
Assignment 6: Dodo keeps getting smarter

– Algorithmic Thinking and Structured Programming (in Greenfoot) –
c©2015 Renske Smetsers-Weeda & Sjaak Smetsers

Licensed under the Creative Commons Attribution 4.0 license,

https://creativecommons.org/licenses/by/4.0/

1 Introduction

In the previous assignment you learned how to use variables. Mimi became smarter by being able
to remember things.

More specifically, you used local variables. Local variables are declared and initialized in a
method. When the method finishes, the value becomes destroyed and can’t be used anymore.
And each time that the method is called (directly by right-clicking, or indirectly in the act) the
variable is re-initialized and loses its ’old’ value. If you want to write a more complex program or
game you may want to be able to store values throughout the whole program (such as a score). An
instance variable is used to store information throughout the entire program. In this assignment
you will learn how to use these.

In assignment 3 we agreed that we prefer to use the while loop in the Run as opposed to
writing our own while loop in the act method. In the previous assignment we made an exception
to this agreement. There you called your methods by right-clicking. However, if you want to
make a game, then you will have to make use of the act. In this assignment we will see that you
can use instance variables to write your programs without a while loop in the act method. We
define the act method so that it executes just one step of our algorithm. Then, when you press
the Run, our entire program will be executed.

So, throughout this assignment you may not write while loops in the act method.

2 Learning objectives

After completing this assignment, you will be able to:

• explain, in your own words, what instance variables are used for;

• explain, in your own words, what the difference is between a local variable and an instance
variable;

• explain, in your own words, what a constructor does;

• recognize a class’s constructor;

• name and follow the steps that are necessary for using an instance variable;

• initialize instance variables;

• explain, in your own words, what role private and public play in information hiding and
modularization;

• reason about the visibility of variables and methods;

• explain, in your own words, what getter and setter methods are used for.

https://creativecommons.org/licenses/by/4.0/

Dodo keeps getting smarter Assignment 6

3 Instructions

In this assignment you will carry on with your code from assignment 5. Therefore you will need a
copy of the scenario which you saved after completing assignment 5, Asgmt5_yourName. To make
a copy follow the next steps:

• Open your scenario from assignment 5, Asgmt5_yourName.

• In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save As ...’.

• Check that the window opens in the folder where you want to save your work.

• Choose a file name containing your own name(s) and assignment number, for example:
Asgmt6_John.

You will also need to answer some questions. Questions with an ’(IN) ’ must be handed ’IN’.
For those you will need:

• pen and paper to draw flowcharts which must be handed in (’(IN) ’),

• a document (for example, Word) open to type in the answers to the ’(IN) ’ questions.

The answers to the other questions (those that don’t need to be handed in) you must discuss with
your programming partner and then jot down a short answer on the assignment paper.

A note in advance: in this assignment you may only make changes to the MyDodo class and
the Egg class.

All relevant material can be found, such as scenarios can be found at:
http://www.cs.ru.nl/S.Smetsers/Greenfoot/Dominicus/

4 Theory

Visibility
You can protect your data by making these less visible or accessible to other objects. There
are different levels of visibility or accessibility of methods or instance variables (the concept
of an instance variable will be explained later). The possibilities for the visibility are:

Visibility Explanation
public accessible from outside the class
private only accessible from within the class itself
protected only accessible from within the class or its subclasses

Private elements are not visible to other classes. An element that has been defined as
public can be reached (and can thus possibly be modified) by other code/objects in the
program.

In object-oriented programming, each class can have public methods. Objects in other
classes can request ’public’ information or let the object do something which is ’public’. An
example is public boolean canMove() which you can use to ask Mimi if she can move or not.
Objects of other classes can see and call any public accessor or mutator method.

On the other hand, the instance variable private int myNrOfEggsHatched is private and
can’t be accessed or modified by another object. No one knows better than Mimi herself,
how many eggs she has hatched. No one else should be allowed to change that value. So it
is, and should be, Mimi’s responsibility to do keep track of this herself.

