
Assignment 1: Meet Dodo

– Algorithmic Thinking and Structured Programming (in Greenfoot) –
c©2015 Renske Smetsers-Weeda & Sjaak Smetsers

Licensed under the Creative Commons Attribution 4.0 license,

https://creativecommons.org/licenses/by/4.0/

1 Introduction

In this series of assignments (Algorithmic thinking and structured programming (in Greenfoot)) you
will learn the basics of Object Oriented programming, and (hopefully will) be having fun in the
process. After completion, you will be able to program in Java, in addition to being able to use
Greenfoot and Java libraries. With these skills, you will also be able to quickly learn other Object
Oriented languages. You will also learn how to use and adapt existing code where necessary.
Reuse of existing code is one of Java’s strengths because it allows you to make more complex
programs in less time.

You will program in the Java language. For the assignments we use the Greenfoot program-
ming environment. This is an environment that allows you to write code without first having
to learn (the theory of) Java in full-depth. In such a manner you can gradually learn Java while
you’re actually using it to make stuff.

You will learn the basic building blocks that are used for algorithms and programs. We’ll start
with simple exercises like making a Dodo walk and turn. Throughout the course, you will elab-
orate on this. A Dodo (a bird which is now extinct) was never very intelligent, however you will
teach it to complete complex tasks, such as independently collecting eggs scattered throughout
her world or walking through a maze. One of the final tasks is a competition with your class-
mates: who can make the smartest Dodo?

If you want to learn how to play chess, you have to know the rules. These rules tell you what
you can and what you can’t do. But if you want to play chess well and enjoy playing the game,
then merely knowing the rules is not enough. You also have to learn what a good move is. On
internet you can find numerous Java tutorials and manuals. Those teach you the rules, but little
about how to write a program well. In this course you will learn how to systematically deal with
a programming task. You will learn to analyze problems and develop an appropriate solution in
a structured and organized manner. The goal is to teach you to program well, and let you enjoy
doing so.

2 Learning objectives

After completing this assignment, you will be able to:

• find your way around the Greenfoot programming environment;

• explain what the Greenfoot Run and Act buttons do;

• invoke methods and analyze their effect;

• in your own words, describe the difference between a mutator method and an accessor
method;

• identify and list the methods of a class;

https://creativecommons.org/licenses/by/4.0/


Meet Dodo Assignment 1

• use a class diagram to identify classes;

• use a class diagram to identify subclasses;

• identify which methods an object inherits from another class;

• explain what an instance object is;

• identify properties of an object’s state;

• apply naming conventions to methods and parameters;

• in your own words, explain what a type is;

• describe what the types int, String, void, and boolean are;

• given a signature, identify a method’s result type and parameter(type)s;

• describe the role of a method’s result type and parameter(s);

• describe the relationship between an algorithm, a flowchart and program code in your own
words;

• incrementally make code modifications and test these;

• recognize and add comment to code;

• modify a method and then compile, run, and test it;

• recognize and interpret syntax errors.

3 Instructions

For this assignment you will need:

• Greenfoot: Instructions for installing and opening the Greenfoot environment are given
further on;

• scenario ’DodoScenario1’: to be downloaded from the course website1;

• a document (for example, Word) for answering the ’(IN) ’ questions which are to be handed
in.

Throughout the assignment you will also need to answer some questions. Questions with an
’(IN) ’ must be handed ’IN’. Make sure you have your document open to type in the answers
to those questions. For the other questions (those that don’t need to be handed in), discuss the
answer with your programming partner and jot down a short answer on the assignment paper.

4 Finding your way in Greenfoot

4.1 The world

This is our Dodo. Her name is Mimi and she belongs to the Dodo family.

Figure 1: Mimi the Dodo

1http://www.cs.ru.nl/S.Smetsers/Greenfoot/Dominicus/

Algorithmic thinking and structured programming (in Greenfoot) 2

http://www.cs.ru.nl/S.Smetsers/Greenfoot/Dominicus/


Meet Dodo Assignment 1

Mimi lives in a (grid)world that consists of 12 by 12 squares. This world is bounded, she can’t
get out. Her sole goal in life is to lay and hatch eggs. The picture below shows Mimi in her world,
facing to the right. Before her lies an egg. There are also several fences in the world.

Figure 2: Mimi’s world

Mimi is a very well-behaved Dodo. She does exactly what she is told to do, and she always
gives honest answers to your questions (she never lies). By calling methods, you can tell her to do
something or ask her questions.

