
A Generic Adaptivity Model in Adaptive
Hypermedia

P.t. de Vrieze, P. van Bommel, and Th. van der Weide

University of Nijmegen
{pauldv,pvb,tvdw}@cs.kun.nl

Published in the proceedings of the adaptive hypermedia 2004 conference

Abstract. For adaptive hypermedia there is a strong model in form
of the AHAM model and the AHA! system. This model, based on the
Dexter Model, however is limited to application in hypermedia systems.
In this paper we propose a new Generic Adaptivity Model. This state-
machine based model can be used as the basis for adaptation in all kinds
of applications.
This Generic Adaptivity Model, when compared to AHAM has the fol-
lowing features: The Generic Adaptivity Model is more low-level than the
AHAM model as it does not provide hypermedia specific concepts. In-
stead the GAM provides an additional Interface Model that describes the
bindings of the adaptivity system with the application. Finally the con-
cepts of push and pull modelling have been incorporated in the Generic
Adaptivity Model allowing system designers to make better decisions
on what to store in the user model. This should allow for more flexible
adaptation systems.

1 Introduction

The AHAM model [1] forms an important model in the area of adaptive hy-
permedia. This model, based on the Dexter Model, however is limited to appli-
cation in hypermedia systems. In an aim to provide such a model for generic
user modelling we have developed the Generic Adaptivity Model (GAM). This
model provides a general model for an adaptation engine that can be used in a
modular way to provide adaptivity in applications. As the GAM model is more
general than the AHAM it is also more lowlevel. The AHAM model is based on
hypermedia concepts that the generic model cannot include.

The Generic Adaptivity Model is based on the two-dimensional classification
framework as defined in [2] and [3]. It includes push and pull modelling in the
shape of rules and questions. This inclusion allows designers of adaptive systems
to make better decisions on what to store in the User Model. This could allow
for more flexible adaptation systems.

In this paper we will first give a short overview of AHAM and the AHA!
system that is an implementation of it. Next we will give a description of the
Generic Adaptivity Model. Following we conclude with a short comparison and
some points of further research.



2 AHA! and the AHAM

The AHA! system [4],[5],[6] is an implementation of the AHAM (Adaptive Hy-
permedia Application Model) [1],[5] model as developed by de Bra et al. This
model is focused on adaptive hypermedia. It is based on the Dexter model [7],[8]
for hypermedia.

The AHAM originally comes from the field of educational hypermedia, and
these origins can still be found in the model. There are also several features
which limit the unchanged use for general interactive systems.

Run−time layer

Presentation Specifications

Adaptation Model

Anchoring

Within−component Layer

User
Model

Domain
Model

Storage Layer

Fig. 1. The AHAM model as given in [5]

Figure 1 (which has been copied from [5]) gives a graphical overview of the
AHAM model. It shows how the AHAM provides an extension of the storage
layer of the Dexter model. It splits up the storage layer into an Adaptation Model,
a Domain Model, and a User Model.

The purpose of the User Model is to store the information about one specific
user. The Domain Model serves a dual purpose, both as a blueprint for the User
Model, and as a specifier of the relationships between the concepts as specified
by the Domain Model. The Adaptation Model defines the dynamic behaviour
that performs the actual adaptation.

2.1 Domain Model

As in Dexter, the central notions of AHAM are concepts and concept relation-
ships. An AHAM concept is an abstract representation of an information item.
Below we will first discuss concepts and then the relations between them.

A concept has attribute value pairs, anchors and a presentation specification.
There can be atomic an composite concepts. Concepts that are composite are
composed of other concepts. The concept relationships must form a directed
acyclic graph.



Anchors specify locations that other concepts can link to. They do this basi-
cally by giving some kind of name to a location or a range within the concept.

Concept relationships implement links as seen in Dexter or HTML. In AHAM
concept relationships can only be between concepts or anchors. Concept relation-
ships do not need to result in links though. They can also be used to specify
relationships like prerequisite or inhibits.

Concepts and concept relationships together form the Domain Model (DM)
as used in AHAM. Thus the Domain Model contains the concepts and the rela-
tionships between these concepts.

2.2 User Model

In AHAM the user specific information is stored in the User Model (UM). This
user model is an overlay of the domain model. All properties in the Domain
Model are used from the User Model when present.

The User Model can be changed based on events. Possible events are: “The
user follows a link (to a different page)”, “the user performs a test”, “external
information about the user is imported”, or “the user explicitly sets or changes
information about himself”.

2.3 Adaptation Model

The actual adaptive behaviour in AHAM is defined by the Adaptation Model
(AM). The Adaptation Model defines how events and concept relationships lead
to changes to the UM.

In AHAM there are two ways to implement an Adaptation Model. The first
way is to have default rules that describe how adaptation is done based on the
concept relationships in the Domain Model. Such an approach is implemented
in for example Interbook [9].

