Algorithmic Thinking and

Structured Programming (in Greenfoot)

Teachers:
Renske Smetsers-Weeda
Sjaak Smetsers

Today's Lesson plan (6)

- Looking back
- Retrospective last lesson
\square Blocks of theory and exercises
- Variables and Operators
- Tracing code
- Unplugged: sorting

What we will learn today:

- Variables
\square Operators:
- Assignment: =, +=, ...
- Arithmetic: +,-,,, ++, ...
- Comparisons: <, ==, ...
\square Tracing code

Objects know stuff, too

- An object knows/remembers things (properties or state)

Ant
homeHill
carryingFood
act()
haveFood()
headHome()
smellPheromone()

Variables

a When executed, programs need to store information.

- Examples: user input, calculated values, object states, etc.
- This information can vary: we use the term variable to describe an element of a program which stores information.
- Variables contain data such as numbers, booleans, letters, texts, ...
- Think of them as places to store data.
- They are implemented as memory locations.
\square The data stored by a variable is called its value.
- The value is stored in the memory location.

Variables (2)

alts value can be changed.
Pronounced as 'becomes'

- This done in an assignment statement:
\square Two kinds of variables:

1. Local variables
2. Instance variables

Variables (3)

Counting using a variable For-loop

Film (20:00-25:00)

End

Naming and Declaring Variables

indicate, announce

-Choose names that are helpful such as count or speed, but not $\not \subset$ or s.
aWhen you declare a variable, you provide its name and type.

```
int numberOfBaskets;
int eggsPerBasket;
```

\square A variable's type determines what kinds of values it can hold (int, double, char, etc.).
\square Any variable must be declared before it is used.

Examples

-Examples
int numberOfEggs, nrOfStepsTaken; double average;
char pressedKey;

Film (until 1:30)

Assigning and Changing a Value

We can change the value of a variable as often as we wish. To assign a value, use:

```
variableName = some expression;
```

variable <assignto expression
Memory

```
wormsEaten = 0;
wormsEaten = wormsEaten + 1;
```


Variables and Values

-Variables
int numberOfBaskets
int eggsPerBasket
int totalEggs
\square Assigning values
eggsPerBasket = 6;
totalEggs = eggsPerBasket + 3;
eggsPerBasket = eggsPerBasket - 2;
eggsPerBasket++; //increment by 1

Operators

- Operators:
- Assignment: =, +=, ...
- Arithmetic: +,-,*, ++, ...
- Comparisons: <, ==, ...

Tracing code (ex 5.1.1)

Instructions ex 5.1.1:
-FIRST think!! And write down what you expect

- THEN check using Greenfoot
- DISCUSS together if different than expected!
-Example, what does nrOfEggsFound become?

```
int nrOfEggsFound = 3;
if ( nrOfEggsFound >=3 ){
    nrofEggsFound --;
} else {
    nrOfEggsFound ++;
}
```


Tracing code (ex 5.1.1

 int nrofEggsFound $=3$;if (nrofEggsFound >=3) \{ nrofEggs Found --;
\} else \{
nrofEggs Found ++ ;
\}

CODE	VALUE OF nrofEggsFound
Initialization: int nrOfEggsFound $=3 ;$	3
If- branch nrofEggsFound --;	2
Final situation	2

Values are overwritten

- Variable values are copied and overwritten

$$
\begin{aligned}
& \text { int } a=12 \text {; } \\
& \text { int } b=4 ; \\
& b=a ;
\end{aligned}
$$

Values are overwritten

$$
\begin{aligned}
& \text { int } a=12 \\
& \text { int } b=4 \\
& b=a
\end{aligned}
$$

CODE	VALUE OF a	VALUE OF b
Initialization:int $\mathrm{a}=12 ;$ int $\mathrm{b}=4 ;$	12	4
Assign value: $\mathrm{b}=\mathrm{a} ;$	12	12

Swapping

a Computer can only do one thing at a time

- Variable values are copied and overwritten

So, how to swap the contents of 2 variables?

SITUATION	VALUE OF a	VALUE OF b
Initial situation	4	12
Final situation	12	4

Swapping

Imagine 2 glasses in front of you, one filled with cola, the other with fanta.

- How do you swap their contents?