You can let Mimi do things, such as:

move move one square ahead
hatchEgg hatch an egg
jump jump several squares ahead

You can also ask Mimi a question, such as:

canMove Can you take a step forward?
getNrOfEggsHatched How many eggs have you hatched?

5 Getting started with Greenfoot

5.1 Starting Greenfoot

We’re going to play around with Mimi in the Greenfoot environment. To do this, you must down-
load and install Greenfoot (if it has not already been done for you) and open the given scenario.

Choose a folder:

• Decide where you will save all your work. If you wish, you can use a USB-stick for
this.

Download:

• Go to Magister and download the scenario files belonging to this assignment: Copy
the given exe-file with initial scenario to the folder which you have chosen.

• Unpack the scenario at that location, just by clicking on the exe-file.

Open the Greenfoot environment:

• Open a file browser and navigate to the USB-stick.

• Double click on the Greenfoot.exe file. The programming environment should start now.

Algorithmic thinking and structured programming (in Greenfoot) 3



Meet Dodo Assignment 1

Open the scenario:

• Select ’Scenario’ in the main menu, and then ’Open’.

• Navigate to the ’DodoScenario1’ scenario (which you downloaden en unzipped) and
chose ’Open’.

Rename the scenario:

• In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save As ...’.

• Check that the window opens in the folder where you want to save your work.

• Choose a file name containing your own name(s) and assignment number, for example:
Asgmt1_John.

Compiling the scenario:

• Click on the ’Compile’ button on the bottom right.

You should see the following:

Figure 3: What you see when you open the ’DodoScenario1’ scenario

5.2 Creating objects

Objects
A world consists of objects (also known as class instances, or simply instances).
By selecting new MyDodo () you can create a new object of MyDodo. The world below shows
one MyDodo object and three Egg objects.

Algorithmic thinking and structured programming (in Greenfoot) 4



Meet Dodo Assignment 1

Figure 4: Scenario with one MyDodo object and three Egg objects

In our assignments we have one lead actress, a MyDodo object. She is an instance of MyDodo.
We will call her Mimi.

We’re going to make the scenario as shown in figure 4:

1. Right-click on MyDodo, on the far right-hand of the screen.

2. Select new MyDodo( ) to create a new MyDodo object.

3. Drag the object, our MyDodo called Mimi, to a random position in the world.

4. In the same manner, place three BlueEggs in the world. Tip: hold down the Shift button on
your keyboard to place multiple blue eggs.

5.3 The world in motion

Greenfoot has a few buttons at the bottom of the window.

1. Click on the Act button (in the bottom of the window). What happens?

2. What happens when you press Act again? And again? And again?

3. Use your mouse to move Mimi and continue to experiment with the Act. Make sure you try
lots of different situations, for example, with Mimi at the edge of the world facing outwards
(with her beak pointing towards the edge).

4. (IN) Explain in your own words, very precisely, what the Act button does.

5. Press the Run button. What happens?

6. What is the connection between the Act and the Run button?

7. What does the Reset button do? Try it.

5.4 Methods

Methods and their results
There are two types of methods, each with an own purpose:

Algorithmic thinking and structured programming (in Greenfoot) 5



Meet Dodo Assignment 1

1. Mutator methods: These are commands which make an object do something. It changes
the state of an object. You can recognize a mutator method by its result: void. For
example void act( ) .

2. Accessor methods: These are questions that provide information about (the state of)
an object. For example, int getNrOfEggsHatched( ) which returns an int (an inte-
ger, or whole number) indicating how many eggs Mimi has hatched. Another exam-
ple is boolean canMove( ) which returns a boolean (either true or false), indicating
whether Mimi can take a step forwards or not. Access methods only provide informa-
tion about an object, they don’t do anything with an object: the object’s state remains
unchanged (for example, Dodo doesn’t also move to another position).

5.4.1 Exploring the mutator method

Our MyDodo has been programmed to do several things. You can let her do things (give her
commands) by calling her mutator methods.

1. Right-click on Mimi. You will see a list of all the things Mimi can do (in other words, which
methods you can call), for example act( ) , move( ) , and hatchEgg( ) .

2. Call the method act( ) . What happens?

3. Look at your own explanation about what the Act button did (see exercise 5.3 part 4). Do you
think there is a difference between pressing the Act button and calling the act( ) method?