The second way is to have specific rules bound to specific concepts or groups
of concepts. Such an approach is more flexible although it can make writing the
system more involved as an explicit adaptation model needs to be written. Such
an approach is used in AHA! [4]. The AHA! however provides an editor that
does generate the rules for you based on graph relationships.

Adaptation in AHAM is only performed using rules. The rules used are con-
dition action rules. These condition action rules are basically Event Condition
Action (ECA) rules [10] where the Event has been merged into the Condition
part. For the result this does not matter, although splitting out the event can
achieve greater efficiency.

2.4 The AHA! adaptation engine

For the actual implementation of the AHAM model in the AHA! system an
adaptation engine is necessary. According to the description in chapter four of
[5], the Adaptation Engine (AE) used in AHA! has some web concepts build



in such as session management. We will only look at the adaptive functionality
though.

The Adaptation Engine performs the adaptation task in a number of stages.
The tasks performed by the Adaptation Engine are:

– Initialising the UM from the defaults given in the DM.
– Loading the user’s stored UM overlaying it on the initial UM.
– Determine which concept “C” corresponds to the user’s request and the

current UM state.
– Evaluate the rules associated with the accessing of that concept “C”.
– Display concept “C”.
– Evaluate the rules that need to be fired post-access of concept “C”.
– Update the UM. Note though that in AHAM properties can have different

persistency values. For example properties can be persistent for a session,
one access, or forever. This would be equivalent to having rules that would
reset the properties to default values at certain events.

As explained earlier AHAM and AHA! perform rule based adaptation. This
has as a consequence that the AE only implements rule based adaptation. In the
AE it has been tried to lessen this restriction by having non-persistent properties
and post and pre concept access rule execution. This does however not eliminate
the problem.

3 Generic Adaptivity Model

Aiming at a theory for providing adaptation to applications in general we have
developed the Generic Adaptivity Model (GAM). The basis of the GAM is
formed on a state-machine based view on interactive systems.

In the description of the Generic Adaptivity Model we will use terms and
abbreviations that are equal to those used in the AHAM description. This does
not mean that these terms have an equal meaning. Where there might be confu-
sion we will subscript the use of the abbreviations or terms with the model they
are from.

Below we will discuss our Generic Adaptivity Model, in short GAM. First we
will shortly give an overview of the model. Then we will discuss the components
of the model.

3.1 GAM overview

As said the GAM model is based on a state-machine view on applications. In
this state-machine based view we see an application as a state-machine. At each
interaction an event gets generated. This event in someway induces an action
that results into a state change in the system. Such a state change can be para-
materised by external values. A user model can be used as the source of such
values.



(a) A normal interac-
tive system as a state-
machine

(b) An interactive system
with user modeling

Fig. 2. Comparison of normal and user modeling systems

In figure 2(a) we show a normal interactive system’s state-machine. The
parameters have been split out into interface properties and action properties as
to separate what they influence.

In our model of interactive systems employing user modelling we have en-
hanced the state machine model in such a way that events also get fed into the
adaptation engine. This engine will adapt the user model to these events (see
Figure 2(b)).

User model consultation happens in the action handler. Actions are now not
only paramaterised by static properties. They can also be parameterised by user
model information.

Adaptation Description

Client Application

User Model

Adaptation Engine

Interface Model

Domain Model

Adaptation Model

Fig. 3. The Generic Adaptivity Model



As seen in Figure 3, the two main components of the GAM are formed by
the Adaptation Description and the User Model. The Adaptation Description
defines how the adaptation should be performed, the User Model contains the
information about the user. Both are discussed below.

3.2 Adaptation Description

An Adaptation Engine requires a description of the adaptation it should perform.
This description consists of several parts that together form a logical union. This
logical union is the Adaptation Description (AD).

The parts of the Adaptation Description are: the Interface Model, the Domain
Model, and the Adaptation Model. Besides the Adaptation Description we also
have the notion of a User Model that is used to store specific user properties as
defined by the AD. In the following sections we will first describe all of these
parts after which we will explain how they fit together.

3.3 Interface Model

As our AE is general and does not limit itself to hypermedia there are many
events that it might need to react on. Similarly there are many questions that a
program might want to ask to the AE about the user.

To allow the programs that are clients of the AE to change the actual adapta-
tion logic without needing a change itself, we have the Interface Model (IM). The
Interface Model describes exactly which events and which questions are available
to clients of the AE. It also describes their parameters. The IM does however not
contain any logic and as such can be equal for two different adaptation models.

The IM can be split into two parts. The Event Interface Model and the
Question Interface Model. These models split up the IM into the event part
which is used when feeding the AE with events, and the question part which is
used when a client wants to query the AE.

Splitting the IM is an advantage. It allows for the situation where the mod-
elling application is not the application that actually uses the build model.

