
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Object types vs primitive types

4

Primitive Datatypes in Java

Truth values (booleans)
boolean: true and false.

 Integer values (integers)
int: -1, 0, 42, 123, -51

 Real values (reals)
double: -1.0, 0.5, 42.0,

2.1795, 6.02e23, 1.6e-19

 Characters
char: 'a','A','?','-', '3', ' ' (= a “space”!)

Object types: Variables for objects

Variables can also contain objects

More precisely: Object variables point / refer to objects

The type of such a variable is the class the object

belongs to

Such a type is called an object type (or reference type)

Other types (int, boolean, ..) are called primitive types

Example:
Egg thisEgg = getEgg ();

A variable that can hold an Egg
object

Variables as References

So, variables can be used to remember another object.

 Via such a (reference) variable one object can

collaborate with (call methods of) another object.

Example:

In your mobile phone you have a list of Contacts.

A contact is a reference to a friend, family, ...
My Contacts

Alice

Bob

...

081-555-1212

Primitive types vs object types

 Primitive type stores value directly in variable:

 Eg. int nrOfEggs = 4;

 Object type refer (or points) to another object:

 E.g., Facebook doesn’t physically store your friends

 It stores your friends’ login names

Special value to indicate that a variable does

not refer to anything:

Sometimes methods return this value to say

that an object could not be found.

We can use this as follows:

Egg maybeEgg = getEgg ();

Egg maybeEgg = getEgg ();
if (maybeEgg != null) {

…
}

Variables containing null

null

getEgg returns null if our cell

does not contain an egg

Variables as References (2)

Example:

Mimi wants to know "how big is the world?"

Each Actor has an instance variable world and a getter

method getWorld().

1. Mimi gets a reference to her world.

World myworld = getWorld(); // in Mydodo

Variables as References (3)

World myworld = getWorld();

2. Now Mimi can ask the World some questions, using

her reference to the world.

int width = myworld.getWidth();

int height = myworld.getHeight();

Save the answer as (local) variable height.

int variables contain values, not references.

Lists

 So far, variables can contain just a single object.

 Sometimes it is convenient to maintain a whole

collection of objects

 For this purpose we can use Lists. A list can be seen

as a sequence of variables: the elements of the list.

 A List grows and shrinks to match whatever you put in

the list: elements can be added, removed or changed.

Egg thisEgg = getEgg ();

A variable that can hold an Egg object

Lists (2)

Properties:

 A list may be empty.

 It’s a sequence → each element can be identified with

it’s position (index). The first element has index 0!

 It’s homogeneous: all the elements are of the same type.

Lists are objects themselves

A variable holding a list object is declared as:

 List<ElemType> listVariable;

The type of each element

List example: how to use

Create a List of fruit names.
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

System.out.println (fruitList.size());

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

System.out.println (fruitList.size());

System.out.println (fruitList.get(0));

System.out.println (fruitList.get(2));

fruitList.remove("apple");

System.out.println (fruitList.get(0));

}

Creates a new empty list

Initial size is 0

Add 3 elements

Size should be 3 now

Prints apple

Prints banana

Remove apple from the list

Prints orange

Local variable holding the

list

List example: homogeneous types

Create a List of fruit names (Strings).
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

fruitList.add(13);

fruitList.add("broccoli");

fruitList.add("13");

}

Illegal: 13 is not a String

OK: “broccoli” is a String

OK: “13” is a String

List of objects

Create a List of fruit names (Strings).

public static void listExample(){

List<Fruit> fruit = new ArrayList<Fruit> ();

fruit.add(new Apple());

fruit.add(new Orange());

fruit.add(new Banana());

fruit.add(new Broccoli());

}
Now we have a list of Fruit

elements

OK: Apple ‘is a’ Fruit

Illegal: Broccoli is no Fruit

Useful List Methods

list.size() Number of items in list.

list.isEmpty() true if the list is empty.

Same as "list.size() == 0"

list.get(k) Get one element from list.

k = 0, 1, ..., list.size()-1

list.add(object) Append (add) object to the

end of the list.

list.remove(object) Remove object from a list

Lists: Examining elements

// count eggs that are hatched

List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

Using a while loop:

Method from class Dodo

Variable holding an index

Variable for counting

Lists: what do you need to know

 You don’t need to know how to create a list

 You do need to know how to manipulate and use lists

The for each loop

for each: a loop for examining all elements of a List

(recommended).

List<Egg> eggList = getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

"for each egg in eggList"

While vs for each loop
List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

List<Egg> eggList =
getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

Dodo’s race (goal)

Who can make Dodo the smartest?

 Competition in class on March 18th

 everyone’s program will be run!

Highest score in

max 40 moves WINS!

1 point

5 points

Dodo’s race (rules)

Ground rules:

 Maximum steps: 40

 15 blue eggs: each worth 1 point

 1 Golden Egg: worth 5 points

 Mimi only moves using move()

 Max 1 move() per act()

 Competition will be held in a new world

 Highest score wins

Presentation: May 25th

 Presentation:

 Present (describe) your algorithm to the class (2

minutes)

 Test your algorithm against classmates

 Who will make the smartest Dodo?

 Think about efficiency (vs brute force)!

Wrapping up

Homework for Wednesday 8:30 May 25th:

 Assignment 7:

 FINISH assignment 7 (incl Dodo’s race)

 email Java code and ‘IN’-answers to

sjaaksm@live.com