Algorithmic thinking and structured programming (in Greenfoot) 2

http://www.cs.ru.nl/S.Smetsers/Greenfoot/Dominicus/

Dodo keeps getting smarter Assignment 6

So, objects of other classes can call public accessor or mutator methods. However, how
Mimi does what she does is up to her. The implementation of the method is private. How
Mimi determines if she canMove is up to her, it is nobody else’s business, and is hidden
from all other objects. From a security or privacy point of view, you may not want others
to know the details of precisely how something is done (think about encrypting messages).
This principle is called information hiding. It says that the specific details about how a
class implements something should be hidden from other classes. The modularity of your
program is increased by controlling which methods can or can’t be called from outside the
class.

In order to simplify things, so far we have made all methods public. That’s actually not
good practice. One of the fundamental ideas of object orientation is to let an object main-
tain control and knowledge over itself. So, by default, all methods and variables should be
private. This is safer. In such a manner you force another object to ask if Mimi will give an
egg away, instead of just taking it away from her.

Instance variables
Instance variables are an object’s ’memory’. They contain information that an object stores or
uses. An instance variable is a type of variable: just like any other variable is has a type and a
name, such as int myNrOfEggsHatched. They also adhere to the same naming conventions.
(Instance variables are sometimes called attributes or fields.) Note: by adding my to its name
you can easily recognize that it is an instance variable (and not a local variable).

Instance variables belong to a particular object. For this reason, the visibility of an instance
variable should always be private (principle of information hiding). If another object needs to
know what the value is, is should ask the object by calling the object’s public accessor method.

Declaration
An instance variable is declared in a class. It should always be private. We make instance
variables private so that other objects don’t have the power to change values without per-
mission. During the declaration the variable is given a type and a name.

For example: private int myNrOfEggsHatched. With this variable, MyDodo stores how
many eggs she has hatched. Because this value is private, only she knows what its value is
and only she can change it. Another object can’t access or change the value of the variable
int myNrOfEggsHatched directly.

Initialization
An instance variable is given an initial value in the class’s constructor (this concept is
explained in the next theory block). When the object is created, the variable automatically
gets this value. For example, when a new MyDodo is placed in the world, then it has not
hatched any eggs yet. We indicate this in the constructor with: myNrOfEggsHatched = 0.

Lifetime:
An instance variable has the same lifetime as the object to which it belongs. When an object is
created (with new) the constructor-method is automatically called. All of the object’s instance
variables are created and initialized. The instance variables exist as long as the object exists.
So, the lifetime of an instance variable is equal to that of the object.

Getter accessor method
Another object can use a public accessor method (a so-called getter method) to ask for the
value of an object’s private instance variable. Not every instance variable has a public

Algorithmic thinking and structured programming (in Greenfoot) 3

Dodo keeps getting smarter Assignment 6

getter method. Getter methods are only written if they are useful, that is to say, if the values
need to be shared with other objects.

Naming conventions of a getter method
How to name a getter method depends on the result which the method returns.

• If the result is a boolean, choose ’is....’, for example boolean isHatched() ;

• Otherwise, choose a name as ’get...’, for example int getNrOfEggsHatched().

Here, the variable name is written instead of ’...’.

Example code for a getter method
Because instance variables are private, other objects can’t access its value. Another object
can ask its value by using a getter method.

Below is an example of a public getter method for the private myNrOfEggsHatched vari-
able. By adding this getter method, another object can call the method to ask how many eggs
have been hatched:

public int getNrOfEggsHatched() {
return myNrOfEggsHatched() ;

}

This is a public method. Thus, another object can call this getNrOfEggsHatched() method
to ask how many eggs have been hatched. Note that another object can’t change the value of
the variable by calling this method, another object can only ask its value.

Setter mutator method
The value of a private instance variable can be changed by another object using a public
mutator method (a so-called setter method).

Tip: Use setter methods sparingly. Only add them to a class if they are really needed.
That keeps the variables better protected, and thus it’s safer.

Example code for a setter method:
For this example, assume MyDodo has an instance variable private int eggsToHatch with
which Mimi can keep track of how many eggs she has to hatch.