4. Drag an egg into the world. Drag Mimi on top of the egg. Now right-click on Mimi (be
careful not to click on the egg). Call Mimi’s method void hatchEgg( ) . What happens?

5.4.2 Exploring the accessor method

By using accessor methods you can get Mimi to answer questions about herself.

1. As you may or may not know, a Dodo can’t fly. But a Dodo can walk. That is, Mimi can’t
step out of her world, but as long as she stays in her world, she can take a step forward.
So, before she takes a step, she has to check if it is possible. Place Mimi somewhere in the
middle of the world. If you were to ask Mimi if she can take a step, what answer would you
expect her to give?

2. Call the boolean canMove( ) method. A dialogue box appears, as in the picture below. It
says true. What does that answer mean? Is that the same answer as you had expected (look
back at 5.4.2 part 1)?

Figure 5: Dialogue box for canMove( )

3. Move Mimi to the edge of the world, facing outwards, as shown in figure 6.
Call boolean canMove( ) again. What result does it give?

Algorithmic thinking and structured programming (in Greenfoot) 6



Meet Dodo Assignment 1

4. (IN) What do you think boolean means?

Figure 6: Dodo at the edge of the world, facing outwards

5. Now call the method int getNrOfEggsHatched( ). What result does it give? What does int
mean?

6. You can use the int getNrOfEggsHatched() method to see how many eggs MyDodo has
hatched. The result is an int (a whole number). Can you create a situation in which the
method int getNrOfEggsHatched( ) returns the value 3? (In other words, can you make
Dodo hatch 3 eggs?). Tip: first use hatchEgg( ) .

5.5 Inheritance

Classes
Every object belongs to a class. As such, Mimi is an instance of the MyDodo class.

Class diagram:
In the class diagram you can see that MyDodo belongs to the Dodo family. In Greenfoot the
class diagram is shown on the right-hand side of the screen. Have a look at figure 7. The
arrow in the diagram indicates an ’is-a’ relationship: MyDodo ’is-a’ Dodo. So, MyDodo belongs
to the class Dodo.

Figure 7: Class diagram of Dodo

MyDodo’s methods:
Mimi is a MyDodo. Mimi has methods that you can call. By right-clicking on Mimi you can
see what a MyDodo (and thus Mimi) can do. For example move( ) .

Dodo’s methods:
But Mimi (our MyDodo) is capable of doing much more. There are things that all Dodos, in
general, can do. Mimi is a Dodo, so of course she can also do all the those things too!

Right-click on Mimi (in the world). At the top of the list you see ’inherited from Dodo’.
If you click on that, then more methods will appear, such as layEgg( ) . These are methods
which belong to the class Dodo, things that all Dodos can do. Because MyDodo is a Dodo

(see the class diagram in figure 7), Dodo inherits (or gets) all these Dodo methods too. So,
because MyDodo is a subclass of Dodo, a MyDodo so can perform all Dodo methods (in addition
to its own MyDodo methods).

Inheritance:
By using inheritance, a new class can be introduced as an extension of an existing class. In
such a situation, the existing class is called the super class, and the extended class is called the
subclass. Because MyDodo a subclass of Dodo, a MyDodo can execute methods from both the
Dodo class as well as its own MyDodo class.

Imagine that a new Dodo species were to be born: IntelligentDodo. This
IntelligentDodo would be a subclass of Dodo. It can do anything a Dodo can do. You

Algorithmic thinking and structured programming (in Greenfoot) 7



Meet Dodo Assignment 1

would not have to describe that this new Dodo species can lay an egg, layEgg( ) , because we
already know that all Dodos can lay eggs. With inheritance we only describe the extra things
(i.e. methods) which that subclass can do (its intelligent behavior). This prevents redundant
code and lots of extra work.

Speaking of which... which things can all Dodos do? We will now have a look at the mutator
methods.

1. Name at least three methods which Mimi inherits from the Dodo class.

2. The method void turnLeft( ) belongs to the Dodo class. Can Mimi execute that method?
Try it.

3. (IN) Have a look at the class diagram. Which other ’is-a’ relationships do you see? Name at
least two.

4. Drag a second MyDodo into the world. Compare her methods to those that Mimi has (recall
that Mimi is the Dodo which was already standing in the world). Do you see any differ-
ences?

