
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Today’s Lesson plan (8)

 Retrospective

 Previous lesson

 Discuss Quiz and Task

 Exercises

Retrospective

 Constructors, instance variables

Information hiding

 Rule: make instance variables private

 This means: other objects can’t reach it!

 Solution: create (if really needed)

 public getter method

 public setter method

Setter and getter methods (examples)

Calling a method from another class

Example:
Chicken object called clara with method:

then Farmer can call:
clara.setOneEggLessToHatch () ;

Tip: type ‘.’ and then <Ctrl>+<Space>

Steps for using instance variables

1. Declare instance variable in top of class:

private int myNrOfEggs;

2. Initialize (set intial value) in constructor:

myNrOfEggs = 10;

3. Write public getter accessor method

public int getNrOfEggs (){

return myNrOfEggs;

}

4. Write public setter mutator method:

public void setNrOfEggs(int newNrEggs){

myNrOfEggs = newNrEggs;

}

instance variables: life-long memory

 Now that you know how to use instance variables

 You can write complex algorithms

 Dodo has life-long memory!

 How:

 NO while in the act ()

 Transform methods used in act() from ‘while’ into ‘if’

 Use instance variables instead of local variables

local variables: variables in (sub)methods

(last exercises in assignment 6)

Variable Scope (lifetime)

 What happens to variable nrCellsMoved after this

method?

Variable Scope (lifetime)

 After the method, nrCellsMoved is destroyed!

 So we can’t use nrCellsMoved in another method….

 Unless, we use instance variables.

Instance variables

 To store (remember) values for longer periods of time

 Outside of method:

 ‘normal’ method variables loose their values

 Use instance variables when using same variable by two

different methods

 When act is called again:

 Only instance variables are stored

 All other values are lost

 You can even ‘inspect’ object value at all times

How Objects are Created

new MyDodo ();

Java creates object in

memory

// constructor's job is to

// initialize a new object

public MyDodo() { ... }

initialize state of object

by invoking constructor

The Constructor

 When Java creates a new object, it calls the class's

constructor.

public class MyDodo extends Dodo

{

private int myNrOfEggsHatched;

public MyDodo(int init_direction) {

super (init_direction);

myNrOfEggsHatched = 0;

}

…

}

The constructor has the
same name as the class.

Instance variable

super() calls the

constructor of Dodo.

Class code

Visibility of variables / methods

Information hiding

 Rule: make instance variables private

 This means: other objects can’t reach it!

 Solution: create (if needed)

 public getter method

 public setter method

Getter method

int myAge is private, no one needs to know… so…

private int myAge;

But… if myAge needs to asked for a (real) reason:

public int getMyAge() {

if (youHavePermissionToKnow ()){

return myAge() ;

} else {

return 0;

}

}

To call (object Teacher) from another method, use:

Teacher.getMyAge()

Setter method

String myPassword is private, so:

private string myPassword;

But… if myPassword needs to be changed for a (real) reason:

public void setMyPassword (string newPassword) {

myPassword = newPassword;

}

How to call (object Teacher) from another method, call:

Teacher.setMyPassword (“doorbell”);

Wrapping up

Homework for Wednesday 8:30 May 18th:

 Assignment 6 and 7:

 FINISH assignment 6 and 7 up to and incl 4.1

(you may advance if you wish

-> less homework next time)

 email Java code and ‘IN’-answers to

sjaaksm@live.com