Only she knows how many eggs she has to hatch (the variable is private). A snake may
come along and eat an egg. In that case, Mimi can get a message from the snake telling her
there is one less egg to hatch. Mimi then changes the value of myEggsToHatch herself (she
decreases it by one). We don’t trust the snake to change the value of myEggsToHatch directly
because he would immediately set its value to 0. The snake’s intention is to eat all the eggs;
he doesn’t want Mimi to hatch any eggs at all. So, we don’t trust the snake with the variable
myEggsToHatch and keep it private.

The following setter method can be called by another object in order to change one of
MyDodo’s variables:

public void setOneEggLessToHatch() {
myEggsToHatch−−; // decrease value by one

}

Because the method setOneEggLessToHatch() is public, another object can use
setOneEggLessToHatch() to decrease the value of the variable myEggsToHatch by only one.
Another object is now given the ’power’ to change the value by one, but not to immediately
set it to 0. Obviously, calling setOneEggLessToHatch() many times will lead myEggsToHatch

to equal 0. However, we could keep track of how often another object calls a method and

Algorithmic thinking and structured programming (in Greenfoot) 4

Dodo keeps getting smarter Assignment 6

take adequate measures. In the case of the egg-eating-snake, after he eats 5 eggs we could set
a snake trap. Whatever the case, the variable can not be changed without MyDodo knowing
about it.

Steps for using instance variables
Instance variables are used to give an object ’memory’. In order to use instance variables,
take the following steps:

• Declare the instance variable: indicate the name, type and visibility (as a rule we keep
this private);

• Initialize the instance variable (give it an initial value) in the constructor (the next the-
ory block explains how to do this): as soon as the object is created, the variable is given
this initial value;

• (optional) Write a getter accessor method so that an object from another class can ask
the variable’s value;

• (optional) Write a setter mutator method so that an object from another class can modify
the variable’s value.

• Modify the instance variable: in the object’s code, decide where the instance variable
should be changed. For example: if it’s used to keep track of the number of eggs
hatched, then it should be increased each time an egg is hatched.

Note: If you don’t want other objects to be able to ask or change a variable’s value, then don’t
make getter or setter methods.

Constructor
The constructor is a special method which is called as soon as an object is created (with new,
either in the code or right clicking in the class diagram). A constructor is used to initialize an
object and give its instance variables their initial values. The constructor looks similar to a
normal method, except for two things:

• a constructor’s name is always the same as the class’ name;

• and the constructor never has a return type, not even void.

In Greenfoot you can call MyDodo’s constructor using by right-clicking in the class diagram
and selecting new MyDodo(). In code it looks like this: MyDodo mimi = new MyDodo ();

Example:
In the editor, open the code for the MyDodo class.

Algorithmic thinking and structured programming (in Greenfoot) 5

Dodo keeps getting smarter Assignment 6

This class has:

• one instance variable: private int myNrOfEggsHatched;

• one constructor public MyDodo (...) ;

• any other methods public void act() .

5 Exercises

5.1 (Instance) variables

1. In assignment 5, exercise 5.1.2 ’Turn to the East’ you filled in a table with values for the
variable int myDirection and the result of int getDirection(). Meanwhile you have
learnt about visibility and getter methods. Investigate whether int myDirection and
int getDirection() are private or public and what each is used for (i.e. explain the
relationship between the two).

2. How can you recognize a constructor?

3. (IN) Explain in your own words what the difference is between an instance variable and a
local variable.

4. What are getter- and setter methods used for?

5.2 Count eggs until the fence

We will make Mimi walk to a fence. Meanwhile she counts the number of eggs she finds. To do
this we make use of instance variables. By using instance variables we can keep count of the eggs
with each step, and thus we can make use of the while loop in the Run.

1. Open ’world layEggTrailUntilFence’.

Algorithmic thinking and structured programming (in Greenfoot) 6

Dodo keeps getting smarter Assignment 6

2. Come up with an appropriate name for an instance variable that keeps track of the number
of eggs found.

3. Come up with an algorithm which makes Mimi walk to the fence and count how many eggs
she finds on the way there. Each time she finds an egg, the number of eggs found should be
printed in the console.

