
Algorithmic Thinking 

and 

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers



Today’s Lesson plan (5) Jan 8th

 10 min Looking back

 Quiz: graded, will be discussed next week

 What did we learn before/during vacation?

 Theory for assignment 4

 Work on assignment 4

 10 min Wrapping up



Retrospective assignment 3

 Nesting

 Optimization

 Submethods

 Run as an ‘Act’ loop

 (Greenfoot.stop)

 Generic solutions



Retrospective: Optimization

 Redundancy: why do we care?



Retrospective: submethods

 Submethods: why do we bother?



Retrospective: Run

 Greenfoot Run: a while loop

 When does this stop?



Retrospective: Run

 Greenfoot Run: a while loop

 Only stops if:

 User presses 

 Calling Greenfoot.stop( ); in the code



Retrospective: Generic solutions



Conditionals

 Conditionals: 

 boolean methods

 logical operators: ||, &&, !

 || means OR

 fenceAhead ( ) || borderAhead ( )

 && means AND

 canMove ( ) && eggAhead ( )

 ! Means NOT

 ! eggAhead ( )



Return Reminder

 Return:

 After a return, End follows immediately

 No more steps executed after a return



Jump Joyfully

Example with:

 Nested if-then-else

 Using return statements

 Complex Boolean statements



Jump Joyfully

Example with:

 Nested if-then-else

 Using return statements

 Complex Boolean statements



Jump up and down joyfully

If Mimi has a nest on each side,

she jumps up and down joyfully

Strategy:

Sketch a high-level flowchart for jumpJoyfully

Tip:

 First assume nestBehind and jumpUpAndDown exist

 Then: design, implement & test them separately

MyDodo methods:

boolean nestAhead ( )   // returns true if nest in cell ahead

void turnLeft ( ) // turns 90 degrees clockwise

void turnRight ( ) // turns 90 degrees counterclockwise

void move ( ) // step forward if possible



Sketch high-level flowchart



Test using: Nested if..then..else



Test using: conjugated Boolean &&



Compare:

 Which do you prefer?

 Why?



Now: design nestOnLeft

Finished high-level flowchart

 .. Now the Boolean nestBehind()

Draw the flowchart



Boolean nestBehind



Now: test nestOnLeft ( )

Finished high-level flowchart

Designed nestBehind( )

 … now test nestBehind( ) 

What are we doing:

Testing small pieces before we use them!



Now: design and test jumpUpAndDown

Finished high-level flowchart

Designed and tested nestBehind( )

 … now design and test jumpUpAndDown ( ) 



Now: test the whole thing

Finished high-level flowchart

Designed and tested nestBehind( )

Designed and tested jumpUpAndDown ( ) 

 .. Now combine parts and test whole thing: jumpJoyfully



Now: enjoy and be proud

Finished high-level flowchart

Designed and tested nestBehind( )

Designed and tested jumpUpAndDown ( ) 

Combined parts and tested whole thing: jumpJoyfully

So, first start with high level design

Then implement small methods

Then test the whole thing



What did we just practice?

 Conditionals: 

 boolean methods

 logical operators: ||, &&, !

 Return statements

 Nested if-then-else

 Modularization: Breaking problem down, solving 

subproblems (using existing solutions), and combining to 

solve the whole problem

 Method calls (from within other methods)

 Advantageous when testing



Computational thinking

 Working in a structured manner: 

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions



Work on Assignment 4/5

movie

https://www.youtube.com/watch?v=aeoGGabJhAQ




Wrapping up

Homework for Wednesday 8:30 April 6th:

 Assignment 5:

 UNTIL AND INCL 5.1.5

 Hand via email to sjaaksm@live.com

 Reflection/Evaluation: Tips & Tops


