Algorithmic Thinking
and
Structured Programming

!'_ (in Greenfoot)

Teachers:
Renske Smetsers
Sjaak Smetsers

+ Today’s Lesson plan (3)

B
2 10 min Looking back

= What did we learn last week?

o Blocks of:
= Theory
s EXxercises

o Course exercises and discuss problems / homework
2 5 min Wrapping up

= HOomework
= Next week: quiz

=

Retrospective

o Parameters, signatures, method calls, results
o Mutator / accessor methods

o Getter / Setter methods

a Flowcharts

iRetrospeotive: seqguence

Dodo s inthe

world

turnRight

!

turnRight

¥

turnRight
Final situation:
Dadea s inthe
world, turned
S0degrees to left

Retrospective: sequence

Dodo is inthe
world
turnRight
v
turnRight
v
turnRight
Final situation;
Dodo s inthe
fr* o world, turned
* Turn 90 degrees to the left 90degrees to left
*f
public void turnleft(){ . .
urnRight () : public wvold act() |
turnRight () turnleft();

turnBight () ;

v

,‘,"' :
=

Accessor methods (questions) j—

flowchart code

DGR (o) [
Dodo is standing in public boolean canMove() {

the world
if (! borderAhead ()) {

True .
alse .
border return true;
Ahead } else {

return true return false return false;
77777777 Final situation:
equal to initial

situation

10

v

.(‘— .
\\. \

Mutator methods (behavior) .

flowchart code
_ @ ----------- Initial situation:
searching for food public void act() {
move move();
if (foundFood()) {
True .
foundFood? eatFood();
goHome() ;
eatFood False
| }
goHome }

| Final situation: moved.
. | Still searching for food or
Einde) heading home

11

*Challenge & problem

gl You must perform two aspects well:

f’
-
”
-

(—
1) Create a problem-solving
algorithm (a disciplined
and creative process)

We use a systematic approach

—_—
‘5

T=>
2) Formulate that algorithm in
terms of a programming
language (a disciplined and
very precise process)

We use Java

rrrrrr <

Always check that your algorithrﬁ IS correct by
running/testing the implementation!

—

Computational thinking

o Working in a structured manner:
= Breaking problems down into subproblems
= Design, solve and test solutions to subproblems
= Combining these (sub)solutions to solve problem
o Analyzing the quality of a solution
o Reflecting on the solution chosen and proces
o Generalizing and re-use of existing solutions

Anatomy of a method (1)

B

Signature: first line of a method declaration (up to {*)

N\

public void jump(int distance)| { }Signature

instructions

of the method ("body") - body

Anatomy of a method (2)

B

Name of this method

\

public void jamp(int distance) {

instructions

of the method ("body")

Anatomy of a method (3)

B

What type of result (value) is returned?
void = nothing returned

Int =returns an integer (O, 1, 2, ...)
etc. a method can return anything

\

public void jump(int distance) {

instructions

of the method ("body")

Jl Anatomy of a method (4)

3

Parameters for passing info to
this method (here one parameter)

A

Parameter type: the kind
of information passed

Parameter name

’ /

|

public void jump(int distance) {

instructions

of the method ("body")

L Anatomy of a method (5)

ml
Return a boolean (true or false)

g@
\
public boolean canJump(int distance) { ‘ %
<< body >> Y

¥

Getter and setter methods

| EE

o A class has it's own:
s Methods
= Data

o Getter vs. setter methods
o No other object may touch/change this (safe idea!!!)
= Want info: ask the object with a get method

= Want to change data: ask the object with a set
method

LObject-Oriented class design
4

Student

Data:
double moneylnWallet

Methods:
double countMoneyInWallet ()

LCIass has data and methods

!

MyDodo

Data:
int nrOfEggslLaid
int nrEggsToHatch

Methods:
int getNrOfEggsLaid ()
void setNrOfEggsToHatch (int nrEggsToHatch)

Getter vs. Setter methods

=

. .
aoint getNrOfEggsLaid ()

- Question: “Dodo, please tell me how many eggs
you have laid”

- Effect: Dodo returns the number of eggs laid (int)

avoid setNrOfEggsToHatch (int nrEggsToHatch)

- Statement: “Dodo, this is the number of eggs you
have to hatch”

- Effect: Dodo changes her data so that she
remembers (or stores) this new amount.

Today's Lesson Goals

o Checking and assigning values
a Algorithms & flowcharts:
= Seguences
» Selection (if-then-else)
= Repetition (while)
o Structured code modification & debugging
o Quality of a solution

iAny guestions so far?