4. Draw the corresponding flowchart.

5. We will now write the corresponding method public void walkToFenceAndCountEggs().

Follow these steps:

• Open MyDodo’s code.

• Compare the code in the editor with that shown below.

• Add the missing lines to MyDodo’s code (i.e. also the comments in capital letters).

public class MyDodo extends Dodo {
// DECLARE THE INSTANCE VARIABLE HERE

public MyDodo (int init_Direction) {
// INITIALIZE THE INSTANCE VARIABLE HERE

}
public void walkToFenceAndCountEggs() {

if (!fenceAhead()) {
move () ;
if(foundEgg ()) {

// INCREASE THE INSTANCE VARIABLE BY 1

// show console
System .out .println("I found " + VARIABLE_NAME + " eggs!") ;

}
}

}
}

• In front of the comments in capital letters, write real code which does just that.

6. Add your own comments above the method explaining what the method does.

7. Go to the code of the act method. Make a call to the void walkToFenceAndCountEggs()
method from within the act() method.

8. Compile and test your method using the Run button.

9. What happens? Tip: A console opens, this may be hidden behind another Greenfoot win-
dow.

10. Does the program do what you expect?

We have now seen that Mimi can use an instance variable to keep track of how many eggs she
has found. The instance variable is initialized (in the constructor) when the Mimi object is created.
Because an instance variable exists as long as the object exists, it can be used to store information
for a longer period of time (than a local variable).

In assignment 5 we used a while loop and a local variable to count eggs. You can’t just replace
the while loop by the while in the Run; it won’t work the same. The act method is called over

Algorithmic thinking and structured programming (in Greenfoot) 7

Dodo keeps getting smarter Assignment 6

and over again, and each time it is called, the local variable is created and initialized again (in this
case, it will be set to 0 every time the act method is called). Mimi won’t be able to keep count.
What does work is using instance variables. These are only initialized (in this case, set to 0) when
the object is created. After that they keep their value, even if the act is called repeatedly.

Thus, by using instance variables instead of local variables, we don’t need to use a while loop
in the act anymore, but can merely use the (while in the) Run instead.

5.3 Keeping track of the number of steps taken

Mimi is not very intelligent. So far, she can keep track of how many eggs she has hatched, but
that’s it. We are going to make Mimi a little smarter by helping her keep track of how many steps
she has taken too.

1. Open MyDodo’s code.

2. Find the place in the code where instance variables are declared for this class.

(a) Find the declaration of the instance variable int myNrOfEggsHatched.

(b) What type does the instance variable have?

(c) The variable is private, what does this mean?

(d) Where is the first place that the variable gets a value? What value is this?

(e) When is this value modified?

(f) Meanwhile, did you find the constructor? How do you recognize the constructor?

3. We will now add a new instance variable myNrOfStepsTaken. Follow the next steps:

(a) Declare the instance variable: In an appropriate place, add a private integer instance
variable myNrOfStepsTaken.

(b) Initialize the instance variable: What would be an appropriate initial value for the
instance variable? In other words, if a new Mimi is placed in the world, what should
the value of myNrOfStepsTaken be? Give the instance variable the correct initial value.
Tip: Do this in the constructor.

(c) Write a getter method: Now that Mimi has a variable to keep track of how steps she
has taken, we should add a getter method. Other objects can use this to ask Mimi how
many steps she has taken. Come up with an appropriate name for this method. Im-
plement and test the method. Tip: see the theory block above for naming conventions
and example code.

(d) Modify its value: Each time Mimi takes a step, the value of myNrOfStepsTaken should
be raised by one.

i. Where is the best place to do this? It could be done after each call of move, or after
each call of the step method. Explain why the best option is to increase the value
after each call of step.

ii. Find (all) the place(s) in MyDodo’s code where step is called.
iii. Modify the code so that the value of

myNrOfStepsTaken is modified after each call of the step method. Tip: To increase
a variable’s value by one, use myNrOfStepsTaken++;.

(e) Test your changes.