5.6 States

The state of an object
You can place different objects in the world, such as a Dodo and an egg. You can also place
several objects of the same class in the world at the same time. In the picture below you see
three objects of the Egg class and one of the MyDodo class.

Figure 8: A world with several objects

All objects of the same class have the same methods, and thus have the same behavior.
The three objects of Egg look identical and can do exactly the same things. Yet, they are
different objects, or instances.

Just like you’re different from the person sitting next to you, even though you are both
people. The mere fact that you are each sitting on different chairs or had something different
for breakfast, makes you different. The same is true in the Greenfoot world. Every object has
its own state. For example, two objects can be standing on different coordinates, making their
states different.

You can view the state of an object by right-clicking on the object, and then choosing
’Inspect’.

Algorithmic thinking and structured programming (in Greenfoot) 8



Meet Dodo Assignment 1

Figure 9: The state of an Egg-object with coordinates (2,2)

Figure 10: The state of an Egg-object with coordinates (1,1)

We will now have a look at the states of objects in more detail.

1. Drag Mimi to the top-left corner of the world.

2. Right-click on Mimi and select ’Inspect’. At which coordinates (int x and int y) is Mimi
standing?

3. Drag Mimi to the top-right corner of the world. What are the coordinates of the square in
the top-right corner?

4. Drag Mimi to any random position. What do you think the coordinates of that position are?

5. Check your answer using ’Inspect’. Was your answer correct?

5.7 Parameters and results

Results
In section 5.4 we saw that accessor methods give information about an object’s state
(they answers questions). Such an answer is called the result of a method. For example,
int getNrOfEggsHatched( ) has an int (whole number) as its result.

Parameters
A method can also be given a certain value. This value, called a parameter, gives the method
more information about a particular task. A method can have 0 or more parameters. Exam-
ples:

• void jump (int distance) has one parameter, distance, which tells the method how
far it must jump. We can also tell that distance is a whole number, an int. By calling
jump (3); Mimi will move forward 3 squares. By calling jump (5); Mimi will move for-
ward 5 squares. The method jump needs this additional information in order to work.
Otherwise, it would not know how many squares Mimi must move.

• void move( ) has no parameters.

A method which needs parameters is more flexible than one that doesn’t. Using the
method void jump( int distance ) Mimi can jump over different distances. On the other
hand, using void move( ) , Mimi can merely take one step.

Types
Parameters and results have a type. Examples of different types are:

Algorithmic thinking and structured programming (in Greenfoot) 9



Meet Dodo Assignment 1

Type Meaning Example
int whole number 2
boolean ’true’ or ’false’ true
String text ”I lost my pen.”
List list [1,2,3]

A type can also be a class, such as a List of Eggs.

The type indicates which sorts of values a parameter or result must have. It is not possible
to call void jump( int distance ) with no parameters because this method requires an int
as a parameter.

We saw that you can use ’Inspect’ to get information about Mimi’s state. Accessor methods are
used to return this information as a result of their method. Let’s have a look at how this works.

1. Right-click on Mimi.

2. The Actor class has a method which returns the coordinates of an object. Can you find this
method?

Tip: MyDodo is a subclass of the Actor class, as you can see in the class diagram. In the list
of ’inherited from Actor’ methods, search for a method with an X. Do the same for Y.

3. (IN) What do you notice about the methods’ names? Explain why some have a ’get’ in their
name? And others a ’set’? What does his mean? Tip: Have a look back at section 5.4.

4. What is the type of these methods’ results? How can you determine that from what you
clicked on?

Let’s have a look at a few examples of methods with parameters.

1. Place Mimi somewhere in the middle of the world. Right-click on Mimi. Call the method
jump(int distance). This method requires an int (whole number) as a parameter so that it
knows how far Mimi must jump (’distance’). Type in a small number and see what happens.

2. Call the method jump(int distance) again. This time use a number larger than 11 as the
argument. What happens? Can you explain why?

3. What happens when you type something in that is not an int (whole number), such as 2.5?

4. Have a look at the error message. It complains about ’incompatible types’. What that means
is that you entered a different argument type than was expected. Namely, the method ex-
pects an int (whole number), but you typed in a double (decimal number).

5. What happens if you type a word as an argument, such as ”two”?

Signature
By looking at the signature of a method, you can see which parameters, parameter types and
result types belong to the method. We will explain what that means here.

