
Assignment 5: A smarter Dodo

– Algorithmic Thinking and Structured Programming (in Greenfoot) –
c©2015 Renske Smetsers-Weeda & Sjaak Smetsers

Licensed under the Creative Commons Attribution 4.0 license,

https://creativecommons.org/licenses/by/4.0/

1 Introduction

Sometimes it can be useful for an object to have ’memory’. For example, if Mimi could remember
how many eggs she has laid. In this assignment you will learn how to use variables in order to
store information. We’re going to make Mimi smarter!

By making Mimi smarter, we can also get her do more complex (composite) tasks. It’s difficult
to use the repetition in the Run for complex tasks. Therefore, in this assignment you will write
each algorithm in a separate method. In this method you can make use of while-loops where
needed.

2 Learning objectives

After completing this assignment, you will be able to:

• explain what variables are used for;

• apply naming conventions to variables;

• identify and follow the steps (such as declaration and initialization) that are necessary when
using a variable;

• initialize variables;

• use the assignment operator ’=’;

• use the comparison operators ’==’, ’!=’, ’<’, ’<=’, ’>’ and ’>=’;

• use the arithmetic operators ’+, ’-’, ’∗’, ’/’ and ’%’;

• use the incrementing operator ’++’ (and decrementing operator ’−−’);

• explain in your own words what the role of a counter variable is in a while loop;

• determine the values which a variable acquires throughout the execution a (part of a) pro-
gram (tracing).

3 Instructions

In this assignment you will carry on with your code from assignment 4. Therefore you will need a
copy of the scenario which you saved after completing assignment 4, Asgmt4_yourName. To make
a copy follow the next steps:

• Open your scenario from assignment 4, Asgmt4_yourName.

• In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save As ...’.

• Check that the window opens in the folder where you want to save your work.

https://creativecommons.org/licenses/by/4.0/

A smarter Dodo Assignment 5

• Choose a file name containing your own name(s) and assignment number, for example:
Asgmt5_John.

You will also need to answer some questions. Questions with an ’(IN) ’ must be handed ’IN’.
For those you will need:

• pen and paper to draw flowcharts which must be handed in (’(IN) ’),

• a document (for example, Word) open to type in the answers to the ’(IN) ’ questions.

The answers to the other questions (those that don’t need to be handed in) you must discuss with
your programming partner and then jot down a short answer on the assignment paper.

A note in advance: in this assignment you may only make changes to the MyDodo class.
All relevant material, such as scenarios and lecture slides can be found at:
http://www.cs.ru.nl/S.Smetsers/Greenfoot/Dominicus/

4 Theory

Variables
Variables are used to store information.

A variable has a:

• Type: such as int, boolean, String, or, as we shall see later on, a class or another object.
The variable type describes what type of a value a variable can store.

• Name: for example Mimi, or nrOfEggs.

• Initial value: optional (you can also assign a value later).

Declaring a variable:
Before you can use a variable, it must be created. This is called a declaration:

Usually, at the same time, you will assign it a value. This is called initialization:

Assigning a value:
To assign a value to a variable you must use ’=’. The ’=’ sign is pronounced as ’becomes’.

Algorithmic thinking and structured programming (in Greenfoot) 2

http://www.cs.ru.nl/S.Smetsers/Greenfoot/Dominicus/

A smarter Dodo Assignment 5

Figure 1: The variable nrOfEggs becomes 50

You can only assign a value to a variable if they both have the same type. This means that
the type of the variable on the left-hand-side of the ’=’ should be the same as the type of the
value on the right-hand-side. In the example above, the type of:

• the left-hand-side is int, because the type of nrOfEggs is an int,

• the right-hand-side is also int, because ”50” is an int.

Using a variable:
When using (the value of) a variable, you don’t need to mention the type anymore. (This is
just like when you call a method, where you don’t have to repeat the entire signature of the
method. Moreover, Java does not even allow you to do so.) What you can do with a variable
(which operations you can use) depends on its type. For example, variables which store a text
(or String) can be ’stuck together’ (or concatenated). And numerical values (such as int)
can be compared, multiplied, added, incremented, etc.
Examples are:

• nrOfDozens = nrOfEggs / 12;
the variable nrOfDozens is assigned the value of nrOfEggs divided by 12. Note: the
division that is used here is called an integer division, that is to say that the result is an
integer (whole number) and any remainder will be thrown away.

• nrOfEggs = nrOfEggs + 1;
the variable nrOfEggs is incremented by 1 (for example, when Mimi lays another egg).

