original algorithm. Pruning by the removal of redundant edges
also requires that the parent node be relabeled. Consider the collection of sets
{{a, b}, {a}, {b}}. Without pruning, the HS-tree in Fig. 2 would be gener-
ated. As {b} C {a, b}, the " a " branch under n o would be pruned. However, if
n o is not relabeled by the set {b}, then the " b " branch under n 0 would be
pruned as {a} C {a, b}. The surviving HS-tree would contain the single node
n 0 which is not labeled by V.

The pruning method is based on the argument (presented in Reiter's paper)
that when a node n is labeled by a set S' and there is a set S C C where S C S',
then n could be labeled by S rather than S'. This justifies removing the edges
descending from n which are labeled by the members of S' - S, leaving only
the edges labeled by members of S. In the text of the paper, Reiter discusses
relabeling the node, but this point is not stated in the algorithm.

4. Revised Algorithm

Reiter 's description (in the text) of the process for computing the minimal
hitting sets is basically correct. However, the algorithm did not accurately
follow his text. The HS-DAG algorithm, shown below, is more faithful to that
description. It involves using a directed acyclic graph, dag, to compute the
minimal hitting sets rather than a tree. To simplify the description, we assume
that the collection of sets is ordered. This allows us to specify the algorithm
deterministically, as we can now select a member of this collection rather than
assume that a member is chosen arbitrarily.

We begin by defining the algorithm for constructing the HS-dag for an
ordered collection of sets, F.

84 R. G R E I N E R ET A L

(1) Let D represent the growing dag. Genera te a node which will be the
root of the dag. This node will be processed in (2).

(2) Process the nodes in D in a breadth-first order. To process a node ~:
(i) Define H(n) to be the set of edge labels on the path in D from the

root down to node n.
(ii) If for all x E F, x n H(n) ~a { } then label n by ",/. Otherwise, label n

by 72 where X is the first m em ber of F for which X • H(n)--- {~.
(iii) If tl is labeled by a set X ¢ F , for cach (CEX, generate a new

downward arc labeled by (c. This arc leads to a new node m with
H(m) = H(n)tO {(c}. The new node rn will be processed (labeled
and expanded) after all nodes in the same generation as n have
been processed.

(3) Return the resulting dag, D.

The construction algorithm corresponds to Reiter 's basic HS-tree algorithm
without pruning. It differs only in that the first member of F which qualifies as
a label for a node is selected rather than an arbitrary member . Note, also, that
as a result of ordering the collection of sets, the algorithm will reuse node
labels wherever possible.

Following Reiter , we propose three pruning enhancements to the algorithm
in order to reduce the size of the dag and also generate only the minimal
hitting sets.

(1) Reusing nodes: This algorithm will not always generate a new node m as
a descendant of node n. There are two cases to consider:

(i) If there is a node n ' in D such that H(n') = H(n) U {o-}, then let the
(c-arc under n point to this existing node n'. Hence, n ' will have
more than one parent.

(ii) Otherwise, generate a new node, m, at the end of this (c-arc as
described in the basic HS-DAG algorithm.

(2) Closing: If there is a node n ' which is labeled by X/and H (n ') C H(n)
then close node n. A label is not computed for n nor are any successor
nodes generated.

(3) Pruning: If the set X is to label a node and it has not been used
previously, then at tempt to prune D as described in the following.

(i) If there is a node n ' which has been labeled by the set S ' of F where
X C S', then relabel n ' with X. For any c~ in S ' - ~ , the c~-edge
under n ' is no longer allowed. The node connected by this edge and
all of its descendants are removed, except for those nodes with
another ancestor which is not being removed. Note that this step
may eliminate the node which is currently being processed.

(ii) Interchange the sets S ' and 72 in the collection. (Note that this has
the same effect as eliminating S' f rom F.)

CORRECTION TO REITER'S ALGORITHM 85

Figure 3 shows a partial HS-dag for the collection of sets used earlier,
namely, {{a, b}, {b, c}, {a, c}, {b, d}, {b}}. When the set {b} is first used as
a label, the dag is pruned as shown in Fig. 4. Note that node n 3 still has a
parent and so remains in the dag. Thus, the minimal hitting set {a, b} is not
lost, as was the case with the HS-tree.

Let HS-DAG refer to the overall algorithm with the pruning rules included.
Note that the particular HS-dag which is returned by the algorithm depends on
how F is ordered. Using FI(F) to refer to the //-rearrangement of F,
HS-DAG(F) and HS-DAG(//(F)) will lead to different HS-dags. We prove below
that these two graphs will produce the same minimal hitting sets where the
hitting set is H(n) for a node n labeled by ",/.

no: {a b}

n3: ~/ n4: { b d } ns: ~/ u/)
n6: x nT: { b }

Fig. 3. HS-dag before pruning.

no: { b }

n2: {a c}

Fig. 4. HS-dag after pruning.

//5 ~ ~/

86 R. G R E I N E R ET AL.

Theorem 4.1 (Correctness of HS-DAG algorithm). Given the ordered collection
F, the HS-DAG algorithm returns a particular labeled dag.

(1) For all nodes n labeled by ~/, H(n) is a minimal hitting set.
(2) Every minimal hitting set for F is H(n) for some node n whose label is V ~.

Proof. It is sufficient to prove the following three points: (a) the basic HS-DAG

algorithm (without the pruning rules) will find all of the minimal hitting sets,
(b) the pruning rules will not eliminate any of the minimal hitting sets and (c)
the pruning rules will eliminate all of the nonminimal hitting sets.