Algorithmic thinking and structured programming (in Greenfoot) 10



Meet Dodo Assignment 1

Figure 11: Signature of a method

• Method name: the method’s name is indicated in front of the first parenthesis. In this
example: jump.

• Parameter: the parameters that the method requires are indicated in between the paren-
theses ’(’ and ’)’. In this example: distance.

• Parameter type: the parameter’s type (such as int, boolean, or String) is indicated in
front of the parameter’s name. In this example: int.

• Result type: the result’s type (zoals int, boolean, void) is indicated in front of the
method’s name. In this example the result type is void. This method doesn’t return
anything (it is a mutator method).

• Method’s signature: together, all of the components above are called the signature. In this
example: public void jump (int distance). (the meaning of publicwill be explained
later)

The types in the signature indicate which types of values a parameter or result must have.

5.8 Describing behavior and reading, modifying, compiling and testing pro-
grams

We have now practiced invoking MyDodo’s methods. To get Mimi to do more exciting things, you
must write your own new methods. Obviously, you must first learn to read code before you can
write code. Also, you should be able to describe which changes you want to make, after which
you can actually make modifications to existing code.

5.9 Describing behavior

Algorithm
An algorithm is a very precisely defined set of instructions. Program code is an algorithm
written specifically for a computer. It tells the computer exactly, step by step, what it should
do. If a set of instructions has been described precisely enough, someone else should be
able to follow the steps precisely as you meant it. For the same problem (initial situation) the
instructions will lead to exactly the same outcome (final situation). It is similar to a recipe. The
difference with a recipe is that an algorithm is more precise. For example, a recipe might say
”stir until smooth”. However, each time you (or someone else) makes that dessert it may end
up differently, one time being a bit smoother than the next. That is not permitted with an
algorithm. For each step it must be precisely clear what it exactly means. A step that can be
interpreted in different ways is called ambiguous. We try to avoid ambiguity. The result must
be exactly the same every time.

Algorithmic thinking and structured programming (in Greenfoot) 11



Meet Dodo Assignment 1

Flowchart
An algorithm can be visually represented in a flowchart.
As an example we will look at the algorithm of MyDodo’s act( ) method. We have already
had a look at this method in exercise 5.4.1 part 2.

Figure 12: Flowchart of MyDodo’s act( ) method

The flowchart explained:

• The name of the flowchart can be found in the top-left corner, namely Act.

• The initial situation is described in the note block in the top-right corner.

• The final situation is described in the note block in the bottom-right corner.

• You begin at ’Start’ at the top.

• Follow the arrow to the diamond. A diamond means that a decision (selection) had
to be made, depending on the outcome of ’canMove?’ another path can be followed,
namely:

– If ’canMove?’ is ’True’, then the ’True’-arrow to the left is followed.

– If ’canMove?’ is ’False’, then the ’False’-arrow to the right is followed.

This behavior is consistent with that of an if .. then .. else statement in the code.

• In the case of a rectangle, a method is called. So, depending on which arrow has been
followed the ’move’ or the ’turnRight’ method will be executed.

• When the ’End’ is reached, then the Act method is finished.

5.9.1 Reading code

Reading code
Once again we review MyDodo’s act( ) method as an example.

/**
* Go to the edge of the world and

* walk along the border

Algorithmic thinking and structured programming (in Greenfoot) 12



Meet Dodo Assignment 1

*/
public void act( ) {

if ( canMove( ) ) {
move( ) ;

} else {
turnRight( ) ;

}
}

Explanation of the code:

• Comment: the text in between /** and */ (shown in blue in the Greenfoot editor) are
comments. Greenfoot/Java doesn’t do anything with this. Programmers write com-
ments in their code to help others understand their programs. But it can also be useful
for yourself. For example, if you have not looked at your code for a week, you can
briefly read the comments to see what the method does without having to extensively
study the code itself. If the comments fit on just one line, you can also use //.

• Signature: this is public void act( ) .

• Access modifier: public. What this means and which other possibilities there are, will be
explained later.

• Method name: act.

• Result type: void. In chapter 5.4 we saw that void as a result type means that this is
a mutator method which makes the object do something (as opposed to an accessor
method which yields information about the object’s state).

• Body: this is the part between the first curly bracket ’{’ and its corresponding curly
bracket ’}’. This is the code that is executed when the act( ) method is called, in other
words, what the method actually does. In this example you see a conditional expression:
the if .. then .. else in the act( ) . It works like this:

– A condition is stated in between the parentheses ’(’ and ’)’. Firstly, the condition is
checked.