Event Interface Model The Event Interface Model describes which events
are provided. The IM only provides the interface. For that reason there can be
additional events or questions in the AD. One of those events is the change event
that is generated whenever the User Model changes. It is not possible to have
this event in the IM.

The events in the IM are paramaterised. While for model simplicity parama-
terised events could be replaced by one event for each parameter combination
this would in effect lead to very complex Adaptation Descriptions where much
would be duplicated.



Question Interface Model The Question Interface Model describes the ques-
tions that can be asked to an AE that runs this particular AD. The IM does
however not need to contain all questions defined in the AD. There are many
cases in which it is convenient to use intermediate questions that are internal to
the Adaptation Model.

The IM as such provides only a subset of all the questions available in the AD.
These questions, like events can have parameters for allowing less complexity in
the actual AD.

3.4 Domain Model

Like the AHAM model the GAM also provides a Domain Model (DM). In GAM
however there is no notion of “concept” as used in the AHAM model. As the
GAM model is a general model we cannot use a high-level abstraction like the
Dexter Model [7]. The GAM model is a low-level model in which the designer of
the DM determines the meaning of the DM elements.

Like the DMaham, the DMgam is a source from which the User Model is
determined. Every element of the Domain Model has it’s reflection on the User
Model.

The DM consists of definitions of attributes. These attributes have a type:
string, integer, boolean, floating point value or an array of such attributes. Fur-
ther the attributes have a name and a default value. This default value is the
value that gets used for this attribute when no value is specified for the attribute
in the user model.

Object Extension In our implementation we have added an extension to the
DM for objects. In this model we have classes, object prototypes and object
instantiations.

The main concept in this is the “object” concept. The difference between
object prototypes and object instantiations is that object prototypes live in the
Domain Model while object instantiations live in the User Model. Objects are
basically a grouping of events, rules, attributes and questions under a common
prefix.

The classes in the object extension allow for specifying common elements of
objects. These classes cannot themselves be instantiated, but they form the basis
of each object. They define the events, rules, attributes and questions that must
be present in each of the objects that derive from this class.

Object prototypes specify the names of instantiations of the classes as they are
part of the user model. Object prototypes however can add additional elements
or override some of the elements from the class it is based on.

Object instantiations contain only attributes and live in the User Model which
is not a part of the AD. Each object instantiation corresponds to one object
prototype, and for each Object Prototype, User Model pair there is one object
instantiation.



The events and the interfaces of the questions of the object prototypes actu-
ally are a part of the IM, and the rule and questions are a part of the Adaptation
Model. We however have discussed the object extension here for the sake of clar-
ity.

The object extension does not form a substantial change to the model and
everything that can be done with the object extension can be done without it.
We have however provided it as it simplifies the creation and maintenance of
Adaptation Descriptions a lot.

3.5 Adaptation Model

The Adaptation Model (AM) specifies the actual dynamic behaviour of the AE
with respect to this AD. In contrast to the AMaham the AMgam splits the dy-
namic behaviour into two phases. These phases correspond to the framework as
we have described in [2] and [3]. Basically the two phases represent updating of
the user model in response to events and the querying of the user model.

Handling of events happens with a system based on ECA rules similar to
AHAM. For querying we have however also added a question (or function) based
system. This question system allows to store intermediate values at the right
level in the User Model. As pointed out in [3] there are several advantages and
disadvantages of storing user properties instead of calculating them from more
basic properties.

Rules The rules in the adaptation model correspond to push adaptation as
described in [3]. They are also very similar to the rules as provided by AHAM.
The rules in our model are triggered by the events posted to the AE.

Before we give the steps involved in handling an event we need to mention
that as a result of the object extension events can have an object as context.
This context is necessary to make the class based inheritance possible. Events
that are defined outside an object do not have a context1. Event handling works
as follows:

1. An event list is initialised with the posted event.
2. The first event in the list is removed and taken for evaluation.
3. If the event has an object as context, all rules associated with the object are

evaluated. All the rules whose condition is true are evaluated, not only the
first one!

4. All rules without an object context are evaluated.
5. Every change to an attribute in the user model generates a change event

that has the name of the attribute as argument. All those events are added
to the event list

6. If there is at least one event in the event list, go back to step 2.

1 One can also say that context-less objects have a global context



Questions Besides rules the AMgam also provides questions. Questions are
basically functions as seen from a programming context. Questions correspond
to pull adaptation as described in [3]. As questions are used for querying the
user model they are not allowed to update any values in it.

Question evaluation is fairly straightforward. The questions are specified as
a program. In these programs it is possible to use other questions as functions
for intermediate values. User Model attributes are also accessible as variables.

3.6 User Model

Besides the Adaptation Description, the GAM defines the existence of a User
Model (UM) for each user. Each UM is tied to a specific AD and describes the
properties of the user as specified by the DM.