A variable can also be passed to a method as a parameter. For example in the following
method call:
layNrOfEggs (nrOfEggs);
Here, in the method call of layNrOfEggs, the variable nrOfEggs is passed as a parameter.
Based on this parameter, Mimi knows how many eggs she must lay.

Life span:
A variable that is created inside a method declaration exists only for that particular method.
After the method is executed, the variable is destroyed. Thus, these variables have a limited
life span (also called scope). A variable’s life begins where it is declared and ends when the
method stops. 1

The Greenfoot editor helps you recognize the life span by using different background
colors. For example, in the picture below you can see that the scope of the int stepsTaken

variable is limited to the white area and all areas that are enclosed by the white area in which
is declared, in this case the pink area.

Algorithmic thinking and structured programming (in Greenfoot) 3

A smarter Dodo Assignment 5

Parameters also have a life span: this is limited to the body of a method (or construc-
tor). For example, in the picture below you can see that the scope of the int nrStepsToTake

parameter is limited to the white area of the method (and the enclosed pink area).

Variables that are declared in a class (outside of a method and thus not within a particular
method) exist as long as the object exists (you will learn more about this in the next assign-
ment).

Naming conventions for a variable
The name of a variable:

• is meaningful: it corresponds to what the variable means (one exception: the name of a
counter variable in a loop may be one letter, such as i);

• consists of one or more nouns;

• is written in lowerCaseCamel: it starts with a lowercase letter, an each subsequent
’word’ starts with a capital letter;

• consists of letters and numbers: it does not contain spaces, commas, or other ’strange’
characters (one exception: ’ ’ may be used);

• for example: nrEggsFound.

Example:
We write a method which squares a number:

/**
* This method returns the square of a given number

*/
public int square (int number){

// declare and initialize the result, the number squared
int result = number∗number ;

// the method returns the result after squaring
return result ;

}

Note:
A variable that is declared in a method (and thus can only be used within that method) is
called a local variable. In this example, int result is a local variable because it has been
declared in the method square. In addition, the parameter int number can only be used
within this method.

Algorithmic thinking and structured programming (in Greenfoot) 4

A smarter Dodo Assignment 5

Comparison operators:
The following operators compare numerical values:

Operator Meaning Example
== is equal to number == 4
!= is NOT equal to number1 != number2

> is larger than number > 3
>= is larger or equal to number1 >= number2

< is smaller than 5 < number

<= is smaller or equal to number <= 5
The result of a comparison is always a boolean (thus, true or false).

Arithmetic operators:
The following operators perform arithmetic operations on numerical values:

Operator Meaning Example
+ addition result = 4 + number

− subtraction result = number − 4
∗ multiplication result = 5 ∗ number

/ division result = number / 5

Increment and decrement operators:
The following operators increase or decrease the value of a variable by one:

Operator Meaning Example
++ increase by one result ++
−− decrease by one result −−

Example:

• Initialization: Assume Mimi has found 4 eggs, then the following statement declares
and initializes the variable: int nrEggsFound = 4;

• Addition operator: If she then finds another two eggs, then the following statement
increases the value of nrEggsFound by two: nrEggsFound = nrEggsFound + 2;

• Decrement: And if she loses an egg, the following statement decreases the value by one:
nrEggsFound−−;

The above operations change the value of a variable. To check whether Mimi now has five
eggs, we use the following boolean expression: nrEggsFound == 5. This is indeed true.

Console
To make a window appear with text you can use a standard Java method:

System.out.println (String); .
In this case the method has a String (text) parameter2. The window that appears is called

a console. In assignment 3, exercise ”Giving compliments” (exercise 5.5), you already prac-
ticed passing a String as a parameter. When using the println method:

• Place text in between quotation marks ’ ’ and ’ ’.

• To show the value of a variable (such as an integer), the quotation marks are not needed,
just use the variable name.

• Combine texts and variables using ’ + ’.

Algorithmic thinking and structured programming (in Greenfoot) 5

A smarter Dodo Assignment 5

Example:
To show text and the value of a variable (for example, nrOfEggs), call the following method:

System.out .println ("there are "+ nrOfEggs + " eggs in the world.");

In this example, if nrOfEggs is equal to 5, then the following will be shown in the console:
There are 5 eggs in the world.
Note:
For more information about the Java println method, have a look at: https:
//docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html#
println(java.lang.String).