4. Explain why, in this case, we don’t write a setter method.

Algorithmic thinking and structured programming (in Greenfoot) 8

Dodo keeps getting smarter Assignment 6

Calling a method from another class
When calling a method, there are two possible cases:

1. The method belongs to an object’s own class (or a class that is inherited). In this case
the object calls the method directly (as you have been doing all along).

2. The method belongs to a different class. To be able to call a method from another class,
you first need to have an object from that class.

General explanation:
Consider an object from that class called object, and a method from object’s class called
method. Assuming that the method has no parameters, use object.method(); to call the
method. You can read the instruction as follows: object is asked to execute his method
method.
Example of calling a method from a different class:
Imagine there is a BlueEgg object called babyBlueEgg. The BlueEgg class has a method
int getX() (inherited from Actor) which returns the egg’s x-coordinate.

Mimi wants to know where the egg is (its coordinates). Mimi can ask babyBlueEgg’s
x-coordinate by using: babyBlueEgg.getX(); . This call is done from Mimi’s MyDodo class.

Note:
Tip: After typing the object’s name followed by ’.’ (in the example above: ’babyBlueEgg.’),
use ’Ctrl+Space’ to see a list of all the methods available for that object.

Figure 1: To see a list of all available methods, use: ’Ctrl+space’

5.4 To be hatched or not to be hatched

Once an egg is hatched, it disappears from the world. However, it would be more realistic if the
egg wouldn’t just disappear, but would be shown as a hatched egg. In this exercise you will learn
how to change the way an object looks (depending on its state: hatched or not hatched).

Figure 2: A hatched egg

First we summarize which steps we will have to take. We will then modify the code together,
step-by-step, in the following exercise.

Algorithmic thinking and structured programming (in Greenfoot) 9

Dodo keeps getting smarter Assignment 6

• Declare an instance variable: The egg has to know whether it has been hatched or not. To
do this we add an instance variable to the egg: private boolean iAmHatched.

• Initialize the instance variable to the correct initial value. When the egg is placed in the
world for the very first time, it will be unhatched.

• Write a getter method to ask if the egg has been hatched or not (to get the value of the
instance variable boolean iAmHatched): public boolean isHatched() .

• Write a setter method to tell the egg when it has been hatched (to change the value of the
instance variable boolean iAmHatched): public void setHatched() .

• Modify its value.

– In the setter method, the next has to be done:

∗ change the value of the instance variable, so that iAmHatched is true;
∗ change the picture of the egg by a picture of a hatched egg.

– Calling getter and setter methods: Our eggs have become smarter. They know whether
they have been hatched or not. But it is Mimi whom actually hatches them; she must
tell the egg when it has been hatched. MyDodo’s code has to be modified so that Mimi
calls the getter and setter methods when she wants to hatch an egg.

∗ Before hatching an egg, Mimi needs to check if the egg hasn’t already been hatched.
Mimi asks the egg its state by calling the egg’s getter method
boolean isHatched() .

∗ Once Mimi has hatched the egg, she calls the egg’s setter method setHatched() to
tell the egg that it has been hatched.

At first using getter and setter methods may seem a little odd. However, this is the
object oriented way in which objects interact. Objects can do all sorts of things, but
they don’t do them spontaneously. They are told to do things by other objects.

We now modify the code, step-by-step. We start by making changes to the Egg class:

1. Declare the instance variable: Each Egg object keeps track of whether or not it has been
hatched. In order to do this, we use the boolean instance variable. iAmHatched.

(a) Open the code for the Egg class.

(b) In an appropriate place, add a private boolean instance variable named iAmHatched.

2. Initialize the instance variable:

(a) Decide what the initial value of the instance variable should be. So, when an egg is
placed in the world (when a Dodo lays the egg), what should the value of
boolean iAmHatched be? Explain.

(b) Give the instance variable the correct initial value. Tip: do this in the constructor.

The property ”is hatched” has now been added to the class Egg. An egg’s state can now be
hatched or not.

3. We now add methods to either ask for or change the value of the iAmHatched instance
variable. A getter and a setter method is added to the Egg class:

(a) Getter method: In order for another object (for example, Mimi) to know if an egg has
been hatched or not, the object (Mimi) must ask the egg what its state is (hatched or
not hatched).

i. Add a new method public boolean isHatched() to the Egg class.