– If the condition is true, then the code directly following the condition is executed.

– If the condition is false, then the code after the else is executed.

So if you press the Act button or select void act( ) by right-clicking, then:

– first the condition is checked: the method canMove( ) is called to check whether or
not Dodo can take a step.

– If canMove( ) is true, then the move( ) method is called and Dodo takes a step
forward.

– If canMove( ) is false, then the turnRight( ) method is called and Dodo turns (90
degrees) to the right.

We will now look at the corresponding code in Greenfoot:

1. Right-click MyDodo in the class diagram and select ’Open editor’.

2. Find the act( ) method. Tip: use Ctrl+F.

3. Is the code the same as in the theory block above?

Algorithmic thinking and structured programming (in Greenfoot) 13



Meet Dodo Assignment 1

4. In exercise 5.4.1 part 2 you analyzed what the act( ) method did. The theory block above
explains precisely what the act( ) does. Does the explanation above correspond with what
you thought?

5.9.2 Code and its corresponding flowchart

We will now look at the canMove( ) method.

1. Open MyDodo’s code in the editor and find the boolean canMove( ) method.

2. For each line, explain exactly what the code means. Note: The symbol ’!’ used in the code is
read as ’not’ (negation).

3. Have a look at the flowchart in figure 13. The flowchart visualizes the algorithm in the
boolean canMove( ) method. Note:

• The diamond indicates a decision (conditional expression).
• If the condition in the diamond is ’True’, then the left arrow is followed (and those

steps are executed).
• Otherwise (the condition is ’False’), then the right arrow is followed.

Figure 13: Stroomdiagram canMove( ) in MyDodo

4. (IN) Fill in the correct text for A, B, C en D in the flowchart.

5.9.3 Adding comments to the code

We will now look at the move( ) method.

1. In the code, find MyDodo’s move( ) method.

2. (IN) What is this method’s signature?

3. (IN) What is this method’s result type?

4. Have a look at the method’s body, in other words, the code in between the first curly bracket
’{’ and its corresponding second curly bracket ’}’.

5. The method has an if .. then .. else statement. Depending on whether canMove( ) is ’True’
or ’False’ something different will happen. Drag Mimi to different positions in the world
and, by right-clicking on Mimi, call move( ) method. Try to simulate both situations (for
’True’ and for ’False’). What exactly happens?

Algorithmic thinking and structured programming (in Greenfoot) 14



Meet Dodo Assignment 1

6. Now go back to the code and read the comments above the method (the part between /* and
*/). This doesn’t properly describe what the method does. Namely, much more happens.
Change the comments so that it does a better job describing what the method does.

5.9.4 Compiling, Running and Testing

Changes
Always make changes incrementally. A typo is easily made (for example, by forgetting to
type a ’;’). For this reason it is a good idea to compile, run and test every (small) change to
the code.

The class diagram shows when any code changes have been made. When the rectangle
of a class is shaded gray it means that the code in that class has been modified and must be
compiled (again).

After each code change:

1. Compile: press the Compile button on the bottom-right.

2. Run: press the Run button.

3. Test: check if the method does what you expect. Call the method
by right-clicking on Mimi and then choosing the method, or by pressing the Act button.
Compare the initial and final situations.

Tip: Make a habit of always following these steps after every code change. That way, if
you make a mistake, you can quickly find what the problem is. If you make many changes
in one go without testing in between, then debugging (detecting errors in your code) can
become a time-consuming and very frustrating task!

You have just added comments to the move( ) method. This shouldn’t have changed the behavior
of the program. However, it is recognized as an modification.

1. Close the editor.

2. How do you recognize which class has been changed?

3. Press the Compile button on the bottom-right to recompile all the classes.

4. If necessary, fix any problems that the compiler reports.

5. Run and test the program. Does the act( ) method still do what you expect?

5.9.5 Adding a new method

Naming conventions
Methods and parameters have names. In Java, there are general conventions (or agreements)
on how to choose a name. By following these conventions, your code becomes easier to read
and understand for others.

