
Algorithmic Thinking 

and 

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers



Today’s Lesson plan (4)

 20 min Quiz

 20 min Looking back

 What did we learn last week?

 Discuss problems / homework (and handing-in)

 Assignment 4

 (10 min Wrapping up)



Discuss problems / homework

 Only hand in (via email):

 MyDodo.java

 Document with answers to only (IN) questions

 Any problems? Please email!



Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined 

and creative process)

2) Formulate that algorithm in 

terms of a programming 

language (a disciplined and 

very precise process)

Always check that your algorithm is correct by running/testing the 

implementation!

We use a systematic approach



Today:

 Greenfoot Run: ‘Act’ in a while loop

 Greenfoot.stop()

 Parameters

 Submethods: a method call in a method

 Boolean expressions (NOT, OR, AND)



Greenfoot Run

 Run is a special Greenfoot feature

 Run: Act called repeatedly

 Act in a while loop



>Run: built –in iteration

Can only be interrupted by:

- Pressing ‘Pause’

- Calling Greenfoot.stop()



>Run: calling act repeatedly

What if your void act() contains a while-loop?

Example: hatching a row of eggs



Iteration in act

Start Initial situation

move

End Final situation

ACT

NOT  
Border 
Ahead

True

False

foundEgg

hatchEgg

True

False



ACT

Act in Run

Start

move

End

RUN

NOT  
Border 
Ahead

True

False

foundEgg

hatchEgg

True

False

NOT  
Stop

True

 One loop is 

superfluous

 Try to eliminate 

the act loop: Keep 

your act as 

simple/small as 

possible.



No iteration in act

Start

move

End

ACT

NOT  
Border 
Ahead

TrueFalse

foundEgg

hatchEgg
False

Greenfoot.stop



The golden-promise:

 Don’t put too much work in the act method.

 Avoid time-consuming while-loops or while-loops 

with ‘visible effects’.



Unplugged Songwriting

 Parameters

 Submethods



Songwriting: Parameters & Submethods

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

….

Song goes on for (just about) ever



More generic: Finding parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

Here a <SOUND> , there a <SOUND> 

Everywhere a <SOUND> <SOUND>

Old MacDonald had a farm

E-I-E-I-O



More generic: Using parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

..

Old MacDonald had a farm

E-I-E-I-O
System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);

System.out.println (“And on his farm he had a “ + animal );

System.out.println(“E-I-E-I-O”);

System.out.println(“With a “ + sound + “ ” + sound+ “here” );

System.out.println(“And a “ + sound + “ ” + sound + “there” );

…

System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);



Introducing parameters



Generic: Using parameters



More generic: finding repetition

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O



Defining submethods [1]

public void singOldMcHadFarm ( ) {

System.out.println(“Old MACDONALD had a farm”);

}

public void singEIEIO ( ) {

System.out.println(“E-I-E-I-O”);

}

public void singOldMcDonaldChorus ( String animal, String sound ) {

singOldMcHadFarm ( );

singEIEIO ();

System.out.println( "And on his farm he had a " + animal );

singEIEIO();

…
}



Why submethods [1]: easy to change

 Change in 1 place

 From:

public void singOldMcHadFarm ( ) {

System.out.println(“Old MACDONALD had a farm”);

}

 Into:

public void singOldMcHadFarm ( ) {

System.out.println(“Old McDonald had a farm”);

}



Defining submethod with arguments

public void singHadAnimal ( String animal ) {

System.out.println(“And on his farm he had a “ + animal );

}

public void singOldMcDonaldChoruss ( String animal, String sound ) {

singOldMcHadFarm();

singEIEIO(); 

singHadAnimal ( animal );

singEIEIO (); 

…

singOldMcHadFarm();

singEIEIO (); 

}



Why submethods and arguments

 More generic:

 Less code

 Less mistakes

 Easier to read / understand

 Code can be used for more (… animals)

 Easier to change

 Easier to reuse





Wrapping up

Save your work! 

Discuss how/when to finish off and who will turn it in.

Homework:

 Course downloads can be found at: 

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Dominicus/

 Finish Assignment 4

 Hand via email to sjaaksm@live.com