Swapping

A computer can only perform 1 action at a time:

- You only have one hand
- A hand can pick up one thing at a time
- Keep in mind: when a variable is assigned a new value, the old value is replaced and cannot be accessed later. (the previous method will result in 2 copies of the same value.)
- How do you swap them?
\square A temporary (empty) glass is needed.
- One of the full glasses could be poured into the temporary glass;
- the second glass could be poured into the emptied glass;
\square finally the contents of the temporary glass can now be poured into its final destination.

Swapping strategy

- Variable values are copied and overwritten
\square To swap, you need an additional 'temp' variable

$$
\begin{aligned}
& \text { int } \mathrm{a}=12 \text {; } \\
& \text { int } \mathrm{b}=4 \text {; } \\
& \text { int temp }=\mathrm{a} ; ~ / / \text { temp becomes } 12 \\
& \mathrm{a}=\mathrm{b} \text {; } \\
& \text { b = temp; } \\
& \text { // a becomes } 4 \\
& \text { // b becomes } 12
\end{aligned}
$$

Write a method boolean isEven (int inputValue)

Which

- receives an integer inputValue
\square returns True or False accordingly

You may not use \%

- Tip: you may use a while

isEven (for positive values)

public boolean isEven(int inputvalue) \{ while (inputvalue > 0) \{ inputValue $=$ inputValue - 2;
\}
if (inputValue == 0) \{
return true;
\} else \{
return false;
\}
\}

Swapping strategy (tracing)

CODE	LOOP NR	VALUE OF inputValue	Return VALUE
$\left\{\begin{array}{l} \text { while }(\text { inputvalue }>0) f \\ \text { inputvalue }=\text { inputvalue }-2 ; \end{array}\right.$	0	4	
	1	2	
	2	0	
```if ( inputValue == 0){ return true; } else { return false;```		0	true

## Testing cases

$\square$ For which values of inputValue must you test?

## Unplugged

- Sorting algorithms and efficiency




## Sort algorithms (in pairs, 5 minutes)

-Goal: Sort cards

- order: lowest to highest value ( $2<3<\ldots<10<\mathrm{J}<\ldots<\mathrm{A}$ )
- student 1 selects 2 cards (without seeing their value)
- student 2 compares the cards and tells which one has the highest value.
- nr of steps?
$\square$ Describe an algorithm (with a flowchart) using basic instructions which a 4 -year-old should be able to follow:
- getCard ( thirdCard)
- determineHighestCard (thirdCard , seventhCard )


## Sort algorithms: efficiency (2 minutes)

-Efficiency: Write down how many steps if you have:

- 10 cards
- 20 cards
- 100 cards


## Sort algorithms

- Share:
- What did you come up with?
- Efficiency


## Quick sort: divide and conquer

1) Select a card at random
2) Divide collection into two groups:
A) larger than selected card
B) smaller than selected card
3) Give each pile of cards to another team \& sit back and relax
4) Other teams repeat steps 1-3

When are we done?

## Quick sort: divide and conquer

0) If you have 0 or 1 card, then STOP
1) Select a card at random
2) Divide collection into two groups:
A) larger than selected card
B) smaller than selected card
3) Give each pile of cards to another team

Other teams repeat steps 1-3

Result: cards sorted from smallest to largest
Method: divide and conquer (recursive algorithm)

## Quick sort summary

- Divide and conquer: Recursive programming
- Simple instructions
$\square$ Complexity $\mathrm{n}^{*} \log (\mathrm{n})$
Growth Rates Compared:

	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=4$	$\mathrm{n}=8$	$\mathrm{n}=16$	$\mathrm{n}=32$
1	1	1	1	1	1	1
$\log n$	0	1	2	3	4	5
$n$	1	2	4	8	16	32
nlogn	0	2	8	24	64	160
$n^{2}$	1	4	16	64	256	1024
$n^{3}$	1	8	64	512	4096	32768
$2^{n}$	2	4	16	256	65536	4294967296
$n!$	1	2	24	40320	20.9 T	Don't ask!

## Quick sort summary

- Complexity $\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$ : purple curve



## How much better is QuickSort?

https://www.youtube.com/watch?v=aXXWXz5rF64
$\frac{1}{2}$


## Wrapping up

Homework for Wednesday 8:30 April $20^{\text {th }}$ :

- Assignment 5:
- Finish assignment 5
- Hand via email to sjaaksm@live.com

