Algorithmic Thinking
and
Structured Programming

!'_ (in Greenfoot)

Teachers:
Renske Smetsers-Weeda
Sjaak Smetsers

iAs 6, part 5.6: Calculating a fenced area

o Execution by pressing the run button, no iteration in act.

LAS 6, part 5.6: Calculating a fenced area

!

o Step 1: walking around the area

= Assumption: Mimi is standing next to
the area with the fence on the right.

o Solution:

public void walkAroundFencedArea() {
turnRight();
if (! canMove()){
turnLeft();
}

move();

¥

LAS 6, part 5.6: Calculating a fenced area

!

a Step 2: calculate the area X
= We need 2 variables to keep track of " "

. . it Nt

the width and height W M

it N I N I AN N I

s Are these local variables or instance
variables?

o Answer: Instance variables

public class MyDodo extends Dodo {
private int myNrOfStepsTaken;

private int myAreaWidth;

private int myAreaHeight;
<ouu> \

Instance variables

LAS 6, part 5.6: Calculating a fenced area

4

o Instance variables: initialization in the
constructor

public MyDodo(int init _direction) {

super (init di tion);
myNrOfEggsHatched = O3
myArealWidth ;
myAreaHeight

Constructor

cal

| to the Dodo constructor

*As 6, part 5.6: Calculating a fenced area

3

Y"#

x

o Adjusting the instance variables.

3
= Observation: Mimi does not have to E w
make a complete tour! m W

_ it N I N I AN N I
= How does she know that she is done?
= Answer: as soon as she has computed the

width and height.

LCaIcuIating a fenced area
=

- Solution

public void calculateFencedArea() {
if (myAreaWidth == @ || myAreaHeight == 0) {

} else {

System.out.println("The size of the fenced area is "

+ myAreaHeight * myAreaWidth);
Greenfoot.stop();

:‘7;
it
it
it it
it
it

BlueJ

Different programming environment (as opposed to Greenfoot)
Same language: Java

LRecursion

ey
»

a A smaller part of oneself is embedded In itse
o Many natural phenomena are recursive

(a) Trees (b) Infinite mirror images (c) dominos

Sometimes, it is easier to solve a given problem using recursion

11

L Recursive Definitions

3

o In a recursive definition, an object is defined In
terms of itself (but then smaller).

o We can recursively define sequences, functions,
sets, ...

a Recursion is a principle closely related to
mathematical induction.

12

L EX. 1: The handshake problem

B
Question: There are n people in the room.

If each person shakes hands once with every other
person, what will the total number of handshakes be?

Two people Three people Four people

13

+ EX. 1: The handshake problem (cont'd)

a There is a trick to know the total number
= If there are two people, only one handshake h(2)=1

let h(n) calculate the number of handshakes needed,
n ‘the number of people’is 2,

h(2) ‘the number of handshakes for 2 people’ equals 1.

so h(2)=1

14

*Ex. 1: The handshake problem (cont’'d)
B

o There is a trick to know the total number

= If there are two people, only one handshake h(2) =1
= If there are three people, treat it as having one
more person added to the two people, and h(3)=h(2) +2

shakes hands with them (2 extra handshakes)

let h(n) calculate the number of handshakes needed,

n ‘the number of people’ is 3,

h(3) ‘the number of handshakes’ for 3 people equals:

« the number of handshakes needed for 2 people, so h(2)
* plus two more handshakes, so + 2

so h(3)=h(2)+2

15

LEX. 1: The handshake problem (cont’'d)

!

o There is a trick to know the total number

= If there are two people, only one handshake h(2) =1
= If there are three people, treat it as having one
more person added to the two people, and h(3)=h(2) +2

shakes hands with them (2 extra handshakes)

= If there are four people, treat it as having one
more person added to the three people, and
shakes hands with them (3 extra handshakes)

h(4) = h(3) + 3

let h(n) calculate the number of handshakes needed,

n ‘the number of people’is 4,

h(4) ‘the number of handshakes’ for 4 people equals:

* the number of handshakes needed for 3 people, so h(3)
* plus two more handshakes, so + 3

SO h(4) =h(3) + 3 .