5 Exercises

5.1 Variables

5.1.1 Tracing code

Tracing
Keeping track of variables and reviewing their values at certain points in a program is called
tracing. Tracing is a useful skill for detecting errors in code.
Example:
We will now trace the variables number1, number2 and number3 using the following code:

int number1 = 2;
int number2 = 3;
int number3 = number1 ∗ number2 ;
number2 = number3 − number1 ;
number1 = number1 + number2 + number3 ;
number3 = number2 ∗ number1 ;

We use a table to keep track of each variable’s value after executing each line of code:
Value after executing the statement

Statement number1 number2 number3
int number1 = 2; 2 - -
int number2 = 3; 2 3 -

int number3 = number1 ∗ number2; 2 3 6
number2 = number3 − number1; 2 4 6

number1 = number1 + number2 + number3; 12 4 6
number3 = number2 ∗ number1; 12 4 48

Note: ’-’ indicates that the variable has not yet been declared or initialized. At the end of the
program, the value of number1 is equal to 12, the value of number2 is equal to 4, and the value
of number3 is equal to 48.

In the following exercises we will practice using variables and operators. Have a look at the
following pieces of code. Indicate what the value of each variable is after executing the code:

• First, write down what you think the value of the variable will become after executing the
code.

• Use Greenfoot to check your answer:

Algorithmic thinking and structured programming (in Greenfoot) 6

https://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html#println(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html#println(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html#println(java.lang.String)

A smarter Dodo Assignment 5

1. Write a public void practiceTracingCode () method in which you can copy-paste
the code (You can reuse the same method for all of the questions below).

2. In several places in the code, print the value of each of the variables. For example, you
can print the value of a variable nrOfEggsFound in the console using:
System.out .println("Value of nrOfEggsFound is: "+ nrOfEggsFound);

• If the answer is different than you expected, use the printed values to figure out how the
code actually works.

You should be able to complete the following exercises without a problem. If you do have
problems, then apparently you have not understood the topic well enough. Go back and make
sure you understand this before moving on. This will prevent you from making unnecessary
mistakes later on. Taking the time to understand this well now will be paid back (double)!

1. What does the value of int nrOfEggsFound become? Match the code on the left with the
correct result on the right:

Code
int nrOfEggsFound = 3;
nrOfEggsFound ++;
int nrOfEggsFound = 2;
nrOfEggsFound = nrOfEggsFound + 4;
int nrOfEggsFound = 1;
nrOfEggsFound −−;

Result of int nrOfEggsFound
0
2
3
4
6

2. (IN) What do the values of int number1 and int number2 become?

int number1 = 2;
int number2 = 4;

number1 = number1 + number2 ;
number2 = number1 + number2 ;

3. (IN) What do the values of int number1 and int number2 become?

int number1 = 3;
int number2 = 4;

number1 ++;
if(number1 != number2){

number1++;
} else {

number2 ++;
}

4. What do the values of int number1 and int number2 become?

int number1 = 2;
int number2 = 4;

number1 = number2 ;
number2 = number1 ∗ number1 ;

5. (IN) What do the values of int number1 and int number2 become?

int number1 = 2;
int number2 = 4;

number1 = number2 ;
number2 = number1 ;

Algorithmic thinking and structured programming (in Greenfoot) 7

A smarter Dodo Assignment 5

6. What do the values of int number1 and int number2 become?

int number1 = 6;
int number2 = 3;

number1 = number2 ;
number2 = number1 ;
if(number1 == number2){

number1 = number1 + number2 ;
}

7. What do the values of int number1 and int number2 become?

int number1 = 6;
int number2 = 3;

number1 = number2 ;
number2 = number1 ∗ number1 ;

if(number1 < number2){
number1 = number1 + number2 ;

} else {
number2 ++;

}

8. (IN) What does the value of int number become?

int number = 3;
while(number < 10) {

number = number + 2;
}

9. (IN) What does the value of int number3 number?

int number1 = 10;
int number2 = 8;
int number3 = 4;

number3 = doSomethingWithTwoNrs(number1, number2) ;

where:

public int doSomethingWithTwoNrs (int a , int b) {
int result = (a + b)/2;
return result ;

}

10. What do the values of int number1 and int number2 become? In your own words, describe
what this code does with number1 and number2. What is the role of int numberTemp?

int number1 = 6;
int number2 = 3;
int numberTemp = 0;

numberTemp = number1 ;
number1 = number2 ;
number2 = numberTemp ;

Algorithmic thinking and structured programming (in Greenfoot) 8

A smarter Dodo Assignment 5

5.1.2 Turn to the East

We are going to write a method which turns Mimi so that she faces East.

1. Right-click on Dodo’s method int getDirection(). Which value (result) belongs to the
direction in which she is currently facing.

