
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Today’s Lesson plan (6)

 Looking back

 Retrospective last lesson

 Blocks of theory and exercises

 Variables and Operators

 Tracing code

 Unplugged: sorting

What we will learn today:

 Variables

 Operators:

 Assignment: =, +=, …

 Arithmetic: +,-,*, ++, …

 Comparisons: <, ==, …

 Tracing code

Objects know stuff, too

 An object knows/remembers things (properties or state)

Ants are smart.

We remember
where home is.

homeHill

4

Ant

homeHill

carryingFood

act()

haveFood()

headHome()

smellPheromone()

Variables

 When executed, programs need to store information.

 Examples: user input, calculated values, object states, etc.

 This information can vary: we use the term variable to describe
an element of a program which stores information.

 Variables contain data such as numbers, booleans, letters,
texts, …

 Think of them as places to store data.

 They are implemented as memory locations.

 The data stored by a variable is called its value.
 The value is stored in the memory location.

int nrEggsFound = 0;

A variable of type int with name

nrEggsFound

 Its value can be changed.

 This done in an assignment statement:

Two kinds of variables:

1. Local variables

2. Instance variables

Variables (2)

nrEggsFound = 15;

Pronounced as ‘becomes’

Variables (3)

Start

N = N + 1

End

COUNT PEOPLE

For each p:
person in

room

Next

Done

N = 0

Film (20:00-25:00)

Counting using a variable

For-loop

https://www.youtube.com/watch?v=z-OxzIC6pic
https://www.youtube.com/watch?v=z-OxzIC6pic

Naming and Declaring Variables

Choose names that are helpful such as count or

speed, but not c or s.

When you declare a variable, you provide its

name and type.

A variable's type determines what kinds of values
it can hold (int, double, char, etc.).

Any variable must be declared before it is used.

int numberOfBaskets;
int eggsPerBasket;

indicate, announce

Examples

Examples

int numberOfEggs, nrOfStepsTaken;

double average;

char pressedKey;

Film (until 1:30)

https://www.youtube.com/watch?v=z-OxzIC6pic
https://www.youtube.com/watch?v=aeoGGabJhAQ

Assigning and Changing a Value

We can change the value of a variable as often as we

wish. To assign a value, use:

wormsEaten = 0;
wormsEaten = wormsEaten + 1;

variableName = some expression;

expressionassign to

Memory

1

variable

0

Variables and Values

Variables

int numberOfBaskets

int eggsPerBasket

int totalEggs

Assigning values

eggsPerBasket = 6;

totalEggs = eggsPerBasket + 3;

eggsPerBasket = eggsPerBasket - 2;

eggsPerBasket++; //increment by 1

Operators

 Operators:

 Assignment: =, +=, …

 Arithmetic: +,-,*, ++, …

 Comparisons: <, ==, …

Tracing code (ex 5.1.1)

Instructions ex 5.1.1:

 FIRST think!! And write down what you expect

 THEN check using Greenfoot

 DISCUSS together if different than expected!

 Example, what does nrOfEggsFound become?

Tracing code (ex 5.1.1)

CODE VALUE OF nrOfEggsFound

Initialization: 3

If- branch 2

Final situation 2

Values are overwritten

 Variable values are copied and overwritten

Values are overwritten

CODE VALUE OF a VALUE OF b

Initialization:

12 4

Assign value:

12 12

Quiz (discuss)

Swapping

 Computer can only do one thing at a time

 Variable values are copied and overwritten

So, how to swap the contents of 2 variables?

SITUATION VALUE OF a VALUE OF b

Initial situation 4 12

Final situation 12 4

Swapping

Imagine 2 glasses in front of you, one filled with cola,

the other with fanta.

 How do you swap their contents?

Swapping

A computer can only perform 1 action at a time:

 You only have one hand

 A hand can pick up one thing at a time

 Keep in mind: when a variable is assigned a new

value, the old value is replaced and cannot be

accessed later. (the previous method will result in 2

copies of the same value.)

 How do you swap them?

 A temporary (empty) glass is needed.

 One of the full glasses could be poured into the

temporary glass;

 the second glass could be poured into the emptied

glass;

 finally the contents of the temporary glass can now be

poured into its final destination.

Swapping strategy

 Variable values are copied and overwritten

 To swap, you need an additional ‘temp’ variable

CODE VALUE OF a VALUE OF

b

VALUE of

temp

12 4 12

4 4 12

4 12 12

Variable Swapping strategy

isEven

Write a method boolean isEven (int inputValue)

Which

 receives an integer inputValue

 returns True or False accordingly

You may not use %

 Tip: you may use a while

isEven (for positive values)

CODE LOOP NR VALUE OF

inputValue

Return

VALUE

0 4

1 2

2 0

0 true

Swapping strategy (tracing)

Testing cases

 For which values of inputValue must you test?

Unplugged

 Sorting algorithms and efficiency

Sort cards: Bogo Sort

Sort algorithms (in pairs, 5 minutes)

 Goal: Sort cards

 order: lowest to highest value (2 < 3 < … < 10 < J < … < A)

 student 1 selects 2 cards (without seeing their value)

 student 2 compares the cards and tells which one has the

highest value.

 nr of steps?

 Describe an algorithm (with a flowchart) using basic

instructions which a 4-year-old should be able to follow:

 getCard (thirdCard)

 determineHighestCard (thirdCard , seventhCard)

Sort algorithms: efficiency (2 minutes)

 Efficiency: Write down how many steps if you have:

 10 cards

 20 cards

 100 cards

Sort algorithms

 Share:

 What did you come up with?

 Efficiency

Quick sort: divide and conquer

1) Select a card at random

2) Divide collection into two groups:

A) larger than selected card

B) smaller than selected card

3) Give each pile of cards to another team

& sit back and relax

4) Other teams repeat steps 1-3

When are we done?

Quick sort: divide and conquer

0) If you have 0 or 1 card, then STOP

1) Select a card at random

2) Divide collection into two groups:

A) larger than selected card

B) smaller than selected card

3) Give each pile of cards to another team

Other teams repeat steps 1-3

Result: cards sorted from smallest to largest

Method: divide and conquer (recursive algorithm)

Quick sort summary

 Divide and conquer: Recursive programming

 Simple instructions

 Complexity n*log(n)

Quick sort summary

 Complexity O(n*log(n)): purple curve

How much better is QuickSort?

https://www.youtube.com/watch?v=aXXWXz5rF64

https://www.youtube.com/watch?v=aXXWXz5rF64

Wrapping up

Homework for Wednesday 8:30 April 20th:

 Assignment 5:

 Finish assignment 5

 Hand via email to sjaaksm@live.com