A method’s name:

• is meaningful: it is consistent with what the method does

• is in the form of a command: it consists of one or more verbs

Algorithmic thinking and structured programming (in Greenfoot) 15



Meet Dodo Assignment 1

• consists of letters and numbers: it does not consist of spaces, commas, or other
”strange” characters (with the exception of ’ ’)

• is written in lowerCaseCamel: starts with a lowercase letter, and each subsequent word
starts with a capital letter

• for example: canMove

A parameter’s name:

• is meaningful: it is consistent with what the parameter means

• consists of one or more nouns

• consists of letters and numbers: it does not consist of spaces, commas, or other
”strange” characters (with the exception of ’ ’)

• is written in lowerCaseCamel: starts with a lowercase letter, and each subsequent word
starts with a capital letter

• for example: nrOfEggs

See http://google-styleguide.googlecode.com/svn/trunk/javaguide.
html for a complete overview of style and naming conventions.

We are now going to add a new method to MyDodo.

Figure 14: Flowchart TURN180

1. Have a look at the flowchart in figure 14.

2. Open the MyDodo class code in the editor.

3. We are going to add a new method to this class. Type the following code in the bottom of
the editor screen. Note: do this before the last ’}’, otherwise the method will fall outside of
the class and the compiler will complain.

public void turn180( ) {
turnRight( ) ;
turnRight( ) ;

}

4. What do you expect this method to do?

5. Compile the code. If necessary fix any mistakes.

Algorithmic thinking and structured programming (in Greenfoot) 16

http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html


Meet Dodo Assignment 1

6. Call your new method by right-clicking on Mimi and selecting void turn180( ) . Test if it
works as expected. Also test if the other methods still work correctly. In other words, check
if the program as a whole still works as expected.

7. Go back to your code. Add a comment above the turn180( ) method in which you briefly
explain what the method does.

8. Once again you have made a change. Compile again and if necessary fix any mistakes.

9. By right-clicking, test again if the method still works as expected.

5.9.6 Calling a method in act

Calling a method in act

By calling a method in act( ) it will be run each time when the Act button or the Run
button is pressed. The difference between clicking on the Act button and clicking on the Run
button is that in the first case the act( ) method is called only once, while in the latter the
act( ) method is called repeatedly.

To call a method in act, you need to make a change to the void act( ) method:

public void act( ) {
methodName( ) ;

}

1. Open the MyDodo code in the editor and find the void act( ) method.

2. Remove the code in between the curly brackets ’{’ and ’}’.

3. (IN) Call the method void turn180( ) . Have a look at the example above to see precisely
how to call the method.

4. (IN) Also change the comments above the act( ) so that it describes what the method now
does.

5. Compile the code. Tip: Do you get an error message which you cannot solve? Then have a
look at chapter 5.10.

6. Test your program using the Act button. Does the program still work as expected?

7. Run your program using the Run button.

5.10 Error messages

The compiler is very picky. Sometimes you may make a mistake in the code or forget something.
The compiler will then complain about it. Its useful to be able to recognize some common mis-
takes and error messages so that you can easily find the problem and fix it. Let’s have a look at a
few.

1. Open the MyDodo class in the editor. Find the act( ) method. Delete the semi-colon ’;’
behind turnRight( ); . Close the editor and compile. Which error message do you get at
the bottom of the screen?

2. Restore the semi-colon ’;’. Recompile. It should compile without a problem.

Algorithmic thinking and structured programming (in Greenfoot) 17



Meet Dodo Assignment 1

3. Test if the program still works as expected.

4. Change the spelling of turn180( ) and recompile. Which error message do you get?

5. Restore the spelling mistake. Compile and test again.

6. Change turn180( ) into turn180(5).

7. (IN) Compile. Which error message do you get? What does the error message mean?

8. Remove the 5. Press the ’Compile’ button at the top of the editor. This compiles only the
class shown in the editor. What message do you get at the bottom of the editor screen? What
does this mean?

9. Test if the program still works as expected.

Syntax errors
If you type in something which the compiler does not understand, this is called a syntax error.
Some common mistakes are:

Mistake Compiler error message
missing ’;’ at the end of the line ’;’ expected
missing ’( )’ in the header ’(’ expected
missing ’{’ at beginning of body ’;’ expected
missing ’}’ at end of body illegal start of expression
missing ’( )’ in method call not a statement
typo (watch out for capital/lowercase) cannot find symbol
wrong parameter type used method cannot be applied to given types
no parameter used method cannot be applied to given types
wrong return type incompatible types: unexpected return value

Logical errors
Besides syntax errors, there are also other types of programming errors. The compiler will not
complain, but the program does not do what is expected. This is called a logical error. Such an
error can be very difficult to find, and can be very frustrating. Searching for such an error is
called debugging. Because prevention is beter than curing, we will discuss good programming
practices in the next assignment. By using a structured approach to programming you can
significantly reduce the chance of these types of errors slipping into your code.