(a) The claim is stated, without proof on [3, p. 72]. The claim applies to
Reiter 's basic algorithm for constructing an HS-tree without pruning. Obvious-
ly, if it is true when the members of F are selected arbitrarily, it must be true
for any particular ordering, that is, for our related basic H S - D A G algorithm. We
prove it below in Lemma ~.2.

(b) It suffices to show that none of the three pruning rules will remove any
~/-labeled node.

(1) The process of reusing nodes does not remove any nodes. It is simply
used to encode an HS-tree as a dag. Notice that we can recapture the tree
information by replicating each node that has multiple parents. For each node
n with multiple parents: Assume that n is connected to its m i parent by the
c~i-labeled branch, that is, the ai branch of mi leads down to n for i = 1 k.
The sub-dag rooted at n can be replicated k times, with the a~ branch of m,
pointing to the ith copy. We obtain a tree by expanding each such node. As
this step has no effect on any of the ~/-labeled nodes, it does not interfere with
either of the other pruning rules nor with other applications of itself.

(2) The process of closing nodes does remove some nodes from an HS-dag.
By construction, it only removes a node n if there is a ~/-labeled node n' for
which H(n') is a proper subset of H(n). Note that H(n ') is a hitting set since n'
is labeled ~/. The basic H S - D A G algorithm would have left node n and all of its
descendants. Let c be any ~/-labeled node in the sub-dag rooted at node n.
Notice that H(c) must be a superset of H(n) and thus it would be a strict
superset of H(n ') . As H(n') is a hitting set, H(c) cannot be a minimal hitting
set.

(3) Pruning transforms an HS-dag into another one. That is, it produces the
dag associated with HS~DAG(//(F)) for some rearrangement II, rather than the
one (begun) for HS-DAG(F). In general, when a node's label is changed from S
to S', then El(F) will interchange S and S' in F. Note that there is always some
permutation of the members of F such that pruning will never apply.

(c) Recall that, by definition, for every nonminimal hitting set h there is a
minimal hitting set h m such that h m C h. Suppose that there is a node n in the

CORRECTION TO REITER'S ALGORITHM 87

unpruned HS-dag which the basic construction algorithm would have produced
such that H(n) is this nonminimal hitting set h. From (b) above we know that
this HS-dag will include a node labeled ~ /whose H-set is h m. Call this node n m.
Notice that n m will appear closer to the root of the dag than will node n. By
virtue of the algorithm's breadth-first ordering, n m will be generated before n.
Enhancement (2) (closing) of the H S - D A G construction algorithm would pre-
vent this node n from being generated and labeled, as this rule would close
node n as soon as it was considered. This enhancement might actually close the
ancestors of n. []

Lemma 4.2. The basic HS-DAG algorithm without any o f the pruning enhance-
ments will f ind all o f the minimal hitting sets. That is, let T be the HS-tree that it
returns and let h be any minimal hitting set. Then T will include a node n such
that (1) H(n) is h and (2) the label for n is ~/.

Proof. By induction on the cardinality of F:
Base. If IF] = 0 then the only minimal hitting set for F is the empty set.

Notice that the only HS-tree for F is the degenerate tree consisting of a single
node n 0 labeled by ~/. As H(no) = {}, every possible HS-tree for F includes all
of the minimal hitting sets for F.

Induction. Let T be any HS-tree for the collection F where IFI = n + 1. Let
its root node be labeled b y f j where f~ ~ F a n d f ~ = { m l , . . . , mk}. Define F i to
be the members of F which do not include the element mi, i.e., F i = { f l f E F
and m i ~ f } . Notice that the subtree under m i is an HS-tree for the collection

and that [Fil < IF[. By inductive assumption, the H-sets of the X/-labeled
nodes of the HS-tree for F~ include all of the minimal hitting sets for F~. This
means that the H-sets for each of the ~/-labeled nodes in the HS-tree for F is of
the form h i tO {mi} where h i is a minimal hitting set for F i. It suffices to show
that this accounts for all of the minimal hitting sets for F.

Let h be any of the minimal hitting sets for F. By definition, there is an
element, call it ms, such that m i ~ h and m i E)c0. This m i is sufficient to account
for every ~ ~ F for which m i E ~. The remaining elements of h must (minimal-
ly) hit each of the remaining members of F, that is, h - { m i } must be a
minimal hitting set for F i. This is true by construction. []

5. Conclusion

This note demonstrates that Reiter 's algorithm for computing minimal hitting
sets fails under certain circumstances: While the basic algorithm for construct-
ing a hitting set tree is correct, the application of pruning techniques can result
in the loss of minimal hitting sets. We present a revised algorithm which uses a
directed acyclic graph rather than a tree structure and prove it is correct.

88 R. GREINER ET A L

ACKNOWLEDGMENT

Barbara Smith and Ralph Wilkerson were supported in part under grants from McDonnell Douglas
Research Laboratories (Independent Research and Development) and the Missouri Research
Assistance Act. Russell Greiner was supported by a grant from Canada's National Science and
Engineering Research Council. We would also like to thank Ruth Aydt for pointing out the need
for a clarification on node relabeling.

REFERENCES

1. de Kleer, J. and Williams, B., Diagnosing multiple faults, Artificial Intelligence 32 (1987)
97-130.

2. Provan, G., Complexity analysis of multiple-context TMSs in scene representation, in: Proceed-
ings AAAI-87, Seattle, WA (1987) 173-177.

3. Reiter, R., A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57-95.

Received July 1988; revised version received January 1989