2. Have a look at the value of the variable int myDirection. Do this by right-clicking on Mimi
and then selecting ’Inspect’.

Turn Mimi a few times and use ’Inspect’ to complete the table:

Facing Result of int getDirection() Value of int myDirection using ’Inspect’
North
East
South
West

3. Determine an algorithm to turn Mimi until she is facing East.

4. Draw the corresponding flowchart.

5. Write the corresponding method void faceEast() .

Tip: Have a look at the class Dodo in the editor. At the top of the class, so-called class
constants have been declared for the four directions:

public static final int NORTH = 0;
public static final int EAST = 1;
public static final int SOUTH = 2;
public static final int WEST = 3;

Because of these class constants, you can use Dodo.NORTH instead of ’0’. For example,
you can use if (getDirection() == Dodo.NORTH) to check if Mimi is facing North.
This makes the code easier to read and less prone to errors. What these class constants
are, will be explained in assignment 6. But for now, you can use them in your method
in this manner.

6. Add comments to your code.

7. Compile. Test your method by right-clicking on Mimi and then selecting method.

You have now learned how to compare a variable and a number.

5.1.3 Turn how many degrees?

Write a method int degreesNeededToTurnToFaceNorth() which returns how many degrees Mimi
must turn (counterclockwise) to face North. Can you do think of an algorithm which does this
without using an if .. then .. else statement?

In this exercise you have done (arithmetic) calculations using variables.

5.1.4 Turn and step

We are now going to write a generic method which first turns Mimi so that she is facing a partic-
ular direction and then lets her take a step in that direction. The direction is given as a parameter.
This is a generic method because it works for any (initial or final) direction.

1. Come up with an algorithm which makes Mimi turn so that she faces a given direction and
then moves forward (in that direction). Tips:

Algorithmic thinking and structured programming (in Greenfoot) 9

A smarter Dodo Assignment 5

(a) What is the type of the parameter?

(b) Your method will get the direction Mimi has to face as an argument. First, think about
how you can determine whether or not Mimi is facing in the correct direction.

(c) Try to come up with an algorithm which doesn’t separately specify what needs to hap-
pen for each particular direction. Tips:

• This can be done using a while loop.
• Use what you came up with in the previous exercise 1b.

2. (IN) Draw the corresponding flowchart.

3. Translate the flowchart into code for the method void turnToDirectionAndMove(int direction).

• First write a separate sub-method boolean facingCorrectDirection(int direction)
which determines whether or not Mimi is already facing in the correct direction.

4. Add comments to your code.

5. Compile and test you method by right-clicking on it.

5.1.5 Go to a location

We will now write a method void goToLocation(int coordX, int coordY) that sends Mimi to
a location with the following coordinates (coordX, coordY).

1. Come up with a suitable algorithm. Tip: It may be useful to consider different cases indi-
vidually, depending on which direction she needs to head.

2. (IN) Draw the corresponding flowchart. Tip: Use a separate sub-method (and thus flowchart)
to check if Mimi has reached the desired location.

3. Write the corresponding code. Don’t forget to add comments.

4. Compile. Test your method by right-clicking and filling in several different values. Does it
work properly if you fill in (0,0)? And (2,3)? And (11,11)? And how about (14,14)?

5. Adjust your program so that it deals with invalid coordinates correctly:

(a) Write a separate sub-method boolean validCoordinates(int coordX, int coordY) which
checks if the given coordinates (the arguments) are valid (in other words: if they exist
in Mimi’s world).

(b) If invalid coordinates are given, show an error message using:
showError("Invalid coordinates");

(c) If the input is invalid, Mimi should stay in her place (do nothing);

(d) Your program should work for any world size, not only a world with 12 by 12 cells.
Ask the World what its (current) width and height are. Tip: To get the world’s width,
first call: World world = getWorld(); and then ask its width: world.getWidth() .

6. Test your code modifications.

We have now seen how you can use and compare variables. We also saw how to use a com-
bination of operators with different parameters, variables, and numbers to build more complex
conditional expressions.

5.2 Count repetitions

Algorithmic thinking and structured programming (in Greenfoot) 10

A smarter Dodo Assignment 5

Counter
A counter is a variable that is used to keep track of how often something happens. For
example, a variable can be used to count how often the code in a while loop is executed.
That way, you know when you’re done.

As a concrete example, let’s have a look at MyDodo’s code for void jump (int distance)
which we came across in scenario 1. This method makes Mimi take steps repeatedly until
the the required distance has been reached. A counter is used to keep track of how many
steps Mimi has taken (which is also equal to the number of times the while loop has been
executed). When the counter equals the required distance, Mimi is done.

