
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers

Sjaak Smetsers

Today’s Lesson plan (3)

 10 min Looking back

 What did we learn last week?

 Blocks of:

 Theory

 Exercises

 Course exercises and discuss problems / homework

 5 min Wrapping up

 Homework

 Next week: quiz

Retrospective

 Parameters, signatures, method calls, results

 Mutator / accessor methods

 Getter / Setter methods

 Flowcharts

Retrospective: sequence

Retrospective: sequence

Accessor methods (questions)

public boolean canMove() {

if (! borderAhead ()) {

return true;

} else {

return false;

}

}

10

flowchart code

Start Initial situation:
Dodo is standing in

the world

return false

CAN MOVE

NOT
border
Ahead

True False

return true

End
Final situation:
equal to initial

situation

Mutator methods (behavior)

public void act() {

move();

if (foundFood()) {

eatFood();

goHome();

}

}

11

Start Initial situation:
searching for food

Einde

Final situation: moved.
Still searching for food or

heading home

SEARCH FOR
FOOD

foundFood?
True

FalseeatFood

move

goHome

flowchart code

Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined

and creative process)

2) Formulate that algorithm in

terms of a programming

language (a disciplined and

very precise process)

We use Java

Always check that your algorithm is correct by

running/testing the implementation!

We use a systematic approach

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting on the solution chosen and proces

 Generalizing and re-use of existing solutions

Anatomy of a method (1)

Signature: first line of a method declaration (up to ‘{‘)

public void jump(int distance) {

}

body

signature

Anatomy of a method (2)

Name of this method

public void jump(int distance) {

}

Anatomy of a method (3)

What type of result (value) is returned?

void = nothing returned

int = returns an integer (0, 1, 2, ...)

etc. a method can return anything

public void jump(int distance) {

}

Anatomy of a method (4)

Parameters for passing info to

this method (here one parameter)

public void jump(int distance) {

}

Parameter type: the kind

of information passed

Parameter name

Anatomy of a method (5)

public boolean canJump(int distance) {

<< body >>

}

Return a boolean (true or false)

Getter and setter methods

 A class has it’s own:

 Methods

 Data

 Getter vs. setter methods

 No other object may touch/change this (safe idea!!!)

 Want info: ask the object with a get method

 Want to change data: ask the object with a set

method

Object-Oriented class design

Student

Data:

double moneyInWallet

Methods:
double countMoneyInWallet ()

Class has data and methods

MyDodo

Data:
int nrOfEggsLaid
int nrEggsToHatch

Methods:
int getNrOfEggsLaid ()
void setNrOfEggsToHatch (int nrEggsToHatch)

Getter vs. Setter methods

 int getNrOfEggsLaid ()

 Question: “Dodo, please tell me how many eggs

you have laid”

 Effect: Dodo returns the number of eggs laid (int)

 void setNrOfEggsToHatch (int nrEggsToHatch)

 Statement: “Dodo, this is the number of eggs you

have to hatch”

 Effect: Dodo changes her data so that she

remembers (or stores) this new amount.

Today’s Lesson Goals

 Checking and assigning values

 Algorithms & flowcharts:

 Sequences

 Selection (if-then-else)

 Repetition (while)

 Structured code modification & debugging

 Quality of a solution

Any questions so far?

Counting floors

Counting

 Starts at….

USA

4th floor

…

2nd floor

First floor

NL

3e verdieping

…

1e verdieping

0: Begane Grond

Counting starts at…

Tradition Starts counting at

USA 1

NL 0

US tradition: skip 13th floor

Counting starts at…

Tradition Starts counting at

USA 1

NL 0

Tradition Starts counting at

Maths 1

Comp. Science 0

US tradition: skip 13th floor

Start counting at 0!!!

0
1
2

Unplugged: Swap puzzle

What it’s about:

 Coming up with an algorithm

 Looking / planning ahead

 Efficiency

 Testing

Swap Puzzle level 1

Square 0 Square 1 Square 2

Swap Puzzle

 Pieces start on different (non-white) color

 A piece can move to an empty adjacent square

 Can jump over an adjacent piece of another color onto

an empty square

 Method to use: getsThePieceFrom

Step 1: Square 1 GETS THE PIECE FROM Square 0

 Goal: Solve the puzzle in the least amount of steps

Swap Puzzle level 1

Square 0 Square 1 Square 2

Swap Puzzle level 2

 A piece can move to an empty adjacent square

 Can jump over an adjacent piece of another color onto

an empty square

 Goal: Solve the puzzle in the least amount of steps

 Write down the steps

 In 5 minutes: compare and share algorithms

 Method to use: getsThePieceFrom

Move 1: Square 2 GETS THE PIECE FROM Square 1

Square 0 Square 1 Square 2 Square 3 Square 4

Swap Puzzle level 2
Challenge: Most efficient algorithm

- What to count / how to compare efficiency?

- How do you know that your algorithm works?