Like the UMaham our UMgam is an overlay User Model. When an element of
the AM queries for the value of a specific attribute in the model the AE performs
the following steps. First the UM is examined on whether it contains a value for
this attributed. If this value is contained, it is returned. When this value is not
contained the default value as specified by the DM is returned.

When an element of the AM wants to update a value in the UM this attribute
has it’s value set. When an attribute is set to the default value in the DM, the
attribute will still be present in the UM. This behaviour has as a consequence
that an attribute can also have an unset value.

4 Conclusion

In the previous we have first summarised the AHAM model. Further we have
given the Generic Adaptivity Model. Comparing the AHAM model to the GAM
model we can find the following differences:

– While the AHAM model is specifically geared towards adaptive hypermedia,
the GAM aims to provide a generic adaptivity model. As such the GAM
is more low-level than the AHAM model and does not provide high-level
constructs by itself. The GAM however does allow the specification of more
high-level models on top of the GAM model.

– The GAM in contrast to AHAM provides an explicit interface model. In
effect the AHAM model can be seen as having an interface model. This
model however would be implicit and static within the AHAM model. This
is sufficient for AHAM as the set of events available within a web constant
is fixed and limited to access to concepts/pages.
While the events in a hypermedia context are constant, there is still the
possibility to define the questions that can be asked in the context of the
adaptive hypermedia document. This means that if pull adaptation is added
to an adaptive hypermedia engine, an interface model must be added too.

– The biggest difference between AHAM and the GAM is that in the GAM
the concepts of push and pull adaptation have been added. In that respect



the adaptation within the AHAM can be seen as performing only push adap-
tation. The GAM model has added the notion of pull adaptation.
The addition of pull modelling to the model allows for the developers of
Adaptation Descriptions to consider at which level to store properties. In
this context it is for example more straightforward to calculate the visibility
level of a concept when it’s value is needed, instead of calculating it at the
moment that one of the values upon which it is based, changes.

From the above we can conclude that the GAM model is more suited as
a description for generic adaptivity than the AHAM model is. In the area of
adaptive hypermedia we are currently still missing a model that on top of GAM
can provide specific hypermedia concepts. However we believe that, once such a
model has been developed, the GAM model is able to provide functionality that
extends the AHAM model’s functionality.

In further research we plan to create such a hypermedia model on top of
GAM. We plan to use this model to create an adaptive hypermedia engine based
on the generic engine we have already implemented. To compare the functionality
of this engine we plan to write a translator that can translate AHA! documents
into a form that can be understood by our engine.

Additionally we also plan to research how artificial intelligence techniques
such as agent based learning and Bayesian or neural networks can be integrated
into our model.

References

1. de Bra, P., Houben, G.J., Wu, H.: Aham: A dexter-based reference model for
adaptive hypermedia. In: Proceedings of the ACM Conference on Hypertext and
Hypermedia, Darmstadt, Germany (1999) 147–156

2. de Vrieze, P., van Bommel, P., Klok, J., van der Weide, T.: Towards a two-
dimensional framework for user models. In: Proceedings of the MAWIS03 workshop
attached to the OOIS03 conference, Geneva (2003)

3. de Vrieze, P., van Bommel, P., Klok, J., van der Weide, T.: Adaptation in multi-
media systems. Multimedia Tools and Applications (2004) to appear.

4. de Bra, P., Calvi, L.: Aha! an open adaptive hypermedia architecture. The New
Review of Hypermedia and Multimedia 4 (1998) 115–139

5. Wu, H.: A reference Architecture for Adaptive Hypermedia Applications. PhD
thesis, Technical University of Eindhoven (2002) isbn: 90-386-0572-2.

6. de Bra, P., Aerts, A., Berden, B., de Lange, B., Rousseau, B., Santic, T., Smits,
D., Stash, N.: Aha! the adaptive hypermedia architecture. In: Proceedings of the
ACM Hypertext Conference, Nottingham, UK (2003) 81–84

7. Halasz, F., Schwartz, M.: The dexter hypertext reference model. In: Proceedings of
the NIST Hypertext Standardization Workshop, Gaithersburg, MD, USA (1990)
95–133

8. Halasz, F., Schwartz, M.: The dexter hypertext reference model: Hypermedia.
Communications of the ACM 37 (1994) 30–39

9. Brusilovsky, P., Schwarz, E., Weber, G.: A tool for developing adaptive electronic
textbooks on the world wide web. In: proceedings of World Conference of the
WWW, Internet and Intranet, San Franciso, CA, USA (1996) 64–69



10. Aiken, A., Hellerstein, J., Widom, J.: Static analysis techniques for predicting
behavior of active database rules. ACM Transactions on Database systems 20
(1995) 3–41