Algorithmic thinking and structured programming (in Greenfoot) 10

Dodo keeps getting smarter Assignment 6

ii. This method must return the value of iAmHatched.
iii. Compile and test your method.

(b) Setter method: In order for another object to change the state of the egg from ’is not
hatched’ to ’is hatched’, the object must tell the egg that it has been hatched (if Mimi
hatches the egg, then Mimi has to tell the egg to change its state to ’is hatched’).

i. Add a new method public void setHatched() to the Egg class.
ii. In this method, change the value of the instance variable boolean iAmHatched.

iii. After the egg has been hatched, we should also change its picture (instead of the
blue egg, we want to show the red cracked egg). To do that, use the following
code:

GreenfootImage hatched_egg = new GreenfootImage("egg_hatched.png") ;
setImage(hatched_egg) ;

Note: The pictures used in this scenario can be found in the ’images’ folder. One
of the pictures is called ’egg hatched.png’. Using the two instructions above, the
image is linked to the Greenfoot class. If you wish, you can find your own image
on the internet. Copy the image to the images folder and then link it to the class
by modifying the code above.

iv. The setHatched() method is a mutator method. How can you tell?
v. Compile and test your code. By right-clicking you can call the setHatched()

method. Use ’Inspect’ to view the values of the instance variable. Does the code
work as expected?

In step 1 we gave the Egg a private instance variable called iAmHatched. In step 2 we gave
the variable its initial value. In step 3 we wrote public getter and setter methods for that
variable. Using these methods, other objects (such as Mimi) can ask the value of the variable
(i.e. get), or ask the egg to change (i.e. set) it (to also change its picture).

4. Modify. If Mimi wants to hatch an egg, she must call the appropriate getter and setter
methods. We will now change the code so that Mimi tells the egg that it has been hatched.

(a) Open the MyDodo class. Look for the hatchEgg() method. In your own words, describe
what this method does with the egg.

(b) First, we need to get a hold of the egg that we want to hatch. To get the egg object,
use Egg eggFoundToHatch = getEgg(); . This instruction creates a local variable which
holds an Egg. The getEgg stores the egg in the local variable. Now, Mimi can call any
public Egg method for the Egg variable in eggFoundToHatch.
In the method hatchEgg() , add the statement Egg eggFoundToHatch = getEgg(); .

(c) Before Mimi actually hatches the egg, she must first check if it has not been hatched
already. Add this check. Tip: Let her call eggFoundToHatch.isHatched() before she
tries to hatch an egg.

(d) Compile and test your code by right-clicking on either a blue egg or a golden egg and
then selecting the method’s name. What does
isHatched() return if the egg was already hatched? And what does it return if it
wasn’t yet hatched?

(e) To change the state of the egg, Mimi must call the void setHatched() setter method
for the egg that she has found. Use eggFoundToHatch.setHatched(); to call the setter
method.

(f) Modify the method’s comments.
(g) Compile and test your code. What happens when you call setHatched() (by right-

clicking) on an egg that has not yet been hatched? And what happens when you do
the same with an egg that has been hatched?

Algorithmic thinking and structured programming (in Greenfoot) 11

Dodo keeps getting smarter Assignment 6

We have now added an instance variable to store the state of an Egg (hatched or not hatched).
We also added getter and setter methods so that another object (Mimi) can ask the state or tell the
egg it has been hatched. The egg then changes its appearance accordingly (if hatched, to a red
cracked egg).

5.5 Go to a location (using instance variables)

In assignment 5 exercise 5.1.5 ’Go to a location’ you wrote the method

public void goToLocation(int coordX, int coordY)

which sent Mimi to a certain location with coordinates (coordX, coordY). Your method uses a
while. As explained in assignment 3, we want to avoid using whiles in Greenfoot because Green-
foot has its own while loop in the Run.

Now that you know how to use instance variables, we can use them to get rid of the while. In
this exercise you will rewrite the method so that it doesn’t use a while. Instead, the steps will be
repeated using the Run.

1. To refresh your memory, have a look back at the goToLocation method which you wrote in
assignment 5 exercise 5.1.5 ’Go to a location’.