Counting floors

Counting

o Starts at....

NL

3e verdieping /

le verdieping —— |

0: Begane Grond —

USA
A floor

2"d floor

First floor

Counting starts at...

Starts counting at

USA 1

-.s—— .

22.23.24.25.

180198208218

148 158 160017

- US tradition: skip 13t floor
a@io@11® 12

@ ¢8 78 °®

»1@ 20 38 1
= » B

o @B

Counting starts at...

Starts counting at Starts counting at
USA ! Maths
| NL 0 Comp. Science 0

Al : "'.‘f_:"?'.)g' :

3@248258)
1800198208218
14‘ x” 17

US tradition; th floor

oM o 28
@ ¢8 78 °8

*1. 20 3 40
"-.":A.:'“'

o B

iStart counting at O!!!

LUanugged: Swap puzzle
B

What it's about:

o Coming up with an algorithm
o Looking / planning ahead

o Efficiency

a Testing

iSWap Puzzle level 1

Square 0 Square 1 Square 2

{ Swap Puzzle

B . :
o Pieces start on different (non-white) color

0 A piece can move to an empty adjacent square

o Can jump over an adjacent piece of another color onto
an empty square

o Method to use: getsThePieceFrom
Step 1: Square 1 GETS THE PIECE FROM Square O

o Goal: Solve the puzzle in the least amount of steps

iSWap Puzzle level 1

Square 0 Square 1 Square 2
STEP TO COMMAND FROM
Step 1: Square 1 | GETS THEPIECE FROM | Square 0
Step 2: Square 0 | GETS THE PIECE FROM | Square 2
Step 3: Square 2 | GETS THEPIECE FROM | Square 1

Swap Puzzle level 2

o A piece can move to an empty adjacent square

o Can jump over an adjacent piece of another color onto
an empty square

o Goal: Solve the puzzle in the least amount of steps
o Write down the steps

o In 5 minutes: compare and share algorithms
Square 0 Square 1 Square 2 Square 3 Square 4

o Method to use: getsThePieceFrom
Move 1: Square 2 GETS THE PIECE FROM Square 1

Swap Puzzle level 2

Challenge: Most efficient algorithm
- What to count / how to compare efficiency?
- How do you know that your algorithm works?

Square 0 Square 1 Square 2 Square 3 Square 4

SQUARE 2 GETS PIECE FROM SQUARE 1
Can be simplified to (Java code):
square2 = squarel;

Swap Puzzle level2

Square 0

Square 1

Square 2

Square 3

Square 4

Can be
Movel:
Move2:

Move3:
Move4:
Move5:
Moveb6:
Move7/:
MoveS8:

solved in

square2
squarel

square3
square4
square2
squareod
squarel
square3

8 moves:
squarel;
square3;
square4;
square2;
squareo;
squarel;
square3;
square2;

// sq2 gets piece from sql

//
//
//
//
//
//
//

sql gets piece
sq3 gets piece
sg4 gets piece
sg2 gets piece
sgo gets piece
sgql gets piece

sgq3 gets piece

from
from
from
from
from
from

from

sq3
sq4
sq2
sqo
sql
sq3
sq2

Swap Puzzle level 3

o Can you come up with the most efficient algorithm?

o Answer will be revieled next week!

+ Swap puzzle: what its about

a Describing your steps => algorithm !
= Specific series of actions to get the job done

= Write down algorithm => then you'll still have
solution next week

o Importance of testing:
= before: step through your answer (like processor)
= after: don’t assume it works, check it!
o Efficiency
= Think of a solution, then check for smarter solution
o Looking ahead vs. trail and error
= Look ahead and consider all possible moves
= Necessary for efficient result with complex problem

LSWap-puzzIe and assigning values

!

Assigning values using =

o square 1 gets the value of square 2
o Set squarel to (value of) square 2
o In Java code: squarel = square?z,;

Check value using ==

o Does square 1 have the value of ... ?

aIn Java, to check if squarel is / has redPiece:
If (squarel == redPiece) {

+ Checking values

e
o ==means EQUALS TO

= recall: '=" means ‘gets value’ or ‘becomes’
o ! Means NOT
0 && Means AND
o || Means OR

LJava building blocks (for specifying behaviour)

4

Control structures: e e
constructions to compose programs, you?

d Sequence
d Selection (Choice)
U Repetition

47

Specifying behavior

T

Control structures:
constructions to compose programs

like:

1 Sequence: stepA; stepB; ..
O Selection: if (check()) then stepsThen else stepsElse
U Repetition: while (check()) stepsWhile