Tip:

SQUARE 2 GETS PIECE FROM SQUARE 1

Can be simplified to (Java code):

square2 = square1;

Square 0 Square 1 Square 2 Square 3 Square 4

Swap Puzzle level2

Can be solved in 8 moves:
Move1: square2 = square1; // sq2 gets piece from sq1

Move2: square1 = square3; // sq1 gets piece from sq3

Move3: square3 = square4; // sq3 gets piece from sq4

Move4: square4 = square2; // sq4 gets piece from sq2

Move5: square2 = square0; // sq2 gets piece from sq0

Move6: square0 = square1; // sq0 gets piece from sq1

Move7: square1 = square3; // sq1 gets piece from sq3

Move8: square3 = square2; // sq3 gets piece from sq2

Square 0 Square 1 Square 2 Square 3 Square 4

Swap Puzzle level 3

 Can you come up with the most efficient algorithm?

 Answer will be revieled next week!

Swap puzzle: what its about

 Describing your steps => algorithm !!

 Specific series of actions to get the job done

 Write down algorithm => then you’ll still have

solution next week

 Importance of testing:

 before: step through your answer (like processor)

 after: don’t assume it works, check it!

 Efficiency

 Think of a solution, then check for smarter solution

 Looking ahead vs. trail and error

 Look ahead and consider all possible moves

 Necessary for efficient result with complex problem

Swap-puzzle and assigning values

Assigning values using =

 square 1 gets the value of square 2

 Set square1 to (value of) square 2

 In Java code: square1 = square2;

Check value using ==

 Does square 1 have the value of … ?

 In Java, to check if square1 is / has redPiece:

if (square1 == redPiece) {

…

}

Checking values

 == means EQUALS TO

 recall: ‘=’ means ‘gets value’ or ‘becomes’

 ! Means NOT

 && Means AND

 || Means OR

Java building blocks (for specifying behaviour)

Control structures:
constructions to compose programs,

47

 Sequence

 Selection (Choice)

 Repetition

Who are

you?

I’m Mimi

Specifying behavior

Control structures:
constructions to compose programs

like:

 Sequence: stepA; stepB; …

 Selection: if (check()) then stepsThen else stepsElse

 Repetition: while (check()) stepsWhile

public … methodName(…) {

step1();

step2();

step3();

}

flowchart code

Sequence

flowchart

code

Selection (choice, if..then..else)

public … methodName(…) {

if(check ()) {

step1a();

}else{

step1b();

}

}

public … methodName(…) {

while (check ()) {

doSomething ();

}

}

flowchart

code

Repetition (iteration, loop) – WHILE

While true, then repeat…

so, the TRUE-part is repeated

Turn facing North- using if

Assume you may use the methods:

How to turn so that facing North?

1. Algorithm (in words)

2. Flowchart

3. Code

Draw a flowchart using (only) if statements

Turn facing North – using while

Assume you may use the methods:

How to turn so that facing North?

1. Algorithm (in words)

2. Flowchart

3. Code

Draw a flowchart using a while

Turn facing North – using while

 Why is this solution more elegant / preferable?

Turn facing North – alg into code

Assume you may use the methods:

How to turn so that facing North?

1. Algorithm (in words)

2. Flowchart

3. Code

Flowchart Code

boolean facingNorth ()

void turnRight ()

Flowchart -> code

public void faceNorth() {

while (! facingNorth) {

turnRight ();

}

}

flowchart

code

Note: often a ‘NOT’ is used in

condition (just as in words)

Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined

and creative process)

2) Formulate that algorithm in

terms of a programming

language (a disciplined and

very precise process)

Always check that your algorithm is correct by running/testing the

implementation!

We use a systematic approach

Steps in creating a solution

1. Think Algorithm

2. Flowchart

3. Code

public .. methodName(…) {

step1();

step2();

step3();

}

Debugging (fixing mistakes)

1. Remove compile errors

2. Check if code represents flowchart

3. Check if flowchart represents algorithm

4. Check for thinking-errors in your algorithm

public .. methodName(…) {

step1();

step2();

step3();

}

Method with repeating code

Use submethods

Advantages submethods

 Easier to read / understand

 Code can easily be adjusted

 Testing of smaller (code) units

 Submethods can be re-used in other algorithms

Advice when modifying code

 After each MINOR adjustment

 Compile

 Test if it still works

 If you do too much at once, and then get an error…

 … you’re doomed to get frustrated!

 Remember, from our first lesson:

 Expect to make mistakes!

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting on the solution and proces

 Generalizing and re-use of existing solutions

Wrapping up [1]

Save your work!

Discuss how/when to finish off and who will turn it in.

Homework:

 Course downloads can be found at:

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Dominicus/

 Finish Assignment 2

 Finish Assignment 3

 Hand via email to sjaaksm@live.com

Wrapping up [2]

 Quiz: what to expect?

 Topics: Assignment 1 & 2

 Difference between accessor/mutator methods

 Signature of a method (incl. parameters, results)

 Types (such as int, boolean, String, void)

 Explain flowcharts: sequence, selection, repetition

 Devise an algorithm in words

 Transform an algorithm into flowchart

 Reflection/evaluation: tips/tops