LEX. 1: The handshake problem (cont’'d)

!

o There is a trick to know the total number

= If there are two people, only one handshake h(2) =1
= If there are three people, treat it as having one
more person added to the two people, and h(3)=h(2) +2

shakes hands with them (2 extra handshakes)

= If there are four people, treat it as having one
more person added to the three people, and
shakes hands with them (3 extra handshakes)

h(4) = h(3) + 3

o We can generalize the total number of handshakes
Into a formula:

h(n)=h(n-1) + (n-1) ifn>=2
h(n)=0 otherwise

17

T

Ex. 2: Factorial function

a Recursion is useful for problems that can be
represented by a simpler version of the same problem

o Example: the factorial function
6!=6*5*4*3*2*1

Y
ol

We could write:
6! =6 * 5l

18

LEX. 2: Factorial function

In general, we can express the factorial function as follows:
n'=n*(n-1)!
Is this correct? Well... almost ...

The factorial function is only defined for positive integers. So
we should be a bit more precise:

n'=n*(n-1)! (if nis larger than 1)
n=1 (if nis equal to 1)

19

L Recursion
gl

o Recursion is one way to decompose a task into
smaller subtasks

= Each of these subtasks is a simpler example of the
same task

= The smallest example of the same task has a non-
recursive solution

o The factorial function

= Nl =n*(n-1)! (simpler subtask is (n-1)!)

mll=1 (the simplest example is n equals 1)

20

How many pairs of rabbits can be produced

4 from a single pair in a year's time?

o Assumptions:
= Each new pair of rabbits becomes fertile at the age of one month

= Each pair of fertile rabbits produces a new pair of offspring every
month;

= None of the rabbits dies in that year.

o How the population develops:
= We start with a single pair of (newborn) rabbits;
= After 1 month, the pair of rabbits become fertile 30T
= After 2 months, there will be 2 pairs of rabbits
= After 3 months, there will be 3 pairs (2+1=3)

= After 4 months, there will be 5 pairs (since the following month
the original pair and the pair born during the first month will both
produce a new pair and there will be 5 in all (2+3=5).

Monthly rabbit population: 1, 1, 2, 3, 5, ...

21

LPopuIation growth in nature

3

o Leonardo Pisano (nickname: Fibonacci) proposed the seguence in
1202 in The Book of the Abacus.

Monthly rabbit population: 1, 1, 2, 3, 5, ...

48
Y8
Y6 wy
Bis 8y

38 83 e 38 e

W

22

How many pairs of rabbits can be produced
Lfrom a single pair in a year's time?

3

o Can you generalize the total number of pairs into a
formula?

a Monthly rabbit population: 1, 1, 2, 3, 5, ...

o Reminder. Our handshake formula: @

h(n) =h(n-1) + (n-1) ifn>=2
h(n) =0 otherwise

23

*Fibonacci
Bl

aFibonacci numbers:
1,1, 2, 3, 5, 8, 13, 21, 34,
where each number is the sum of the preceding two
example: f(2) = f(1) + f(0)
f(3) = f(2) + f(1)

aRecursive definition:

s F(O0) =1 (Fibonacci number at 0" position)
s F(1l) =1 (Fibonacci number at 1St position)
s F(number) = F(number-1)+ F (number-2)

24

4' Fractals: self-similar patterns

Self-Similarity in
Fractals

* Exact

« Example Koch
snowflake curve

« Starts with a single line
segment

* On each iteration

replace each segment
by P

» As one successively
zooms in the resulting
shape is exactly the
same

Nature

larity In

-Simi

Self

—

BluedJ and recursion

o Blued is environment (IDE) for Java programming (as
an alternative for Greenfoot).

o In this assignment you will experiment with recursion.

Drawing trees:
o Using recursion typically less effort than ‘by hand’

o Recursive definition is the basis for animated movies
and games.

LGetting started with BlueJ
B

How to call a tree-drawing method
1. Right-click on the TreePainter class and select ‘new TreePainter()’

Mew Class... ! Painter TreePainter
___:_:p 9
: new TreePainter()
[:-,. i

Open Editor
Compile i_ _______ P
1 Compile
|
I Inspect
cCanvas !
= Remove

2. An empty canvas is created. Move it aside (don’t click it away).

Tréef’éinter

3. Inthe bottom of the screen, right-click on the instance you just created:

4. Choose one of the methods to draw a tree.

5. Each time you wish to draw a new tree, repeat the steps above. You can keep multiple canvases
open at a time.

{ Canvas orientation

B . :
o Coordinates are as you are accustomed to in math

(opposed to Greenfoot)
2 Origin (0,0) is in the bottom left corner
a Always starts facing East
= After turning 90 degrees (counterclockwise),
pointer faces North

LUnderstanding drawSimpleTree

void draw SimpleTree(double length, double beginX , double beginY, double dir)

Tinker (“play around with”) assignment:
o Run, view and analyze the code
a Try to figure out how it works.