6 Summary

In this assignment you have become acquainted with Greenfoot. You can now:

• find your way around the Greenfoot environment;

• explore and call an object’s methods;

• explain the relationship between an algorithm, its flowchart and its code;

• find the code belonging to methods in the Greenfoot editor;

• incrementally make changes to the code;

• add a method, compile, run and test;

• recognize error messages.

Algorithmic thinking and structured programming (in Greenfoot) 18



Meet Dodo Assignment 1

6.1 Diagnostic test

1. Explain in your own words what a result type is. Give an example.

2. Complete the table below.

Method Result type Parameter type Belongs to class To be used by object
getNrOfEggsHatched() not applicable MyDodo MyDodo
canMove() boolean
jump ()
layEgg() void
turnLeft() Dodo and MyDodo
canMove() MyDodo
getX ()

3. Below are some names for a method. According to the naming conventions for method
names, which one is the best?

• walk_to_egg

• eggWalker

• WalkToEgg

• walkToEgg

• WALK_TO_EGG

4. Below are some names for a parameter indicating the number of eggs. According to the
naming conventions for parameter names, which one is the best?

• nr_of_eggs

• EggCounter

• nrOfEggs

• eggs

• NR_OF_EGGS

5. What are the coordinates in the bottom-left corner?

6. Here is code for a new method:
public A moveDown ( ){

turnRight( ) ;
move( ) ;
B

}

The corresponding flowchart is:

Algorithmic thinking and structured programming (in Greenfoot) 19



Meet Dodo Assignment 1

Figure 15: Flowchart for moveDown()

Fill in A, B, C, D, E, F and G in the code and the flowchart.

6.2 Answers to the diagnostic test

Here are sample answers to the questions in the diagnostic test:

1. A result type indicates which type of value the method can return. A mutator method which
’does something’ to an object has void as a return type. An accessor method, which returns
information about an object, can have, for example a boolean (which can be true or false),
or a int (integer) as a return type.

2.

Method Result type Parameter type Belongs to class To be used by object
getNrOfEggsHatched() int not applicable MyDodo MyDodo
canMove() boolean not applicable MyDodo MyDodo
jump () void int MyDodo MyDodo
layEgg() void not applicable Dodo Dodo and MyDodo
turnLeft() void not applicable Dodo Dodo and MyDodo
canMove() boolean not applicable MyDodo MyDodo
getX () int not applicable Actor all objects

3. walkToEgg

4. nrOfEggs (note: the name eggs on its own is not meaningful)

5. The coordinates in the bottom-left corner are: (0,11)

6. See the flowchart in figure 16.

Figure 16: Flowchart for moveDown( )

7 Saving your work

You have just finished the first assignment. Save your work! You will need this for future assign-
ments. In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save’. You now
have all the scenario components in one folder. The folder has the name you chose when you
selected ’Save As ...’.

Algorithmic thinking and structured programming (in Greenfoot) 20



Meet Dodo Assignment 1

8 Handing in

Hand your (digital) work in via email to sjaaksm@live.com:

1. Type your name(s) at the top of the (Word) document containing your answers to the ’(IN)
’ questions.

2. Scan/photograph the flowcharts and paste them into this document.

3. Attach the document to an email and send it to the above-mentioned email address.

Make sure you hand your work in before next Wednesday 8:30 (in the morning).

Algorithmic thinking and structured programming (in Greenfoot) 21


	Introduction
	Learning objectives
	Instructions
	Finding your way in Greenfoot
	The world

	Getting started with Greenfoot
	Starting Greenfoot
	Creating objects
	The world in motion
	Methods
	Exploring the mutator method
	Exploring the accessor method

	Inheritance
	States
	Parameters and results
	Describing behavior and reading, modifying, compiling and testing programs
	Describing behavior
	Reading code
	Code and its corresponding flowchart
	Adding comments to the code
	Compiling, Running and Testing
	Adding a new method
	Calling a method in [language=Java]¦act¦ 

	Error messages

	Summary
	Diagnostic test
	Answers to the diagnostic test

	Saving your work
	Handing in