Seguence

flowchart

|/Initial situation

code

public .. methodName(..) {
stepl();
step2();
step3();

I/Final situation

* Selection (choice, if..then..else)

Step 1a

flowchart

/

public .. methodName(..) {
if(check ()) {
stepla();
telse{
steplb();

4 Repetition (iteration, loop) — WHILE
u

/

_ ------------------------ |nitia|5ituati0n

While true, then repeat...
so, the TRUE-part is repeated

End) ‘/Final situation ‘ COde

flowchart public .. methodName(..) {
while (check ()) {

doSomething ();

*Turn facing North- using If
B

Assume you may use the methods:

facingNorth? turnRight

How to turn so that facing North?
1. Algorithm (in words)
2. Flowchart

3.

Draw a flowchart using (only) if statements

LTurn facing North — using while

4

Assume you may use the methods:

facingNorth? turnRight

How to turn so that facing North?
1. Algorithm (in words)
2. Flowchart

3.

Draw a flowchart using a while

ilTurn facing North — using while

o Why is this solution more elegant / preferable?

turnRight

*Turn facing North — alg into code

"
Assume you may use the methods:
Flowchart Code
boolean facingNorth ()
turnRight void turnRight ()

How to turn so that facing North?
1. Algorithm (in words)

2. Flowchart

3. Code

JlFIowchart -> code

False NOT
facingNort

/

Note: often a ‘NOT' is used in
condition (just as in words)

True

turnRight

code

" public void faceNorth() {
while (! facingNorth) {

turnRight ();

flowchart

*Challenge & problem

gl You must perform two aspects well:
4—”'—7 TTTe-s
1) Create a problem-solving 2) Formulate that algorithm in
algorlthm.(a dlSCIpllned terms of a programming
and creative process) language (a disciplined and

We use a systematic approach Very precise process)

lﬁ

Always check that your algorithm is correct by running/testing the
Implementation!

L Steps In creating a solution

1. Think = Algorithm
> Flowchart
3. Code

Final situation Stepl () ;
step2();
step3();

public .. methodName(..

Jl Debugging (fixing mistakes)

=

1. Remove compile errors

2. Check if code represents flowchart

3. Check if flowchart represents algorithm

2. Check for thinking-errors in your algorithm

Step 1

!

Step 2

step3 public .. methodName(..)

Final situation St e pl () ;
step2();
step3();

Method with repeating code

m . Initial situation: Dodo is
standingin the world.

turnRight

A 4

turnRight

A 4

move

turnRight

turnRight

Final situation: Dodo took one
» | stepbackward, still facing
same direction.

Use submethods

_ Initial situation: Dodo is

turn180

A 4

move

Final situation: Dodo took one

step backward, still facing
same direction

" standingin the world.

TURN 180

d

Initial situation:
Dodo is standing
in the world

Final situation:
Dodo facing
opposite
direction

ilAdvantages submethods
u

o Easier to read / understand

o Code can easily be adjusted

o Testing of smaller (code) units

o Submethods can be re-used in other algorithms

_ Initial situation: Dodo is
T standingin the world.

| turn180 | _ TURN 180

v

| move | - | Initialsituation:
1 L Dodo is standing

| turn180 | in the world
| turnRight |
| turnRight |) S

T Final situation:

@ | Dodo facing
opposite

Final situation: Dodo took one S direction
step backward, still facing ‘

same direction

Advice when modifying code

L

o After each MINOR adjustment
= Compile
= Testif it still works

o If you do too much at once, and then get an error...
= ... you're doomed to get frustrated!

o Remember, from our first lesson:
= Expect to make mistakes!

—

Computational thinking

o Working in a structured manner:
= Breaking problems down into subproblems
= Design, solve and test solutions to subproblems
= Combining these (sub)solutions to solve problem
o Analyzing the quality of a solution
o Reflecting on the solution and proces
o Generalizing and re-use of existing solutions

—

Wrapping up [1]

Save your work!
Discuss how/when to finish off and who will turn it in.

Homework:

o Course downloads can be found at:
http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Dominicus/

o Finish Assighment 2
o Finish Assignment 3
o Hand via email to sjaaksm@live.com

Wrapping up [2]

|

0 Quiz: what to expect?
= Topics: Assignment 1 & 2
= Difference between accessor/mutator methods
= Signature of a method (incl. parameters, results)
= Types (such as int, boolean, String, void)
= Explain flowcharts: sequence, selection, repetition
= Devise an algorithm in words
= Transform an algorithm into flowchart

o Reflection/evaluation: tips/tops