Flowchart:

The flowchart explained::

• First we need a counter ’nrStepsTaken’ to store how many steps Mimi has taken.

– While ’nrStepsTaken’ is smaller than the required ’distance’, then Mimi is not
done yet and more steps need to be taken. Therefor, the conditional expression is
’True’. Mimi takes a step (’move’) and the counter ’nrStepsTaken’ is increased by
one.

After that, the method jumps back to the diamond and checks the conditional ex-
pression again. If the condition ’nrStepsTaken is smaller than distance’ is still ’True’
then the ’True’ path is followed again (this is a loop). Otherwise the method ends.

– If ’nrStepsTaken’ is larger or equal to the required ’distance’, then no more steps
have to be taken and Mimi is done. The conditional expression is ’False’. The
method ends.

Code:

public void jump (int distance){
int nrStepsTaken = 0; //counter ’nrStepsTaken’ is initialized
while(nrStepsTaken < distance){ // Not enough steps taken? Then continue

move () ; // take a step
nrStepsTaken++; // increase counter by 1

}
}

Algorithmic thinking and structured programming (in Greenfoot) 11

A smarter Dodo Assignment 5

The code explained:

• A counter is declared and initialized with the value 0: int nrStepsTaken = 0; .

• First the conditional expression nrStepsTaken < distance is checked.

– While the conditional expression is true (thus if
nrStepsTaken < distance == true), the code between the curly brackets {
and } is executed. In this case move() is called, followed by incrementing the
counter nrStepsTaken++.
After that the method jumps back to the conditional expression
nrStepsTaken < distance. If the conditional expression is still true, then
the code between the curly brackets is executed again (loop). Otherwise the
method ends.

– If the conditional expression is false (thus if nrStepsTaken < distance == false
), in other words nrStepsTaken is larger or equal to distance, then the method
ends.

Note:
The number of times that the while loop still has to be executed depends on the value of
int nrStepsTaken. The variable nrStepsTaken is incremented by one each time the code in
the while is run. At a certain point, the value of nrStepsTaken will be equal to distance. In
that case, Mimi is done. The while will not be executed anymore and the method ends.

A common mistake is to forget to increment the counter in the loop. Then the program
will never come out of the loop and will repeat for ever.

5.2.1 Tracing the While

It’s time to practice using the while loop. Just like in the first exercise (ex. 5.1.1), we’re going to
review code and trace how the variables change as the code runs. This is a good way to really
understand how a while loop works. That way, you’ll make less (hard to find) mistakes while
coding. Have a look at the following pieces of code and try to figure out what happens to the vari-
ables. Use Greenfoot to check your answers. Use your void practiceTracingCode () method
from ex. 5.1.1 to run the code.

1. What do the values of nrOfStepsAlreadyTaken and nrOfStepsToTake become after run-
ning the following code? How often does the method move (); get called?

int nrOfStepsToTake = 8;
int nrOfStepsAlreadyTaken = 0;

while(nrOfStepsAlreadyTaken < nrOfStepsToTake){
move () ;
nrOfStepsAlreadyTaken++;

}

2. After running the following code, what are the values of counter and nrOfStepsToTake?
How often does the method move (); get called? Does the code work correctly?

int nrOfStepsToTake = 6;
int counter = 0;

while(counter <= nrOfStepsToTake){
move () ;
counter++;

}

Algorithmic thinking and structured programming (in Greenfoot) 12

A smarter Dodo Assignment 5

3. (IN) After running the following code, what are the values of counter and nrOfStepsToTake?
Explain why the code is correct this time (in comparison to the last question).

int nrOfStepsToTake = 4;
int counter = 0;

while(counter <= nrOfStepsToTake−1){
move () ;
counter ++;

}

4. Complete the following table for each time that the code in the while is executed.

int number1 = 2;
int number2 = 5;
int counter = 0;

while(number1 <= number2){
move () ;
number1 ++;
counter ++;

}

Nr of while-loops executed Value of number1 after while Value of number2 after while
0
1
2

5. (IN) Modify the following conditional expression in the while so that move() is called
three times.

int number1 = 10;
int number2 = 8;

while(number1 > number2){
move () ;
number1−−;

}

6. Have a look at the method jump as described in the theory block above.

(a) Add (i.e. copy-paste) the method void jump(int distance) to the MyDodo class.