2. Declare two new instance variables in the MyDodo class: private int myDestCoordX and
private int myDestCoordY.

3. Initially, Mimi must go to a certain location when goToLocation is called. Choose which
coordinates you would like that to be (any valid coordinates are fine). Initialize the instance
variables in the constructor accordingly.

4. Modify the code in the goToLocation method as follows:

(a) Because we’re using instance variables, we don’t need to pass the coordinates as pa-
rameters anymore. Change the goToLocation method so that it doesn’t take any pa-
rameters any more. Tip: Change this in the signature.

(b) Replace the while by an if statement.

(c) The sub-method which you wrote to check if Mimi has reached her destination must
also be modified. Because we’re using instance variables, we don’t need to pass the co-
ordinates as parameters anymore. Change the sub-method’s signature so that it doesn’t
take any parameters any more. Also change this in sub-method’s call in goToLocation.

(d) Step through the method and verify that it is correct.

(e) Write comments above the modified (sub)methods.

5. In the code, call the goToLocation() method from within the act method.

6. Compile and test your program using Run.

7. Write a setter method:

public void setDestination(int locationCoordX, int locationCoordY)

which gives the variable myDestCoordX the value of the parameter locationCoordX and
myDestCoordY the value of the parameter locationCoordY.

Before setting the myDestCoordX and myDestCoordY values, it is useful to check if the given
coordinates (in the parameters) are valid (i.e. they are inside the world).

8. By right-clicking, call the setDestination method. Then press Run. What happens?

Algorithmic thinking and structured programming (in Greenfoot) 12

Dodo keeps getting smarter Assignment 6

9. Now download and open the file ActForAssignment6.txt. After opening the Madagaskar
class as well, copy the act method to this class. You may choose yourself where to put this
method. Directly below the constructor, for example, is an excellent place. As you can see,
act contains a call to setDestination. Compile and test your scenario again using Run.
What happens now? While the program is still running, click on any location in the world.
What happens? Can you explain why this happens?

5.6 (IN) Calculating a fenced area (using instance variables) (A)

In assignment 4 exercise 5.3 ’Walk around a fenced area’, you taught Mimi how to walk around a
fenced area. This time we want her to calculate the area enclosed by the fencing. The method you
write must use instance variables and the Run.

1. Open the ’world calculateFencedArea’ world.

2. Come up with two instance variables for Mimi to keep track of the width and height of the
fenced area.

3. Follow the same steps as in the previous exercises:

• Declare initialize the instance variable appropriately;

• Write getter and setter methods where appropriate;

• Add a new method with which Mimi walks around the fenced area, modifying the
value of the instance variables accordingly.

4. Test your code.

5. When she is done walking around the perimeter, show a console with the following text:
”The size of the fenced area is xx”. Instead of ’xx’, print the calculated area.

6. Test your code again.

6 Summary

You can now:

• use instance variables to store values throughout the entire program;

• explain what a constructor is;

• replace a while loop in the act, by an if statement combined with instance variables.

7 Saving your work

You have just finished the sixth assignment. Save your work! You will need this for future as-
signments. In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save’. You
now have all the scenario components in one folder. The folder has the name you chose when
you selected ’Save As ...’.

Algorithmic thinking and structured programming (in Greenfoot) 13

Dodo keeps getting smarter Assignment 6

8 Handing in

Hand your (digital) work in via email to sjaaksm@live.com:

1. The (Word) document with your answers to be handed in (answers to the ’(IN) ’ questions)

2. The MyDodo.java file

3. The Egg.java file

Make sure you hand your work in before next Wednesday 8:30 (in the morning).

Algorithmic thinking and structured programming (in Greenfoot) 14

sjaaksm@live.com

	Introduction
	Learning objectives
	Instructions
	Theory
	Exercises
	(Instance) variables
	Count eggs until the fence
	Keeping track of the number of steps taken
	To be hatched or not to be hatched
	Go to a location (using instance variables)
	(IN) Calculating a fenced area (using instance variables) (A)

	Summary
	Saving your work
	Handing in