*Calculating coordinates and angles

3

Method is given beginX, beginY, length and dir
Must calculate endX and endY and new direction

Calculate x coordinate for end of branch:
0 double endX = beginX + length * Math.cos (dir);

Calculate y coordinate for end of branch:
o double endY = beginY + length * Math.sin (dir);

Calculate next angle:
o dir + bendAngleSimpleTree

0 double bendAngleSimpleTree = 22.0/180 * Math.PI;
(uses 22 degrees and then turns degrees into radians)

LdrawSimpIeTree method explained

The first time method is called with the trunk information:

public void drawSimpleTree() {
drawSimpleTree(180, CANVAS WIDTH/2, 50, Math.P1/2);

}

After drawing the trunk, the method calls itself 2 times,

each time with a shorter branch and a new direction:
void drawSimpleTree(double length, double beginX , double beginY, double dir)

drawLine(beginX, beginY, endX, endY);

double lengthSubTree = length * shrinkFactorSimpleTree; // shrink branch
drawSimpleTree (lengthSubTree, endX , endY, dir + bendAngleSimpleTree);
drawSimpleTree (lengthSubTree, endX , endY, dir - bendAngleSimpleTree);

}
The algorithm stops when the branches become too small

(shorter than length 2)

JldrawPurpIeTree method explained

3

More variation:

o Use of color

o Define colors using RGB (Red-Green-Blue) color space

 CEECEE [[][]
 PEREEEN | [] [
RN [e
setPenColor (©, 128, 255); Bl [[T EEEC
IEEEEEEET N EE.
IEEEEEEEEEEEE

Hex: # 0080FF
. . Green: (128 .
Tinker assignment: Bl 255

o Experiment with a different (more natural) pen color
o Tip: Google “RGB table”

LdrawFuIIBodyTree method explained
B

More variation for an even more natural look:
o Branch thickness

a Algorithm:

= If branch length is long (tree trunk and main branches)
= Branch is drawn thick

= else, the length is short (small branches & leaves)
= Branch is drawn thin (with minimum of 1 pixel)

Tinker assignment:
o Run, view and analyze the code.
o Experiment with a different 1ength and treeLengthiWitdthRatio

drawMinorRandomTree explained

=

B o
More variation for an even more natural look:

o Randomness
= getRandomNumber(60, 90)
returns a random int between 60 and 90

a Algorithm:

= Branch length is shrinked by a shrinkFactor
= between 60% and 90%
= Subtree is drawn

JldrawN aturalTree

3

Assignment: Write your own tree method

o Add more variation for a more natural look| «aﬁ
= Combining branch thickness and use of ¢ lor
= More randomness of angles and lengths

= |ncorporate randomness in colors

= Use appropriate colors, i.e. different (random) shades of
green/brown, but not hot-pink

o Randomness in branches:
= Occasionally leave out a branch
= Occasionally draw one branch in front of the other

o .. What else can you draw? (a Christmas tree???)

—

o Write a new method
= Copy the code from drawSimpleTree

= Add code, inspired from:
= drawPurpleTree
= drawFullBodyTree
= drawMinorRandomTree

LWrapping up
B

- Final test: what to expect (next sheet)
- Final assignment: send us your MyDodo.java file

- Final course survey:
http://go0o.gl/forms/m3TmC32SkE9yHwW503

https://www.google.com/url?q=http://goo.gl/forms/m3TmC32SkE9yHw503&sa=D&ust=1463655948179000&usg=AFQjCNHbr1vP56CEAPomH_3MKg0EmvgRRg

=

Test: what to expect

o During testweek
o Theory In assignments 1 through 7
a Similar to the quizzes
a A bit of theory
o Algorithms, flowcharts and code:
= Designing
= Analyzing
= Writing

LThank Youl!l

And as a final remark:

Thank you all!
We really enjoyed teaching you ©

After handing in MyDodo.java and passing the final test:
- You will get a certificate from the RU
- Be sure to include this on your CV!!