(b) For each of the following, indicate how often the code in the while (of void jump(int distance))
is executed:

i. if distance is equal to 5,
ii. if distance is equal to 1?

iii. if distance is equal to 0?
iv. if nrStepsTaken is equal to 3 and distance is equal to 5?

Tip: You may want to print some values in the console.

We have now seen how to use a counter variable to determine how often code (a while loop)
should be executed in order to get correct results.

Algorithmic thinking and structured programming (in Greenfoot) 13

A smarter Dodo Assignment 5

5.2.2 Number of steps until the edge of the world

We’re now actually going to practice with using a while and a counter, in addition to having a
method return a value when it’s done.

The counter belongs to the method. Recall from the theory block about a variable’s life-span
that the counter’s scope is restricted to that of the method. When the method terminates, then the
counter will no longer exist. By having the method return the counter’s value, it can be used in
other parts of your program.

In this exercise we write a method which returns how many steps Mimi has to take to get to
the edge of the world. In order to do this, we let Mimi walk forward (until she reaches the end
of the world) and count the number of steps she takes to get there. This value is returned by the
method.

1. Come up with an algorithm for counting the number of steps which Mimi takes until the
edge of the world has been reached. Make use of a while and a counter variable. Tip: Have
a look at the method void jump(int distance) for inspiration.

2. Choose an appropriate variable name for the counter.

3. Draw the corresponding flowchart.

4. Write the corresponding method int walkToWorldEdgeAndCountSteps() which counts how
many steps Mimi takes and returns that result.

5. Add comments to your code.

6. Compile and test your method by right-clicking on Mimi and choosing the method. What
is the smallest value that your method can return as a result? And the largest?

We have now used a counter variable to keep track of how often a while loop has been exe-
cuted. We also wrote a method that returns the variable so that it can be used in other parts of the
code.

5.2.3 Counting number of eggs is a row

Mimi will walk to the edge of the world and count how many eggs she finds in that row (or
column).

Write a method that returns how many eggs there are in a row or a column.

1. Come up with an algorithm for counting the number of eggs between Mimi and the edge of
the world. Use a while-loop. Tips:

• In order to do this, let Mimi walk forwards (until the edge of the world is reached) and
count the number of eggs she finds.

• Have a look at the method void walkToEdgeOfWorld() which you wrote in assignment
2 for inspiration.

2. Choose an appropriate variable name to store how many eggs have been found.

3. Draw the corresponding flowchart. Return the number of eggs found as a result.

4. Write the code for the corresponding method int walkToWorldEdgeAndCountEggs(). Note:
we previously mentioned that we prefer to strictly use accessor methods for methods which
return a value, and mutator methods for methods which change the state of an object. How-
ever, in this case, such a strict segregation would be unwieldy for the problem at hand.
Therefor, we will write a method which both changes the state of an object and returns an
intermediate result.

Algorithmic thinking and structured programming (in Greenfoot) 14

A smarter Dodo Assignment 5

5. Don’t forget to add comments.

6. Compile and test your method by right-clicking. Tip: Use println to print the variable.
That way you can check whether or not your method works correctly.

We have now used a variable to store information which was gathered throughout the execu-
tion of a while loop.

5.2.4 Trail of eggs

We want to teach Mimi to leave a trail of (a certain number of) eggs. The initial situation is as
follows:

Figure 2: Initial situation

We write a method called void layTrailOfEggs(int nrOfEggsToLay) with which Mimi leaves
a trail of nrOfEggsToLay eggs behind. Thus, layTrailOfEggs(6) will result in the following final
situation:

Figure 3: Final situation after Mimi has left a trail of 6 eggs

1. Come up with an algorithm for leaving a trail of a certain number of eggs. Tip: Consider
using a while and counter variable in your solution.

2. Draw the corresponding flowchart.

3. Write the method void layTrailOfEggs(int nrOfEggsToLay) so that Mimi lays a trail of
nrOfEggsToLay eggs.

4. Don’t forget to include comments in your code.

5. Compile and (by right-clicking on the method) test your code.

6. (IN) If int nrOfEggsToLay is equal to 6, how often will the while be run?

We have now used a counter variable to determine how often a while loop is executed.

Algorithmic thinking and structured programming (in Greenfoot) 15

A smarter Dodo Assignment 5

5.3 Eggs in the world

Now that you have written a few basic, but very important types of methods, it’s time for a more
challenging exercise. In the following exercise we will teach Mimi how to count and remember
how many eggs she finds. Then, in the exercises that follow, she can use this to do some ’more
intellectual’ work.

