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Today’s Lesson plan (4)

 20 min Quiz

 20 min Looking back

 What did we learn last week?

 Discuss problems / homework (and handing-in)

 Assignment 4

 (10 min Wrapping up)



Discuss problems / homework

 Only hand in (via email):

 MyDodo.java

 Document with answers to only (IN) questions

 Any problems? Please email!



Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined 

and creative process)

2) Formulate that algorithm in 

terms of a programming 

language (a disciplined and 

very precise process)

Always check that your algorithm is correct by running/testing the 

implementation!

We use a systematic approach



Today:

 Greenfoot Run: ‘Act’ in a while loop

 Greenfoot.stop()

 Parameters

 Submethods: a method call in a method

 Boolean expressions (NOT, OR, AND)



Greenfoot Run

 Run is a special Greenfoot feature

 Run: Act called repeatedly

 Act in a while loop



>Run: built –in iteration

Can only be interrupted by:

- Pressing ‘Pause’

- Calling Greenfoot.stop()



>Run: calling act repeatedly

What if your void act() contains a while-loop?

Example: hatching a row of eggs



Iteration in act

Start Initial situation
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End Final situation
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ACT

Act in Run

Start
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End
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 One loop is 

superfluous

 Try to eliminate 

the act loop: Keep 

your act as 

simple/small as 

possible.



No iteration in act
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The golden-promise:

 Don’t put too much work in the act method.

 Avoid time-consuming while-loops or while-loops 

with ‘visible effects’.



Unplugged Songwriting

 Parameters

 Submethods



Songwriting: Parameters & Submethods

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

….

Song goes on for (just about) ever



More generic: Finding parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

Here a <SOUND> , there a <SOUND> 

Everywhere a <SOUND> <SOUND>

Old MacDonald had a farm

E-I-E-I-O



More generic: Using parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

..

Old MacDonald had a farm

E-I-E-I-O
System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);

System.out.println (“And on his farm he had a “ + animal );

System.out.println(“E-I-E-I-O”);

System.out.println(“With a “ + sound + “ ” + sound+ “here” );

System.out.println(“And a “ + sound + “ ” + sound + “there” );

…

System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);



Introducing parameters



Generic: Using parameters



More generic: finding repetition

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O



Defining submethods [1]

public void singOldMcHadFarm ( ) {

System.out.println(“Old MACDONALD had a farm”);

}

public void singEIEIO ( ) {

System.out.println(“E-I-E-I-O”);

}

public void singOldMcDonaldChorus ( String animal, String sound ) {

singOldMcHadFarm ( );

singEIEIO ();

System.out.println( "And on his farm he had a " + animal );

singEIEIO();

…
}



Why submethods [1]: easy to change

 Change in 1 place

 From:

public void singOldMcHadFarm ( ) {

System.out.println(“Old MACDONALD had a farm”);

}

 Into:

public void singOldMcHadFarm ( ) {

System.out.println(“Old McDonald had a farm”);

}



Defining submethod with arguments

public void singHadAnimal ( String animal ) {

System.out.println(“And on his farm he had a “ + animal );

}

public void singOldMcDonaldChoruss ( String animal, String sound ) {

singOldMcHadFarm();

singEIEIO(); 

singHadAnimal ( animal );

singEIEIO (); 

…

singOldMcHadFarm();

singEIEIO (); 

}



Why submethods and arguments

 More generic:

 Less code

 Less mistakes

 Easier to read / understand

 Code can be used for more (… animals)

 Easier to change

 Easier to reuse





Wrapping up

Save your work! 

Discuss how/when to finish off and who will turn it in.

Homework:

 Course downloads can be found at: 

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Dominicus/

 Finish Assignment 4

 Hand via email to sjaaksm@live.com


