
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Today’s Lesson plan (8)

 Retrospective

 Previous lesson

 Discuss Quiz and Task

 Exercises

Retrospective

 Constructors, instance variables

Information hiding

 Rule: make instance variables private

 This means: other objects can’t reach it!

 Solution: create (if really needed)

 public getter method

 public setter method

Setter and getter methods (examples)

Calling a method from another class

Example:
Chicken object called clara with method:

then Farmer can call:
clara.setOneEggLessToHatch () ;

Tip: type ‘.’ and then <Ctrl>+<Space>

Steps for using instance variables

1. Declare instance variable in top of class:

private int myNrOfEggs;

2. Initialize (set intial value) in constructor:

myNrOfEggs = 10;

3. Write public getter accessor method

public int getNrOfEggs (){

return myNrOfEggs;

}

4. Write public setter mutator method:

public void setNrOfEggs(int newNrEggs){

myNrOfEggs = newNrEggs;

}

instance variables: life-long memory

 Now that you know how to use instance variables

 You can write complex algorithms

 Dodo has life-long memory!

 How:

 NO while in the act ()

 Transform methods used in act() from ‘while’ into ‘if’

 Use instance variables instead of local variables

local variables: variables in (sub)methods

(last exercises in assignment 6)

Variable Scope (lifetime)

 What happens to variable nrCellsMoved after this

method?

Variable Scope (lifetime)

 After the method, nrCellsMoved is destroyed!

 So we can’t use nrCellsMoved in another method….

 Unless, we use instance variables.

Instance variables

 To store (remember) values for longer periods of time

 Outside of method:

 ‘normal’ method variables loose their values

 Use instance variables when using same variable by two

different methods

 When act is called again:

 Only instance variables are stored

 All other values are lost

 You can even ‘inspect’ object value at all times

How Objects are Created

new MyDodo ();

Java creates object in

memory

// constructor's job is to

// initialize a new object

public MyDodo() { ... }

initialize state of object

by invoking constructor

The Constructor

 When Java creates a new object, it calls the class's

constructor.

public class MyDodo extends Dodo

{

private int myNrOfEggsHatched;

public MyDodo(int init_direction) {

super (init_direction);

myNrOfEggsHatched = 0;

}

…

}

The constructor has the
same name as the class.

Instance variable

super() calls the

constructor of Dodo.

Class code

Visibility of variables / methods

Information hiding

 Rule: make instance variables private

 This means: other objects can’t reach it!

 Solution: create (if needed)

 public getter method

 public setter method

Getter method

int myAge is private, no one needs to know… so…

private int myAge;

But… if myAge needs to asked for a (real) reason:

public int getMyAge() {

if (youHavePermissionToKnow ()){

return myAge() ;

} else {

return 0;

}

}

To call (object Teacher) from another method, use:

Teacher.getMyAge()

Setter method

String myPassword is private, so:

private string myPassword;

But… if myPassword needs to be changed for a (real) reason:

public void setMyPassword (string newPassword) {

myPassword = newPassword;

}

How to call (object Teacher) from another method, call:

Teacher.setMyPassword (“doorbell”);

Wrapping up

Homework for Wednesday 8:30 May 18th:

 Assignment 6 and 7:

 FINISH assignment 6 and 7 up to and incl 4.1

(you may advance if you wish

-> less homework next time)

 email Java code and ‘IN’-answers to

sjaaksm@live.com