5.3.1 Counting eggs in the world

We want Mimi to count the number of eggs in the world. To do this we want her to walk through
the entire world. We want her to visit every cell, but no cell twice. The following picture shows a
way for her to walk through the world systematically:

Figure 4: Mimi walks through the world systematically

As you can see, Mimi walks across each row, and the end of the row goes to the next row, and
finally stops when she reaches the very last cell. To make programming and especially testing,
easier, we divide the problem down into a few subproblems:

1. Walk to the starting point;

2. Walk to the end of the row while counting each egg found;

3. Determine if the final cell has been reached:

(a) While the final cell has not yet been reached, go to the next row, turn, and repeat step
2;

(b) If the final cell has been reached, then stop.

You can then combine the (sub)solution to each subproblem into one complete solution.
We will now deal with each subproblem, one-by-one, only focussing on that particular prob-

lem at a time. Always try to make use of methods you have already written (in previous exer-
cises). All you have to do is call the method. That will save you a lot of time, and besides, you
have even already (debugged and) tested those methods! You don’t even need to make a new
flowchart for those methods, because even that you already did! You do, however, need to make
one high-level flowchart in which you show how to solve the ’big’ problem and which existing
sub-methods you want to use.

1. (IN) Sketch a flowchart for the complete solution (using the steps 1, 2 and 3 above). Tip: Use
a while loop.

2. Walk to the starting point:
Try to make use of a method which you have already written in a previous exercise. Tip:
Have a look at the method goToLocation from exercise 5.1.5. Determine if you can reuse
this method.

Algorithmic thinking and structured programming (in Greenfoot) 16

A smarter Dodo Assignment 5

3. Walk to the end of the row and count each egg found:
In exercise 5.2.3 you wrote and tested the method int walkToWorldEdgeAndCountEggs().
Determine if you can reuse this method.

4. Determine if the final cell has been reached:
Write a sub-method to determine if the final cell has been reached. You can do that as
follows:

(a) The World methods int getWidth() and int getHeight() return how wide and high
the world is. By right-clicking, call both methods. Write down the coordinates of the
four corners of the world.

(b) In which corner will Mimi be when she is done? Is that always the same corner? If
the world would be made one row larger, would it still be the same corner? If Mimi
knows how high and wide the world is, how can she figure out if she is done (i.e. has
reached the last cell)? Describe this using the terms ’height’ and ’width’ instead of
actual numbers like ’12’.

(c) Come up with an algorithm to determine the coordinates at whcih Mimi is done. This
always has to work, no matter what the size of the world is.

(d) Now write (and test) the corresponding method to determines if Mimi has reached the
final cell. Tips:

• Use the World methods int getWidth() and int getHeight() . Don’t use the
number ’12’, because if the world is made larger, then your program won’t work
anymore.

• Write a method boolean isEven(int number) that determines if a number is even
or odd. You can use modulo ’%’ (remainder after division). A number for which
’number%2’ is equal to 0 is even. If it is not equal to 0, then the number is odd.

5. Go to the next row:
Write and test a sub-method which makes Mimi step to the next row and turn so that she is
facing the correct direction. Your method should work on both sides, whether she reaches
the left-hand-side of the world or the right-hand-side of the world.

6. Combine your solution to each subproblem above into one complete solution:
Follow the next steps to write a method so that Mimi walks through the whole world and
counts eggs:

(a) First, come up with a variable name for remembering how many eggs Mimi has found.

(b) (IN) Refine your flowchart for the complete solution (from step 1), making use of the
sub-solutions you have just found. Include the variables. Also determine when the
variable for the number of eggs must be incremented.

(c) Translate your flowchart into code by writing the method
void walkThroughWorldAndCountEggs(). Check if the initial and final situations of
any reused methods match what you expect them to be.

(d) When Mimi is done, print the number of eggs that she has found in the console, using
println() .

(e) Don’t forget to comment your code.

(f) Compile and test your method. Determine if it is a complete solution to the problem.

You have now found a solution to a complex problem by breaking it down into sub-problems
(abstraction). Then you designed, implemented, and tested the sub-problems individually (mod-
ularization) or re-used existing methods. Then you combined the sub-solutions in order to solve
the problem as a whole.

Algorithmic thinking and structured programming (in Greenfoot) 17

A smarter Dodo Assignment 5

5.3.2 Find the row with the most eggs

We’re going to teach Mimi how to find which row has the most eggs in it. Again, we’re going to
let her walk through the world systematically. When she’s finished, a popup dialog box (console)
shows which row number has the most eggs, and how many eggs there are in that particular row.

