
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Object types vs primitive types

4

Primitive Datatypes in Java

Truth values (booleans)
boolean: true and false.

 Integer values (integers)
int: -1, 0, 42, 123, -51

 Real values (reals)
double: -1.0, 0.5, 42.0,

2.1795, 6.02e23, 1.6e-19

 Characters
char: 'a','A','?','-', '3', ' ' (= a “space”!)

Object types: Variables for objects

Variables can also contain objects

More precisely: Object variables point / refer to objects

The type of such a variable is the class the object

belongs to

Such a type is called an object type (or reference type)

Other types (int, boolean, ..) are called primitive types

Example:
Egg thisEgg = getEgg ();

A variable that can hold an Egg
object

Variables as References

So, variables can be used to remember another object.

 Via such a (reference) variable one object can

collaborate with (call methods of) another object.

Example:

In your mobile phone you have a list of Contacts.

A contact is a reference to a friend, family, ...
My Contacts

Alice

Bob

...

081-555-1212

Primitive types vs object types

 Primitive type stores value directly in variable:

 Eg. int nrOfEggs = 4;

 Object type refer (or points) to another object:

 E.g., Facebook doesn’t physically store your friends

 It stores your friends’ login names

Special value to indicate that a variable does

not refer to anything:

Sometimes methods return this value to say

that an object could not be found.

We can use this as follows:

Egg maybeEgg = getEgg ();

Egg maybeEgg = getEgg ();
if (maybeEgg != null) {

…
}

Variables containing null

null

getEgg returns null if our cell

does not contain an egg

Variables as References (2)

Example:

Mimi wants to know "how big is the world?"

Each Actor has an instance variable world and a getter

method getWorld().

1. Mimi gets a reference to her world.

World myworld = getWorld(); // in Mydodo

Variables as References (3)

World myworld = getWorld();

2. Now Mimi can ask the World some questions, using

her reference to the world.

int width = myworld.getWidth();

int height = myworld.getHeight();

Save the answer as (local) variable height.

int variables contain values, not references.

Lists

 So far, variables can contain just a single object.

 Sometimes it is convenient to maintain a whole

collection of objects

 For this purpose we can use Lists. A list can be seen

as a sequence of variables: the elements of the list.

 A List grows and shrinks to match whatever you put in

the list: elements can be added, removed or changed.

Egg thisEgg = getEgg ();

A variable that can hold an Egg object

Lists (2)

Properties:

 A list may be empty.

 It’s a sequence → each element can be identified with

it’s position (index). The first element has index 0!

 It’s homogeneous: all the elements are of the same type.

Lists are objects themselves

A variable holding a list object is declared as:

 List<ElemType> listVariable;

The type of each element

List example: how to use

Create a List of fruit names.
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

System.out.println (fruitList.size());

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

System.out.println (fruitList.size());

System.out.println (fruitList.get(0));

System.out.println (fruitList.get(2));

fruitList.remove("apple");

System.out.println (fruitList.get(0));

}

Creates a new empty list

Initial size is 0

Add 3 elements

Size should be 3 now

Prints apple

Prints banana

Remove apple from the list

Prints orange

Local variable holding the

list

List example: homogeneous types

Create a List of fruit names (Strings).
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

fruitList.add(13);

fruitList.add("broccoli");

fruitList.add("13");

}

Illegal: 13 is not a String

OK: “broccoli” is a String

OK: “13” is a String

List of objects

Create a List of fruit names (Strings).

public static void listExample(){

List<Fruit> fruit = new ArrayList<Fruit> ();

fruit.add(new Apple());

fruit.add(new Orange());

fruit.add(new Banana());

fruit.add(new Broccoli());

}
Now we have a list of Fruit

elements

OK: Apple ‘is a’ Fruit

Illegal: Broccoli is no Fruit

Useful List Methods

list.size() Number of items in list.

list.isEmpty() true if the list is empty.

Same as "list.size() == 0"

list.get(k) Get one element from list.

k = 0, 1, ..., list.size()-1

list.add(object) Append (add) object to the

end of the list.

list.remove(object) Remove object from a list

Lists: Examining elements

// count eggs that are hatched

List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

Using a while loop:

Method from class Dodo

Variable holding an index

Variable for counting

Lists: what do you need to know

 You don’t need to know how to create a list

 You do need to know how to manipulate and use lists

The for each loop

for each: a loop for examining all elements of a List

(recommended).

List<Egg> eggList = getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

"for each egg in eggList"

While vs for each loop
List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

List<Egg> eggList =
getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

Dodo’s race (goal)

Who can make Dodo the smartest?

 Competition in class on March 18th

 everyone’s program will be run!

Highest score in

max 40 moves WINS!

1 point

5 points

Dodo’s race (rules)

Ground rules:

 Maximum steps: 40

 15 blue eggs: each worth 1 point

 1 Golden Egg: worth 5 points

 Mimi only moves using move()

 Max 1 move() per act()

 Competition will be held in a new world

 Highest score wins

Presentation: May 25th

 Presentation:

 Present (describe) your algorithm to the class (2

minutes)

 Test your algorithm against classmates

 Who will make the smartest Dodo?

 Think about efficiency (vs brute force)!

Wrapping up

Homework for Wednesday 8:30 May 25th:

 Assignment 7:

 FINISH assignment 7 (incl Dodo’s race)

 email Java code and ‘IN’-answers to

sjaaksm@live.com