1. Come up with an appropriate algorithm. Tips: Make use of a while. For each row, let Mimi
determine if that particular row contains more eggs than the rows she has already visited.

2. How many variables do you think you will need to store all the information that Mimi has
to remember? Choose names and types for these variables. Tip: You probably need 4 int
variables.

3. (IN) Draw a flowchart, showing your algorithm on a high-level, Tips:

• Don’t go into details.

• Break the problem down into smaller problems.

• Use methods you have already written in previous exercises.

• For each subproblem, draw a sub-flowchart. (Each sub-flowchart will become a sub-
method in the code, which you can write and test separately from the other methods.)
Note: you don’t have to draw flowcharts if you re-use an existing method!

• Make your solution generic by asking the world its height using getHeight() . Always
try to avoid using concrete numbers like ’12’ in your code.

• After Mimi has walked through all the rows, show a popup dialog box (console) with
which row has the most eggs, and how many eggs there are in that row. After that, the
program stops.

4. Write a separate sub-method for each subproblem.

5. One-by-one, compile and test each sub-method separately (by right-clicking on the method’s
name).

6. Write the main method findRowWithMostEggs(). In this method, call your sub-methods
according to your high-level flowchart.

7. Add comments to the code.

8. Compile and test your findRowWithMostEggs() method (by right-clicking).

9. Call your method findRowWithMostEggs() in the act() .

10. Compile, run and test your program.

11. (IN) Take a moment to look back and reflect. Did you make a lot of mistakes while pro-
gramming your solution? What kind of mistakes did you make? What could you have
done better?

Type casting
In some cases a value can be converted from one type to another type. This is called type
casting. Using brackets, the new type is written in front of the object.

When would you use this? For example, when dividing two numbers (ints), the answer
may be a decimal (double) value. Without casting, dividing two ints automatically results
in an int, not a double.

For example, the following code will result in ’1’ being printed:

Algorithmic thinking and structured programming (in Greenfoot) 18

A smarter Dodo Assignment 5

int number1 = 5;
int number2 = 3;

System .out .println(number1 / number2) ;

Why? Because number1 and number2 are ints, and thus so is its answer. 5 is divided by 3
which is then rounded down to the nearest whole number (actually, the decimal part is just
’chopped off’).

However, dividing a double by an int does result in a double. So, when divid-
ing, by type casting the numerator to a double, the result will be a double. So,
System.out .println((double) number1 / number2); will print 1.6666666666666667 in
the console.

Example:
Here is an example of casting using MyDodo’s code. If for example, we want to cast the value
of int nrEggsFound to a double (a decimal value), then we write: (double) nrEggsFound).

5.3.3 Average number of eggs

Mimi knows how to count eggs, and the number of eggs in each row. But how many eggs are
there on average in each row? This exercise is similar to the previous one. However, because
average is (probably) a decimal value, you must use type casting.

1. Initialize a variable with the type double to store the average value.

2. Type cast the variable int nrEggsFound into a double.

3. Calculate the average number of eggs.

4. Show the result in the console.

6 Summary

You can now:

• use variables to store information;

• calculate using variables;

• use variables in conditional expressions;

• use a counter in a while loop;

• re-use your (own) methods in other parts of your code;

• break a complex problem down into sub-problems (abstraction);

• design, implement, and test sub-problems individually (modularization);

• call sub-methods from other methods (re-use).

7 Saving your work

You have just finished the fifth assignment. Save your work! You will need this for future assign-
ments. In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save’. You now
have all the scenario components in one folder. The folder has the name you chose when you
selected ’Save As ...’.

Algorithmic thinking and structured programming (in Greenfoot) 19

A smarter Dodo Assignment 5

8 Handing in

Hand your (digital) work in via email to sjaaksm@live.com:

1. The (Word) document with your answers to be handed in (answers to the ’(IN) ’ questions).

2. The MyDodo.java file.

Make sure you hand your work in before next Wednesday 8:30 (in the morning).

Algorithmic thinking and structured programming (in Greenfoot) 20

sjaaksm@live.com

	Introduction
	Learning objectives
	Instructions
	Theory
	Exercises
	Variables
	Tracing code
	Turn to the East
	Turn how many degrees?
	Turn and step
	Go to a location

	Count repetitions
	Tracing the While
	Number of steps until the edge of the world
	Counting number of eggs is a row
	Trail of eggs

	Eggs in the world
	Counting eggs in the world
	Find the row with the most eggs
	Average number of eggs

	Summary
	Saving your work
	Handing in

